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Abstract

Advances in single-cell technologies have shifted genomics research from the analysis

of bulk tissues toward a comprehensive characterization of individual cells. These

cutting-edge approaches enable the in-depth analysis of individual cells, unveiling

the remarkable heterogeneity and complexity of cellular systems. By unraveling the

unique signatures and functions of distinct cell types, single-cell technologies have

not only deepened our understanding of fundamental biological processes but also

unlocked new avenues for disease diagnostics and therapeutic interventions.

The applications of single-cell technologies extend beyond basic research, with sig-

ni�cant implications for precision medicine, drug discovery, and regenerative medicine.

By capturing the cellular heterogeneity within tumors, these methods have shed light

on the mechanisms of tumor evolution, metastasis, and therapy resistance. Addi-

tionally, they have facilitated the identi�cation of rare cell populations with special-

ized functions, such as stem cells and tissue-resident immune cells, which hold great

promise for cell-based therapies.

However, one of the major challenges in analyzing scRNA-seq data is the preva-

lence of dropouts, which are instances where gene expression is not detected despite

being present in the cell. Dropouts occur due to technical limitations and can intro-

duce excessive noise into the data, obscuring the true biological signals. As a result,

imputation methods are used to estimate missing values and reduce the impact of

dropouts on downstream analyses. Furthermore, the high-dimensionality of scRNA-

seq data presents additional challenges in e�ectively partitioning cell populations.

Thus, robust computational approaches are required to overcome these challenges

and extract meaningful biological insights from single-cell data.

There have been numerous imputation and clustering methods developed speci�-

cally to address the unique challenges associated with scRNA-seq data analysis. These

methods aim to reduce the impact of dropouts and high dimensionality, allowing for

accurate cell population partitioning and the discovery of meaningful biological in-

sights. While these methods have unquestionably advanced the �eld of single-cell

transcriptomics, they are not without limitations. Some methods may be computa-

tionally intensive, resulting in scalability issues with large datasets, whereas others

may introduce biases or over�t the data, potentially a�ecting the accuracy of subse-

quent analyses. Furthermore, the performance of these methods can vary depending

on the dataset's complexity and heterogeneity. As a result, ongoing research is re-

quired to improve existing methodologies and create new algorithms that address
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these limitations while retaining robustness and accuracy in scRNA-seq data analy-

sis.

In this work, we propose three imputation approaches which incorporate with

statistical and deep learning framework. We robustly reconstruct the gene expression

matrix, e�ectively mitigating dropout e�ects and reducing noise. This results in

the enhanced recovery of true biological signals from scRNA-seq data and leveraging

transcriptomic pro�les of single cells. In addition, we introduce a clustering method,

which exploits the scRNA-seq data to identify cellular subpopulations. Our method

employs a combination of dimensionality reduction and network fusion algorithms to

generate a cell similarity graph. This approach accounts for both local and global

structure within the data, enabling the discovery of rare and previously unidenti�ed

cell populations.

We plan to assess the imputation and clustering methods through rigorous bench-

marking on simulated and more than 30 real scRNA-seq datasets against existing

state-of-the-art techniques. We will show that the imputed data generated from our

method can enhance the quality of downstream analyses. Also, we demonstrate that

our clustering algorithm is e�cient in accurately identifying the cells populations and

capable of analyzing big datasets.

In conclusion, this thesis propose an alternative approaches to advance current

state of scRNA-seq data analysis by developing innovative imputation and clustering

methods that enable a more comprehensive and accurate characterization of cellular

subpopulations. These advancements potentially have broad applicability in diverse

research �elds, including developmental biology, immunology, and oncology, where

understanding cellular heterogeneity is crucial.
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to be induced by dropout events. (E) Gene subspaces determined by

perturbation clustering. We perturb the training data to discover the
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(upper panel) and perturbed connectivity matrix (lower panel) for k =

2. (C) The connectivity matrices for k = 5. (D) The connectivity

matrices for k = 3. The perturbed connectivity matrices clearly reveal

the true structure of the data. . . . . . . . . . . . . . . . . . . . . . . 24



XIV

3.4 The overall analysis pipeline of scIDS. The input is a matrix in which

rows represent cells and columns represent genes. In the �rst module
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using two autoencoders. In the second module (B), we apply the z-test
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module (B), we adopt the network fusion-based clustering method to
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Chapter 1

Introduction

Single-cell RNA sequencing (scRNA-seq) was �rst known in 2009 when Tang et al. [1]

monitored how individual cells respond to signals and other environmental cues at

critical stages of cell-fate. However, scRNA-seq had not gain major attention un-

til 2014 when sequencing cost became more a�ordable. Since then, a number of

scRNA-seq protocols have been developed to isolate single cells and to prepare cDNA

libraries using next generation sequencing (NGS) platforms [2, 3]. These advance-

ments in single-cell sequencing hold enormous opportunities for both basic biology

and clinical applications. For example, scRNA-seq disclosed diverse characteristic

of cells within a seemingly analogous cell population or tissue, and revealed insights

into cell identity, cell fate, and cellular functions [4]. Single-cell data was also used to

detect highly variable genes (HVGs) that contribute for heterogeneity across cells in

a cell population, to discover the relationship between genes and cellular phenotypes,

or to identify new rare cell types via dimensionality reduction and clustering.

However, scRNA-seq data come with additional challenges [5, 6]. One challenge is

that sequencing mRNA within individual cells requires arti�cial ampli�cation of DNA

materials millions of times, leading to disproportionate distortions of relative tran-

script abundance and gene expression. Another outstanding challenge is the �dropout�
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phenomenon where a gene was highly expressed in one cell but did not express at

all in another cell [7]. These dropout events usually occur due to the limitation of

sequencing technologies when only a low amount of starting mRNA in individual cells

can be captured, leading to low sequencing depth and failed ampli�cation [8�10].

Imputation has emerged as an e�ective strategy to mitigate the impact of dropouts

in scRNA-seq data by estimating and �lling in the missing gene expression values.

By leveraging the intrinsic structure and patterns present in the data, imputation al-

gorithms can enhance the quality and reliability of the gene expression pro�les, thus

facilitating downstream analyses such as clustering and di�erential expression anal-

ysis. The application of imputation methods [11�20] in scRNA-seq data processing

not only improves the accuracy of biological interpretation but also enables a more

comprehensive understanding of cellular heterogeneity and function.

Besides imputation, unsupervised clustering is an important application for ana-

lyzing scRNA-seq data and identifying cell types or sub-populations [16, 21�24]. It

allows us to identify putative cell types and can provide insight into cellular function.

This opportunity has spurred the creation of several atlas projects, most notably the

Human Cell Atlas [25]. These atlas projects aim to build comprehensive references

for all cell types present in an organism or tissue at various stages of development. In

addition to providing a deeper understanding of the basic biology, atlases will also be

useful as references for disease studies. For a cell atlas to be of practical use, reliable

methods for unsupervised clustering of the cells will be one of the key computational

challenges.

Although considerable progress has been made in terms of imputing and clustering

algorithms over the past few years, a number of questions remain challenged.

1. The high dropout rate in scRNA-seq data is a signi�cant challenge for impu-

tation methods, as it may lead to false negatives and impact the downstream
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analysis. Accurate imputation is essential to minimize the impact of these false

negatives. The high data sparsity makes it challenging for imputation methods

to di�erentiate between true zero values and dropout events. Also, this sparsity

makes it di�cult for clustering methods to identify meaningful patterns and

di�erentiate between true biological variability and technical noise.

2. scRNA-seq data is high-dimensional, with thousands of genes measured for each

cell. High dimensionality can lead to the "curse of dimensionality" in imputation

and clustering, where the increased complexity hinders the ability to recover the

true genes expressions and identi�cation of meaningful cell patterns.

3. scRNA-seq data contains cells from di�erent types, states, and conditions, which

increases the complexity of the imputation task. Imputation methods need

to account for this heterogeneity without introducing biases. Also, cellular

heterogeneity in scRNA-seq data makes it challenging to identify the correct

number of clusters and accurately separate di�erent cell types or states.

4. Some imputation methods can over-smooth the data or overestimate gene ex-

pression levels, which might lead to the loss of biologically relevant information

and distort downstream analyses.

5. Clustering results can be sensitive to the choice of algorithm, distance metric,

and parameter settings. Ensuring the stability and reproducibility of clustering

results is crucial for reliable interpretation.

Despite aforementioned challenges, scRNA-seq data imputation and clustering

remain as important applications for downstream analyses of scRNA-seq data. Im-

putation methods can help to address missing values in the data, while clustering

allows for the identi�cation of distinct cell types and subtypes. These applications

can provide important insights into the cellular and molecular mechanisms underlying



4

biological processes, and have the potential to drive new discoveries in �elds such as

developmental biology, cancer research, and immunology.

In this proposal, we will �rst attempt to eliminate dropouts phenomenon in

scRNA-seq data. In the �rst and second framework, we introduce RIA and scIR,

regression-based approaches, that are able to reliably recover the missing values in

single-cell data and thus can e�ectively improve the performance of downstream anal-

yses. In the third framework, we propose scIDS, another novel imputation method

that is a combination of deep autoencoder neural networks and subspace regression

to reliably recover the missing values in scRNA-seq data.

The second part of the proposal aims to address the challenge of clustering scRNA-

seq data in a scalable and e�cient manner. To achieve this, we propose to develop

a novel pipeline that utilizes multi-stage autoencoders and spectral clustering algo-

rithm. The proposed pipeline will involve encoding the high-dimensional scRNA-seq

data into low-dimensional representations using multi-stage autoencoders. These low-

dimensional representations will then be clustered using the spectral clustering algo-

rithm, which has been shown to be highly e�ective for clustering high-dimensional

data. The proposed pipeline is expected to provide a scalable solution for clustering

large scRNA-seq datasets, and to enable the identi�cation of novel cell types and

subtypes in a wide range of biological systems. Overall, the second part of the pro-

posal represents an important step towards improving our understanding of cellular

diversity and function in health and disease.

The rest of this proposal is outlined as follows: in Chapter 2, we provide an

overview of related studies and state-of-the-art scRNA-seq imputation and clustering

methods. In Chapter 3, we will present our proposed approaches, analyzed datasets

and our plan for validation. Finally, we conclude this proposal by summarizing the

contributions of our work.
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Chapter 2

Literature Review

With the rapid advancement of single-cell RNA sequencing (scRNA-seq) technology,

there have been signi�cant developments in imputation and clustering methods to

analyze scRNA-seq data. The initial release of these methods [11, 16] has provided

a valuable foundation for the �eld of scRNA-seq analysis. However, despite these

advancements, there are still limitations in the current imputation and clustering

methods. For instance, some methods may not perform well on low-quality datasets,

and others may have limitations in scalability or may require complex parameter

tuning. Therefore, further studies are needed to improve these methods and to develop

new ones that can overcome these limitations. In this chapter, we aim to provide an

overview of the current status of imputation and clustering methods for scRNA-seq

data, including their strengths, limitations, and future directions for improvement.
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2.1 Single-cell RNA sequencing data imputation meth-

ods

scRNA-seq sequencing technologies o�er power tools to measure gene expression in

individual cell [26�29]. In contrast to bulk RNA-sequencing (RNA-seq), a distinctive

feature of data measured using single-cell RNA-sequencing (scRNA-seq) is the in-

creased sparsity, or fraction of observed �dropouts,� where a number of zeros refers to

no reads mapping to a given gene in a cell [7, 30�32]. These observed zeros can be due

to biological �uctuations in the measured trait or technical limitations related to chal-

lenges in quantifying small numbers of molecules. To address the increased sparsity

observed in scRNA-seq data, recent work has led to the development of �imputation�

methods, in a similar spirit to imputing gene expression data that are missing or not

observed.

Single-cell RNA sequencing (scRNA-seq) data imputation methods can be broadly

categorized into three main groups: statistical-based, network-based, and dimension-

ality reduction-based methods. The �rst group consists of imputation methods that

represent sparsity directly using probabilistic models. These methods might or might

not di�erentiate between biological and technical zeros, but if they do, they typically

only impute gene expression values for technical zeros. A second method modi�es

(typically) all values (zero and non-zero) by smoothing or di�using gene expression

values in cells with similar expression pro�les identi�ed, for instance, by graph neigh-

bors. The third approach identi�es a latent space representation of the cells using ei-

ther low-rank matrix-based methods (capturing linear relationships) or deep-learning

methods (capturing non-linear relationships), and then reconstructs the observed ex-

pression matrix from the no longer sparse low-rank or estimated latent spaces. For

deep-learning techniques, such as variational autoencoders, both the estimated latent
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spaces and the "imputed" data (i.e., the reconstructed expression matrix) can be used

for downstream analyses, whereas ordinarily only the imputed data is provided for

downstream analyses.

2.1.1 Statistical-based scRNA-seq data imputation methods

Methods in the �rst category include SAVER [17], SAVER-X [33], scImpute [18],

BISCUIT [19], bayNorm [34], scRecover [35], and VIPER [36] that model dropouts in

scRNA dataset as a mixture of di�erent distributions. Those methods share comment

steps to perform imputation: (i) dropouts modeling, (ii) parameter estimation, (iii)

dodel �tting, and (iv) dropout imputation using �tted model.

SAVER models read counts as a mixture of Poisson-Gamma and then uses a

Bayesian approach to estimate true expression values of genes by borrowing informa-

tion across genes. Similar to SAVER, SAVER-X also o�ers the option to pre-train

hyper-parameters estimated from preexisting datasets using transfer learning. De-

spite initial success on some small datasets [37�40], both assumes that gene-gene

relationships are linear. This may not be true for all genes, leading to inaccurate

imputation for genes with non-linear relationships. Those methods can be computa-

tionally expensive, especially for large datasets with many cells and genes. In addition,

SAVER-X is susceptible for over�tting when pre-trained model is too specialized for

the source dataset. The model may not generalize well to the target dataset.

scImpute models the gene expression as a mixture of two di�erent distributions:

the Gaussian distribution represents the actual gene expression while the Gamma

distribution accounts for the dropout events. scImpute estimates the parameters of

the mixture model using the Expectation-Maximization (EM) algorithm [41]. Genes

with a high dropout rate are consider imputable while genes with low dropout rate

do not need imputation. The method then uses a non-negative least square to impute
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genes with high dropout rates. The EM-based strategy involves estimation of many

parameters for all genes across the whole genome. This makes the methods very slow

and vulnerable to over�tting. scImpute attempts to alter the expression of all genes,

including those that are not a�ected by dropout events.

Similar to SAVER and scImpute, BISCUIT [19] uses the Dirichlet process mixture

model [20] to repeatedly perform the processing steps such as normalization, sc-RNA

data imputation, and cells clustering by simultaneously inferring clustering param-

eters, estimating technical variations (e.g. library size), and learning co-expression

structures of each cluster. Another method, BayNorm models gene expression levels

using a gamma-Poisson hierarchical model, which captures both technical noise and

biological variability. BayNorm estimates cell-speci�c scaling factors that account

for di�erences in sequencing depth and e�ciency among cells. These scaling factors

help to normalize the data and reduce technical biases. The method accounts for

dropout events by estimating the probability of observing a zero count for each gene

in each cell. This allows for the imputation of missing gene expression values and

the recovery of dropout events. BayNorm employs a Bayesian approach to estimate

model parameters, using Markov chain Monte Carlo (MCMC) [42] sampling to ob-

tain posterior distributions for each parameter. While BayNorm provides an e�ective

method for gene expression recovery, ensuring convergence of the MCMC chains can

be challenging, and improper convergence may lead to biased parameter estimates.

scRecover [35] is based on a zero-in�ated negative binomial distribution model

that attempts to adapt to high drop-out rates, whereas VIPER [36] is based on

a sparse non-negative regression model. The models were estimated based on log-

transformed normalized gene expression data, it may not perform as well when dealing

with count data that has low sequencing depth. In such cases, VIPER's assumptions

and modeling techniques might not adequately capture the characteristics of the data,
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leading to less accurate imputations and potentially impacting downstream analyses.

In summary, model-based imputation methods for single-cell data have emerged as

e�ective tools for dealing with missing gene expression values in scRNA-seq datasets.

However, they have some main drawbacks that must be considered. These methods

rely on assumptions about the underlying data distribution, gene-gene relationships,

and gene expression patterns, which may not always be correct, resulting in inaccurate

imputations. Furthermore, the computational complexity associated with model-

based methods can be di�cult, especially for large scRNA-seq datasets with many

cells and genes, which may necessitate powerful hardware or e�cient algorithms.

Furthermore, when dealing with sparse data, as well as lowly expressed or rare genes,

where there may not be enough information to accurately model their expression

patterns, their performance can be suboptimal.

2.1.2 Network-based scRNA-seq data imputation methods

Network-based methods rely on the assumption that cells with similar gene expression

pro�les are likely to have similar missing values, and thus impute the missing data by

leveraging relationships between cells in the high-dimensional space. Methods in this

category includes MAGIC [11], DrImpute [13], knn-smoothing [43], netSmooth [44],

and 2S3 [45].

MAGIC [11] was one of the �rst imputation method that is able to impute single-

cell data on a genomic scale. MAGIC imputes zero expression value by using heat dif-

fusion [12] concept. It �rst constructs the a�nity matrix between cells using Gaussian

kernel and then constructs a Markov transition matrix by normalizing the sc-RNA

similarity matrix. Next, the weights of the other cells are estimated by the transition

matrix.

DrImpute which is based on the cluster ensemble strategy [14] using consensus
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clustering [15, 16] as the basic clustering algorithm. It performs clustering for a pre-

de�ned number of times and imputes the data by averaging value of similar cells.

If the number of clusters is not provided by users, DrImpute will use some default

values that might not be optimal for the data. DrImpute relies on many parameters

to �ne-tune their model, which often leads to over�tting. This makes their results

unreliable, i.e., the imputation is sensitive to a slight change in the input data or in pa-

rameter settings. knn-smoothing leverages the k-Nearest Neighbors (KNN) algorithm

to estimate and �ll in the missing values by considering the similarities between data

points. Similarly, 2S3 and netSmooth incorporate the biological network, e�ectively

smoothing the data by incorporating information from neighboring nodes.

2.1.3 Dimensionality reduction-based scRNA-seq data impu-

tation methods

Dimensionality reduction-based scRNA-seq data imputation is a powerful technique

for handling the inherent noise and sparsity present in single-cell RNA sequencing

data. This approach �rst identi�es a latent space representation of the cells, either

using low-rank matrix-based methods (capturing linear relationships) or deep-learning

methods (capturing non-linear relationships), and then reconstructs the observed ex-

pression matrix from the low-rank or estimated latent spaces, which are no longer

sparse. In this section we will systematically review available methods that employ

dimensionality reduction-based approach in their pipeline

Deep learning-based scRNA-seq data imputation methods

Deep learning algorithms, such as autoencoders and convolutional neural networks,

have demonstrated remarkable capabilities in capturing complex patterns and struc-

tures within the data. By leveraging these architectures, deep learning-based impu-
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tation methods can e�ectively model the gene expression dependencies and provide

more accurate imputations for scRNA-seq data. This section provides a brief survey

of imputation methods that employ deep learning algorithms in the analysis pipeline.

In this work, we provide an review of six imputation methods, namely, AutoIm-

pute [46], DCA [47], DeepImpute [48], SAUCIE [49], scScope [50], and scVI [51]. In

these methods, a latent space is constructed using deep learning models to represent

cells by low-dimensional latent variables which are used to reconstruct gene expres-

sion. The latent space representation can be used for downstream analyses, such

as clustering the cells or inferring pseudotime trajectories on the cells, but not for

di�erential gene expression analysis. DCA is a deep count autoencoder network that

uses a negative binomial noise model with or without zero-in�ation (depending on the

dispersion learned form data) and captures nonlinear gene-gene dependencies. scVI

is based on a hierarchical Bayesian model and applies deep neural networks to specify

the conditional distributions of variables where the latent variables are mapped to

the zero-in�ated negative binomial distribution. AutoImpute applies overcomplete

autoencoders and tends to be more conservative by considering the expression values

as truly zeros if the genes are silenced across bulk samples. DeepImpute constructs

multiple sub-neural networks to impute sets of target genes using genes highly cor-

related with the target genes. SAUCIE is a regularized autoencoder that uses the

reconstructed signal from autoencoder to denoise and impute the data. ScScope it-

eratively performs imputation using a recurrent network layer.

Low-rank matrix representation-based scRNA-seq data imputation meth-

ods

Low-rank matrix representation-based scRNA-seq data imputation method, which

leverages the intrinsic low-dimensional structure of gene expression data to accurately
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estimate and �ll in missing values. This approach assumes that the underlying true

gene expression matrix can be approximated by a low-rank matrix, thus exploiting

the correlations among genes and cells to e�ectively recover the missing information.

These include 3 methods, namely, ALRA [52], mcImpute [53], and PBLR [54]. In

these low-rank matrix-based methods, cell pro�les are mapped to a low-dimensional

linear space for imputation. ALRA uses SVD decomposition followed by a threshold-

ing scheme. mcImpute uses nuclear norm minimization, a matrix completion algo-

rithm. PBLR �rst groups cells into subpopulations and then runs a bounded low-rank

matrix recovery method within each cell sub-population.

2.2 Single-cell RNA sequencing data clustering meth-

ods

The large number of cells (up to millions) and the high-dimensionality of the data

(tens of thousands of genes or features) present substantial challenges to computa-

tional methods. This section provides a survey of the current clustering method.

One prominent strategy is to reduce the dimensionality of the data before perform-

ing cluster analysis. Methods in this category include SC3 [16], CIDR [21], pcaRe-

duce [22], SEURAT2 [23], SIMLR [24], and SHARP [55]. These methods typically

apply dimension reduction techniques such as PCA [56], t-SNE [57] and UMAP [58]

to obtain a lower-dimensional representation of the data. Deep-learning-based ap-

proaches, including scDeepCluster [59], scAIDE [60], SCA [61], AAE-SC [62], and

scGMAI [63], often use autoencoders to select important features and to project the

data onto a low-dimensional latent space. Next, these clustering methods partition

the cells using established clustering algorithms (e.g., k-means, spectral clustering,

etc.). Since these dimension reduction techniques are sensitive to sequencing plat-
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forms [64] and dropouts [10], the quality of clustering results also vary accordingly.

Another strategy is to iteratively search for hierarchical structures over both cells

and genes. Methods using this strategy include BackSPIN [40], SAIC [65], and

Panoview [66]). These methods attempt to iteratively divide cells and genes into

sub-groups to maximize cell similarity within each cluster. These methods, however,

require excessive computational power (due to the iteration), and overestimate the

number of cell types.

Many single-cell methods also utilize community detection algorithms such as Lou-

vain [67] and Leiden [68]. SEURAT3 [69], SCANPY [70], and Monocle3 [71] embed

community detection algorithms in their analysis pipeline. These methods �rst con-

vert scRNA-seq data into networks in which cells are nodes and the edges represent

similarity among them. Next, they partition the network using community detec-

tion algorithms that are known to be fast. The quality of clustering results strongly

depends on the construction of the similarity network. Further, although commu-

nity detection algorithms can produce reasonable results, they often overestimate the

number of cell communities (cell types).

