
University of Nevada, Reno

ENHANCING QUADRUPED ROBOT DESIGN WITH INTELLIGENT
PHYSICS-INFORMED NEURAL NETWORK-ASSISTED DYNAMIC STATE

ESTIMATION AND ACTIVE SPINE INTEGRATION

A Thesis Submitted in Partial Fulfillment

of the Requirements for the Degree of Master of Science in

Electrical Engineering

by

Yuqing Liu

Dr. Hao Xu / Thesis Advisor

May 2024

© 2024 Yuqing Liu

ALL RIGHTS RESERVED

i

ABSTRACT

This dissertation represents my master’s work on quadrupedal robot systems at the

Autonomous System Laboratory, University of Nevada, Reno. It primarily focuses on

the intelligent design of quadruped robots and unmanned vehicles. The intelligence in

these designs stems from advanced state estimation techniques and the integration of an

active spine, combining constraints from physical models with insights from learning-based

studies. An advanced Robot State Estimation (RSE) methodology is introduced, which uses

a combination of a Physics-Informed Neural Network (PINN) and an Unscented Kalman

Filter (UKF) with proprioceptive sensory data to enhance state estimation accuracy. This

approach effectively calibrates the Inertial Measurement Unit (IMU), mitigates IMU drift

through constraints applied via Ordinary Differential Equations, and eliminates the need

for external contact sensors by identifying terrain interactions, improving odometry, and

operational reliability in real-world scenarios.

Next, the focus is on enhancing the physical limitations of traditional robotics plat-

forms. To achieve this, we utilize a dynamic spine to enhance flexibility and absorb im-

pacts, which necessitates reevaluating the robot’s dynamic model. To manage these com-

plexities, the physical model estimation is enhanced, and Reservoir Computing is employed

for real-time adaptive control. This significantly improves robotic mobility and stability in

challenging environments.

ii

ACKNOWLEDGEMENTS

First and foremost, I extend my deepest gratitude to my advisor, Prof. Dr. Hao Xu, for

his unwavering support throughout my undergraduate and master’s studies and research.

His patience, motivation, enthusiasm, and knowledge have been fundamental to my aca-

demic journey. Dr. Xu has not only guided me through the complexities of my research

but has also been instrumental in helping me navigate and overcome numerous challenges.

His academic insights and steadfast support have been invaluable in shaping both my thesis

work and my overall educational experience. I am profoundly thankful for his mentorship

and his significant impact on my personal and professional growth.

I am immensely thankful to the members of my defense committee for their invaluable

insights and contributions to my work. Their expertise was crucial in refining and enhanc-

ing the ideas presented in this thesis. I would also like to express my appreciation to my

friends, lab mates, and university librarians for their unwavering support and inspiration

throughout the various stages of my research. Their collective assistance and camaraderie

have been instrumental in my academic journey.

iii

TABLE OF CONTENTS

Abstract . i
Acknowledgements . ii
Table of Contents . iii
List of Tables . v
List of Figures . vi

1 Introduction 1
1.1 Problem Statement . 1
1.2 Related Work . 2
1.3 Thesis contributions and Outline . 4

2 Enhanced Robot State Estimation Using Physics-Informed Neural Networks
and Multimodal Proprioceptive Data 6
2.1 Abstract . 6

2.1.1 Introduction . 7
2.1.2 Method Rationale . 8

2.2 Preliminaries . 9
2.2.1 The Robot Model . 9
2.2.2 The Sensor States . 10
2.2.3 Problem Formulation . 12

2.3 Methodology . 14
2.3.1 Structure of the Proposed RSE . 14
2.3.2 The PINN Module . 15
2.3.3 Contact Estimation . 23
2.3.4 Processing Contact Estimation Input Data 24
2.3.5 The UKF Module . 25

2.4 Experimental Result . 31
2.4.1 Validation of Contact Estimator 31
2.4.2 Validation of PINN-UKF . 32

2.5 Conclusion . 34

3 Intelligent design for quadruped robot on a dynamic, flexible surface with an
active spine 37
3.1 Introduction . 37

3.1.1 Motivation . 38
3.1.2 Method Rationale . 39
3.1.3 Applications . 39

3.2 Methodology . 40
3.2.1 Problem Formulation . 40
3.2.2 Reservoir Computing . 42
3.2.3 Lyapunov Control Algorithm . 43

3.3 Simulation Result . 45

iv

3.4 Conclusion . 47

4 Conclusion and Future Work 48
4.1 Conclusion . 48
4.2 Future Work . 49

Bibliography 51

v

LIST OF TABLES

2.1 The sensor inputs of PINN UKFM. 12

vi

LIST OF FIGURES

2.1 The 6-DoF robot model coordinates . 9
2.2 The structure of the proposed RSE . 15
2.3 The proposed PINN module. 16
2.4 The architecture of the contact estimation network 24
2.5 Contact Estimation and Ground Reaction Force Prediction 33
2.6 Compare trajectories between virutal sensor only and PINN-UKF 33
2.7 Compare 3D velocities implement with PINN 34

3.1 Figure shows the general picture of spine implementation with reservoir
computing. 42

3.2 The basic logic of xt can trigger activation of reservoir, Reservoir and
Readout corresponding Fig. 3.1 Reservoir and Ridge 43

3.3 Readout index to demonstrate the reservoir computing’s performance with
a feedback loop . 46

3.4 First 500 time steps are training data, the test data used to test the perfor-
mance and accuracy of the network’s predictions. 46

3.5 Absolute deviation is very small and fit the non-linear regression. 46

1

CHAPTER 1

INTRODUCTION

1.1 Problem Statement

This chapter introduces an advanced Robot State Estimation (RSE) methodology specif-

ically tailored for legged robots. It features a learning-based contact estimation framework

that eliminates the dependency on external physical contact sensors. Our approach substan-

tially enhances state estimation accuracy by integrating multimodal proprioceptive sensory

data with a Physics-Informed Neural Network (PINN) and an Unscented Kalman Filter

(UKF). The primary aim is to effectively calibrate the Inertial Measurement Unit (IMU)

and provide a detailed depiction of the robot’s dynamic state.

The use of PINN is crucial for mitigating IMU drift. Ordinary differential equations

(ODEs) apply constraints on the loss function. This method offers significant advantages

over traditional vision-based systems by remaining unaffected by visual impairments and

removing the need for hard-to-integrate dedicated contact sensors.

Despite the advances achieved with the PINN-UKF integration, the physical limitations

of traditional robotic platforms pose significant challenges. To address these, this thesis in-

troduces a pioneering strategy by incorporating a dynamic spine into a quadruped robot,

which enhances flexibility and shock absorption. This modification necessitates a com-

plete reformulation of the robot’s dynamic model, as the spine significantly alters system

dynamics during movement, rendering traditional modeling techniques inadequate.

Two strategic methodologies are proposed to adapt to these complex dynamics: 1) en-

hancing physical model estimation for operation in challenging environments, particularly

focusing on the unique dynamics introduced by dynamic spines in quadruped models. This

2

strategy aims to optimize the robot’s interaction with complex terrains and 2) employ Reser-

voir Computing to manage the chaotic dynamics that arise from the spine’s interactions dur-

ing movement. This approach provides a robust framework for real-time adaptive control,

effectively addressing the modeling challenges.

1.2 Related Work

The section summarizes the three categories of state estimation, namely; model-based,

data-driven and hybrid, combines the pros of the model- based and data-driven approaches.

It improves the model- based accuracy. The model-based approach relies on the laws of

physics. The robot’s behavior can be described using the geometric constraints, i.e., the

kinematic model, or considering the forces and moments acting on the robot, i.e., the dy-

namic model. The kinematic model requires only geometrical parameters and does not

need extensive robot parametrization because its reliability depends mainly on sensing ca-

pabilities. The state-of-the-art kinematic observer[1] is based on a linear parameter-varying

system, where the states are the object velocities, and the accelerations are the inputs. This

approach leads to high accuracy in transient maneuvers, but the model is not observable

in nearly steady-state conditions[2]. Hence, a heuristic function is applied to avoid unob-

servability and to lead the lateral velocity to zero when the object moves straight or nearly

straight[1]. The downside is the amount of data necessary to define the heuristic function.

Moreover, despite the performance improvement, it is still susceptible to integration errors

and sensor drift. Thus, in recent publications[3][4][5][6], the measurements from the In-

ertial Measurement Unit (IMU) are coupled with those from a Global Navigation Satellite

System (GNSS) to increase the amount of information available for the estimator. The

velocities measured by the GNSS are integrated into an estimation-prediction framework,

which estimates the sideslip angle and partially compensates for the error induced by the

3

low GNSS sampling rate. However, the GNSS/IMU fusion kinematic approach still suffers

from low GNSS sampling rate[3]. Furthermore, a high-precision GNSS is too expensive

as the standard sensor of robots, and signal reception cannot always be assured. There-

fore, it is mainly applied to racing[7]. Thus,a solution is to consider dynamic models that

rely less on the sensor signal quality. Dynamic models allow a more robust noise compu-

tation of the accelerations than kinematic models[2]. However, dynamic models require

estimation of model parameters, which is a critical source of uncertainty[8]. EKF and UKF

are state-of-the-art estimation techniques for the model-based approach, and the process

and the observation noises are commonly assumed to be Gaussian and uncorrelated. The