Lastly, cluster ensemble is another strategy that aims to aggregate results from

multiple clustering models. Methods of this class include SAFE [72], SAME [73], and

Sc-GPE [74]; these methods selectively combine the resulted obtained from multiple

clustering algorithms, including SC3, CIDR, SEURAT, CIDR, SIMLR, SNN-cliq [75],

SSNN-Louvain [76], and MPGS-Louvain [77]. One of the main drawbacks of cluster-

ing ensemble methods is that they do not scale well for large datasets. Moreover,

evaluating the quality of clustering results obtained from each individual method is

a di�cult task because there is no universally agreed standard on what constitutes

good quality clusters in the �rst place [78].
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In the rapidly evolving �eld of scRNA-seq data analysis, the development of ef-

�cient and accurate methods for handling missing or dropout values is of utmost

importance. Among the many approaches, we propose on two highly e�ective meth-

ods, RIA, scISR and scIDS. RIA employs a regression-based imputation approach

that leverages the inherent relationships between gene expression levels to estimate

and replace missing values in scRNAseq data. This technique o�ers a robust and

straightforward solution to address the dropout problem and provides an improved

basis for subsequent data analysis tasks. scISR improves the dropouts identi�cation

using hypergeometric testing and impute the missing values by sub-space regression

approach. On the other hand, scIDS combines the power of neural networks with

regression-based imputation, integrating the advantages of both techniques to achieve

a more comprehensive imputation. In scIDS, a neural network learns the complex

patterns and dependencies within the data, while regression-based imputation serves

as a supplementary mechanism to �ll in missing values. This combination results

in a more accurate representation of the underlying biological processes, ultimately

leading to a better understanding of cellular heterogeneity and function.

Alongside these imputation methods, the ability to cluster and analyze large-scale

scRNAseq data has become increasingly crucial. In response to this need, we in-

troduce scCAN (Single-cell Clustering using Autoencoders and Nearest-Neighbor), a

novel scRNAseq method that e�ciently clusters big data by combining the strengths

of autoencoder-based dimensionality reduction and spectral clustering techniques.

The autoencoder, a powerful deep learning model, is employed to compress high-

dimensional scRNAseq data into a lower-dimensional space, e�ectively preserving the

critical features and inherent structure of the data. This compact representation not

only reduces computational complexity but also mitigates the curse of dimensionality,

enhancing the performance of clustering algorithms. Subsequently, spectral cluster-
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ing is applied to the reduced-dimension data to reveal the underlying structure and

identify biologically relevant cell subpopulations. By harnessing the synergistic ef-

fects of autoencoders and spectral clustering, scCAN o�ers a highly e�ective solution

for analyzing large-scale scRNAseq data, facilitating the discovery of novel cell types,

di�erentiation pathways, and gene regulatory networks in complex biological systems.

Also in this chapter, we will present our validation plan for the two imputa-

tion methods and one clustering method. We will use more than 30 publicly avail-

able datasets with more than 1 millions of cells collected from Expression Omnibus

(GEO) [79], European Bioinformatics Institute (https://www.ebi.ac.uk/gxa/sc/e

xperiments/), Broad Institute Single Cell Portal (https://singlecell.broadinst

itute.org/single_cell), and 10X Genomics website (https://support.10xgenom

ics.com/single-cell-gene-expression/datasets/1.3.0/1M_neurons). In each

of the proposed method, we will benchmark the performance against state-of-the-art

methods.

3.1 Sub-space regression-based imputation approach

Here we propose a new approach, RIA, that can reliably impute missing values from

single-cell data. Our method consists of two modules. The �rst module performs a

hypothesis testing to identify the values that are likely to be impacted by the dropout

events. The second module estimates the missing value using a robust regression

approach. All of the parameters are learned from the data themselves. The approach

is tested using �ve benchmarking datasets with a total of 3,535 cells. We demonstrate

that RIA outperforms existing imputation methods in improving the identi�cation of

cell population and temporal trajectories.

Figure 3.1 shows the overall analysis pipeline of RIA. The input of RIA is a matrix

in which rows represent genes/components and columns represent cells/samples. RIA

https://www.ebi.ac.uk/gxa/sc/experiments/
https://www.ebi.ac.uk/gxa/sc/experiments/
https://singlecell.broadinstitute.org/single_cell
https://singlecell.broadinstitute.org/single_cell
https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.3.0/1M_neurons
https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.3.0/1M_neurons
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�rst performs a hypothesis testing to determine genes that have accurate values with

high con�dence. These genes are will be used as the training set. The rest of the genes

(genes that need to be imputed) will be the imputable set. The method then uses a

generalized linear model to learn from the training set and to impute the missing data

in the imputable set. Finally, RIA concatenates the two sets of genes and outputs a

matrix that has the same number of rows and columns as of the input matrix.

3.1.1 Hypothesis testing and identi�cation of dropout

In order to impute the missing data without introducing false signals to the original

data, it is important to determine which genes are impacted by dropouts and which

genes do not need imputation. Therefore, we have developed a hypothesis testing

approach to determine the set of genes that are likely to be impacted by dropouts.

Our approach is based on the observation that for genes that are not impacted

by dropouts, the log-transformed expression values are normally distributed [18, 80].

Therefore, we use z-test to determine whether a zero value is observed by chance or

by the impact of dropout events. For each gene g, we use the non-zero expression

values to determine the parameters µ and σ of the Gaussian distribution. Next, we

use z-test to estimate how likely a zero value occurs, given that the expression values

follow the estimated Gaussian distribution. If the chance of observing a zero value

is less than the signi�cance threshold (0.05), we conclude that gene g is likely to be

a�ected by dropout. By repeating this process for all genes, we can divide our data

into two sets of genes: a set G that include genes a�ected by dropout, and a set M

that have high con�dence of not being a�ected by dropout.
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Figure 3.1: The overall pipeline of RIA. The algorithm consists of two modules. In the
�rst module, we apply a hypothesis testing approach to determine which genes need
to be imputed and which genes can be used as training. In the second module, we
adopt the generalized linear model to impute the missing values from the imputable
set. The algorithm outputs the imputed matrix that has the same number of rows
and columns as of the input data.

3.1.2 Regression-based imputation

Based on the hypothesis testing described above, we divide the data into two groups

of genes: i) a group G in which all of the genes are likely to be a�ected by dropouts

(imputable set), and ii) a group of genes M that have accurate gene expression that

do not need imputation (training set). The linear regression process consists of two

steps. The �rst step is to select genes from the training set that are highly correlated

with the gene we need to impute. In the second step, we train the linear model using

these highly-correlated genes and then estimate the missing values.

For a gene g ∈ G (imputable set), let us denote y as the non-zero part of g. In the

�rst step we calculate the Pearson correlation coe�cient of y with the corresponding

values of every gene in M (training set). We then select 10 genes from M with the

highest correlation coe�cients. Denoting {mi1 , . . . ,mi10} as the selected genes in M ,

we have {xi1 , . . . , xi10} as the vectors obtained from {mi1 , . . . ,mi10} that are highly

correlated with y. Note that each vector xij is a part of mij . We train the generalized
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linear model in which {xi1 , . . . , xi10} are the predictor variables and y is the outcome

variable. In our implementation, we adopt the lm function that is available in the

stats package. Next, we use the trained linear model to estimate the missing values

in g, using {mi1\xi1 , . . . ,mi10\xi10} as the predictors, where mij\xij is that part of

mij that do not belong to xij .

3.2 Hypergeometric testing and sub-space regression-

based approach

Here we propose a new approach, scISR, that can reliably impute missing values from

single-cell data. Our method consists of three modules. The �rst module performs

hypothesis testing to identify the values that are likely to be impacted by the dropout

events. By not altering the true zero values, we can avoid false imputations. The

second module utilizes a data perturbation technique [81] to automatically group

genes with similar patterns into smaller groups. The third module imputes missing

values a�ected by dropout events (identi�ed in the �rst module) by learning the gene

patterns in each gene group (identi�ed in the second module).

The schematic pipeline of scISR is shown in Figure 3.2. The input is an ex-

pression matrix, in which rows represent genes/transcripts and columns represent

cells/samples (Figure 3.2A). The method consists of three modules. In the �rst mod-

ule, we focus on identifying entries that are likely to be induced by dropouts (Fig-

ure 3.2B). For this purpose, we perform a hypergeometric test on each zero-valued

entry using the expression values in the corresponding gene-cell pair. An entry is im-

putable only if the p-value obtained from the test is signi�cant. We then divide the

data into two sets of data: (i) training data in which all values are trustworthy, i.e.,

no entry needs to be imputed (Figure 3.2C), and (ii) imputable data in which each
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gene has at least one entry that needs to be imputed (Figure 3.2D). In the second

module, we aim at identifying similar gene groups (gene subspaces) in the training

data that share similar expression patterns (Figure 3.2E). For this purpose, we utilize

the perturbation clustering we recently developed [81, 82]. Finally, in the third mod-

ule, we estimate the missing values in the imputable data using the identi�ed gene

subspaces (Figure 3.2F). The method then merges the two matrices (training data

and imputed data) and outputs a single matrix (Figure 3.2G).

Figure 3.2: Single-cell Imputation using Subspace Regression (scISR). (A) Input data
visualized in cell/sample space. (B) Hypergeometric test to determine whether each
zero value is induced by dropout. Based on the computed p-values for each entry, we
separate the original data into two sets of data: training data and imputable data. (C)
Training data in which none of the values is induced by dropout events. (D) Imputable
data in which each gene has at least one entry that is likely to be induced by dropout
events. (E) Gene subspaces determined by perturbation clustering. We perturb the
training data to discover the natural structure of the genes. Based on the pair-wise
similarity between genes, we separate genes into groups that share similar patterns.
(F) Subspace regression. We assign each gene in the imputable data to the closest
subspace and then perform a generalized linear regression on the subspace to estimate
the zero-valued entries that are impacted by dropouts. (G) Output expression matrix
obtained by concatenating the training data and imputed data.
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3.2.1 Hyper-geometric testing (Module 1)

This section describes the �rst module in scISR which aims at determining whether

each zero value observed is the result of dropouts. Our hypothesis is that dropout

events happen randomly for a gene a�ected by this phenomenon. By treating each

cell as an instance of the population, we also assume that the ratio of zero values

(dropout probability) reported for each cell di�er from each other. Using dropout

probabilities from both genes and cells, we can calculate how likely each zero values

is a�ected by dropout. If zero values caused by dropout are over-represented in a

gene, we conclude that this gene is a�ected by dropout events.

Given a zero-valued entry, let us denote p1 and p2 as the probability of observing a

zero value in the corresponding gene and cell, respectively. It follows that the chances

of having zero values in a gene and in a cell follow binomial distributions denoted by

X∼ Bin(n, p1) and Y∼ Bin(m, p2), respectively. n is the number of measured values

for a gene, and m is the number of measured values for a cell. Under the null, we have

p = p1 = p2. If X and Y are independent, we have X+Y ∼ Bin(n+m, p). Therefore,

the conditional distribution of X, P (X = x|X+Y = r), is a hyper-geometric where x

is the number of observed zero values in the gene and r is the total number of observed

zero values in the selected pair of gene and cell. The probability mass function of the

hyper-geometric distribution can be written as follows:

P (X = x− 1|X + Y = r − 1) =

(
n− 1

x− 1

)(
m

r − x

)
(
n+m− 1

r − 1

)
(3.1)

Note that X and Y have an overlapping entry for each gene and cell pair. There-

fore, we remove the overlapping entry from the hypergeometic formula by using: i)

n+m− 1 (instead of n+m) as the total number of of observed values in the selected

pair of gene and cell, ii) n−1 (instead of n) as the number of measured values for the
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gene, and iii) x− 1 (instead of x) as the number of zero values observed in the gene.

Applying Equation (3.1), we calculate the p-value for every zero-valued. We per-

form two di�erent kinds of tests: an under-representation and over-representation

analysis with a signi�cance threshold set to 0.01 for both analyses. An entry with

a signi�cant p-value in the over-representation analysis is considered untrustworthy

and should be imputed (imputable). An entry with a signi�cant p-value in the under-

representation analysis is considered trustworthy. An entry that is neither trustworthy

nor untrustworthy should be left alone. These values will not be imputed, nor be used

to impute other values. A gene is trustworthy if all of its entries are trustworthy. A

gene is imputable when at least one of its values is imputable. Based on this hypoth-

esis testing procedure, we obtain a set of genes that can be used for training (training

data), and a set of genes that needed to be imputed (imputable data). See Supple-

mentary Section 4.2, Figures S19, S21, and S24 for discussion about the robustness

of scISR.

3.2.2 Identifying gene subspaces (Module 2)

It is crucial that the missing values of a gene are inferred using related genes that

share similar expression patterns. Therefore, this module aims at identifying gene

groups of the training data, i.e., gene subspaces that share similar patterns. For this

purpose, we utilize the perturbation clustering [81, 82] that we recently developed.

The method is based on the observation that small changes in quantitative assays will

be inherently presented even when there is no signi�cant di�erence between genes. If

distinct gene groups do exist, they must be stable with respect to small degrees of data

perturbation. This is indeed the case, as we have demonstrated in our previous work

that the pair-wise connectivity between data points of the same group is preserved

when the data are perturbed.
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We will describe this approach using an illustrative example shown in Figure 3.3.

In this simulated dataset, we have three distinct classes of genes in which the expres-

sions of genes in each class are generated using a standard normal distribution. This

distribution for the �rst class is N (0, 1), for the second class is N (1, 1) to simulate

up-regulated genes, and for the third class is N (−1, 1) to simulate down-regulated

genes.

Assuming that we do not know the number of classes in this dataset, we set k = 2

(number of clusters) and then partition the genes. The upper panel in Figure 3.3B

shows the connectivity between genes after clustering: green when they belong to

the same cluster, and white otherwise. Note that two of the three true classes are

wrongfully grouped together due to the wrong number of clusters. Now we repeatedly

perturb the molecular measurements (by adding Gaussian noise) and partition the

genes again (still with k = 2). The lower panel in Figure 3.3B shows the average

connectivity between genes when the data is perturbed. The perturbed connectiv-

ity matrix suggests that the larger cluster is not stable. Similarly, the discordant

connectivity in Figure 3.3C states that the partitioning using k = 5 is not correct

either. The perturbed connectivity matrices (Figure 3.3B, C) suggest that there are

three distinct classes of genes. Finally, when we set k = 3, the perturbed and original

connectivity matrices are identical (Figure 3.3D).

The perturbed connectivity matrices suggest that there are three distinct classes

of genes. This demonstrates that for truly distinct gene groups the true connectivity

between genes within each class is recovered when the data is perturbed, no matter

how we set the value of k. This resilience of pair-wise connectivity occurs consistently

regardless of the clustering algorithm being used (e.g., k -means, hierarchical cluster-

ing, or partitioning around medoids), or the distribution of the data. When there

are no truly distinct subgroups, the connectivity is randomly distributed. When the
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Figure 3.3: The resilience of pair-wise connectivity. (A) The dataset consists of three
classes of genes: the �rst class has expression values of N (0, 1), the second has ex-
pression values of N (1, 1), and the third class has expression values of N (−1, 1). (B)
The original connectivity matrix (upper panel) and perturbed connectivity matrix
(lower panel) for k = 2. (C) The connectivity matrices for k = 5. (D) The connec-
tivity matrices for k = 3. The perturbed connectivity matrices clearly reveal the true
structure of the data.
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number of true classes changes, the perturbed connectivity always re�ects the true

structure of the data.

To identify the optimal partitioning, we calculate the absolute di�erence between

the original and the perturbed connectivity matrices and compute the empirical cu-

mulative distribution functions of the entries of the di�erence matrix (CDF-DM).

In the ideal case of perfectly stable clusters, the original and perturbed connectivity

matrices are identical, yielding a di�erence matrix of 0s, a CDF-DM that jumps from

0 to 1 at the origin, and an area under the curve (AUC) of 1 [81, 82]. We choose

the partitioning with the highest AUC and then partition the genes into subgroups

that are strongly connected in those perturbation scenarios. We note that the idea

of determining subspaces can be realized for both genes and cells simultaneously. We

do not focus on such simultaneous clustering in this manuscript, but it is of great

interest.

3.2.3 Subspace regression (Module 3)

In the �rst module, we divide the genes into two sets: i) a set I in which all of the

genes are likely to be a�ected by dropouts (imputable set), and ii) a set T that have

accurate gene expression that does not need to impute (training set). In the second

module, we segregate T into smaller groups of genes (gene subspaces) that share

similar expression patterns. In this third module, we will impute dropout values in

group I using a generalized linear regression model on gene subspaces.

Given a gene in the imputable set g ∈ I, we calculate the Euclidean distance

between the gene to the centroid of each gene subspaces. Based on the calculated

distances, we assign the gene to the closest subspace (with the smallest Euclidean

distance). In order to impute dropout values in g, we train a generalized linear

model using only highly-correlated genes within the assigned subspace in T . The
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linear regression process consists of two steps. The �rst step is to select genes from

the training set that are highly correlated with the gene we need to impute. In the

second step, we train the linear model using these highly correlated genes and then

estimate the missing values [83].

Denoting y ⊂ g as the non-zero part of g, S as the gene subspace in T that g was

assigned to, {si ∈ S} are expression vectors of genes in S; and {xi ⊂ ti} are the parts

of {ti} that correspond with y. We calculate the Pearson correlation between y and xi

and then select the 10 genes {t1, . . . , t10} in T with the highest correlation coe�cients

(see Supplementary Figure S5 for the discussion with regard to this parameter). We

train a linear model in which {x1, . . . , x10} are the predictor variables and y is the

outcome variable. In our implementation, we adopt the lm function that is available

in the stats R package. Next, we use the trained linear model to estimate the missing

values in g \ y, using {t1\x1, . . . , t10\x10} as the predictors, where ti\xi is the part

of ti that does not belong to xi. To avoid adding excessive weight to genes with

high expression values, we always rescale the data to an acceptable range (default is

[0,100]) using log transformation (base 2).

3.3 Neural networks and regression-based imputa-

tion approach

Here we propose a new approach, scIDS, that can reliably impute missing values from

single-cell data. Our method consists of two modules. The �rst module performs

data compression and clustering using deep neural networks. This compressed data

is considered trustworthy information for imputation. The second module utilizes

a z-test to detect genes that are highly impacted by dropouts. Then, the module

imputes missing values a�ected by dropout events by learning the important features
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patterns in each cell group (identi�ed in the �rst module). This strategy ensures that

the true missing values are imputed by using only highly relevant information. In an

extensive analysis using simulation and 8 real scRNA-seq datasets, we demonstrate

that scISR improves the quality of single-cell data while preserving the transcriptome

landscape.

Figure 3.4 shows the overall analysis pipeline of scIDS. The input of scIDS is an

expression matrix in which rows represent genes and columns represent cells. The

�rst module (Figure 3.4A) �lters the genes and compresses the input data into a low-

dimensional representation using two autoencoders. Given the compressed data, this

module segregates the cells that share similar characteristics into di�erent groups.

The second module (Figure 3.4B) performs a z-score parametric measure to identify

which genes need to be imputed. For each group of cells identi�ed from the �rst

module, a generalized linear model will learn from the compressed data to impute the

missing data in the high dropout genes set.

3.3.1 Compressing data using autoencoders

The input of Module 1 is an already-normalized expression matrix in which rows

represent cells while columns represent genes. Given the input matrix, we rescale the

data to a range of 0 to 1 as follows:

Xij =
Mij −min(Mi.)

max(Mi.)−min(Mi.)
(3.2)

where M is the input matrix and X is the normalized matrix.

After the rescaling, we further process the data using an 1-layer autoencoder to �l-

ter out genes that do not signi�cantly contribute to di�erentiate cells. Autoencoder is

a self-learning neural network that consists of two core components: an encoder and a
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Figure 3.4: The overall analysis pipeline of scIDS. The input is a matrix in which
rows represent cells and columns represent genes. In the �rst module (A), we perform
features selection, data embedding, and cells clustering using two autoencoders. In
the second module (B), we apply the z-test hypothesis testing to determine which
genes need to be imputed. From the obtained genes set, we segregate cells into
di�erent groups using cluster assignment obtained from module A. For each group
of cells, we adopt the generalized linear model to estimate the missing values using
embedding data in module A. and we perform. The algorithm outputs the imputed
matrix that has the same number of rows and columns as of the input data.
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decoder. The encoder projects the input onto a lower-dimensional space (compressed

data) while the decoder tries to reconstruct the original data from the compressed

data. We also constrain the weights of the encoder to be non-negative. The non-

negativity constraint ensures that each latent variable in the compressed space is a

part-based, additive combination of the input. This technique shrinks the coe�cients

of less important features to zero while maintaining the non-negative coe�cients of

the signi�cant features.

After the feature selection step, we obtain a denoised data matrix with the same

number of cells that consists of important genes. Here, we further reduce the size of

the data by conducting an additional step of dimensional reduction using a modi�ed

version of Variational Autoencoder (VAE) [84]. The VAE has the same structure as a

standard autoencoder, which consists of an encoder and a decoder. The encoder (fE)

projects the input to a low-dimensional space while the decoder (fD) reconstructs

the original input from the compressed data. Given an expression pro�le of a cell

x, we have e = fE(x), where e is the low-dimensional representation of x in the

bottleneck layer. Instead of using e directly to reconstruct the data, VAE adds two

transformations fµ and fσ to generate the parameters µ and σ. The new vector z

is now sampled from the distribution N(µ, σ2). The decoder uses z to reconstruct

the data: x̄ = fD(z). Adding randomness to z will help the VAE model to avoid

over�tting without losing the ability to learn a generalized representation of the input.

We call the second autoencoder a Stacked Variational Autoencoder because we

modify the VAE model to generate multiple compressed spaces. Given a list of latent

variables, we use a re-parameterization trick [84] to obtain multiple realizations of z

as follows: z = µ + σ ∗ N(0, 1). Given the list of latent variables, we use Weighted-

based meta-clustering (wMetaC) to generate cells clusters and select the best latent

variable as a compressed data M to be used for imputation.
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3.3.2 Identifying dropouts and imputation

In this section, we aim to determine the set of genes that are likely to be impacted

by dropouts. This is an important step to ensure that the missing data is correctly

imputed without introducing false signals to the original data.

Our approach is based on the observation that for genes that are not impacted

by dropouts, the log-transformed expression values are normally distributed [18].

Therefore, we use z-test to determine whether a zero value is observed by chance or

by the impact of dropout events. For each gene g, we use the non-zero expression

values to determine the parameters µ and σ of the Gaussian distribution. Next, we

use z-test to estimate how likely a zero value occurs, given that the expression values

follow the estimated Gaussian distribution. If the chance of observing a zero value

is less than the signi�cance threshold (0.05), we conclude that gene g is likely to be

a�ected by dropout. By repeating this process for all genes, we can select a group of

genes that are being a�ected by dropout and we call them as imputable set G.