EKF uses a first-order Taylor series expansion to linearize around the current mean and

covariance. It has excellent accuracy in nearly steady-state conditions, and when the robot

behaves closely to linearity and when the robot behaves with strong nonlinearities, UKF

assures a better estimation accuracy because it linearizes up to the second order of the

Taylor series expansion[9]. However, both observers suffer from the mismatches between

the physical and modeled object behavior. A possible solution is to combine the pros of

dynamic and kinematic models to develop a hybrid kinematic-dynamic observer[10][11].

This family combines the accuracy in transient maneuvers of the kinematic models and the

better robustness to sensor noise of the dynamic models. The kinematic and the dynamic

filters work simultaneously, and the final side slip angle estimation is a weighted average

of the two approaches. The weights are chosen according to the lateral acceleration signal.

However, tuning the weighting coefficients’ tuning is difficult, and the optimum solution

varies according to the considered maneuvers. Another solution to combine dynamic and

kinematic models is the development of a modular scheme to estimate forces and longitudi-

nal and lateral velocities in sequential steps[12]. The approach is experimentally validated

in different road conditions, but the results do not show its performance when the robot is

driven at the limit of handling. Thus, the approach’s applicability to evasive maneuvers is

4

limited.

1.3 Thesis contributions and Outline

Motivated by discussion above, the thesis contributes to the literature by the following:

• Leveraging a Physics-Informed Neural Network (PINN) to address IMU drift issues

through the integration of constraints within the loss function using Ordinary Differ-

ential Equations (ODEs).

• Enhancing state estimation by integrating a Physics-Informed Neural Network (PINN)

with an Unscented Kalman Filter (UKF).

• Developed a contact estimator through learning-based training that is designed to

accurately identify discontinuous events across diverse and complex environments.

• Replacing the traditional rigid body with a dynamic spine implementation, which im-

proves flexibility and shock absorption, critical for maneuvering through challenging

terrains.

• Introducing reservoir computing to provide a robust solution for managing the chaotic

dynamics introduced by the complexity of the spine dynamic model.

• Implementing Lyapunov control algorithm to ensure system stability with spine im-

plementation.

The rest of this thesis is organized as follows: Chapter 1 serves as an introduction,

providing a brief overview of the Robot State Estimation (RSE) methodology specifically

tailored for legged robots. It introduces the basic concepts of Inertial Measurement Unit

5

(IMU) drift and the solutions available to address this issue. The chapter also discusses the

state estimation and related research, setting the stage for the motivation behind this study.

Chapter 2 addresses the Robot State Estimation (RSE) methodology, which employs

a Physics-Informed Neural Network (PINN) in conjunction with an Unscented Kalman

Filter (UKF). This combination enhances state estimation and effectively mitigates Inertial

Measurement Unit (IMU) drift, resulting in a robust state estimation process.

Chapter 3 addresses the limitations of the previously discussed PINN-UKF methodol-

ogy, particularly the physical constraints and rigidity encountered when navigating com-

plex terrain. It offers an innovative modification by replacing the traditional rigid body

with a dynamic spine implementation. The use of reservoir computing provides a robust

solution for handling the complex dynamics induced by the spine model. Additionally, the

chapter explores a causal Lyapunov control algorithm to ensure stability.

Chapter 4 summarized the research work and achievements of the entire dissertation

and outlines directions for future research.

6

CHAPTER 2

ENHANCED ROBOT STATE ESTIMATION USING PHYSICS-INFORMED

NEURAL NETWORKS AND MULTIMODAL PROPRIOCEPTIVE DATA

2.1 Abstract

In this chapter, we introduce an innovative Robot State Estimation (RSE) methodology

incorporating a learning-based contact estimation framework for legged robots, which ob-

viates the need for external physical contact sensors. This approach integrates multimodal

proprioceptive sensory data, employing a Physics-Informed Neural Network (PINN) in

conjunction with an Unscented Kalman Filter (UKF) to enhance the state estimation pro-

cess. The primary objective of this RSE technique is to calibrate the Inertial Measurement

Unit (IMU) effectively and furnish a detailed representation of the robot’s dynamic state.

Our methodology exploits the PINN to mitigate IMU drift issues by imposing con-

straints on the loss function via Ordinary Differential Equations (ODEs). The advantages

of utilizing a contact estimator based on proprioceptive sensory data are multifold. Unlike

vision-based state estimators, our proprioceptive approach is immune to visual impairments

such as obscured or ambiguous environments. Moreover, it circumvents the necessity for

dedicated contact sensors—components not universally present on robotic platforms and

challenging to integrate without substantial hardware modifications.

The contact estimator within our network is trained to discern contact events across

various terrains, thereby facilitating resilient proprioceptive odometry. This enables the

contact-aided invariant Kalman Filter to produce precise odometric trajectories. Subse-

quently, the UKF algorithm estimates the robot’s three-dimensional attitude, velocity, and

position.

7

Experimental validation of our proposed PINN-based method illustrates its capacity to

assimilate data from multiple sensors, effectively reducing the influence of sensor biases

by enforcing ODE constraints, all while preserving intrinsic sensor characteristics. When

juxtaposed with the employment of the UKF algorithm in isolation, our integrated RSE

model demonstrates superior performance in state estimation. This enhanced capability

automatically reduces sensor drift impacts during operational deployment, rendering our

proposed solution applicable to real-world scenarios.

2.1.1 Introduction

The field of robotics is continually advancing towards more autonomous and robust

systems[13], driven by rapid enhancements in sensor technology and intelligent algorithms[14].

Among the sensors employed, the Inertial Measurement Unit (IMU) is fundamental for

providing vital motion data. However, a significant challenge that persists is the IMU drift

— an inherent error accumulation over time that can severely skew the state estimation of

robots, leading to degraded operational accuracy and potential system malfunctions.

To address this critical issue, exploring innovative methodologies that counteract the

effects of IMU drift and enhance overall robot state estimation is imperative. This research

introduces a dual approach that integrates a Physics-Informed Neural Network (PINN) with

an Unscented Kalman Filter (UKF) to forge a novel Robot State Estimation (RSE) method-

ology. Furthermore, the utilization of proprioceptive sensory data via a learning-based

contact estimator constitutes a significant advancement in bolstering the robustness of state

estimation amidst diverse environmental interactions. Conventional estimators rely heavily

on external contact sensors, which may be rendered ineffective in multifaceted environ-

ments. By harnessing on proprioceptive data, the proposed RSE framework diminishes

8

reliance on such external factors, offering a robust alternative that is particularly beneficial

in environments where external contact sensing is impractical.

2.1.2 Method Rationale

The targeted strategy of the Physics-Informed Neural Network (PINN) focuses on miti-

gating IMU drift by minimizing θ∗, which is determined based on physics-based constraints

and the residual of the measurement data. By integrating physical laws directly into the

learning process, PINNs effectively control drift, ensuring that state estimation is more

accurate and reflective of the robot’s true dynamical behavior.

In parallel, our approach incorporates a sophisticated contact estimation mechanism

using Convolutional Neural Networks (CNNs). The architecture of the contact estimation

network consists of two sets of convolutional operations followed by three fully connected

layers. Each set features two one-dimensional convolution layers and a one-dimensional

max pooling layer. These convolution layers are engineered to extract detailed features

from proprioceptive sensory data, while the one-dimensional kernel, which operates across

the time domain, optimizes computational efficiency by minimizing memory usage and

processing time. Padding is applied to preserve data dimensions throughout the convolu-

tions. The rectified linear unit (ReLU) serves as the activation function, enhancing non-

linear processing capabilities. Additionally, a dropout layer is incorporated in the second

convolution set to prevent overfitting. Max pooling subsequently reduces the data dimen-

sionality, further refining the feature extraction process.

The synergy between the PINN and the Unscented Kalman Filter (UKF) enhances the

robustness of the estimation process. This integration improves the precision of state esti-

mations and adeptly manages the non-linearities and uncertainties characteristic of dynamic

9

robotic environments. Unlike traditional methods that may require frequent recalibration,

this combined approach dynamically adjusts to sensor errors and operational variances,

providing a consistent, reliable framework. Experimental validations of the PINN-UKF

model have demonstrated its superior ability to diminish the effects of sensor biases and

maintain accurate trajectory estimations. Such capabilities are pivotal for enhancing the

operational integrity of robots, particularly in complex real-world applications where pre-

cision and reliability are paramount.

2.2 Preliminaries

2.2.1 The Robot Model

The PINN UKF algorithm use a six-degrees-of-freedom(6-DoF) kinematic robot model

to obtain simplification state estimates. As shown in Figure 2.1, the model includes the

navigation and robot body coordinates. The starting point of the navigation coordinates is

defined as the track start. The navigation coordinates consisted of three variables: E(east),

N(north), and U(upward).