After conducting the z-test, we obtain a new matrix with the same number of

cells (rows), but the columns consist of genes that are highly impacted by dropout.

Here, we perform imputation on imputable genes using the shared information within

each cell group identi�ed from the �rst module. For a gene gi ∈ Gi (imputable set)

that belongs to the cell cluster i, let us denote yi as the non-zero part of gi. In the

�rst step we calculate the Pearson correlation coe�cient of yi with the corresponding

features in the compressed data Mi. We then select 5 features from Mi with the

highest correlation coe�cients. Denoting {mij1 , . . . ,mij5} as the selected features in

Mi, we have {xij1 , . . . , xij5} as the vectors obtained from {mij1 , . . . ,mij5} that are

highly correlated with yi. Note that each vector xijn is a part of mijn . We train the

generalized linear model in which {xij1 , . . . , xij5} are the predictor variables and yi

is the outcome variable. In our implementation, we adopt the lm function that is
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available in the stats package. Next, we use the trained linear model to estimate the

missing values in gi, using {mij1\xij1 , . . . ,mij5\xij5} as the predictors, wheremijn\xijn

is that part of mijn that do not belong to xijn .

We repeat this imputation process for all genes in each cells cluster generated

by the �rst module. Given the already imputed genes, we merge them by the cells

groups to obtain a new matrix that has the same size of the imputable set. Finally, we

concatenate the set of good genes with the imputable set to obtain the �nal imputed

data.

3.4 scRNA-seq data clustering using autoencoder and

network fusion

Here we introduce scCAN, a single-cell clustering approach that consists of three mod-

ules: (1) a non-negative kernel autoencoder to �lter out uninformative features, (2) a

stacked, variational autoencoder to generate multiple low-dimensional representations

of single-cell data, and �nally (3) a graph-based technique to determine cell groups

from multiple representations. In an extensive analysis using 28 scRNA-seq datasets,

we demonstrate that scCAN signi�cantly outperforms state-of-the-art methods in sep-

arating cells of di�erent types. We further assess the clustering methods with regards

to scalability and robustness against dropouts using simulated datasets. Overall,

scCAN is the most robust and accurate method and can analyze most datasets in

minutes.

The work�ow of scCAN is shown in Figure 3.5. This work�ow consists of three

modules. The �rst module (Figure 3.5A) �lters the genes and compresses the input

data into a low-dimensional space using two autoencoders. Given the compressed

data from module 1, the second module (Figure 3.5B) is used to cluster small data,
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Figure 3.5: The overall analysis pipeline of scCAN consists of three modules. In the
�rst module (A), we perform data normalization, gene �ltering, and latent variables
generation using two autoencoders. In the second module (B), we adopt the network
fusion-based clustering method to segregate cell types for small data. The third
module (C) aims at clustering big data using a combination of the network fusion
approach and K nearest neighbors (k-NN) algorithm.
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and the third module (Figure 3.5C) is used to cluster big data.

3.4.1 Data compression using autoencoders (Module 1)

Module 1 aims at compressing the original data into a compact representation. This

module consists of three main steps: (1) data rescaling, (2) feature selection, and

(3) multiple latent variables generation. The �rst step rescales the data, while the

second step removes genes that are not informative. The third step transforms the

data obtained from step 2 into a low-dimensional space using a stacked Bayesian

autoencoder. The details of each step are presented in the following sections.

Min-max scaling

The input of Module 1 is an already-normalized expression matrix in which rows

represent cells while columns represent genes. Given the input matrix, we rescale the

data to a range of 0 to 1 as follows:

Xij =
Mij −min(Mi.)

max(Mi.)−min(Mi.)
(3.3)

whereM is the input matrix and X is the normalized matrix. Note that this min-max

scaling is not a scRNA-seq normalization method. This min-max scaling added to

our method is used on top of the already normalized data provided by users. Such

scaling is frequently used in deep learning models [85�88] with the common purpose

of reducing standard deviation and suppressing the e�ect of outliers without altering

the transcriptome landscape.

Feature selection using non-negative-kernel autoencoder

After the rescaling, we further process the data using an 1-layer autoencoder to �lter

out genes that do not signi�cantly contribute to di�erentiating cells. Autoencoder is
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a self-learning neural network that consists of two core components: an encoder and a

decoder. The encoder projects the input onto a lower-dimensional space (compressed

data) while the decoder tries to reconstruct the original data from the compressed

data. Optimizing this process can theoretically result in a compact representation of

the original data. By default, we set the dimension of the compressed data (bottleneck

layer) to 50. The low number of dimensions ensures that the data obtained from the

bottleneck layer is a compact representation of the original input, high-dimensional

data.

We also constrain the weights of the encoder to be non-negative, so that each

latent variable in the compressed space is a part-based, additive combination of the

input. This technique shrinks the coe�cients of less important features to zero while

maintaining the non-negative coe�cients of the signi�cant features. From the weight

distribution of the encoder, scCAN only keeps genes that have non-zero coe�cients

in the part-based representation. In essence, this set of genes can be considered

the optimal set (su�cient and necessary) to represent the original data. This set

is �necessary� because removing any gene from this set would greatly damage the

reconstruction ability of the decoder. Concurrently, the set is �su�cient� because

adding any other genes would not improve the quality of the compressed data. By

default, scCAN selects the top 5,000 genes that have non-zero coe�cients with the

highest coe�cient variances.

After this feature selection step, we obtain a new matrix with the same number

of cells (rows), but the columns consist of only the optimal set of genes. This ma-

trix serves as the input of another autoencoder to generate multiple low-dimensional

representations of the data.
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Dimensionality reduction using Stacked Variational Autoencoder

After the feature selection step, we obtain a denoised data matrix that consists of im-

portant genes. Although a signi�cant number of genes have been removed, there are

still thousands of genes. To reduce the computational resources required for cluster-

ing, we further reduce the size of the data by conducting an additional step of dimen-

sional reduction using a modi�ed version of Variational Autoencoder (VAE) [84]. We

call it Stacked Variational Autoencoder because we generate multiple latent spaces

instead of generating only one as in the original VAE.

The VAE has the same structure as a standard autoencoder, which consists of an

encoder and a decoder. The encoder (fE) projects the input to a low-dimensional

space while the decoder (fD) reconstructs the original input from the compressed

data. Given an expression pro�le of a cell x, we have e = fE(x), where e is the low-

dimensional representation of x in the bottleneck layer. Instead of using e directly

to reconstruct the data, VAE adds two transformations fµ and fσ to generate the

parameters µ and σ. The new vector z is now sampled from the distribution N(µ, σ2).

The decoder uses z to reconstruct the data: x̄ = fD(z). Adding randomness to z

will help the VAE model to avoid over�tting without losing the ability of learning a

generalized representation of the input.

Here we modify the VAE model to generate multiple compressed spaces with mul-

tiple realizations of z. The goal is to further diminish over�tting and to increase the

robustness of the model. Given a list of latent variables, we use a re-parameterization

trick [84] to obtain multiple realizations of z as follows: z = µ + σ ∗ N(0, 1). This

strategy ensures the VAE model can be back-propagated. In our model, we limit the

size of the latent layer to a low number of dimensions (d = 15 by default). We keep

d small to force the neural network to be as compressed as possible.

After �nishing the training stage, the input data is processed through the encoder
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to generate multiple representative latent variables of the original data. As described

in the next section, these compressed representations of the data are used for cell

segregation (clustering).

3.4.2 Network fusion and spectral clustering for cell segrega-

tion (Module 2)

This section describes the work�ow for analyzing datasets with a moderate number

of cells (n <= 5, 000 by default). When the number of samples is large ( over 5,000

up to millions of cells), we use a di�erent procedure (see Module 3 in Section 3.4.3).

The input of Module 2 is multiple low-dimensional representations (matrices) of

the input data. We use a network fusion-based approach to cluster scRNA-seq data

via multiple steps: (i) building a cell-similarity network for each of the representations,

(ii) fusing the networks, and (iii) clustering using spectral clustering.

For each latent matrix, we construct a cell-similarity network G = (V,E) where

each vertex V corresponds to a cell and each edge E represents a link between two

cells. Edges are weighted and stored in a m × m matrix W with Wij represents

the weight between cells xi and xj. To determine the weight for each pair of cells,

we �rst compute the Euclidean distance ρij between the cells xi and xj. Next, we

calculate the average value of the distances between the cell xi and its neighbors

ρi_ =
∑

j=1...k(ρ(xi,nj))

k
. We repeat this step for the cell xj to obtain ρj_. We keep

the number of neighbors small (k = 30 by default) to preserve local cells relationship,

but users are free to set their own values. We denote εij =
ρij+ρi_+ρj_

3
as an average

distance among cells xi, xj and neighbour cells to calculate Wij = exp
(
−ρ2(xixj)

µεij

)
where µ is a Gaussian similarity kernel (σ = 0.5). Finally, we repeat this process for

every pair of cells to obtain the similarity matrix W for the current latent matrix to

obtain a similarity network. Here, each network is a graph representation of a single
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latent matrix.

Next, we perform network fusion to aggregate multiple similarity networks ob-

tained from their corresponding latent matrices into a consolidated one. The network

fusion approach is adapted from SNF method [89] by �rst calculating the full and

sparse kernel for each vertex V in the network G. The full kernel is the normalized

weight matrix P obtained from G. The sparse kernel S is a matrix that contains

local a�nity of cells and their neighbors. This step maintains the weights for cells

in the same group while suppressing the weights of non-neighbouring cells to zero.

That means cell similarities in the same community are more trustworthy than the

remote ones. We repeatedly calculate the full and sparse kernel for all n similarity

networks to get the lists of updated weight matrices and encoded neighbour similarity

matrices. Then, those matrices are iteratively fused together to obtain the �nal fused

network P as follows:

P (v) = S(v) ×

(∑
k ̸=v P

(k)

n− 1

)
× (S(v))T , v = 1, 2, ..., n (3.4)

Given the fused network P , we use the eigengap method [90] to determine the

number of clusters. First, we compute adjacency matrix A and degree matrix D to

get Laplacian matrix L = D − A. Here, eigen values (λ) and eigen vectors (x) are

calculated by Lx = λx. Next, eigengap is de�ned as eigengapi = λi+1−λi where λi is

the i-th eigenvalue of the matrix L. In our method, i is user-control hyperparameter

that is set from 2 to 15 by default. From the list of eigengap values, we sort them

in ascending order and select the two highest eigengap values. Among those two, we

select the eigengap that yields a minimum i to prevent overestimating the number

of clusters. This i value is considered as the optimal number of clusters. Given the

number of clusters, we use spectral clustering [91] to partition the cells in the fused

network P .
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3.4.3 Big data analysis (Module 3)

When the number of cells is large (n > 5, 000), we split the cells into two sets:

a training set of 5,000 randomly selected cells and a testing set that consists of the

remaining cells. We then use the same procedure presented in Module 2 to cluster the

training data. After this step, we obtain a training cluster assignment. We annotate

the remaining cells in each latent matrix as testing data, and we aim to classify them

using the cells labels obtained from the training data.

We perform the classi�cation process on testing data in only one latent matrix

among multiple ones obtained from Module 1. In order to do that, we select the

best latent matrix that is a closed representation of other matrices. First, we use

k-nearest neighbor adaption of spectral clustering algorithm (k-nn SC) to quickly get

the clusters assignments for every latent matrices. Given the list of obtained clusters,

we use weighted-based meta-clustering (wMetaC) implemented in SHARP [55] to

determine the �nal cluster assignment. The wMetaC algorithm is conducted through

5 steps: (i) calculating cell-cell weighted similarity matrix W , wij = sij(1 − sij)

where sij is the chance that cell i and j are in the same cluster, (ii) calculating cell

weight, which is the sum of all cell-cell weights related to this cell, (iii) generating

cluster-cluster similarity matrix |C| × |C|, where C is the union of all the clusters

obtained in each replicate, (iv) performing hierarchical clustering on cluster-cluster

similarity matrix, and (v) determining �nal clustering result by voting scheme. One

note of caution is that the �nal clustering results obtained from this step are only

used to determine the best latent matrix. Then, we measure the adjusted Rand index

(ARI) value between the �nal cluster and the cluster obtained from k-nn SC on each

input latent. The latent matrix that yields the highest ARI value will be selected for

classi�cation.

Given the �nal latent matrix, we use k-NN algorithm to classify the remaining cells
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using cluster's labels obtained from the training data. Lastly, we merge the cluster

assignments from the training data and the testing data to get the �nal clustering

result.

Note that the default value of 5,000 allows us to have a su�ciently large sample size

to properly determine the cell types which in turns will lead to a proper classi�cation

of the remaining cells. At the same time, 5,000 is a reasonable small number of

samples that allows users to perform the analysis e�ciently using personal computers.

However, this default value might hinder the process of detecting rare cell types in

large datasets. To enhance the method's capability to detect rare cell types, users

can either increase the sample size or perform multi-stage clustering.

3.5 Validation

3.5.1 scRNA-seq data imputation validation

Benchmarking and validation for RIA

We will assess the performance of RIA using public scRNA-seq datasets that are avail-

able in NIH Gene Expression Omnibus (GEO) [79] and Array Express [92]. We will

use �ve datasets: Biase's [93], Yan's [94], Goolam's [95], Deng's [96], and Zeisel's [40].

The processed data were downloaded from Hemberg lab's website (https://hemberg-

lab.github.io/scRNA.seq.datasets). The details for each dataset (accession ID, num-

ber of cells, number of cell types, organism, and single-cell protocol) are described in

Table 3.1. The �rst four studies, Biase [93], Yan's [94], Goolam [95] and Deng [96],

measure the gene expression of embryonic cells at di�erent stages, from zygote to the

cells of the late blastocyst. Cell types of these datasets were labeled according to

their developmental stages (timestamp). The �fth dataset, Zeisel [40], was obtained

from a mouse brain tissue. The cell labels of this dataset were assigned based on
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expert knowledge of the underlying biology.

For each dataset, we will download the already processed expression data, in which

genes are represented in rows and cells are in di�erent columns. We only perform log2

transformation to re-scale sc-RNAseq data, i.e., log2(A+1) where A is the expression

matrix. Genes that do not express across any cells will be removed.

Also, to validate our proposed approaches, we will assess the performance of our

methods in comparison with two state-of-the-art methods for single-cell imputation:

MAGIC [11] and scImpute [18]. Both methods are widely used and each represents

a di�erent imputation strategy. MAGIC uses Markov a�nity matrix to smooth the

data while scImpute is a statistical approach that models the data as a mixture of

Gamma and Gaussian distributions.

For each of the �ve datasets described in Table 3.1, the cell types are known.

We use this information a posteriori to assess how separable the cell populations are

after imputation. For each dataset, we have a raw matrix that serves as the input of

each imputation method. After imputation, we have four matrices: the raw data and

three imputed matrices (from RIA, MAGIC, and scImpute). In order to assess how

separable the cell types in each matrix, we use k-means [97] to cluster each matrix

and then compare the obtained partitionings with the known cell types. We will use

di�erent metrics for comparing the obtained partitionings with the known types.

Here we will also aim to show that RIA improves the quality of the data without

altering the transcriptomics landscapes. Since single-cell data are high-dimensional

and are hard to interpret, it is desirable to visualize them in low dimensional space

with two or three dimensions. Traditionally, researchers use t-distributed Stochastic

Neighbourhood Embedding (t-SNE) [98, 99] for this purpose, which preserve local

structure among cells. We �rst use Principal Component Analysis (PCA) [100] to

reduce the number of dimensions to 20, and then use t-distributed Stochastic Neigh-
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bourhood Embedding (t-SNE) [101] to visualize the data. The purpose of using PCA

is to reduce the running time of the visualization process. Then, we will use an evalua-

tion metric to quantify the di�erence between original 2-D transcriptomics landscape

produced from raw data and each of the method.

Lastly, we will measure the ability to recovers temporal trajectories in embryonic

developmental stages for each method. We use the four embryonic datasets to demon-

strate RIA's ability in recovering the temporal dynamics. The Biase dataset consists

of 49 inter-blastomere cells from mouse embryonic stem cells (mESCs), including

zygote, 2-cell and 4-cell. The Goolam dataset includes transcriptome data of 124

individual cells in mouse pre-implantation development stages: 2-cell, 4-cell, 8-cell,

16-cell and blast. The Yan dataset consists of 90 cells from human pre-implantation

embryos and human embryonic stem cells (hESCs). The Deng dataset includes the

expression pro�les of 268 individual cells of mouse pre-implantation embryos of mixed

background.

Benchmarking and validation for scIDS

Similar to RIA, we will continue to use public datasets available from GEO, Array

Express, and Broad Institute Single Cell Portal (https://singlecell.broadinst

itute.org/single_cell) for validation. For this method, we will include datasets

that contain higher number of cells making the total number of cells analyzed greater

than 100,000. Table 3.2 shows the details of the eight single-cell datasets (accession

ID, number of cells, number of cell types, organism, and single-cell protocol) used in

our data analysis.

We will compare scIDS with the raw data and two widely used scRNA-seq imputa-

tion methods, knn-smoothing [43], and MAGIC [11] using eight scRNA-seq datasets

mentioned above. For each of the eight datasets, we use a raw matrix as the input of

https://singlecell.broadinstitute.org/single_cell
https://singlecell.broadinstitute.org/single_cell
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Table 3.1: Description of the eight single-cell datasets used to assess the performance
of RIA

Dataset Accession ID Size K Organism Protocol
Biase[93] GSE57249 49 4 Mouse Embryo SMARTer
Yan[94] GSE36552 90 6 Human Embryo Tang
Goolam[95] E-MTAB-3321 124 5 Mouse Embryo Smart-Seq2
Deng[96] GSE45719 268 6 Mouse Embryo Smart-Seq2
Zeisel[40] GSE60361 3,005 9 Mouse Brain STRT-Seq

Table 3.2: Description of the eight single-cell datasets used to assess the performance
of scIDS.

Dataset Accession ID Size K Organism Protocol
Pollen [102] SRP041736 301 4 Human Tissues SMARTer
Darmanis [103] GSE67835 466 9 Human Brain SMARTer
Usoskin [104] E-MTAB-3321 124 3 Mouse Brain STRT-Seq
Kolodziejczyk [5] E-MTAB-2600 268 3 Mouse Embryo SMARTer
Klein [105] GSE65525 3,005 4 Mouse Embryo inDrop
Baron [37] GSE84133 3,005 14 Human Pancreas inDrop
Hrvatin [106] GSE102827 48,266 8 Mouse Visual Cortex inDrop
Cao [107] SCP454 90,579 7 Sea Squirt Embryos 10x Genomics
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each imputation method. After imputation, we obtain four matrices: the raw data

and three imputed matrices (from knn-smoothing, MAGIC, and scIDS). In order to

assess the segregation of the cell types in each matrix, we use k-means to cluster each

matrix and then compare the obtained cluster assignments with the known cell types.

We will also use di�erent metrics for comparing the obtained partitionings with the

known types.

We will also measure the capability of scIDS in correctly imputing missing values

without making a change to the transcriptomics landscapes. Preferably, life scientists

impute the data in order to improve the quality of downstream analyses. At the same

time, imputation should not completely change the data because of falsely introduced

signals, leading to wrong or compromised �ndings. Since single-cell data are high-

dimensional, the common practice is to project the high-dimensional data into a low

dimensional space with two or three dimensions. The visualization in 2-D or 3-D helps

researchers to interpret the single-cell data more e�ciently. To reduce the running

time, we �rst use a fast partial singular value decomposition method [108] to quickly

reduce the number of features to 20. Then, we use t-SNE [99], and UMAP [109] to

project the compact data into two-dimensional space for visualization.

To quantify the similarity between the imputed and original landscapes, we calcu-

late the distance correlation index (dCor) [110] for each imputed landscape generated

by t-SNE and UMAP. Given X and Y as the 2D representation of the raw and im-

puted data, dCor is calculated as dCor = dCov(X,Y )√
dV ar(X)dV ar(Y )

where dCov(X, Y ) is the

distance covariance between X and Y while dV ar(X) and dV ar(Y ) are distance vari-

ances of X and Y . The dCor coe�cient takes value between 0 and 1, with the dCor is

expected to be 1 for a perfect similarity. Unlike Pearson correlation, dCor measures

both the linear and nonlinear associations between X and Y [110]. Especially, dCor

remains constant when we rotate the transcriptome landscape.



44

Benchmarking and validation for scISR

To assess the performance of imputation methods, we downloaded 25 publicly avail-

able scRNA-seq datasets available on NCBI, ArrayExpress, and Broad Institute Sin-

gle Cell Portal (https://singlecell.broadinstitute.org/single_cell). The

description of the datasets is shown in Table 3.3. The processed data of the �rst

15 datasets are also available at the Hemberg Lab's website (https://hemberg-

lab.github.io/scRNA.seq.datasets). There are 14 plate-based datasets and 11

droplet-based datasets. Among these, 12 datasets are with UMI, and 13 datasets are

with read counts. There are 7 datasets without normalization while the remaining 18

datasets were already normalized by the data providers: 3 CPM-, 3 TPM-, 4 RPKM-,

4 FPKM-, and 4 RPM-normalized.

We analyzed the data with minimal additional pre-processing steps. For datasets

with the range of values larger than 100, we rescale the data using log transformation

(base 2). We also remove genes that do not contribute to the analysis, including: (i)

genes expressed in less than two cells; and (ii) genes that have less than one percent

of non-zero-valued entries. In all 25 single-cell datasets, the cell types are known.

However, these cell labels are not provided to any of the imputation methods. They

are only used a posteriori to assess the quality of the imputed data.

To present a comprehensive simulation analysis, we generate a total of 116 datasets

in four di�erent scenarios: (1) uniform dropout distribution, (2) normal dropout

distribution, 3 highly correlated cell groups, and (4) Splatter-based simulation [124].

In the �rst scenario, we generate 6 datasets by varying the number of cells from 100

to 10,000 and the number of genes from 300 to 10,000. The cells/genes combination

setups are presented as follows: 100×300, 1,000×3,000, 3,000×9,000, 5,000×10,000,

7,000×10,000, and 10,000×10,000.

In each of the 6 datasets, the expression values follow a normal distribution

https://singlecell.broadinstitute.org/single_cell
https://hemberg-lab.github.io/scRNA.seq.datasets
https://hemberg-lab.github.io/scRNA.seq.datasets
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Table 3.3: Description of the 25 single-cell datasets used to assess the performance of
scISR against other methods. The �rst three columns describe the name, accession
ID, and tissue, while the following seven columns show the sequencing protocol, cell
isolation technique, quanti�cation scheme, normalized unit, dropout rate, number of
cell types, and number of cells.
Dataset Accession Tissue Sequencing Cell Quant. Norm. Drop. Class Size

ID Protocol Isolation Scheme Unit Rate

1. Fan [111] GSE53386 Mouse Embryo SUPeR-seq Plate Reads FPKM 0.584 6 69
2. Treutlein [112] GSE52583 Mouse Tissues SMARTer Plate Reads FPKM 0.902 5 80
3. Yan [94] GSE36552 Human Embryo Tang Plate Reads RPKM 0.456 6 90
4. Goolam [95] E-MTAB-3321 Mouse Embryo Smart-Seq2 Plate Reads CPM 0.685 5 124
5. Deng [96] GSE45719 Mouse Embryo Smart-Seq Plate Reads RPKM 0.605 6 268
6. Pollen [102] SRP041736 Human Tissues SMARTer Plate Reads TPM 0.671 4 301
7. Darmanis [103] GSE67835 Human Brain SMARTer Plate Reads CPM 0.808 9 466
8. Usoskin [104] GSE59739 Mouse Brain STRT-Seq Plate Reads RPM 0.846 3 622
9. Camp [113] GSE75140 Human Brain SMARTer Plate Reads FPKM 0.801 7 734
10. Klein [105] GSE65525 Mouse Embryo inDrop Droplet UMI RPM 0.658 4 2,717
11. Romanov [114] GSE74672 Human Brain SMARTer Plate UMI - 0.878 7 2,881
12. Segerstolpe [115] E-MTAB-5061 Human Pancreas Smart-Seq2 Plate Reads RPKM 0.823 15 3,514
13. Manno [39] GSE76381 Human Brain STRT-Seq Plate UMI - 0.86 56 4,029
14. Marques [116] GSE75330 Mouse Brain Fluidigm C1 Plate Reads FPKM 0.891 13 5,053
15. Baron [37] GSE84133 Human Pancreas inDrop Droplet UMI TPM 0.906 14 8,569
16. Sanderson [117] SCP916 Mouse Tissues 10X Genomics Droplet Reads - 0.764 11 12,648
17. Slyper SCP345 Human Blood 10X Genomics Droplet UMI - 0.956 8 13,316
18. Zilionis (Mouse) [118] GSE127465 Mouse Lung inDrop Droplet UMI RPM 0.976 7 15,939
19. Tasic [119] GSE115746 Mouse Visual Cortex SMART-Seq Plate Reads CPM 0.798 6 23,178
20. Zyl (Human) [120] SCP780 Human Eye inDrop Droplet UMI - 0.913 19 24,023
21. Zilionis (Human) [118] GSE127465 Human Lung inDrop Droplet UMI RPM 0.982 9 34,558
22. Wei [121] SCP469 Human Synovium 10x Genomics Droplet UMI TPM 0.915 9 41,565
23. Cao [107] SCP454 Sea Squirt Embryos 10x Genomics Droplet UMI - 0.821 7 90,579
24. Orozco [122] GSE135133 Human Eye 10X Genomics Droplet UMI RPKM 0.964 12 100,055
25. Darrah [123] GSE139598 Human Blood Drop-seq Droplet UMI - 0.947 14 162,490

1 UMI: Unique Molecular Identi�er; CPM: Counts Per Million; RPM: Reads Per Million; RPKM:
Reads Per Kilobase of transcript, per Million mapped reads; FPKM: Fragments Per Kilobase of
transcript, per Million mapped reads.
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N (µ, σ). We set µ = 1 and σ = 0.15. We slightly shift the mean of the cells

and genes by adding a certain value to each group (-1, 0, 1, 1.5 for cell groups and

-1, 0, 1 for gene groups) to create 4 di�erent cell types and 3 gene groups � each

cell type has an equal number of cells. We name this data as complete data and use

the expression values as the ground truth for benchmarking. Next, we introduce the

dropout events. We randomly select 40% of the genes and consider those as genes

that are impacted by dropout events. We randomly assign 30% of the values of these

genes to zero. We name this data as masked data.

3.5.2 scRNA-seq clustering analysis validation

Performance assessment

We will download 28 scRNA-seq datasets from public repositories to validate the

clustering performance of scCAN. The Table 3.4 reports the Accession numbers, and

Table 3.5 shows the speci�c link to each of the 28 datasets.

The datasets Guo, Kanton, Brann, and Miller were downloaded from the European

Bioinformatics Institute (https://www.ebi.ac.uk/gxa/sc/experiments/). The

datasets Slyper, Zilionis, Orozco, and Kozareva were downloaded from Broad Institute

Single Cell Portal (https://singlecell.broadinstitute.org/single_cell).

The datasets Montoro, Hrvatin, Darrah, and Cao were downloaded from NCBI [79].

The Brain 1.3M dataset was downloaded from the 10X Genomics website (https:

//support.10xgenomics.com/single-cell-gene-expression/datasets/1.3.0

/1M_neurons). The remaining 15 datasets were downloaded from Hemberg Group's

website (https://hemberg-lab.github.io/scRNA.seq.datasets). In each dataset

except Brain 1.3M, the cell populations labels stages are known. This information

is only used a posteriori to assess the performance of each method in improving the

identi�cation of cell populations.

https://www.ebi.ac.uk/gxa/sc/experiments/
https://singlecell.broadinstitute.org/single_cell
https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.3.0/1M_neurons
https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.3.0/1M_neurons
https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.3.0/1M_neurons
https://hemberg-lab.github.io/scRNA.seq.datasets
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Table 3.4: Description of the 28 single-cell datasets used to assess the performance
of scCAN. The �rst two columns describe the name and tissue while the next �ve
columns show the number of cells, number of cell types, sequencing protocol, accession
ID, and references. The �rst 27 datasets have true cell labels and can be used to assess
the accuracy of the clustering methods.
Dataset Tissue Size Class Protocol Accession ID Reference

1. Pollen Human Tissues 301 11 SMARTer SRP041736 [102]
2. Patel Human Tissues 430 5 Smart-Seq GSE57872 [125]
3. Wang Human Pancreas 457 7 SMARTer GSE83139 [126]
4. Li Human Tissues 561 9 SMARTer GSE81861 [127]
5. Usoskin Mouse Brain 622 4 STRT-Seq GSE59739 [104]
6. Camp Human Liver 777 7 SMARTer GSE81252 [128]
7. Xin Human Pancreas 1,600 8 SMARTer GSE81608 [129]
8. Muraro Human Pancreas 2,126 10 CEL-Seq2 GSE85241 [130]
9. Segerstolpe Human Pancreas 2,209 14 Smart-Seq2 E-MTAB-5061 [115]
10. Romanov Mouse Brain 2,881 7 SMARTer GSE74672 [114]
11. Zeisel Mouse Brain 3,005 9 STRT-Seq GSE60361 [40]
12. Lake Human Brain 3,042 16 Fluidigm C1 phs000833.v3.p1 [131]
13. Montoro Human Pancreas 7,193 7 Smart-Seq2 GSE103354 [132]
14. Guo Human Testis 7,416 7 10X Genomics E-GEOD-134144 [133]
15. Baron Human Pancreas 8,569 14 inDrop GSE84133 [37]
16. Chen Mouse Brain 12,089 46 Drop-seq GSE87544 [38]
17. Slyper Human Blood 13,316 8 10X Genomics SCP345
18. Kanton Human Brain 17,542 14 Smart-Seq2 E-HCAD-5 [134]
19. Brann Mouse Brain 26,766 46 10X Genomics E-GEOD-151346 [135]
20. Zilionis Human Lung 34,558 9 inDrop GSE127465 [118]
21. Macosko Mouse Retina 44,808 12 Drop-seq GSE63473 [27]
22. Hrvatin Mouse Visual Cortex 48,266 8 inDrop GSE102827 [106]
23. Orozco Human Eye 100,055 11 10X Genomics GSE135133 [122]
24. Miller Human Lung 142,523 11 10X Genomics E-MTAB-8221 [136]
25. Darrah Human Blood 162,490 14 Drop-seq GSE139598 [123]
26. Kozareva Mouse Cerebellum 611,034 18 10X Genomics SCP795 [137]
27. Cao Mouse Cerebellum 1,092,000 9 10X Genomics GSE156793 [138]
28. Brain 1.3M Mouse Brain 1,300,774 NA 10X Genomics GSE93421 [139]

https://www.ncbi.nlm.nih.gov/sra?term=SRP041736
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE57872
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE83139
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE81861
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE59739
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE81252
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE81608
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE85241
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-5061/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE74672
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE60361
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000833.v3.p1
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE103354
https://www.ebi.ac.uk/gxa/sc/experiments/E-GEOD-134144/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE84133
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE87544
https://singlecell.broadinstitute.org/single_cell/study/SCP345/
https://www.ebi.ac.uk/gxa/sc/experiments/E-HCAD-5/
https://www.ebi.ac.uk/gxa/sc/experiments/E-GEOD-151346/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE127465
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63473
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE102827
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE135133
https://www.ebi.ac.uk/gxa/sc/experiments/E-MTAB-8221/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE139598
https://singlecell.broadinstitute.org/single_cell/study/SCP795/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE156793
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE93421
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Table 3.5: Link to 28 single-cell datasets used to benchmark scCAN.
Dataset Link Reference

1. Pollen https://hemberg-lab.github.io/scRNA.seq.datasets/human/tissues/#pollen [102]
2. Patel https://hemberg-lab.github.io/scRNA.seq.datasets/human/tissues/#patel [125]
3. Wang https://hemberg-lab.github.io/scRNA.seq.datasets/human/pancreas/#wang [126]
4. Li https://hemberg-lab.github.io/scRNA.seq.datasets/human/brain/#li [127]
5. Usoskin https://hemberg-lab.github.io/scRNA.seq.datasets/mouse/brain/#usoskin [104]
6. Camp https://hemberg-lab.github.io/scRNA.seq.datasets/human/liver/ [128]
7. Xin https://hemberg-lab.github.io/scRNA.seq.datasets/human/pancreas/#xin [129]
8. Muraro https://hemberg-lab.github.io/scRNA.seq.datasets/human/pancreas/#muraro [130]
9. Segerstolpe https://hemberg-lab.github.io/scRNA.seq.datasets/human/pancreas/#segerstolpe [115]
10. Romanov https://hemberg-lab.github.io/scRNA.seq.datasets/mouse/brain/#romanov [114]
11. Zeisel https://hemberg-lab.github.io/scRNA.seq.datasets/mouse/brain/#zeisel [40]
12. Lake https://hemberg-lab.github.io/scRNA.seq.datasets/human/brain/#lake [131]
13. Montoro https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE103354 [132]
14. Guo https://www.ebi.ac.uk/gxa/sc/experiments/E-GEOD-134144/ [133]
15. Baron https://hemberg-lab.github.io/scRNA.seq.datasets/human/pancreas/ [37]
16. Chen https://hemberg-lab.github.io/scRNA.seq.datasets/mouse/brain/#chen [38]
17. Slyper https://singlecell.broadinstitute.org/single_cell/study/SCP345/

18. Kanton https://www.ebi.ac.uk/gxa/sc/experiments/E-HCAD-5/ [134]
19. Brann https://www.ebi.ac.uk/gxa/sc/experiments/E-GEOD-151346/ [135]
20. Zilionis https://singlecell.broadinstitute.org/single_cell/study/SCP739/ [118]
21. Macosko https://hemberg-lab.github.io/scRNA.seq.datasets/mouse/retina/ [27]
22. Hrvatin https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE102827 [106]
23. Orozco https://singlecell.broadinstitute.org/single_cell/study/SCP484/ [122]
24. Miller https://www.ebi.ac.uk/gxa/sc/experiments/E-MTAB-8221/ [136]
25. Darrah https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE139598 [123]
26. Kozareva https://singlecell.broadinstitute.org/single_cell/study/SCP795/ [137]
27. Cao https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE156793 [138]
28. Brain 1.3M https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.3.0/1M_neurons [139]

We compare scCAN with �ve state-of-the-art clustering methods that are widely

used for single-cell analysis: CIDR [21], SEURAT3 [69], Monocle3 [71], SHARP [55],

and SCANPY [70]. To compare scCAN with current methods, the following packages

are used in the analysis: i) CIDR version 0.1.5 from GitHub (https://github.c

om/VCCRI/CIDR), ii) SEURAT3 version 3.2.3 from Github (https://github.com/s

atijalab/seurat/releases/tag/v3.2.3), iii) Monocle3 version 3.0 from Github

(https://github.com/cole-trapnell-lab/monocle3), iv) SHARP version 1.1.0

from Github (https://github.com/shibiaowan/SHARP), and SCANPY version

1.4.4 from Anaconda. We carefully follow the instruction and tutorial provided by

the authors of each package. We execute each method using default parameters

suggested by the authors.

https://hemberg-lab.github.io/scRNA.seq.datasets/human/tissues/#pollen 
https://hemberg-lab.github.io/scRNA.seq.datasets/human/tissues/#patel
https://hemberg-lab.github.io/scRNA.seq.datasets/human/pancreas/#wang
https://hemberg-lab.github.io/scRNA.seq.datasets/human/brain/#li
https://hemberg-lab.github.io/scRNA.seq.datasets/mouse/brain/#usoskin
https://hemberg-lab.github.io/scRNA.seq.datasets/human/liver/
https://hemberg-lab.github.io/scRNA.seq.datasets/human/pancreas/#xin
https://hemberg-lab.github.io/scRNA.seq.datasets/human/pancreas/#muraro
https://hemberg-lab.github.io/scRNA.seq.datasets/human/pancreas/#segerstolpe
https://hemberg-lab.github.io/scRNA.seq.datasets/mouse/brain/#romanov
https://hemberg-lab.github.io/scRNA.seq.datasets/mouse/brain/#zeisel
https://hemberg-lab.github.io/scRNA.seq.datasets/human/brain/#lake
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE103354
https://www.ebi.ac.uk/gxa/sc/experiments/E-GEOD-134144/
https://hemberg-lab.github.io/scRNA.seq.datasets/human/pancreas/
https://hemberg-lab.github.io/scRNA.seq.datasets/mouse/brain/#chen
https://singlecell.broadinstitute.org/single_cell/study/SCP345/
https://www.ebi.ac.uk/gxa/sc/experiments/E-HCAD-5/
https://www.ebi.ac.uk/gxa/sc/experiments/E-GEOD-151346/
https://singlecell.broadinstitute.org/single_cell/study/SCP739/
https://hemberg-lab.github.io/scRNA.seq.datasets/mouse/retina/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE102827
https://singlecell.broadinstitute.org/single_cell/study/SCP484/
https://www.ebi.ac.uk/gxa/sc/experiments/E-MTAB-8221/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE139598
https://singlecell.broadinstitute.org/single_cell/study/SCP795/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE156793
https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.3.0/1M_neurons
https://github.com/VCCRI/CIDR
https://github.com/VCCRI/CIDR
https://github.com/satijalab/seurat/releases/tag/v3.2.3
https://github.com/satijalab/seurat/releases/tag/v3.2.3
https://github.com/cole-trapnell-lab/monocle3
https://github.com/shibiaowan/SHARP
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Validation metrics

We use three di�erent metrics for comparing the obtained partitions with the known

cell types: adjusted Rand index (ARI) [140], adjusted mutual information (AMI) [141],

and V-measure [142]. To evaluate the capability of each method in predicting the true

number of clusters, we use absolute log-modulus [143].

Rand index (RI) evaluates the similarity between predicted clusters and true cell

types. Given P as a set of clusters and Q is a set of true cell types then RI is calculated

as:

RI =
t+ u

t+ u+ v + s
=

t+ u(
N
2

) (3.5)

where t is the number of pairs belonging to the same cell type in Q and are grouped

together in the same cluster in P , u is the number of pairs of di�erent cell types in

Q and are grouped to di�erent clusters in P , v is the number of pairs of the same

cell types in Q and are grouped to di�erent clusters in P , s is the number of pairs in

di�erent cell types in Q and are grouped together in the same cluster in P , N is the

total number of cells, and
(
N
2

)
is the number of possible pairs. In brief, RI measures

the ratio of pairs that are clustered in the same way (either together or di�erent)

from two partitions (e.g. 0.80 means 80% of pairs are grouped in the same way).

The Adjusted Rand Index (ARI) [140] is the corrected-for-chance version of the Rand

Index. The ARI values ranged from -1 to 1 in which 0 indicates a random grouping.

The ARI score is calculated as :

ARI =
RI − exptected_RI

max(RI)− expected_RI
(3.6)

Adjusted mutual information (AMI) is an adjustment of the mutual information

(MI) score to account for random partitioning. It accounts for the fact that the

MI is generally higher for two clusters with a larger number of clusters, regardless
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of whether there is actually more information shared. The calculation of AMI is

presented as follows:

Given a dataset of n cells with true partition X = {X1, X2, ..., XR} of R clusters

and predicted partition Y = {Y1, Y2, ..., YC} of C clusters. The mutual information of

cluster overlap between X and Y can be summarized as a contingency table MR×C =

[nij], where i = 1...R, j = 1...C, and nij represents the number of common data point

falls into cluster Xi is p(i) = |xi|
n
. The entropy associated with the clustering X is

calculated as follows:

H(X) =
R∑
i=1

P (i)logP (i) (3.7)

H(X) gives outputs as non-negative values where 0 indicates that there is one clus-

ter in the dataset. The mutual information (MI) between two clusters X and Y is

calculated as follows:

MI(X, Y ) =
R∑
i=1

C∑
j=1

P (i, j)log
P (i, j)

P (i)P (j)

nij

n
(3.8)

where P (i, j) is the cell that is classi�ed to both clusters Xi in X and Yj in Y . P (i, j)

is calculated as follows:

P (i, j) =
|Xi ∩ Yj|

n
(3.9)

MI gives outputs as non-negative values bounded by the entropies H(X) and H(Y )

and 0 indicates that there is no cell classi�ed to the same cluster. To correct for the

fact that two random clusterings do not give a constant value, and tends to be larger

when the two partitions have a larger number of clusters. Therefore, AMI is de�ned

as follows:

AMI(X, Y ) =
MI(X, Y )− E{MI(X, Y )}

max{H(X), H(Y )} − E{MI(X, Y )}
(3.10)
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where E{MI(X, Y )} is the expected mutual information between two random clus-

terings. The AMI takes value between 0 and 1 where 0 stands for random clustering

and 1 represents a perfect partition.

V-Measure is the harmonic mean between two measures: homogeneity and com-

pleteness. Homogeneous clustering is when each cluster has data points belonging to

the same class. Complete clustering is when all dat a points belonging to the same

class are clustered into the same cluster. Given a set of classes C = {C1, C2, ..., Cl},

a set of cluster K = {K1, K2, ..., Km} and the conditional entropy of the class distri-

bution given the identi�ed clustering is computed as H(C|K). The homogeneity is

de�ned as follows:

h =


1 ifH(C|K) = 0

1− H(C|K)
H(C)

otherwise

(3.11)

The completeness is symmetrical to homogeneity. To measure the completeness,

the distribution of cluster assignments within each class is assessed. In a perfect

clustering, each of these distributions will be completely skewed to a single cluster.

Given the homogeneity h and completeness c, the V-measure is computed as the

weighted harmonic mean β between homogeneity and completeness:

V −measure =
1 + β ∗ h ∗ c)
(β ∗ h) + c

(3.12)

if β is greater than 1, completeness is weighted more strongly in the calculation. If

β is less than 1, homogeneity is weighted more strongly. Since the computations of

homogeneity, completeness and V-measure are completely independent of the number

of classes, the number of clusters, the size of the dataset and the clustering algorithm,

these measures can be employed for evaluating any clustering solution.

To evaluate the accuracy of methods in estimating the correct number of clusters,
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we used absolute symmetric log-modulus [143] transformation de�ned as follows:

L(x) = |sign(x) ∗ log10(|x|+ 1)| (3.13)

where x is the di�erence between the estimated number of clusters and the true

number of cell types in a given dataset. The higher values of absolute log-modulus

transformation mean the number of estimated clusters is more di�erent from the

number of true cell types. x equals to zero denotes the perfect estimation.
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Chapter 4

Method Validation and Results

In this chapter, we will focus on the presentation and exploration of our �ndings, of-

fering a comprehensive view of the results derived from our imputation and clustering

analysis. These results are derived from the public data previously introduced in the

experimental design chapter.

4.1 Results of imputation analysis using RIA

Here we assess the performance of RIA using �ve single-cell datasets that are available

in NIH Gene Expression Omnibus (GEO) [79] and Array Express [92]: Biase [93], Yan

[94], Goolam [95], Deng [96], and Zeisel [40]. The processed data were downloaded

from Hemberg lab's website (https://hemberg-lab.github.io/scRNA.seq.datasets).

In each dataset, the cell populations and developmental stages are known. This

informatinom are only used a posteriori to assess the performance of each method

in improving the identi�cation of cell populations and the recovery of temporal tra-

jectories. We compare our method with two state-of-the-art methods for single-cell

imputation: MAGIC [11] and scImpute [18]. Both methods are widely used and each

represents a di�erent imputation strategy. MAGIC uses Markov a�nity matrix to
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smooth the data while scImpute is a statistical approach that models the data as a

mixture of Gamma and Gaussian distributions.

For each dataset, we downloaded the already processed expression data, in which

genes are represented in rows and cells are in di�erent columns. We only perform log2

transformation to re-scale sc-RNAseq data, i.e., log2(A+1) where A is the expression

matrix. Genes that do not express across any cells will be removed.

4.1.1 RIA improves the identi�cation of sub-populations while

preserving the biological landscape

For each of the �ve datasets described in Table 3.1, the cell types are known. We

use this information a posteriori to assess how separable the cell populations are

after imputation. For each dataset, we have a raw matrix that serves as the input

of each imputation method. After imputation, we have four matrices: the raw data

and three imputed matrices (from RIA, MAGIC, and scImpute). In order to assess

how separable the cell types in each matrix, we use k-means [97] to cluster each

matrix and then compare the obtained partitionings with the known cell types. We

use three di�erent metrics for comparing the obtained partitionings with the known

types: adjusted Rand index (ARI) [140], Jaccard index [144] and Purity [145].

Table 4.1: Comparisons of RIA performance against other methods using adjusted
Rand index (ARI).

Dataset
Adjusted Rand Index

Raw RIA scImpute MAGIC
Biase 0.558 0.711 -0.009 0.154
Yan 0.558 0.573 0.507 0.029
Goolam 0.501 0.914 0.321 0.197
Deng 0.549 0.815 0.229 0.483
Zeisel 0.738 0.768 0.689 0.289
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Table 4.1 shows the ARI values obtained for each method and for the raw data.

For each row, cells highlighted in bold have the highest ARI values. For each of

the �ve datasets analyzed, the ARI values obtained for RIA are substantially higher

than those of scImpute and MAGIC, demonstrating the superiority of the developed

method over existing approaches. More importantly, the ARI values for RIA are

higher than those obtained for raw data, demonstrating the ability of RIA in recov-

ering the true expression of missing values due to dropout events. At the same time,

it also demonstrates that RIA do not introduce false signals. In contrast, the ARI

values obtained for scImpute and MAGIC are consistently lower than those obtained

for raw data. There might be two reasons. First, these methods rely on sophisticated

models that are prone to over�tting. Second, they lack of an e�cient mechanism to

verify whether a low expression value is due to sequencing limitation (i.e., dropout)

or indeed due to biological phenomena. Therefore, they are likely to add false signals

to the imputed data.