Figure 2.1: The 6-DoF robot model coordinates

10

The quadrupedal robot body’s coordinate origin point was located at its center of mass,

and the right-hand rule was used. The x-, y-, and z-directions are pointed forward, left, and

upward, respectively. Acceleration and velocity could be broken down into longitudinal

acceleration ax /velocity vx, lateral acceleration ay/ velocity vy, and vertical acceleration

az/ velocity vz. The robot’s direction angle is defined as the rolling angle (around x, roll

rate ωx), pitching angle (around y, pitch rate ωy), and heading angle (around z, yaw rate

ωz).

2.2.2 The Sensor States

A quadrupedal robot was equipped with an IMU sensor capable of measuring roll,

pitch, and yaw angles and rates and tracking longitudinal, lateral, and vertical velocities and

accelerations. The robot’s proprioceptive state estimators typically combine IMU data with

leg odometry for enhanced accuracy. Leg odometry relies on kinematic and contact data

for state updates, making precise measurements of these variables essential. However, it’s

noteworthy that not all legged robots have specialized contact sensors or springs for contact

detection. Integrating such dedicated contact sensors can be complex, often necessitating

significant changes to the robot’s hardware design.

In our research, we implemented a deep learning-based contact estimator that forgoes

the need for specialized sensors. Instead, the system utilizes joint encoders, kinematics,

and IMU data. To gather contact datasets, we employed the Unitree A1 robot. This ap-

proach involved the creation of a ’virtual sensor’ that collects data from joint encoders,

kinematics, and the IMU. The contact estimator then processes this data to simulate vir-

tual leg torque and force outcomes. This innovative method replaces traditional force and

torque sensors, enhancing the robot’s functionality without the complexity of additional

11

hardware, demonstrating the versatility and effectiveness of the virtual sensor approach in

varying environments.

Using the universal transverse mercator (UTM) and the navigation starting point, east-

ing and northing are transformed from the GNSS coordinates into the navigation coordi-

nates. Let the symbols E and N represented easting and nothing in the navigation coordi-

nates, respectively. The UTM velocity is calculated from navigation coordinates as:

vgps =

√
(∆E)2 + (∆N)2 + (∆U)2

∆t
(2.1)

where ∆t is a single GNSS interval, and ∆E,∆N, and ∆U are the differences in Easting,

Northing, and Altitude coordinates between two consecutive measurements.

The robot had multiple sensors, including the GNSS, IMU, and virtual sensor based

on contact estimator. The research platform structure is present in chapter II. Due to real-

time computation requirement, the monocular vision sensor are not used in the PINN-UKF

algorithm. The sensor input of PINN-UKF are introduced in Table 2.1.

12

Table 2.1: The sensor inputs of PINN UKFM.
Sensor Types Signal Name Symbol Units

GNSS Easting E m
GNSS Northing N m
GNSS Altitude U m
GNSS UTM velocity VGPS m/s
IMU Roll angle ϕ rad
IMU Pitch angle Θ rad
IMU Yaw angle ψ rad
IMU Roll rate ωx rad/s
IMU Pitch rate ωy rad/s
IMU Yaw rate ωz rad/s
IMU Longitudinal velocity vx m/s
IMU Lateral velocity vy m/s
IMU Vertical velocity vz m/s
IMU Longitudinal acceleration ax m/s2

IMU Lateral acceleration ay m/s2

IMU Vertical acceleration az m/s2

Virtual Sensor Leg torque Mx,My,Mz kN·m
Virtual Sensor Leg force Fx, Fy, Fz kN

2.2.3 Problem Formulation

The PINN-based is defined as a time-series forecasting model in which sensor signals

are taken as discrete variables. Assuming that ” n ” represents the current timestamp, the

PINN module input states are defined as:

X = [Xn−N , Xn−N+1, . . . , Xn]

Xn =
[
X(1)

n , X(2)
n , . . . , X(ϑ)

n

] (2.2)

where n−N is the starting time step, X represents the sensor signals shown in Table 1 , and

ϑ is the number of sensor signals.