Tables 4.2 and 4.3 show the Jaccard index and Purity values obtained for raw data

and imputed data using RIA, scImpute, and MAGIC. Again, these metrics con�rm

that RIA is the best among the competing methods. All of the three benchmarking

metrics show that RIA consistently outperforms scImpute and MAGIC in every single

analysis.

Here we will also demonstrate that RIA improves the quality of the data without

altering the transcriptomics landscapes. Since single-cell data are high-dimensional

and are hard to interpret, it is desirable to visualize them in low dimensional space

with two or three dimensions. Traditionally, researchers use t-distributed Stochastic

Neighbourhood Embedding (t-SNE) [98, 99] for this purpose, which preserve local

structure among cells. We �rst use Principal Component Analysis (PCA) [100] to

reduce the number of dimensions to 20, and then use t-distributed Stochastic Neigh-
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Table 4.2: Comparisons of RIA performance against other methods using Jaccard
Index

Dataset
Jaccard Index

Raw RIA scImpute MAGIC
Biase 0.589 0.708 0.339 0.289
Yan 0.498 0.498 0.473 0.146
Goolam 0.496 0.892 0.375 0.312
Deng 0.524 0.781 0.395 0.518
Zeisel 0.651 0.683 0.605 0.285

Table 4.3: Comparisons of RIA performance against other methods using Purity
Index

Dataset
Purity Index

Raw RIA scImpute MAGIC
Biase 0.795 0.836 0.449 0.612
Yan 0.711 0.778 0.733 0.467
Goolam 0.822 0.952 0.693 0.621
Deng 0.805 0.839 0.627 0.750
Zeisel 0.876 0.893 0.840 0.668

bourhood Embedding (t-SNE) [101] to visualize the data. The purpose of using PCA

is to reduce the running time of the visualization process.

Figures 4.1 and 4.2 show the visualization of the raw data and the imputed data.

For all of the �ve datasets, the transcriptomics landscape of RIA is similar to that of

the original data, demonstrating that RIA did not alter the transcriptomics landscape.

On the contrary, the transcriptomics landscapes obtained from scImpute and MAGIC

are very di�erent from the those of the original data.

Regarding time complexity, both MAGIC and RIA are extremely fast. These two

methods are able to analyze any of the �ve datasets in minutes. On the other hand,

scImpute is slow because it needs to iteratively estimate the mixture parameters for
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every single gene across the genome. It takes scImpute an hour to analyze the Zeisel

datasets using 20 cores.

Zeisel dataset
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Figure 4.1: Transcriptomics landscape of the Zeisel dataset. The scatter plot shows
�rst two principle components calculated by t-SNE for raw and imputation data using
RIA, scImpute, and MAGIC. RIA preserve the transcriptomics landscape of the data
whereas scImpute and MAGIC introduces arti�cial signals and complete change the
landscape.
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4.1.2 RIA recovers temporal trajectories in embryonic devel-

opmental stages

We use the four embryonic datasets to demonstrate RIA's ability in recovering the

temporal dynamics. The Biase dataset consists of 49 inter-blastomere cells from

mouse embryonic stem cells (mESCs), including zygote, 2-cell and 4-cell. The Goolam

dataset includes transcriptome data of 124 individual cells in mouse pre-implantation

development stages: 2-cell, 4-cell, 8-cell, 16-cell and blast. The Yan dataset consists

of 90 cells from human pre-implantation embryos and human embryonic stem cells

(hESCs). The Deng dataset includes the expression pro�les of 268 individual cells of

mouse pre-implantation embryos of mixed background.

Figure 4.2 shows the transcriptomics landscape and temporal development stages

using the raw data and imputation data produced by RIA, MAGIC, and scImpute.

The lines in each scatter plot connect cell groups in consecutive developmental stages.

For example, for the Biase dataset, the zygote group is directly connected with the 2-

cell class while the 2-cell class is connected with the 4-cell class. For this dataset, raw

data and data imputed by any of the three imputation methods clearly distinguish

cells at di�erent time points. The pseudotime ordering is consistent with the time

labels. For the Goolam dataset, the landscapes of the raw data and data imputed

by RIA and scImpute have similar pattern. On the contrary, the transcriptomics

landscape of MAGIC is very di�erent from the rest.

For the Yan and Deng datasets, the data imputed by RIA better distinguish cell

groups of di�erent time points. The pseudotime ordering for RIA accurately re�ects

the transcriptome dynamics along the time course. On the contrary, the raw data and

data imputed by MAGIC and scImpute fail to depict a clear time trajectory. Overall,

RIA better recovers temporal trajectories than existing state-of-the-art imputation

methods.
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Figure 4.2: Transcriptomics landscape and temporal development stages. The scatter
plots show the �rst two dimensions of the t-SNE results calculated from Biase, Yan,
Goolam, and Deng datasets. Due to dropouts, it is di�cult to recognize di�erent
temporal dynamics of cells. The raw data and imputed data using scImpute and
DrImpute do not show clear patterns. On the contrary, RIA signi�cantly elucidates
the cell lineage identi�cation such that it is clearly recognized in the 2-D scatter plots.
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4.2 Results of imputation analysis using scIDS

In this section, we assess the performance of scIDS in the following capabilities: (1) im-

proving the quality of cluster analysis, (2) preserving the cell transcriptome landscape.

We compare scIDS with the raw data and two widely used scRNA-seq imputation

methods, knn-smoothing [43], and MAGIC [11] using eight scRNA-seq datasets.

We use Cao dataset was downloaded from Broad Institute Single Cell Portal (ht

tps://singlecell.broadinstitute.org/single_cell). The Hrvatin dataset

was downloaded from NCBI [79]. The remaining six datasets were downloaded from

Hemberg Group's website (https://hemberg-lab.github.io/scRNA.seq.datase

ts). In each of these datasets, the true cell type (labels) is known. This information

will be used a posteriori to assess the performance of each clustering method. We

apply a log transformation (base 2) to rescale the data if the maximum expression

value of the data is larger than 100, and we remove the genes that do not express

across in any cells.

4.2.1 scIDS improves the identi�cation of cells population.

For each of the eight datasets, we use a raw matrix as the input of each imputation

method. After imputation, we obtain four matrices: the raw data and three imputed

matrices (from knn-smoothing, MAGIC, and scIDS). In order to assess the segregation

of the cell types in each matrix, we use k-means to cluster each matrix and then

compare the obtained cluster assignments with the known cell types. We use three

di�erent metrics to quantify the quality of the clustering result: adjusted Rand index

(ARI) [140], adjusted mutual information (AMI) [141] and V-measure [142].

Table 4.4 shows the ARI values obtained for each method and for the raw data

from eight datasets. For each row, the values highlighted in bold indicate the highest

ARI value. The cell with �N/A� indicates out of memory or error. In this analysis,

https://singlecell.broadinstitute.org/single_cell
https://singlecell.broadinstitute.org/single_cell
https://hemberg-lab.github.io/scRNA.seq.datasets
https://hemberg-lab.github.io/scRNA.seq.datasets
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Table 4.4: Comparisons of scIDS performance against other methods using adjusted
Rand index (ARI).

Dataset
Adjusted Rand Index

Raw knn-smooth MAGIC scIDS
Pollen 0.955 0.577 0.564 0.959
Darmanis 0.612 0.194 0.298 0.702
Usoskin 0.736 0.035 0.276 0.741
Kolodziejczyk 0.727 0.203 0.163 0.996
Klein 0.984 0.991 0.451 0.984
Baron 0.557 0.568 0.578 0.559
Hrvatin 0.713 0.822 0.821 0.832
Cao 0.376 N/A 0.378 0.434
Mean 0.708 0.484 0.441 0.776

scIDS consistently outperforms all comparing methods by maintaining the highest

average ARI value of 0.776. This is the highest value compared to 0.708, 0.484, and

441 of raw's, knn-smoothing's, and MAGIC's. More importantly, the ARI values

obtained from scDIS are always higher than those obtained from raw data. This vast

improvement demonstrates the ability of scIDS in imputing the dropouts without

introducing false signals. Unlike scIDS, knn-smoothing and MAGIC have ARI values

that are lower than the raw in 5 and 4 datasets. These methods rely on sophisticated

models that might lead to over�tting. Moreover, knn-smoothing and MAGIC do

not have an e�cient mechanism to distinguish whether a low expression value is

due to sequencing limitation (i.e., dropout) or indeed due to biological phenomena.

Therefore, they are likely to add false signals to the imputed data.

Tables 4.5 and 4.6 show the adjusted mutual information and V-measure values

obtained for raw data and imputed data using knn-smoothing, MAGIC, and scIDS.

Again, the result is similar to the analysis using ARI. scIDS has the highest AMI

values in 6 out of 8 datasets with an average AMI value of 0.808 while the average

AMI values of raw data, knn-smoothing, and MAGIC are 0.761, 0.577, and 0.581,
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respectively. The same trend can be seen for V-measure values in Table 4.5. scIDS

has the highest average of V-measure value (0.825). All of the three benchmarking

metrics show that scIDS consistently outperforms knn-smoothing and MAGIC in all

analyses.

Table 4.5: Comparisons of scIDS performance against other methods using adjusted
mutual information (AMI).

Dataset
Adjusted Mutual Information

Raw knn-smooth MAGIC scIDS
Pollen 0.95 0.788 0.79 0.95
Darmanis 0.722 0.411 0.532 0.738
Usoskin 0.716 0.069 0.404 0.722
Kolodziejczyk 0.774 0.304 0.296 0.991
Klein 0.97 0.981 0.579 0.97
Baron 0.681 0.65 0.701 0.683
Hrvatin 0.775 0.839 0.848 0.862
Cao 0.498 N/A 0.501 0.551
Mean 0.761 0.577 0.581 0.808

Table 4.6: Comparisons of scIDS performance against other methods using V-
measure.

Dataset
V-Measure Index

Raw knn-smooth MAGIC scIDS
Pollen 0.953 0.802 0.799 0.954
Darmanis 0.723 0.469 0.563 0.742
Usoskin 0.721 0.1 0.473 0.726
Kolodziejczyk 0.784 0.364 0.354 0.992
Klein 0.973 0.981 0.625 0.973
Baron 0.767 0.715 0.787 0.769
Hrvatin 0.828 0.845 0.858 0.877
Cao 0.515 N/A 0.518 0.567
Mean 0.783 0.611 0.622 0.825
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4.2.2 scIDS preserves the biological landscape.

In this section, we show that scIDS has a capability of correctly imputing missing

values without making a change to the transcriptomics landscapes. Preferably, life

scientists impute the data in order to improve the quality of downstream analyses. At

the same time, imputation should not completely change the data because of falsely

introduced signals, leading to wrong or compromised �ndings. Since single-cell data

are high-dimensional, the common practice is to project the high-dimensional data

into a low dimensional space with two or three dimensions. The visualization in 2-D

or 3-D helps researchers to interpret the single-cell data more e�ciently. To reduce

the running time, we �rst use a fast partial singular value decomposition method [108]

to quickly reduce the number of features to 20. Then, we use t-SNE [99], and UMAP

[109] to project the compact data into two-dimensional space for visualization.
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Figure 4.3: The similarity between the imputed and original landscapes.

To quantify the similarity between the imputed and original landscapes, we calcu-

late the distance correlation index (dCor) [110] for each imputed landscape generated
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by t-SNE and UMAP. Given X and Y as the 2D representation of the raw and im-

puted data, dCor is calculated as dCor = dCov(X,Y )√
dV ar(X)dV ar(Y )

where dCov(X, Y ) is the

distance covariance between X and Y while dV ar(X) and dV ar(Y ) are distance vari-

ances of X and Y . The dCor coe�cient takes value between 0 and 1, with the dCor is

expected to be 1 for a perfect similarity. Unlike Pearson correlation, dCor measures

both the linear and nonlinear associations between X and Y [110]. Especially, dCor

remains constant when we rotate the transcriptome landscape. Figure 4.3 shows the

distribution of dCor values for all eight analyzed datasets. In this �gure, the left

panel shows the values obtained from t-SNE while the right panel shows the values

obtained from UMAP representations. The bar plot shows that scIDS has the highest

dCor values. A Wilcoxon test also con�rms that the correlation dCor obtained from

scIDS are signi�cantly higher than the rest (p = 1.1×10−2 and 6.11×10−5 for t-SNE

and UMAP, respectively).

Figure 4.4 shows the visualization of the raw data and the imputed data for the

Baron dataset. Among three comparing methods, the transcriptomics landscape of

scIDS is similar to that of the original data (raw), demonstrating that scIDS did not

alter the transcriptomics landscape. On the contrary, the transcriptomics landscapes

obtained from knn-smoothing and MAGIC are very di�erent from the original data.

4.3 Results of imputation analysis using scISR

In this section, we assess the performance of scISR, we use both real scRNA-seq

data and simulation. We compare scISR with �ve popular methods, MAGIC [11],

scImpute [18], SAVER [17], scScope [50], and scGNN [146]. SAVER and scImpute are

statistical approaches that impute the missing values using mixture models; MAGIC

is a mathematical approach that relies on Markov transition to estimate the missing

values. scScope uses a recurrent network layer to iteratively perform imputations
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Figure 4.4: The visualization of Baron dataset.

on zero-valued entries of input scRNA-seq data. scGNN formulates and aggregates

cell�cell relationships with graph neural networks and models heterogeneous gene

expression patterns using a left-truncated mixture Gaussian model. scGNN uses the

cell-cell relationships to impute the dropouts.

First, we apply the six methods on 25 real scRNA-seq datasets with known cell
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types presented in Table 3.3. The cell labels are only used a posteriori to assess

whether the imputation enhances the cell segregation, i.e., making the cell types

more separable without drastically altering the transcriptome landscape. Second, we

simulate 116 single-cell expression datasets whose values follow di�erent distributions

and dropout rates. We then apply the six imputation methods, scISR, MAGIC,

scImpute, SAVER, scScope, and scGNN on the masked dataset to recover the missing

values. Since we know exactly the missing entries and values, we can accurately assess

the reliability of each method in terms of both sensitivity and speci�city.

4.3.1 Cluster analysis of 25 scRNA-seq datasets

We use the known cell types of the 25 scRNA-seq datasets to assess whether the

imputation helps separate cells of di�erent types in cluster analysis. We compare

scISR against MAGIC, scImpute, SAVER, scScope, and scGNN using three assess-

ment metrics: Adjusted Rand Index (ARI) [140], Jaccard Index (JI) [144], and Purity

Index (PI) [145].

Given a dataset (raw data), we use k-means to cluster the cells using the true

number of cell types k as the number of clusters. We calculate the Adjusted Rand

Index (ARI) [140] to compare k-means partitioning against the known cell labels.

Rand Index (RI) measures the agreement between a given clustering and the ground

truth. The ARI is the corrected-for-chance version of the RI. The ARI takes values

from -1 to 1, with the ARI expected to be 1 for a perfect agreement, and 0 for random

partitionings. Next, we apply each of the six imputation methods to the raw data

to obtain the imputed data. Again, we use k-means to partition the imputed data

and calculate the ARI values using the true cell labels. We expect that by imputing

the raw data, we obtain better data in which the cells of di�erent types are more

separable. Therefore, we assess the performance of each method by comparing the
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ARI of the imputed data against the ARI obtained from the raw data. We repeat

the whole procedure for all 25 datasets to assess how well each imputation method

performs.

Table 4.7 and Figure 4.6 show the ARI values obtained for the 25 datasets. For

each row, a cell of a method is highlighted in green if the imputed ARI is higher than

the raw ARI. The maximum memory permitted for each analysis was set to 100 GB of

RAM. scISR and MAGIC are the only methods able to analyze all datasets. scImpute

runs out of memory when analyzing datasets with 23,178 cells (Tasic) or larger.

SAVER crashes when analyzing the Tasic dataset, and it runs out of memory when

analyzing datasets with 90,579 cells (Cao) or larger. scScope runs out of memory when

analyze the biggest dataset (Darrah). scGNN ran out of memory when analyzing

the datasets Cao, Orozco, and Darrah. We report the running time of imputation

methods on 25 single-cell datasets in Figure ??. Overall, scISR is the fastest method

and can complete the imputation for the largest dataset (Darrah) in 50 minutes. For

25 real datasets, scISR is able to improve the ARI values 21 out of 25. The average

ARI value of scISR is 0.571, which is the highest compared to those of raw data

and data imputed by MAGIC, scImpute, SAVER, scScope, and scGNN (0.504, 0.461,

0.286, 0.423, 0.165, and 0.279, respectively). Overall, scISR increases the ARI values

by 13.3% across all datasets. For the two datasets Zyl (Human) (24,023 cells) and

Zilionis (Human) (34,558 cells), scISR increases the ARI values signi�cantly (11.3%

and 14.5%, respectively). For Orozco and Darrah datasets with more than 100,000

cells, scISR increases the ARI values by 13.6% and 77.2%, respectively. A one-sided

Wilcoxon test also con�rms that the ARI values of scISR are signi�cantly higher than

those of raw data (p = 3.2×10−5) and of other imputation methods (p = 9.8×10−6).

To perform a more comprehensive analysis, we also compare the methods using

two other metrics: Jaccard Index (JI) [144] and Purity Index (PI) [145]. The detailed
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Figure 4.5: Running time of the six imputation methods on 25 real scRNA-seq
datasets. scISR is the fastest and can impute the Darrah dataset in 50 minutes.

results for each dataset and method are reported in Table 4.1 and Supplementary

Tables S2�S3. Overall, scISR is the only method that has better clustering accuracy

on average when comparing with using the raw data. The results are similar for

analyses using JI and PI. Among all methods, scISR has the highest average JI

values (Supplementary Table S2). Its average JI value is 0.531, compare to 0.468,

0.453, 0.276, 0.403, 0.243 and 0.273 of the raw data, MAGIC's, scImpute's, SAVER's,

scScope's, and scGNN's. A one-sided Wilcoxon test also con�rms that the JI values

of scISR are signi�cantly higher than those of raw data (p = 3.2 × 10−5) and of

all other methods (p = 4.8 × 10−5). Supplementary Table S3 shows the PI values

obtained from raw and imputed data. It is the only method that has the average PI

value higher than that of the raw data. All other methods have an average PI less

than that of the raw data. scISR improves cluster analysis by having PI values higher

than those of the raw data in 15 out of 25 datasets. A one-sided Wilcoxon test also

con�rms that the PI values of scISR are signi�cantly higher than those of raw data

(p = 0.007) and of all other methods (p = 9.9× 10−5).

We also report the gene level normalized intra dispersion, which is the ratio be-

tween the intra-cell-type standard deviation and the gene's standard deviation, in

Supplementary Figure S2. The median dispersion of scISR is 3.6 × 10−3 which is
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much lower compared to 2× 10−1, 1.1× 102, 2.4× 10−1, 1.3× 10−1, 2.3× 10−2, and

5.4× 101 of raw data and data imputed by MAGIC, scImpute, SAVER, scScope and

scGNN, respectively.

To further assess the performance of imputation methods, we perform an addi-

tional clustering analysis using Seurat [23]. This method can automatically determine

the number of cell types from the input data. We �rst used Seurat to cluster the raw

and imputed data of the 25 real scRNA-seq datasets. We then compared the cluster-

ing results against true cell types using Adjusted Rand Index (ARI). Supplementary

Figure S3 and Table S4 show the ARI values obtained from the raw data and the

data obtained from the six imputation methods. scISR is able to improve the cluster

analysis in 14 out of 25 datasets. MAGIC, scImpute, SAVER, scScope, and scGNN

improve the cluster analysis in 5, 3, 5, 4, and 5 datasets, respectively. The mean

ARI value of scISR is 0.499 which is higher than the mean ARI values of all other

methods (the mean ARI values for MAGIC, scImpute, SAVER, scScope, and scGNN

are 0.315, 0.283, 0.324, 0.155, and 0.186, respectively). scISR is the only method that

has mean ARI higher than that of the raw data.

Next, to assess the performance of each method with respect to di�erent cell iso-

lation techniques, quantitative schemes, and normalized units, we divide the datasets

into multiple overlapping groups: (1) 14 plate-based and 11 droplet-based datasets;

(2) 12 with UMI and 13 with read count; and (3) 7 without normalization, 11 with

transcript length-normalization (RPKM/FPKM/TPM), and 7 with transcript-depth

normalization (CPM/RPM). Figure 4.6 shows the ARI values obtained for raw data

and data imputed by four imputation methods. The ARI values of scISR are con-

sistently higher than those of raw data and of other methods in each grouping. In-

terestingly, the ARI values of raw data are comparable across quanti�cation schemes

(UMI/read) but di�er greatly across di�erent normalization units (Figure 4.7A). Well-
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Figure 4.6: Adjusted Rand Index (ARI) obtained from raw and imputed data. The
x-axis shows the names of the datasets while the y-axis shows ARI value of each
method. scISR improves cluster analysis by having ARI values higher than those of
the raw data in 21 out of 25 datasets.

known normalization techniques developed for bulk RNA-seq (RPKM/FPKM/TPM)

improve raw data's cluster analysis (better than no normalization), but they have ap-

parent disadvantages compared to CPM/RPM. The ARI values of scISR follow the

same trend but are always higher than those of raw data. Similarly, Figures 4.7B and

Figure 4.7C show the JI and PI values obtained for the cluster analysis. Regardless

of the assessment metrics, cluster analysis in conjunction with scISR has a notable

advantage over other imputation methods.

To understand the impact of data scaling on the performance of the imputation

methods, we also perform the same analysis without log transformation applied to

the input data. Supplementary Figure S4 shows the overall results of the analysis

while Supplementary Tables S5�S7 show the detailed results for each dataset and
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Figure 4.7: Assessment results of each imputation method with respect to cell iso-
lation techniques, quanti�cation schemes, or normalized units. The analysis is per-
formed with a log transformation of the data. Panel (A) shows the results using
Adjusted Rand Index (ARI), while panels (B) and (C) show the results using Jaccard
Index (JI) and Purity Index (PI). scISR consistently outperforms other methods in
every grouping by having the highest ARI, JI, and PI values.
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Table 4.7: Adjusted Rand Index (ARI) obtained from raw and imputed data. In each
row, a cell is highlighted in green if the ARI value is higher than that of the raw data.
scISR improves cluster analysis by having ARI values higher than those of the raw
data in 21 out of 25 datasets. A one-sided Wilcoxon test also con�rms that the ARI
values of scISR are signi�cantly higher than those of raw data (p = 3.2 × 10−5) and
of all other methods (p = 9.8× 10−6).
Dataset Size Raw MAGIC scImpute SAVER scScope scGNN scISR

Fan 69 0.081 0.087 0.000 0.000 0.137 0.198 0.249
Treutlein 80 0.699 0.295 0.509 0.014 0.383 0.140 0.758
Yan 90 0.603 0.000 0.692 0.691 0.253 0.803 0.768
Goolam 124 0.533 0.512 0.291 0.590 0.1 0.525 0.641
Deng 268 0.549 0.182 0.656 0.772 0 0.464 0.814
Pollen 301 0.955 0.931 0.932 0.885 0.012 0.768 0.955
Darmanis 466 0.665 0.691 0.465 0.644 0 0.383 0.705
Usoskin 622 0.736 0.842 0.144 0.880 0 0.127 0.870
Camp 734 0.460 0.402 0.341 0.429 0 0.377 0.462
Klein 2,717 0.984 0.963 0.423 0.988 0.019 0.388 0.984
Romanov 2,881 0.507 0.556 0.356 0.507 0 0.367 0.548
Segerstolpe 3,514 0.437 0.430 0.405 0.576 0.004 0.146 0.555
Manno 4,029 0.266 0.236 0.296 0.302 0.082 0.093 0.269
Marques 5,053 0.206 0.245 0.169 0.202 0 0.109 0.206
Baron 8,569 0.557 0.410 0.415 0.528 0.467 0.258 0.557
Sanderson 12,648 0.155 0.177 0.177 0.134 0.104 0.053 0.162
Slyper 13,316 0.409 0.494 0.473 0.392 0.426 0.201 0.496
Zilionis (Mouse) 15,939 0.665 0.670 0.404 0.668 0.455 0.349 0.675
Tasic 23,178 0.439 0.501 N/A N/A 0 0.387 0.477
Zyl (Human) 24,023 0.381 0.414 N/A 0.423 0.366 0.285 0.424
Zilionis (Human) 34,558 0.620 0.633 N/A 0.646 0 0.204 0.710
Wei 41,565 0.616 0.622 N/A 0.473 0.578 0.341 0.617
Cao 90,579 0.426 0.307 N/A N/A 0.35 N/A 0.430
Orozco 100,055 0.375 0.557 N/A N/A 0.383 N/A 0.415
Darrah 162,490 0.298 0.379 N/A N/A N/A N/A 0.528

Mean ARI 0.504 0.461 0.286 0.423 0.165 0.279 0.571
1 N/A: Out of memory or error.

method. With the exception of scISR, a decrease in performance is observed for all

imputation methods due to the dominance of genes with large values. This leads to

a wider accuracy gap between scISR and other imputation methods.

4.3.2 Preservation of the transcriptome landscape

The purpose of this analysis is to assess whether the imputation alters the transcrip-

tome landscape. Preferably, life scientists impute the data in order to improve the

quality of downstream analyses. At the same time, imputation should not completely
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change the data because of falsely introduced signals, leading to wrong or compro-

mised �ndings. In the above sections, we have demonstrated that scISR signi�cantly

improves the quality of downstream analyses (e.g., cluster analysis). In this section,

we will demonstrate that scISR preserves the transcriptome landscape of the data

as well. For this purpose, we will visualize the transcriptome landscape of the raw

and imputed data using t-SNE [99] and UMAP [109]. We will also quantify the sim-

ilarity between the imputed and original landscapes using the distance correlation

index [110].

First, we use t-SNE [99] to generate the 2D transcriptome landscapes of the raw

and imputed data. The 2D visualizations of the 25 datasets are shown in Supple-

mentary Figures S6�S10. Overall, MAGIC, SAVER, and scISR produce landscapes

that are similar to those of the raw data for every single dataset analyzed. The same

cannot be said about scImpute, scScope, and scGNN. For the Manno dataset (last

row in Supplementary Figure S8), scImpute, scScope, and scGNN completely alter

the landscape. scImpute tends to split cells into smaller groups while scScope and

scGNN mix cells from di�erent cell types together. This can be clearly observed in

datasets such as Camp, Segerstolpe, Manno (Human).

To perform a more comprehensive analysis, we also generate the 2D transcriptome

landscapes of the 25 datasets using UMAP [109]. The visualizations are shown in

Supplementary Figures S11�S15. Again, except for scImpute, scScope, and scGNN,

other methods preserve the landscape very well. For scImpute, scScope, and scGNN,

the di�erence between the original and imputed landscape becomes more obvious in

UMAP visualization.

To quantify the similarity between the imputed and original landscapes, we calcu-

late the distance correlation index (dCor) [110] for each imputed landscape generated

by t-SNE and UMAP. Given X and Y as the 2D representation of the raw and im-
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puted data, dCor is calculated as dCor = dCov(X,Y )√
dV ar(X)dV ar(Y )

where dCov(X, Y ) is the

distance covariance between X and Y while dV ar(X) and dV ar(Y ) are distance vari-

ances of X and Y . Speci�cally, the method �rst calculates the pair-wise distances

for X by computing the distance between each pair of cells, resulting in a square

matrix. Second, it calculates the pair-wise distances for Y . Finally, it compares the

two matrices using the formula described above to obtain the distance correlation.

The dCor coe�cient takes a value between 0 and 1, with the dCor is expected to be 1

for a perfect similarity. In our analysis, when we rotate the transcriptome landscape,

dCor does not change. In contrast to Pearson correlation, this metric measures both

the linear and nonlinear associations between X and Y [110].

The dCor values are displayed in each panel in Supplementary Figures S6�S15.

We also plot the dCor distributions in Figure 4.8. In this �gure, the left panel shows

the values obtained from t-SNE while the right panel shows the values obtained from

UMAP representations. The mean correlations using t-SNE for MAGIC, scImpute,

SAVER, scScope, scGNN, and scISR are 0.78, 0.46, 0.68, 0.36, 0.48, and 0.88, respec-

tively. The bar plot shows that scISR has the highest mean correlation, as well as

the smallest variance. This demonstrates that scISR consistently preserves the tran-

scriptome landscape of the datasets analyzed. MAGIC is the second-best method in

this analysis. Using UMAP, scISR obtains a mean correlation of 0.86 compared to

those of 0.8, 0.5, 0.7, 0.4, and 0.57, for MAGIC, scImpute, SAVER, scScope, and

scGNN, respectively. A one-sided Wilcoxon test also con�rms that the correlation

values obtained from scISR are signi�cantly higher than the rest (p = 3 × 10−9 and

2.8× 10−7 for t-SNE and UMAP, respectively).
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Figure 4.8: The distance correlation between raw data and imputed data using the
�rst two components obtained from t-SNE and UMAP. Higher correlation values
indicate more similarity between the imputed and original landscapes. Di�erent colors
represent di�erent imputation methods. scISR has the highest mean correlation with
the smallest variance. A one-sided Wilcoxon test indicates that the correlation values
obtained from scISR are signi�cantly higher than the rest (p = 3×10−9 and 2.8×10−7

for t-SNE and UMAP, respectively).
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4.3.3 Simulation studies

To present a comprehensive simulation analysis, we generate a number of simulations

by varying the number of cells from 100 to 10,000 and the number of genes from 300

to 10,000. The cells/genes combination setups are presented as follows: 100×300,

1,000×3,000, 3,000×9,000, 5,000×10,000, 7,000×10,000, and 10,000×10,000.

In each of the 6 datasets, the expression values follow a normal distribution

N (µ, σ). We set µ = 1 and σ = 0.15. We slightly shift the mean of the cells

and genes to create 4 di�erent cell types and 3 gene groups � each cell type has an

equal number of cells. We name this data as complete data and use the expression

values as the ground truth for benchmarking. Next, we introduce the dropout events.

We randomly select 40% of the genes and consider those as genes that are impacted

by dropout events. We randomly assign 30% of the values of these genes to zero. We

name this data as masked data.

In these case studies, we present a detailed simulation results for 3 datasets:

100×300, 1,000×3,000 and 10,000×10,000. Panels A and B in Figures 4.9, 4.10

and 4.11 show the simulation data for the setting of 100×300, 1,000×3,000 and

10,000×10,000, respectively. In each �gure, panel A shows the transcriptome land-

scape of the complete data and panel B shows the masked data. In each dataset, the

transcriptome landscape and gene-cell heatmap of the complete data clearly show the

presence of three cell types and four gene groups. With masked data, dropout events

clearly alter the cells' transcriptome landscape, making it di�cult to separate the cell

types. The ultimate goal of imputation is to infer the masked (dropout) values in

order to recover the original transcriptome landscape and expression pro�le.

We apply the six imputation methods on the masked data and assess the quality

of the imputed data by comparing them against the ground truth. Panels C, D, E, F,

G, and H in Figures 4.9, 4.10 and 4.11 show the data imputed by MAGIC, scImpute,
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SAVER, scScope, scGNN, and scISR, respectively.
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Figure 4.9: Assessment of MAGIC, scImpute, SAVER, and scISR using simulation
(100 cells and 300 genes). (A) � (H) The visualization of the complete data, masked
data and imputed data recovered by MAGIC, scImpute, SAVER, scScope, scGNN, and
scISR. In each sub�gure, the left panel shows the transcriptome landscape using t-SNE
while the right panel shows the gene-cell heatmap. (I) Mean Absolute Error (MAE)
and correlation coe�cients obtained by comparing masked/imputed data with the
complete data. We calculate the MAE and correlation values for each gene and then
plot the distributions of each metric using boxplot. The transcriptome landscapes
and heatmaps show that scISR comes closest to recovering the complete data. scISR
also has signi�cantly smaller MAE values as well as signi�cantly higher correlation
coe�cients than other methods with p-values 1.6×10−64 and 9.2×10−63, respectively
(Wilcoxon test).



79

Figure 4.10: Assessment of MAGIC, scImpute, SAVER, and scISR using simulation
of 1,000 cells. (A) � (H) The visualization of the complete data, masked data and
imputed data recovered by MAGIC, scImpute, SAVER, scScope, scGNN, and scISR.
In each sub�gure, the left panel shows the transcriptome landscape using t-SNE
while the right panel shows the gene-cell heatmap. (I) Mean Absolute Error (MAE)
and correlation coe�cients obtained by comparing masked/imputed data with the
complete data. We calculate the MAE and correlation values for each gene and then
plot the distributions of each metric using boxplot. The transcriptome landscapes
and heatmaps show that scISR comes closest to recovering the complete data. scISR
also has signi�cantly smaller MAE values as well as signi�cantly higher correlation
coe�cients than other methods with p-values < 10−100 and < 10−100, respectively
(using Wilcoxon test).
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Figure 4.11: Assessment of MAGIC, scImpute, SAVER, and scISR using simulation
of 10,000 cells. (A) � (H) The visualization of the complete data, masked data and
imputed data recovered by MAGIC, scImpute, SAVER, scScope, scGNN, and scISR.
In each sub�gure, the left panel shows the transcriptome landscape using t-SNE
while the right panel shows the gene-cell heatmap. (I) Mean Absolute Error (MAE)
and correlation coe�cients obtained by comparing masked/imputed data with the
complete data. We calculate the MAE and correlation values for each gene and then
plot the distributions of each metric using boxplot. The transcriptome landscapes
and heatmaps show that scISR comes closest to recovering the complete data. scISR
also has signi�cantly smaller MAE values as well as signi�cantly higher correlation
coe�cients than other methods with p-values < 10−100 and < 10−100, respectively
(using Wilcoxon test).
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These case studies show that MAGIC imputes the missing values by smoothing

the expression values. Many expression values, including non-zero-valued entries,

were altered by MAGIC, making the landscape of the imputed data very di�erent

from those of both complete and masked data. scImpute improves the quality of the

data but is still not able to separate some cell types. In addition, scImpute also alters

the values of non-zero entries to make the data better �t into the assumed mixture

model. SAVER further improves the transcriptome landscape and separates the 4 cell

types. However, data imputed by SAVER does not entirely match with the complete

data, in which many dropout values remain uncorrected many other dropout entries

imputed with wrong values. scScope and scGNN oversmooth the imputed data such

that it merges all the cells in four types together. The heatmaps clearly show that

many expression values, including non-zero-valued entries, were altered by scScope

and scGNN.

Using the true expression values of the complete data in all 6 datasets, we calculate

the mean absolute error (MAE) and correlation between the imputed data and the

ground truth for the genes that were impacted by dropout events. Figure 4.12 displays

the mean absolute error (MAE) (left panel) and correlation values (right panel) for

each method and each cell/gene combination. scISR is the best method in recovering

the gene expression values with the smallest MAE and the highest correlation values.

In the second scenario, we generate in total 40 datasets resulted from the combi-

nation of 2 di�erent dropout distributions: uniform and normal, 4 di�erent dropout

rates: 60%, 70%, 80%, and 90%, and 5 di�erent sizes of data with the number of

cells×genes are: 1,000×3,000, 3,000×9,000, 5,000×10,000, 7,000×10,000, and 10,000×

10,000. Since scISR uses the hypergeometric test, which can be less accurate when the

dropout probability does not follow a uniform distribution, we use this simulation to

assess the stability of scISR when imputing data with di�erent dropout distributions.
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Figure 4.12: Assessment of MAGIC, scImpute, SAVER, scScope, scGNN, and scISR
using simulation studies. Mean Absolute Error (MAE) and correlation coe�cients
were obtained by comparing imputed data with the complete data. In each analysis,
scISR has smaller MAE values and higher correlation coe�cients than other methods.

To generate datasets of a certain size (e.g., 1,000×3,000), we �rst generate an

expression matrix whose values follow a normal distribution N(µ, σ) where µ = 1

and σ = 0.15. We then slightly shift the mean of the cells and genes by adding

a certain value to each group (-1, 0, 1, 1.5 for cell groups and -1, 0, 1 for gene

groups) to create 4 di�erent cell types. We name this as complete data. Next, we

randomly assign dropout values to the data in two di�erent cases. In the �rst case,

the dropout probability is uniformly distributed. In the second case, the dropout

probability follows a normal distribution. For example, at 60% dropout rate, the

dropout probability follows a distribution of N(0.6, 0.1). We then vary the dropout

rate from 60% to 90%. We name the data with dropouts as masked data. Next,

we impute the masked data using imputation methods to obtain the imputed data.

Finally, to assess the performance of imputation methods, we compare the imputed

data against the complete data using Mean Absolute Error (MAE) and correlation

coe�cients. The detailed results are presented in Supplementary Figure S19.

Overall, when the dropout probability is uniformly distributed, in all datasets,

scISR is able to recover most of the dropout values, resulting in a median MAE
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close to zero and correlation coe�cients close to one at any dropout rate. When the

dropout probability is normally distributed, in all datasets, scISR still performs as

well at 60% to 80% dropout. When the dropout rate is 90%, for the dataset of size

1,000×3,000, scISR can recover only a part of the data (median MAE of approximately

2.11 compared to 3.65 of masked data). However, the results clearly show that the

bigger the size of the data, the better scISR can recover the missing values. The

reason for such improvement is that with the same dropout rate, larger datasets

provide us with more data to learn from, leading to improved hypothesis testing

(hypergeometric test) and prediction (linear regression). For datasets with 7,000 cells

or more, the median MAE is close to zero for both uniform and normal distributions

at any dropout rate. In summary, scISR (using hypergeometric test) performs well

for large datasets with high dropout rates even when the dropout probability is not

uniformly distributed. Moreover, scISR also outperforms other methods in recovering

the missing data by having the lowest median MAE and highest median correlation.

In the next scenario, we generate 40 new simulated datasets, in which the cells of

the same cell type have high correlation. We use the same combinations of number

of cells, dropout rates, and dropout distributions as in the second scenario (see Sup-

plementary Section 4.2 for the details of the simulation). Supplementary Figure S20

shows the results obtained from the 40 new simulated datasets. scISR outperforms

other methods by having the lowest mean absolute errors and highest correlations in

every analysis performed.

In the last scenario, we perform additional simulation with negative binomial

distribution as noise model using Splatter. We set the number of genes to 15,000 and

the number of cell types to 3. We generated 30 datasets with di�erent cell numbers:

5,000, 10,000, 25,000, 50,000, 100,000 and 200,000. For each sample size, we varied

the sparsity levels by adjusting the dropout.mid parameters (midpoint parameter for
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dropout logistic function of Splatter). We set dropout.mid to 2.5, 3, 3.5, 4, and 4.5,

which led to sparsity levels of 84%, 87%, 89%, 91%, 93%, respectively.

We used the mean absolute error (MAE) values and correlation coe�cients be-

tween the ground truth expression and imputed expression data to assess the per-

formance of imputation methods. Supplementary Figure S22 shows the results, in

which scISR and scScope are the only methods that can perform imputation on the

biggest dataset. MAGIC, SAVER, scImpute, and scGNN cannot analyze datasets

with are more than 100,000, 10,000, 10,000, and 50,000 cells, respectively. Overall,

MAGIC, SAVER, scScope, and scGNN are unable to correctly recover the missing

values, which leads to MAE values that are even higher than the masked data (data

without imputation). scImpute has good results in small datasets but is unable to

impute datasets with more than 10,000 cells. Even in datasets with 10,000 cells,

scImpute returns errors when the dropout rate increases (91% and 93%). In contrast,

scISR is able to improve the quality of the dropout data in all scenarios. We also

report the running time for these simulation studies in Supplementary Figure S23.

scISR and scScope are the only methods that can perform imputation on dataset

with 200,000 cells. Both methods can analyze the largest dataset with 200,000 cells

in approximately 100 to 200 minutes. Other methods either run out of memory or

are unable to �nish in a reasonable amount of time, which was set to one day.

4.3.4 Robustness of scISR against non-uniform dropout prob-

ability

To further investigate the robustness of the hypergeometric test embedded in scISR,

we have also performed additional simulation studies with di�erent sample sizes and

dropout scenarios. In these simulations, we know the ground truth and the underlying

probability distributions. Therefore, we can properly assess the reliability of scISR
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when the dropout probability is not uniformly distributed.

First, we generate a new dataset that consists of 1,000 samples and 3,000 genes

� all expression values follow a normal distribution N(µ, σ) where µ = 1 and σ =

0.15. We slightly shift the mean of the cells and genes to create 4 di�erent cell

types. We name this as complete data. Next, we randomly assign dropout values

to the data in two di�erent scenarios. In the �rst scenario, the dropout probability

is uniformly distributed. In the second scenario, the dropout probability follows a

normal distribution. For example, at 60% dropout rate, the dropout probability

follows a distribution of N(0.6, 0.1). To make the simulation more general, we vary

the number of cells (from 1,000 to 10,000), the number of genes (from 3,000 to 10,000),

and the dropout rate (from 60% to 90%). We name the data with dropouts as masked

data. Next, we impute the masked data using six imputation methods to obtain the

imputed data. Finally, to assess the performance of imputation methods, we compare

the imputed data against the complete data using Mean Absolute Error (MAE) and

correlation coe�cients.

The top left panel in Figure 4.13 shows the MAE values obtained for datasets

with 1,000 cells and 3,000 genes. In this panel, the left side displays the results

obtained for uniform distributions while the right side shows the results for the normal

distributions. When the dropout probability is uniformly distributed, scISR is able

to recover most of the dropout values, resulting in a median MAE close to zero

at any dropout rate. When the dropout probability is normally distributed, scISR

still performs as well at 60% to 80% dropout but it becomes less accurate at 90%

rate. At 90% dropout rate, scISR recovers only a part of the data (median MAE

of approximately 2.11 compared to 3.65 of masked data). Assessment results using

correlation coe�cient (top right panel) also con�rm our �nding. However, as seen in

Figure 4.13, the result of scISR is still much better than other imputation methods.
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The next two panels (second row) in Figure 4.13 show the results obtained for

datasets with 3,000 cells and 9,000 genes. scISR is more accurate (lower MAE and

higher correlation) for these datasets compared to datasets with 1,000 cells. At

dropout rates of 60%, 70%, and 80%, scISR performs consistently well for uniform

and normal distributions alike (median MAE value close to zero). At 90% rate, the

median MAE of scISR for normal distributions is now 1.61 (compared to 2.11 for

datasets with 1,000 cells and 3,000 genes). The reason for such improvement is that

with the same dropout rate, larger datasets provide us with more data to learn from,

leading to improved hypothesis testing (hypergeometric test) and prediction (linear

regression). For datasets with 7,000 cells or more, the median MAE is close to zero

for both uniform and normal distributions at any dropout rate. In summary, scISR

(using hypergeometric test) performs well for large datasets with high dropout rates

even when the dropout probability is not uniformly distributed. Moreover, similar

to dataset with 1,000 cells, scISR also outperforms other methods in recovering the

missing values in bigger datasets.

Next, we investigate performance of scISR using simulated datasets in which the

cells of the same cell type have high correlation. Denote m as the number of genes.

We �rst generated four di�erent vectors: i) ( 0
m
, 1
m
, . . . , m

m
), ii) ( 0

m
,− 1

m
, . . . ,−m

m
) iii)

( 0
m
, 2
m
, . . . , m

m
, 0
m
, 2
m
, . . . , m

m
), and iv) ( 0

m
,− 2

m
, . . . ,−m

m
, 0
m
,− 2

m
, . . . ,−m

m
). Each vector

was used to simulated a cell type. Instead of shifting the mean of a cell type, we added

the �rst vector to the expression of the �rst cell type. Similarly, we added the second,

third, and fourth vectors to the second, third, and fourth cell types, respectively.

By doing so, cells of the same type will have high correlation. Similar to the above

simulation, we added dropouts with various rates (60%, 70%, 80%, and 90%) and

distributions (uniform and normal). We also simulated datasets of di�erent numbers

of cells: 1,000, 3,000, 5,000, 7,000, and 10,000.
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Figure 4.13: Assessment of MAGIC, scImpute, SAVER, scScope, scGNN, and scISR
using simulated datasets with di�erent dropout distributions and sample sizes. The
left panels show the Mean Absolute Error (MAE) values while the right panels show
the correlation coe�cients. In each panel, the left side shows the results for uniform
distributions while the right side shows the results for normal distributions. For
small datasets (e.g., datasets with 1,000 cells) with high dropout rates, scISR is less
accurate when the dropout probability is normally distributed. When the sample size
increases, scISR becomes more accurate. For datasets with 7,000 cells or more, scISR
performs well for both uniform and normal distributions alike across all dropout rates.
For most of the dataset sizes and dropout rates, scISR have a much better median
MAE and correlation compared to other methods.
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Figure 4.14 shows the results obtained from the 40 new simulated datasets. We

also used the same metrics to assess the similarity between imputed and the complete

data: (1) mean absolute error (the smaller the better), and (2) correlation (the higher

the better). scISR outperforms other methods by having the lowest mean absolute

errors and highest correlations in every analysis performed.