PINN is used as a universal function approximator to achieve IMU calibration. Build-

13

ing upon previous artificial intelligence-based techniques and the integration of the Kalman

filter for estimation, the calibrated values are called ”proxy-states.” By applying the conser-

vation principles derived from the robot dynamics, the proxy-states satisfy the conservation

principles originating from the robot dynamics. Therefore, the PINN module output states

is defined as:

ûθ =
[
û(1)
θ , û

(2)
θ , . . . , û

(κ)
θ

]
(2.3)

where ûθ represents the proxy-states, and κ is the number of proxy-states. ased on the

Linear Time-Invariant (LTI) state-space assumption, these proxy-states are used to compute

the integrated states. The integrated states represent the combined or processed information

derived from the proxy-states over a certain time period. The sensor measurements of these

integrated states z are represented as:

z = [zn+1, zn+2, . . . , zn+N]

zn+1 =
[
z(1)

n+1, z
(2)
n+1, . . . , z

(κ)
n+1

] (2.4)

where [n+ 1, n+ 2, . . . , n+N] represent the output timestamps, and n+N is the ending

time step.

For better integration with the robot control, we hypothesized that the robot’s physical

model satisfies the linear time-invariant (LTI) state-space model over the interval [n+1, n+

2, . . . , n + N]:


ẋ = Axt +Bt

yt = Cxt +Dt

(2.5)

where xt+1 is the state variable at next time step, xt is the state variable at current time step,

yt represents the output variable at current time step, Bt and Dt are disturbances or noise,

and ẋ denotes the rate of change of the state variable.

14

By utilizing the LTI state-space model, the output of the PINN module could be used to

compute the other robot states. Based on the ODE constraints, PINN ensured the estimated

IMU states satisfied the physical relationships among sensor measurements.

Next, the proxy-states were inputted into the PINN UKF-based sensor-fusion model.

Using these proxy-states, the proposed UKF module could estimate the robot’s velocity

and position.

2.3 Methodology

2.3.1 Structure of the Proposed RSE

In recent years, there has been a growing focus on the advancement of multi-sensor

systems for robot state estimation, driven by their potential to enhance accuracy and ro-

bustness in intricate environments. The proposed PINN-UKF is an example of such a sys-

tem, integrating multiple sensors to facilitate real-time estimation of robot dynamics. The

architecture of the proposed PINN-UKF comprises three modules: the sensors module, the

PINN module, and the UKF module, as shown in Figure 2.2. The sensors module within

PINN-UKF incorporates various sensors, including GNSS, IMU, and Virtual Sensor, by

combining the Kinematics Model and IMU sensor fusion, which provide comprehensive

information about the robot’s motion, encompassing position, velocity, acceleration, and

orientation, as shown in Figure 2.3. The PINN module was utilized to adaptively reduce

data noise to learn the intricate, nonlinear relationship between the sensor signals and the

filtered robot states. Specifically, the PINN module employed the time-series sensor sig-

nals as input and generated the corresponding proxy-states. These proxy-states were sub-

sequently inputted into the UKF module, which employed a state-space model to estimate

15

the robot’s position, velocity, and other parameters. Through the synergistic utilization of

both PINN and UKF, the proposed PINN-UKF accomplished precise and robust robot state

estimation, as shown in Figure 2.2.

Figure 2.2: The structure of the proposed RSE

2.3.2 The PINN Module

In practical scenarios, diverse sensors may produce data with noise and drift due to

their distinct characteristics and operational environments. To achieve accurate robot state

estimation, we employed Physics-Informed Neural Network (PINN) to integrate the robot

dynamics into a neural network architecture. The PINN module penalized the loss function

with ordinary differential equations (ODEs) and algebraic equations to align the sensor data

with the robot dynamics. Furthermore, the PINN module amalgamated data from multiple

sensors to mitigate measurement errors and enhance the consistency of the data with actual

robot dynamics. Consequently, the PINN module derived the angle and velocity by inte-

grating the acceleration and angular velocity. Temporal interaction is extensively employed

in the establishment of data-driven robot models, as it can capture complex temporal and

hidden correlations for improved state prediction. Thus, a temporal model comprising an

16

encoder layer, a temporal interaction layer, and a decoder layer was proposed, as shown in

Figure 2.3.

Figure 2.3: The proposed PINN module.

The encoder layer embeds and encodes the sensor signal X. Data are mapped into the

high dimension through the multilayer perceptron(MLP). The encoder layer is defined as:

et = σ (WencX(t) + benc) (2.6)

where et denotes the embedded feature vector. Additionally, the MLP includes a weight-

ing matrix Wenc, bias term benc, and the rectified linear unit function (ReLU) activation

function σ.

Since robot states have temporal interactions, the temporal interaction layer represents

the temporal interactions of different hidden states. The time dimension of et is connected:

e0 = Concat (et) , t ∈ [n − L, n] (2.7)

where the embedded feature vectors are concatenated to form e0. Then, the PINN

module learns the temporal interaction:

el = σ
(
W lel−1 + bl

)
, l = 1, 2, . . . , s (2.8)

17

where el−1 and el are the input and output of layer l, respectively. The decoder layer pre-

dicted the proxy-states as follows:

ûθ = (W ses + bs) + up (2.9)

where up represents the past measurement of the IMU, and ûθ refers to the proxy states

that represent the IMU calibration values. We defined the residual between the proxy states

and past measurements of the IMU as the drift of the IMU. This structure was similar to

the residual block in a residual network. The term (W ses + bs) = ûθ − upast represents the

latent (hidden) solution of the drift of IMU. The PINN determines the parameter θ of the

NN by minimizing the loss function:

θ = argmin L (θ) (2.10)

L (θ) = LF (θ) +Ldata(θ) (2.11)

Ldata(θ) =
1

Nd

Nd∑
i=1

|ûθ(X; θ) − u(X)|2 (2.12)

LF1(θ) =
7∑

k=1

ωk

 1
FNF

n+N∑
t=n+1

NF∑
i=1

|gk (û0(X; θ), Xn, zt)|2
 (2.13)

LF2(θ) =
12∑

k=8

ωk

 1
NF

NF∑
i=1

| fk (û0(X; θ), xn)|2
 (2.14)

LF (θ) = LF1(θ) +LF2(θ) (2.15)

18

The objective function LF (θ) quantifies the mean square error between the residuals of

the physics-informed equations, whereas Ldata (θ) quantifies the same for the residuals of

the observation I data. Weights ω1, ω2, . . . , ω12 are assigned to the physical constraints, and

Nd and NF indicate the respective batch sizes. The function u(X) denotes the anticipated fu-

ture measurements from the IMU, with t representing the corresponding output timestamps

and F denoting the forecast horizon. Furthermore, g (û0(X; θ), Xn, t) and f (û0(X; θ), Xn, t)

correspond to ordinary and algebraic equations respectively [15]. These equations were

employed as regularization terms, enhancing the neural network by enforcing the laws of

physics by minimizing the physics-based loss function.

In the context of partial differential equations (PDEs), the physics-informed neural net-

work (PINN) typically uses the loss function LF (θ) to penalize deviations from physi-

cal principles. However, for the continuous time modeling and prognostic challenges ad-

dressed herein, the PDE-centric LF (θ) was deemed unsuitable because robot dynamics

are generally described by ODEs and algebraic equations. To overcome this, we adapted

the method employed by physics-constrained neural networks (PCNN) and neural ordi-

nary differential equations (NODEs)[16]. A PCNN is a specialized form of PINN that

implements a regularization coefficient to balance the emphasis between data-driven and

knowledge-driven regularization. In the NODEs framework, the neural network’s hidden

states are treated analogously to states in an ODE, and an ODE solver is utilized to com-

pute the temporal evolution of these states. In our approach, we employ ODEs to capture

the dynamic progression of the system and utilize algebraic equations to depict the robot

dynamics model accurately. The PINN module generate signals corresponding to proxy-

states, which signifies the derivatives of the state variable ẋ within the LTI state-space

representation. The inputs and outputs pertaining to the PINN module are designated as

follows:

19

The PINN module was responsible for yielding signals indicative of proxy-states. These

proxy-states encapsulated the derivative of the state variable ẋ in relation to the LTI state

space. The variables fed into and emerging from the PINN module were accordingly la-

beled as:

X(1−15)
n =

[
axn , ayn , azn , ωxn , ωyn , ωzn , vxn , vyn , vzn , φn,Θn, psin, dEn , dNn , dUn

]
(2.16)

ûθ(X; θ)(1−6) =
[
ax, ay, az, ωx, ωy, ωz

]
(2.17)

The ODEs and the state z(7)
t represent the position change of the robot, which were

represented as:

z(7)
t =

√
(Et − En)2 + (N t − Nn)2 + (U t − Un)2 =

√
(dEt)2 + (dNt)2 + (dUt)2 (2.18)

gq (ûθ(X; θ), Xn, zt) = X(q+6)
n + ûθ(X; θ)(q) × dt − z(q)

t , q = 1, . . . , 6 (2.19)

g7 (ûθ(X; θ), Xn, zt) =
3∑

i=1

[
X(i+6)

n × dt +
ûθ(X; θ)(i) × d2

t

2

]
− z(7)

t (2.20)

z(1−6)
t =

[
vxt , vyt , vzt , φt,Θt, ψt

]
(2.21)

where X(7−12)
n are the initial states of ODE outputs; z(1−6)

t are the measurements of ODE

outputs at timestamp t; dt is the time interval between n and t. By minimizing g1 ∼ g6,

the proxy-states could incorporate information from the related robot states. The state z(7)
t

represents the position change of the robot, z(8,9,10)
t =

[
dEt , dNt′dUt

]
,where [E,N,U] are the

outputs of variable yt in the LTI state-space robot model. By minimizing g7, the physical

20

knowledge of yt was incorporated into the physics-informed loss function. The formula

for position updating of the robot dynamics may impact the learning effectiveness of the

neural network, and hence, the Euler integral is employed to calculate the displacement of

the robot. Furthermore, utilizing the loss calculation method of Physics-Informed Neural

Networks (PINN) allows for combining ODE robot dynamics with a data-driven model,

considering multiple sources.