To measure the accuracy of the hyper-geometric test as a standalone module, we

compared the altered zero values against the ground truth (in which we know which

zero is true zero and which is dropout). We de�ne the following terms: 1) TP (a

dropout value is altered by scISR), 2) FN (a dropout value not altered), 3) FP (a

true zero value altered), and 4) TN (a true zero value not altered). For assessment

purpose, we used the F-score to measure the accuracy of the hypothesis testing. Note

that F-score is calculated based on precision and recall: F1 = 2 × precision×recall
precision+recall

or

F1 = TP
TP+ 1

2
(FP+FN)

. In the ideal case, F-score equals to 1 if both precision and recall

equal to 1 (i.e., FP = FN = 0). Figure 4.15 shows the F-score values obtained from

the 40 simulated datasets (5 cell numbers × 4 dropout rates × 2 distributions). When

the dropout probability is uniformly distributed, the median F-scores are close to 1

in all settings. When the dropout probability is normally distributed, the median

values are less than 1 for small datasets with high dropout rates. However, as the

sample size increases, the results improve. For datasets with 7,000 cells or more, the

median F-scores are close to 1 for both uniform and normal distributions.
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Figure 4.14: Assessment of MAGIC, scImpute, SAVER, scScope, scGNN, and scISR
using simulated datasets with di�erent dropout distributions and sample sizes. In each
dataset, cells of the same type have high correlation and cells of di�erent types have
low correlation. The left panels show the Mean Absolute Error (MAE) values while
the right panels show the correlation coe�cients. In each panel, the left side shows
the results for uniform distributions while the right side shows the results for normal
distributions. For small datasets (e.g., datasets with 1,000 cells) with high dropout
rates, scISR is less accurate when the dropout probability is normally distributed.
When the sample size increases, scISR becomes more accurate. For datasets with
7,000 cells or more, scISR performs well for both uniform and normal distributions
alike across all dropout rates. For most of the dataset sizes and dropout rates, scISR
have a much better median MAE and correlation compared to other methods.
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Figure 4.15: The accuracy of scISR hypothesis testing using F-score. The F-score
measures how well the algorithm distinguish between true zero values and dropouts.
The left panel shows the F-scores for datasets with uniform distribution while the
right panel shows the F-scores for datasets with normal distribution. For datasets
with 7,000 cells or more, the median F-scores are close to 1 for both uniform and
normal distributions alike across all dropout rates. In other words, scISR accurately
identi�es the zero values that need to be imputed.
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4.3.5 Simulation studies using Splatter package

Using Splatter R package [124], we perform additional simulation with negative bi-

nomial distribution as noise model. We set the number of genes to 15,000 and the

number of cell types to 3. We generated 30 datasets with di�erent cell numbers:

5,000, 10,000, 25,000, 50,000, 100,000 and 200,000. For each sample size, we var-

ied the sparsity levels by adjusting the dropout.mid parameters (midpoint parameter

for dropout logistic function of Splatter). We set dropout.mid to 2.5, 3, 3.5, 4, and

4.5, which led to sparsity levels of 84%, 87%, 89%, 91%, 93%, respectively. Both

sample size (hundreds of thousands of cells) and dropout rates (84%�93%) are often

expected from current scRNA-seq datasets. In total, we simulated 30 new datasets

using Splatter (6 cell numbers × 5 sparsity levels).

We used the mean absolute error (MAE) values and correlation coe�cients be-

tween the ground truth expression and imputed expression data to assess the per-

formance of imputation methods. Figure 4.16 shows the results, in which scISR and

scScope are the only methods that can perform imputation on the biggest dataset.

MAGIC, SAVER, scImpute, and scGNN cannot analyze datasets with are more than

100,000, 10,000, 10,000, and 50,000 cells, respectively. For large datasets, these meth-

ods either returned error, ran out of memory (the memory limit on our machine is

128 GB), or could not �nish the analysis in a reasonable amount of time (more than

one day).

Overall, MAGIC, SAVER, scScope, and scGNN are unable to correctly recover

the missing values, which leads to MAE values that are even higher than the masked

data (data without imputation). scImpute has good results in small datasets but is

unable to impute datasets with more than 10,000 cells. Even in datasets with 10,000

cells, scImpute returns errors when the dropout rate increases (91% and 93%). In

contrast, scISR is able to improve the quality of the dropout data in all scenarios.
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We also report the running time for these simulation studies. As seen in Fig-

ure 4.17, scISR and scScope are the only methods that can perform imputation on

dataset with 200,000 cells. The reason scScope can analyze the biggest dataset in this

simulation is because the number of genes is set to 15,000, which is lower than that

of real datasets. Both methods can analyze the largest dataset with 200,000 cells in

approximately 100 to 200 minutes. Other methods either run out of memory or are

unable to �nish in a reasonable amount of time, which was set to one day.

4.3.6 Robustness of scISR against batch e�ect

To investigate the e�ect of batch e�ect on scISR, we tested our approach using sim-

ulated datasets generated by Splatter package. We used the following parameters:

the number of genes is set to 15,000; 5 sparsity levels are generated with zero ratios

ranging from 84% to 93%; the number of cells is �xed to 25,000; batch e�ect is either

enable or disable. Splatter simulates batch e�ect by generating a small scaling factor

for each gene in each batch. We generated a total of 10 datasets using these param-

eters. As seen in Figure 4.18, batch e�ects do not have a signi�cant impact on the

performance of scISR.

4.4 Results of clustering analysis using scCAN

In this section, we assess the performance of scCAN in the following capabilities:

(1) correct estimation of the number of cell types, (2) proper segregation of cells of

di�erent types, (3) robustness against dropout events, and (4) scalability against the

increasing number of cell types. For this purpose, we analyze 28 real scRNA-seq

datasets and simulation in various scenarios. We compare scCAN with �ve state-of-

the-art clustering methods that are widely used for single-cell analysis: CIDR [21],



93

0.0

0.5

1.0

1.5

2.0

84% 87% 89% 91% 93%
Dropout Rate

M
ea

n 
A

bs
ol

ut
e 

E
rr

or
0.00

0.25

0.50

0.75

1.00

84% 87% 89% 91% 93%
Dropout Rate

C
or

re
la

tio
n

Methods

Masked

MAGIC

scImpute

SAVER

scScope

scGNN

scISR

Dataset with 5000 cells and 15000 genes (5000 x 15000)

0.0

0.5

1.0

1.5

2.0

84% 87% 89% 91% 93%
Dropout Rate

M
ea

n 
A

bs
ol

ut
e 

E
rr

or

0.00

0.25

0.50

0.75

1.00

84% 87% 89% 91% 93%
Dropout Rate

C
or

re
la

tio
n

Methods

Masked

MAGIC

scImpute

SAVER

scScope

scGNN

scISR

Dataset with 10000 cells and 15000 genes (10000 x 15000)

0.0

0.5

1.0

1.5

2.0

84% 87% 89% 91% 93%
Dropout Rate

M
ea

n 
A

bs
ol

ut
e 

E
rr

or

0.00

0.25

0.50

0.75

1.00

84% 87% 89% 91% 93%
Dropout Rate

C
or

re
la

tio
n

Methods

Masked

MAGIC

scScope

scGNN

scISR

Dataset with 25000 cells and 15000 genes (25000 x 15000)

0.0

0.5

1.0

1.5

2.0

84% 87% 89% 91% 93%
Dropout Rate

M
ea

n 
A

bs
ol

ut
e 

E
rr

or

0.00

0.25

0.50

0.75

1.00

84% 87% 89% 91% 93%
Dropout Rate

C
or

re
la

tio
n

Methods

Masked

MAGIC

scScope

scGNN

scISR

Dataset with 50000 cells and 15000 genes (50000 x 15000)

0.0

0.5

1.0

1.5

2.0

84% 87% 89% 91% 93%
Dropout Rate

M
ea

n 
A

bs
ol

ut
e 

E
rr

or

0.00

0.25

0.50

0.75

1.00

84% 87% 89% 91% 93%
Dropout Rate

C
or

re
la

tio
n

Methods

Masked

MAGIC

scScope

scISR

Dataset with 100000 cells and 15000 genes (100000 x 15000)

0.0

0.5

1.0

1.5

2.0

84% 87% 89% 91% 93%
Dropout Rate

M
ea

n 
A

bs
ol

ut
e 

E
rr

or

0.00

0.25

0.50

0.75

1.00

84% 87% 89% 91% 93%
Dropout Rate

C
or

re
la

tio
n

Methods

Masked

scScope

scISR

Dataset with 200000 cells and 15000 genes (200000 x 15000)

Figure 4.16: Assessment of MAGIC, scImpute, SAVER, scScope, scGNN, and scISR
using datasets simulated by Splatter. The left panels show the Mean Absolute Error
(MAE) values while the right panels show the correlation coe�cients. scISR and
scScope are the only methods that can perform imputation on the biggest dataset,
while MAGIC, SAVER, scImpute, and scGNN stop working with datasets bigger than
100,000, 10,000, 10,000, and 50,000 cells, respectively. scISR is the only method that
can improve the dropout data in all scenarios.
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Figure 4.18: Impact of batch e�ects on scISR. The left panels show the Mean Absolute
Error (MAE) values while the right panels show the correlation coe�cients. In each
panel, the left 10 boxes show the results for data without batch e�ects while the right
10 boxes show the results for data with batch e�ects. Overall, batch e�ects do not
have a signi�cant impact on the performance of scISR.

SEURAT3 [69], Monocle3 [71], SHARP [55], and SCANPY [70].

4.4.1 Estimating the number of true cell types

We use CIDR [21], SEURAT3 [69], Monocle3 [71], SHARP [55], SCANPY [70], and

scCAN to partition each of the 27 real scRNA-seq datasets. To evaluate how well

each method estimates the number of cell types, we compare the number of clusters

produced by each method against the number of true cell types using the absolute

log-modulus [143]: L(x) = |sign(x) ∗ log10(|x|+1)| where x is the di�erence between
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Figure 4.19: Absolute log-modulus values obtained from CIDR, SEURAT3, Mono-
cle3, SHARP, SCANPY, and scCAN for 27 real scRNA-seq datasets. This metric
measures the di�erence between the number of clusters and the number of true cell
types. The average log modulus of scCAN is 0.59 while those of Monocle3, SCANPY,
SHARP, SEURAT3, and CIDR are 1.35, 1, 0.72, 0.64, and 0.63, respectively. scCAN
signi�cantly outperforms other methods by having the smallest absolute log-modulus
values (Wilcoxon p-value of p = 8.6 × 10−4). Note that the dataset Brain 1.3M was
excluded from this analysis because it does not have true cell type information.

the number of clusters and the number of cell types. The lower the L(x) value, the

more similar the number of clusters and the true number of cell types. L(x) equals

to zero denotes a perfect estimation.

Figure 4.19 shows the absolute log-modulus values obtained using the six cluster-

ing methods. Each box represents the absolute log-modulus values across 27 scRNA-

seq datasets for a method. We observe that Monocle3 and SCANPY frequently

overestimate the number of clusters. Both methods have the highest absolute log-

modulus values. Overall, scCAN is the best method in estimating the number of true

cell types. The average log modulus of scCAN is 0.59 whereas those of Monocle3,

SCANPY, SHARP, SEURAT3, and CIDR are 1.35, 1, 0.72, 0.64, and 0.63, respec-
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tively. A one-sided Wilcoxon test also con�rms that the absolute log-modulus values

obtained from scCAN are signi�cantly smaller than other methods with a p-value

of 9 × 10−4. We report the absolute log-modulus values for each method and each

dataset in Table 4.8.

4.4.2 Segregating cells of di�erent types

To assess the accuracy of each clustering method, we also compare the clustering

results against the true cell labels. For this purpose, we use three evaluation metrics:

adjusted Rand index (ARI) [140], adjusted mutual information (AMI) [141], and

V-measure [142]. Details of each metric are provided in Supplementary Section 3.

Figure 4.20A shows the ARI values obtained from the six clustering methods.

Each box represents the ARI values across 27 datasets for a method. The results

show that scCAN signi�cantly outperforms other state-of-the-art methods by having

the highest ARI values (p = 6× 10−12 using Wilcoxon test). The average ARI values

of scCAN is 0.81 which is substantially higher than those of other methods (0.50,

0.55, 0.23, 0.41, and 0.40 for CIDR, Seurat3, Monocle3, SHARP, and SCANPY,

respectively). More importantly, scCAN has the highest ARI values in 24 out of 27

datasets. The details can be seen in Table4.9

Figure 4.20B shows the AMI values of each method. The AMI values of scCAN

are signi�cantly higher than those of other methods (p = 9 × 10−10 using Wilcoxon

test). The average AMI value of scCAN is 0.77 while the average AMI values of

CIDR, Seurat3, Monocle3, SHARP, and SCANPY are 0.52, 0.64, 0.43, 0.41 and 0.55,

respectively. scCAN also has the highest AMI values in 23 out of 27 datasets. The

details can be seen in Table 4.10

Figure 4.20C shows a similar trend using V-measure. The V-measure values of

scCAN are signi�cantly higher than those of other methods (p = 2 × 10−8). The
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Table 4.8: Estimation of the number of cell types of CIDR, SEURAT3, Monocle3,
SHARP, SCANPY, and scCAN on 27 single-cell datasets measured by absolute log-
modulus values. Cells with NA values indicate that the method was not able to
analyze the dataset (crashed or out-of-memory). The average absolute log-modulus
value of scCAN is 0.59, which are smaller than the rest.

Datasets CIDR Seurat3 Monocle3 SHARP SCANPY scCAN

Pollen 0.60 0.30 0.30 0.70 0.60 0.60
Patel 0.30 0.30 0.60 0.60 0.70 0.00
Wang 0.00 0.00 0.78 0.60 0.60 0.48
Li 0.78 0.48 0.30 1.00 0.00 0.48
Usoskin 0.30 0.48 0.90 0.30 1.04 0.00
Camp 0.60 0.48 1.00 0.00 0.78 0.78
Xin 0.85 0.30 1.08 0.48 0.60 0.60
Muraro 0.70 0.90 1.26 0.48 1.18 0.70
Segerstolpe 0.60 0.95 1.51 0.00 1.41 0.70
Romanov 0.00 0.90 1.32 0.48 1.26 0.30
Zeisel 0.70 0.95 1.40 0.78 1.30 0.30
Lake 0.70 0.00 1.40 0.95 1.04 0.30
Montoro 0.78 0.30 1.41 1.04 0.60 0.90
Guo 0.30 0.78 1.52 0.85 1.23 0.30
Baron 0.70 0.70 1.57 0.85 1.15 0.30
Chen 1.00 0.30 1.58 0.90 1.11 0.78
Slyper 0.60 0.85 1.58 0.48 1.08 0.48
Kanton 0.78 0.30 1.66 1.08 0.85 0.78
Brann 1.64 1.51 1.20 1.64 1.51 1.60
Zilionis 0.70 1.00 1.68 0.60 1.08 0.48
Macosko 0.60 0.90 1.78 0.78 0.78 0.70
Hrvatin NA 0.78 1.83 0.90 1.00 0.48
Orozco NA 1.28 2.07 1.08 1.61 0.85
Miller NA NA 2.03 NA 1.32 0.95
Darrah NA NA 1.93 NA 1.36 0.48
Kozareva NA NA NA NA 0.85 0.95
Cao NA NA NA NA 1.04 0.60

Mean 0.63 0.64 1.35 0.72 1.00 0.59
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Figure 4.20: Accuracy assessment of the six clustering methods using adjusted Rand
index (ARI), adjusted mutual information (AMI), and V-measure. scCAN consis-
tently and substantially outperforms other methods in every assessment by having
the highest ARI, AMI, and V-measure values across 27 real scRNA-seq datasets.
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Table 4.9: Performance of CIDR, SEURAT3, Monocle3, SHARP, SCANPY, and
scCAN on 27 single-cell datasets measured by Adjusted Rand Index (ARI). Cells with
NA values indicate that the method was not able to analyze the dataset (crashed or
out-of-memory). Cells highlighted in bold have the highest ARI values. The average
ARI of scCAN is 0.81, which is much higher than the rest (SEURAT3 is the second
best with an average ARI of 0.55). In addition, scCAN has the highest ARI values
in all but three datasets (Camp, Montoro and Hrvatin).
Dataset #Cells CIDR SEURAT3 Monocle3 SHARP SCANPY scCAN

Pollen 301 0.90 0.73 0.82 0.09 0.77 0.92
Patel 430 0.45 0.82 0.26 0.09 0.66 0.86
Wang 457 0.63 0.56 0.28 0.41 0.62 0.83
Li 561 0.62 0.84 0.77 0.19 0.81 0.94
Usoskin 622 0.82 0.56 0.35 0.07 0.34 0.93
Camp 777 0.61 0.65 0.55 0.44 0.61 0.61
Xin 1,600 0.57 0.50 0.15 0.56 0.29 0.98
Muraro 2,126 0.22 0.64 0.30 0.31 0.43 0.91
Segerstolpe 2,209 0.37 0.60 0.20 0.33 0.31 0.95
Romanov 2,881 0.32 0.48 0.19 0.59 0.30 0.63
Zeisel 3,005 0.37 0.50 0.24 0.46 0.32 0.86
Lake 3,042 0.47 0.51 0.23 0.21 0.43 0.58
Montoro 7,193 0.30 0.24 0.08 0.80 0.20 0.70
Guo 7,416 0.75 0.62 0.23 0.24 0.46 0.86
Baron 8,569 0.73 0.56 0.21 0.36 0.46 0.94
Chen 12,089 0.36 0.69 0.25 0.59 0.62 0.72
Slyper 13,316 0.63 0.24 0.06 0.39 0.26 0.67
Kanton 17,542 0.47 0.40 0.13 0.31 0.47 0.67
Brann 26,766 0.12 0.32 0.06 0.76 0.32 0.86
Zilionis 34,558 0.53 NA 0.12 0.37 0.38 0.89
Macosko 44,808 0.17 NA 0.04 0.71 0.23 0.85
Hrvatin 48,266 NA NA 0.13 0.92 0.57 0.78
Orozco 100,055 NA NA 0.04 0.20 0.22 0.77
Miller 142,523 NA NA 0.04 NA 0.16 0.90
Darrah 162,490 NA NA 0.02 NA 0.08 0.47
Kozareva 611,034 NA NA NA NA 0.12 1.00
Cao 1,092,000 NA NA NA NA 0.48 0.89

Mean 0.50 0.55 0.23 0.41 0.40 0.81
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Table 4.10: Performance of CIDR, SEURAT3, Monocle3, SHARP, SCANPY, and
scCAN on 27 single-cell datasets measured by Adjusted Mutual Information (AMI).
Cells with NA values indicate that the method was not able to analyze the dataset
(crashed or out-of-memory). Cells highlighted in bold have the highest AMI values.
The average AMI of scCAN is 0.77, which is much higher than the rest (SEURAT3
is the second best with an average AMI of 0.64). In addition, scCAN has the highest
AMI values in all but four datasets (Camp, Montoro, Chen and Hrvatin).
Dataset #Cells CIDR SEURAT3 Monocle3 SHARP SCANPY scCAN

Pollen 301 0.91 0.80 0.84 0.20 0.88 0.93
Patel 430 0.55 0.77 0.29 0.16 0.64 0.84
Wang 457 0.66 0.60 0.42 0.40 0.64 0.75
Li 561 0.69 0.88 0.84 0.27 0.84 0.95
Usoskin 622 0.76 0.61 0.48 0.19 0.48 0.88
Camp 777 0.72 0.77 0.67 0.59 0.72 0.72
Xin 1,600 0.51 0.57 0.35 0.50 0.44 0.91
Muraro 2,126 0.41 0.72 0.53 0.31 0.60 0.87
Segerstolpe 2,209 0.42 0.72 0.47 0.33 0.55 0.88
Romanov 2,881 0.33 0.55 0.37 0.52 0.44 0.61
Zeisel 3,005 0.38 0.58 0.46 0.46 0.50 0.81
Lake 3,042 0.47 0.65 0.53 0.22 0.67 0.74
Montoro 7,193 0.35 0.35 0.25 0.64 0.33 0.58
Guo 7,416 0.76 0.71 0.49 0.51 0.59 0.87
Baron 8,569 0.65 0.69 0.49 0.40 0.64 0.87
Chen 12,089 0.37 0.75 0.59 0.52 0.75 0.55
Slyper 13,316 0.68 0.46 0.31 0.30 0.46 0.73
Kanton 17,542 0.49 0.53 0.39 0.30 0.57 0.64
Brann 26,766 0.13 0.53 0.33 0.52 0.54 0.72
Zilionis 34,558 0.50 NA 0.40 0.41 0.53 0.84
Macosko 44,808 0.27 NA 0.26 0.41 0.42 0.66
Hrvatin 48,266 NA NA 0.41 0.87 0.64 0.76
Orozco 100,055 NA NA 0.29 0.32 0.43 0.65
Miller 142,523 NA NA 0.23 NA 0.33 0.82
Darrah 162,490 NA NA 0.19 NA 0.25 0.53
Kozareva 611,034 NA NA NA NA 0.39 0.94
Cao 1,092,000 NA NA NA NA 0.61 0.84

Mean 0.52 0.64 0.43 0.41 0.55 0.77
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average V-measure value of scCAN is 0.81 while the average AMI values of CIDR,

Seurat3, Monocle3, SHARP, and SCANPY are 0.57, 0.72, 0.56, 0.50 and 0.66, respec-

tively. scCAN also has the highest V-measure values in 23 out of 27 datasets. The

details can be seen in 4.11.

The visualizations of cell transcriptomic landscape for 27 datasets using original

cell types and cluster assignments generated by scCAN are shown at Supplementary

Figures S1�S5 and Supplementary Figures S6�S10 available from [147].

Robustness against dropouts

One of the prominent challenges in single-cell data analysis is the prevalence of

dropouts. To assess how robust each method is against dropouts, we simulate a num-

ber of datasets. There are a number of tools that generate simulated data, including

Splatter [124] and SymSim [148]. Though powerful, these tools cannot completely

emulate real-world situations. The simulators do not preserve expression levels and

gene correlation structure of real genes [149]. Therefore, instead of generating com-

pletely new expression values, we simulate di�erent dropout scenarios using the 27

real datasets listed above. For each dataset, we gradually increase the number of

dropouts by randomly replace non-zero expression values with zeros. The dropout

rates are set to 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85% and 90%. In summary,

we generate 243 simulated datasets (27 real datasets with 9 di�erent dropout rates

per dataset).

For each dataset, the true cell label of each cell is known and thus can be used

a posteriori to assess the robustness of each clustering method. We analyze each

of the 243 datasets using the six clustering methods and then calculate the ARI

values. Figure 4.21 shows the ARI values for each method across datasets of varying

dropout rates. Overall, scCAN consistently outperforms other methods in clustering
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Table 4.11: Performance of CIDR, SEURAT3, Monocle3, SHARP, SCANPY, and
scCAN on 27 single-cell datasets measured by V-measure. Cells with NA values
indicate that the method was not able to analyze the dataset (crashed or out-of-
memory). Cells highlighted in bold have the highest V-measure values. The average
V-measure of scCAN is 0.81, which is much higher than the rest (SEURAT3 is the
second best with an average V-measure of 0.72). In addition, scCAN has the highest
V-measure values in all but four datasets (Romanov, Montoro, Chen and Kanton).
Dataset #Cells CIDR SEURAT3 Monocle3 SHARP SCANPY scCAN

Pollen 301 0.94 0.89 0.91 0.33 0.91 0.96
Patel 430 0.57 0.79 0.33 0.26 0.72 0.84
Wang 457 0.71 0.65 0.52 0.53 0.72 0.81
Li 561 0.77 0.89 0.90 0.41 0.87 0.96
Usoskin 622 0.80 0.71 0.62 0.23 0.63 0.93
Camp 777 0.79 0.82 0.79 0.66 0.82 0.82
Xin 1,600 0.55 0.68 0.50 0.50 0.58 0.92
Muraro 2,126 0.43 0.79 0.66 0.46 0.72 0.87
Segerstolpe 2,209 0.45 0.77 0.62 0.42 0.69 0.92
Romanov 2,881 0.34 0.66 0.49 0.56 0.58 0.62
Zeisel 3,005 0.47 0.67 0.60 0.59 0.63 0.82
Lake 3,042 0.54 0.69 0.63 0.35 0.73 0.75
Montoro 7,193 0.46 0.49 0.38 0.70 0.47 0.65
Guo 7,416 0.79 0.81 0.65 0.52 0.73 0.89
Baron 8,569 0.72 0.77 0.65 0.55 0.76 0.89
Chen 12,089 0.42 0.78 0.69 0.65 0.77 0.60
Slyper 13,316 0.70 0.59 0.45 0.42 0.59 0.73
Kanton 17,542 0.49 0.60 0.52 0.41 0.65 0.64
Brann 26,766 0.16 0.64 0.48 0.65 0.65 0.80
Zilionis 34,558 0.58 NA 0.56 0.52 0.65 0.89
Macosko 44,808 0.33 NA 0.41 0.49 0.56 0.70
Hrvatin 48,266 NA NA 0.58 0.92 0.78 0.82
Orozco 100,055 NA NA 0.44 0.41 0.60 0.75
Miller 142,523 NA NA 0.37 NA 0.49 0.88
Darrah 162,490 NA NA 0.32 NA 0.39 0.63
Kozareva 611,034 NA NA NA NA 0.56 0.96
Cao 1,092,000 NA NA NA NA 0.74 0.90

Mean 0.57 0.72 0.56 0.50 0.67 0.81
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Figure 4.21: Assessment of CIDR, SEURAT3, Monocle3, SHARP, SCANPY and,
scCAN against dropouts. Simulations were obtained by varying the number of zeros
in each of 27 real biological datasets from 50% to about 90%, respectively. Each box
plot shows the ARI values obtained from each method for a speci�c dropout portion.
Wilcoxon test shows that the ARI values obtained from scCAN are signi�cantly higher
than CIDR, SEURAT3, Monocle3, SHARP, SCANPY (p < 2.2× 10−16).

cell populations regardless of dropout rates. A one-sided Wilcoxon test also con�rms

that the ARI values obtained from scCAN are signi�cantly higher than those of CIDR,

SEURAT3, Monocle3, SHARP, SCANPY (p < 2.2× 10−16).

4.4.3 Time and space complexity

In order to assess the scalability of the clustering methods, we record the running

time that each method uses to analyze the 28 real datasets. Figure 4.22 shows the

running time of the methods with varying numbers of cells. The time complexity of

CIDR increases exponentially with respect to sample size. Supplementary Table S7

shows the detailed running time of each method for all 28 datasets. The cell with

�NA� indicates out of memory or error. The memory of our machine is limited to 256

GB. scCAN and SCANPY can cluster all datasets in minutes.
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Figure 4.22: Running time of CIDR, SEURAT3, Monocle3, SHARP, SCANPY, and
scCAN for the analysis of 28 real scRNA-seq datasets. The horizontal axis shows the
number of cells while the vertical axis shows the running time in the log scale (base
60) of minutes. scCAN and SCANPY are the only two methods that can analyze
datasets with more than 200,000 cells.

4.4.4 Comparison of the clustering methods used in Modules

2 and 3

The �rst method (core method) is more accurate but it requires more computational

power and memory. Therefore, we developed the second method that allows users

to analyze large datasets faster and using less memory. If the input dataset is small

(by default 5,000 cells or less), both methods will be the same and thus produce the

same results. When the dataset is large (5,000 cells or more), we use the �rst method

to analyze a subset of the data to determine the cell types and then assign the the

remaining cells to the determined cell types (second method).

Note that the default value of 5,000 allows us to have a su�ciently large sample size

to properly determine the cell types which in turns will lead to a proper classi�cation

of the remaining cells. At the same time, 5,000 is a reasonable small number of samples

that allows users to perform the analysis e�ciently using personal computers. Users
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can also change this parameter to use the �rst method even for large datasets, if they

have more memory and are willing to wait longer for their results. In the following

text, as requested, we will provide a direct comparison between the two methods in

terms of both accuracy and running time.

Table 4.12 shows a direct comparison of the two methods in terms of both accuracy

and running time using the same server (with 200 GB of RAM). Consistent with the

previous submission, we used adjusted Rand index (ARI), adjusted mutual informa-

tion (AMI), and V-measure to assess the performance of each method. Cells with NA

values indicate that a method was not able to analyze the dataset (out-of-memory).

Cells highlighted in bold have the higher accuracy (ARI, AMI, and V-measure) and

lower running time.

Overall, the �rst method can only analyze the �rst 21 datasets. It returns NA

for the last seven datasets with 44,808 cells or more (out of memory). The second

method can analyze all datasets, even for the Cao dataset with more than a million

cells.

Regarding running time, the second method is substantially faster than the �rst

method. For example, the second method was able to analyze the Zilionis dataset in

18 minutes while it takes the �rst method method almost 3 days. For the Cao dataset

with a million cells, the second method �nished the analysis in less than 40 minutes

whereas the �rst method ran out of memory and could not analyze the data.

Regarding the accuracy, the �rst method is slightly more accurate (when they

can analyze the data) but the di�erence between the two methods is marginal. For

example, the �rst method has a higher ARI in three dataset (Guo, Chen, and Slyper)

but has lower ARI in three other datasets (Montoro, Kanton, and Zilionis). Similarly,

the two methods have comparable AMI and V-measure values.

In summary, the �rst method is slightly more accurate but the second method
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is capable of analyzing large datasets and requires less memory and running time.

Therefore, the scCAN software automatically switches to the second method when

analyzing datasets with 5,000 cells or more. Users can adjust this parameter if they

wish to run the �rst method for larger datasets, given that they have su�cient memory

and are willing to wait longer for the results.
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Table 4.12: Performance of the two clustering methods used in Module 2 (method 1)
and Module 3 (method 2) on single-cell datasets measured by adjusted Rand index
(ARI), adjusted mutual information (AMI), V-measure and running time (minutes).
Cells with NA values indicate that the method was not able to analyze the dataset
(out-of-memory). Cells highlighted in bold have the higher accuracy (ARI, AMI, and
V-measure) or lower running time.
Datasets #Cells ARI AMI V-measure Running Time

Method 1 Method 2 Method 1 Method 2 Method 1 Method 2 Method 1 Method 2

Pollen 301 0.92 0.92 0.93 0.93 0.96 0.96 1.3 1.3
Patel 430 0.86 0.86 0.84 0.84 0.84 0.84 1.1 1.1
Wang 457 0.83 0.83 0.75 0.75 0.81 0.81 1.3 1.3
Li 561 0.94 0.94 0.95 0.95 0.96 0.96 1.7 1.7
Usoskin 622 0.93 0.93 0.88 0.88 0.93 0.93 1.4 1.4
Camp 777 0.61 0.61 0.72 0.72 0.82 0.82 1.6 1.6
Xin 1,600 0.98 0.98 0.91 0.91 0.92 0.92 2.4 2.4
Muraro 2,126 0.91 0.91 0.87 0.87 0.87 0.87 3.4 3.4
Segerstolpe 2,209 0.95 0.95 0.88 0.88 0.92 0.92 3.6 3.6
Romanov 2,881 0.63 0.63 0.61 0.61 0.62 0.62 5.5 5.5
Zeisel 3,005 0.86 0.86 0.81 0.81 0.82 0.82 5.9 5.9
Lake 3,042 0.58 0.58 0.74 0.74 0.75 0.75 6.1 6.1
Montoro 7,193 0.68 0.70 0.54 0.58 0.63 0.65 163.9 17.9
Guo 7,416 0.88 0.86 0.88 0.87 0.90 0.89 192.8 17.9
Baron 8,569 0.94 0.94 0.88 0.87 0.90 0.89 280.0 17.9
Chen 12,089 0.85 0.72 0.69 0.55 0.77 0.60 674.9 17.9
Slyper 13,316 0.75 0.67 0.78 0.73 0.76 0.73 777.7 17.9
Kanton 17,542 0.29 0.67 0.31 0.64 0.42 0.64 1,349 17.9
Brann 26,766 0.86 0.86 0.73 0.72 0.80 0.80 1,728 17.9
Zilionis 34,558 0.87 0.89 0.84 0.84 0.85 0.89 3,834 18.5
Macosko 44,808 NA 0.89 NA 0.66 NA 0.70 NA 18.5
Hrvatin 48,266 NA 0.78 NA 0.76 NA 0.82 NA 18.6
Orozco 100,055 NA 0.77 NA 0.65 NA 0.75 NA 37.6
Miller 142,523 NA 0.90 NA 0.82 NA 0.88 NA 36.0
Darrah 162,490 NA 0.47 NA 0.53 NA 0.63 NA 37.9
Kozareva 611,034 NA 1.00 NA 0.94 NA 0.96 NA 45.0
Cao 1,092,000 NA 0.89 NA 0.84 NA 0.90 NA 39.0
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4.4.5 E�ects of min-max scaling

The min-max scaling is not a scRNA-seq normalization method and it is not intended

to do so. We leave the step of data processinga and normalization completely up

to the users. This min-max scaling added to our method is used on top of the

already normalized data provided by users. Such scaling is frequently used in deep

learning models [85�88] with the common purpose of reducing standard deviation

and suppressing the e�ect of outliers. Below, we will demonstrate that the min-max

scaling step improves the clustering performance without altering the transcriptome

landscape.

To demonstrate the usefulness of this min-max scaling on clustering, we re-analyzed

all single-cell datasets using scCAN without applying the min-max scaling step. Fig-

ure 4.23 shows the ARI values obtained from scCAN in two scenarios: scCAN with

and without the scaling step. Overall, the min-max scaling makes the analysis more

robust (lower variance) and more accurate (higher ARI). This result demonstrates

the usefulness of the min-max scaling in improving the performance of scCAN.

To further demonstrate that the min-max scaling does not alter the transcriptome

landscape of the data, we calculated the distance correlation index (dCor) [110] be-

tween the two dimensional representation of scaling and non-scaling data generated

by t-SNE. Given X and Y as the 2D representation of the scaling and non-scaling

data, dCor is calculated as dCor = dCov(X,Y )√
dV ar(X)dV ar(Y )

where dCov(X, Y ) is the distance

covariance between X and Y while dV ar(X) and dV ar(Y ) are distance variances of

X and Y . Speci�cally, dCor �rst calculates the pair-wise distances for X by comput-

ing the distance between each pair of cells, resulting in a square matrix. Second, it

calculates the pair-wise distances for Y . Finally, it compares the two matrices using

the formula described above to obtain the distance correlation. The dCor coe�cient

has values ranging from 0 to 1, with the dCor is expected to be 1 for a perfect sim-
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Figure 4.23: Impact of min-max scaling on scCAN. The analysis without scaling has
higher variability and lower ARI values.

ilarity. In our analysis, when we rotate the transcriptome landscape, dCor does not

change. We re-analyzed the single-cell datasets and calculate the distance correlation

for each dataset. Overall, the dCor values obtained from all datasets are very high

(median dCor of 0.99 and variance of 0.01). This con�rms that the min-max scaling

does not alter the transcriptome landscape of the data while improving the clustering

results.

4.4.6 Rare cell types detection

The sampling process is necessary to reduce both time and space complexity, but it

can alter the capability of detecting rare cell types. By selecting 5,000 cells from a

large dataset, we might end up with insu�cient number of rare cells, and therefore

reduce the chance of detecting them.
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In addition, we have developed two strategies to enhance the method's capability

of detecting rare cell types. First, we now allow users to change the parameter

samp.size so that they can increase the sample size, thus boosting the method's

capability in detecting rare cell types. Second, we provide an instruction to perform

multi-state clustering, i.e., further splitting the clustering results. When a cell type

has too few cells, these cells are often mistakenly grouped with other cell types. By

further splitting each clusters, we are able to detect rare cell types that would not be

possible by performing one-stage clustering.

To demonstrate the e�ciency of both solutions, we have tested them on the Zilionis

dataset. The Zilionis dataset has 34,558 cells and 9 cell types. The transcriptome

landscape and the cell types of the dataset are shown in Figure 4.24A. Among the

9 cell types, the tRBC cell type has only 108 cells (0.3%). A sub-sample of 5,000

cells is expected to have approximately 19 tRBC cells, which might be insu�cient for

many clustering method to detect them. Indeed, as show in Figure 4.24B, scCAN

mistakenly grouped tRBC cells with tPlasma cells when we used the default setting

of samp.size = 5, 000.

To demonstrate the e�ciency of the �rst strategy, we set samp.size = 10, 000.

The clustering results using the new parameter is shown in Figure 4.24C. With a

sample size of 10,000, the method can properly separate tRBC cells and assigned

them to cluster 2. To quantify how well the method separates tRBC cells from

other cells, we calculated the F1 score [150]. Brie�y, F1 = 2 ∗ precison ∗ recall
precison+ recall

=

TP

TP +
1

2
(FP + FN)

where: i) TP are tRBC cells that were correctly assigned to

cluster 2, ii) FP are cells of other cell types that were mistakenly assigned to cluster

2, iii) and FN are tRBC cells but were not assigned to cluster 2. In the ideal case,

FP=FN=0 which leads to F1=1. In the analysis shown in Figure 4.24C, F1 score is

0.9 which indicates that scCAN properly separated tRBC from the rest. The method
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is expected to perform even better if we further increase the sample size.

To demonstrate the e�ciency of the second strategy, we performed a two-stage

clustering using the the default setting of samp.size = 5, 000. In stage one, we par-

titioned the data using scCAN and obtained the clustering results as shown in Fig-

ure 4.24B. In stage two, we further partitioned each cluster obtained from stage one

using the same method scCAN. The results of stage two are shown in Figure 4.24D.

Cluster 2 were further split into two sub-clusters: 2_1 and 2_2. The tRBC cells were

completely separated from the rest (cluster 2_2) with an F1 score of 1. This demon-

strates that users can e�ciently detect rare cell types using multi-stage clustering

even with the default parameter samp.size = 5, 000.

4.4.7 Scalability of scCAN

To demonstrate the scalability of scCAN, we downloaded and analyzed the Brain

1.3M dataset (https://genomebiology.biomedcentral.com/articles/10.1186/s

13059-017-1382-0). Only scCAN and SCANPY were able to analyze this dataset of

1.3 million of cells. The clustering results of the two methods are shown in Figure 4.25.

scCAN partitioned the data into 19 cluster whereas SCANPY partitioned the data

into 20 clusters. The running time of scCAN and SCANPY were 51 minutes and 70

minutes, respectively. Note that we could not assess the accuracy of the two methods

using this particular dataset because it does not have true cell type information.

Second, we downloaded the Cao dataset [138] that contains 1,092,000 cells se-

quenced from the human cerebellum with known cell types. Again, only scCAN and

SCANPY were able to analyze this dataset. Figure 4.26A shows the visualization of

2D t-SNE embedding data generated from raw data with original cells annotations

while Figure 4.26B�C show the visualizations of Cao dataset using clusters generated

from SCANPY and scCAN. SCANPY can cluster the whole dataset in 51 minutes

https://genomebiology.biomedcentral.com/articles/10.1186/s13059-017-1382-0
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-017-1382-0
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Figure 4.24: Rare cell type detection using the Zilionis dataset as example. The
dataset has a total of 34,558 cells, in which there are 108 tRBC cells (rare cell type with
0.3% prevalence). (A) Transciptome landscape and true cell types. (B) Clustering
results using scCAN with default sample size (samp.size = 5, 000), in which tRBC
are mistakenly grouped with tPlasma cells. (C) Clustering results with sample size
of 10,000 (samp.size = 10, 000). In this case, scCAN properly separates tRBC cells
in cluster 2 with an F1 score of 0.9. (D) Clustering results using two-stage strategy
and default sample size (samp.size = 5, 000). scCAN properly separates tRBC cells
in cluster 2 with a perfect F1 score of 1.

with the ARI of 0.48 (Figure 4.26B), while scCAN takes 39 minutes to partition cells

with the ARI of 0.89 (Figure 4.26C). We have updated the analysis results for the

Brain 1.3M and Cao dataset to the main Manuscript and Supplementary Material.
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Figure 4.25: Clustering results of the Brain 1.3M dataset using scCAN and SCANPY.
The left panel shows cell annotation of 20 clusters discovered by SCANPY. The right
panel shows the cell partitions of 19 clusters identi�ed from scCAN.

Figure 4.26: Visualizing of the Cao dataset using t-SNE. (A) Transcriptome landscape
with true cell type information. (B) Transcriptome landscape of the clusters identi�ed
by SCANPY. (C) Transciptome landscape of clusters identi�ed by scCAN. scCAN
outperforms SCANPY by having a higher ARI value.
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Chapter 5

Conclusions and Future Research

Single-cell RNA sequencing (scRNA-seq) technology has emerged as an invaluable

asset in the world of genomics and molecular biology, enabling us to probe the bio-

logical mechanisms of diseases at an unprecedented level of granularity. This tech-

nology revolutionized our understanding of cellular heterogeneity and dynamics, pro-

viding detailed insights into the transcriptome of individual cells, hence contributing

to advancements in diverse �elds such as developmental biology, oncology, and im-

munology. Despite the tremendous strides made, current scRNA-seq methods are

not without limitations. Issues like dropouts, noise in the data, and the di�culty in

analyzing sparse matrices present substantial challenges, which hamper our ability

to fully exploit this technology's potential. Addressing these limitations, the need

for sophisticated scRNA-seq data imputation and clustering techniques has become

crucial. Data imputation aids in �lling the gaps in the dataset, reducing the impact

of dropouts and noise, while e�cient clustering methodologies can help delineate dis-

tinct cell populations and states from the scRNA-seq data, thereby unraveling the

underlying biological phenomena.

First, we presented RIA, a novel technique that can accurately impute missing

values from single-cell data. Our approach is divided into two components. The �rst
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module uses hypothesis testing to determine which variables are likely to be in�uenced

by dropout occurrences. The second module uses a robust regression technique to

predict the missing value. The data itself is used to learn all of the parameters.

The method is put to the test with �ve benchmarking datasets totaling 3,535 cells.

We show that RIA outperforms existing imputation approaches for identifying cell

populations and temporal trajectories.

Second, we developed scIDS, which can impute missing values from single-cell data

with high accuracy. Our approach is divided into two parts. The �rst module employs

deep neural networks to compress and cluster data. This compressed data is regarded

as reliable data for imputation. The second module does a z-test to identify genes

that have been heavily in�uenced by dropouts. The module then learns the essential

feature patterns in each cell group (identi�ed in the previous module) and imputes

missing values caused by dropout occurrences. Using only highly relevant information,

this technique guarantees that the genuine missing values are imputed. We show

that scIDS increases the quality of single-cell data while retaining the transcriptome

landscape in an exhaustive study that includes simulation and 8 actual scRNA-seq

datasets.

Third, we introduced scISR, a new method for imputation that involves subspace

regression. This method uses a statistical technique to predict outcomes based on

a subset of variables or `subspace' of the complete dataset. The subspace regression

might be used to focus on a subset of features that are most relevant to the outcome,

which can be particularly useful in high-dimensional datasets. This method can be

particularly bene�cial in a single-cell genomics context because it might allow for

more accurate prediction of gene expression values.

Finally, we presented scCAN, a single-cell clustering approach comprised of three

modules: (1) a non-negative kernel autoencoder for �ltering out uninformative fea-
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tures, (2) a stacked, variational autoencoder for generating multiple low-dimensional

representations of single-cell data, and (3) a graph-based technique for determining

cell groups from multiple representations. We show that scCAN greatly outperforms

state-of-the-art approaches in sorting cells of various kinds in a comprehensive evalu-

ation utilizing 28 scRNA-seq datasets. Using simulated datasets, we further evaluate

the clustering algorithms in terms of scalability and resistance to dropouts. Overall,

the most robust and reliable approach is scCAN, which can evaluate most datasets

in minutes.

In conclusion, our scRNA-seq imputation and clustering methods have the poten-

tial of integration with existing data analysis pipelines to enhance the quality and

reliability of downstream research endeavors. The seamless integration of these in-

novative imputation and clustering approaches into current scRNA-seq data analysis

work�ows not only empowers researchers to tackle increasingly complex biological

questions but also contributes to the advancement of various scienti�c domains, in-

cluding systems-level analysis [151�163], meta-analysis [164�169], cancer subtype dis-

covery [81, 82, 170�182], single-cell analysis [83, 147, 183�190], and other important

research areas [191�204]. By continuously re�ning and expanding these computational

tools, the scienti�c community can harness the full potential of single-cell transcrip-

tomics and accelerate the discovery of novel biological insights, ultimately bene�ting

human health and well-being.

In terms of future endeavors, we have the potential to enhance the methods we've

developed and expand their application to a broader range of data types and other

phenotypes, opening the door to new biological �ndings. Several projects are lined up

as a direct continuation of the work we've outlined above. These projects encompass:

Data imputation, the technique of estimating missing values in a dataset, has vast

potential for application across various types of data including miRNA, mRNA, and
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clinical data. In the �eld of miRNA and mRNA data, imputation can be incredibly

valuable. MicroRNAs (miRNAs) and messenger RNAs (mRNAs) are types of RNA

molecules that play crucial roles in gene regulation, and their expression levels can

be critical indicators of various biological processes and diseases. However, due to

the inherent complexities of RNA sequencing technologies, these datasets often su�er

from missing values or dropouts, which can obscure the underlying biological signals.

Applying data imputation to these datasets can help �ll in these gaps and improve

the accuracy and reliability of downstream analyses, such as di�erential expression

analysis and gene network inference.

Similarly, in clinical data, missing values are a common issue. Clinical datasets

often contain missing values due to reasons such as patient dropouts, missing visits,

or incomplete medical records. This can pose signi�cant challenges in data analysis

and may lead to biased results if not handled properly. Data imputation techniques

can be used to estimate these missing values based on the observed data, enabling

more robust and reliable analyses. Moreover, imputing missing clinical data can lead

to more complete datasets, which can improve the power and accuracy of statistical

analyses, support more informed decision-making in clinical practice, and ultimately

contribute to better patient outcomes.

Furthermore, as we continue to develop and re�ne imputation techniques, it's pos-

sible to customize these methods for di�erent data types and application scenarios.

For instance, methods may be tailored to account for the speci�c characteristics and

structures of miRNA, mRNA, and clinical data. Such specialized imputation methods

could potentially outperform general-purpose methods and provide more accurate and

biologically meaningful imputations. In conclusion, applying data imputation to var-

ious data types, including miRNA, mRNA, and clinical data, holds great promise for

improving the quality of data and facilitating new biological and clinical discoveries.
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