The simple dependence relationships among robot states are captured through algebraic

equations. The algebraic equations representing the linear dynamics in the LTI state space

are expressed as shown in equation 2.5. Minimizing the loss of ûθ(X; θ) − ẋ facilitates the

incorporation of the physical dynamics model into the physics-informed loss function. The

referenced robot dynamics model is based on the two-degree-of-freedom (2-DOF) robot

dynamics model. To simplify the robot dynamics, the longitudinal and latitudinal dynamics

are decoupled by neglecting the influence of the latitudinal and longitudinal forces.

In the Euler-Lagrange formulation, the torque required at each joint can be computed

as:

τ =
d
dt

(
∂K
∂q̇

)
−
∂P
∂q
+ τfriction + τexternal (2.22)

where is the kinetic energy of the robot, which depends on q̇. P is the robot’s poten-

tial energy, which depends on q.τfriction represents the torques due to friction in the joints.

τexternal includes torques due to external forces (like interaction with the environment).

τ(1−4)
n = H (qn) q̈n +C (qn, q̇n) q̇n +G (qn) + τfriction (qn, q̇n) + τexternal (2.23)

where: H (qn) is the inertia matrix at the current configuration qn. q̈n is the joint ac-

celeration, which can be derived from q̇n through numerical differentiation or estimation.

C (qn, q̇n) is the Coriolis and centrifugal forces matrix. G (qn) represents the gravitational

21

torque vector. τfriction (qn, q̇n) includes torques due to friction, which can be a function of

both q and q̇.

In our approach, we use IMU sensor and joint encoder kinematics to replace τfriction and

τexternal , hence the updated new torque equation:

τ(1−4)
n =H (qn) q̈n +C (qn, q̇n) q̇n +G (qn)

+ JT (qn) Finteraction

(
qn, q̇n, p fn , v fn , αn, ωn

) (2.24)

In this updated equation: H (qn) is the inertia matrix at the joint configuration qn. q̈n

is the joint acceleration, potentially computed from q̇n. C (qn, q̇n) is the matrix of Coriolis

and centrifugal forces. G (qn) represents the gravitational torques, which depend on the

configuration qn. J (qn) is the Jacobian matrix converting forces at the foot to torques at

the joints. Finteraction is now a function that includes the linear acceleration (αn) and angular

velocity (ωn) from the IMU, along with joint kinematics to estimate the interaction forces

at the robot’s feet. which combined joint torque we have new equation:

τtotal,n = τHip Roll,n + τHip Pitch,n + τKnee Pitch,n (2.25)

Total Torque About the Center of Mass (τtotal) :

τtotal =

4∑
i=1

n j∑
j=1

JT
i j

(
qi j

)
τi j (2.26)

where i indexes the legs of the robot (1 to 4 for a quadruped), j indexes the joints in

each leg (n j is the number of joints per leg). Ji j is the Jacobian matrix for joint j in leg i,

qi j are the joint angles for joint j in leg i. τi j is the torque at joint j in leg i.

Longitudinal Force Component From Total Torque:

Fxtotal =
1

reff

 4∑
i=1

τtotal,i · cos (θi)

 (2.27)

22

where Fxtotal is the total longitudinal force acting on the robot, τtotal ,i is the component

of the total torque from leg i contributing to longitudinal force, re f f is the effective dis-

tance from the ground contact point to the center of mass where the torque acts to produce

force, θi is the angle of application of the force relative to the horizontal axis, affecting its

longitudinal component.

Latitudinal Force Component From Total Torque:

Fytotal =
1

reff

 4∑
j=1

τtotal, j · sin
(
θ j

) (2.28)

where Fytotal is the total longitudinal force acting on the robot, τtotal , j is the component

of the total torque from leg j contributing to latitudinal force, re f f is the effective distance

from the ground contact point to the center of mass where the torque acts to produce force,

θ j is the force’s application angle relative to the horizontal axis, affecting its longitudinal

component.

The torques τi j can be derived from motor commands, and the Jacobian matrices Ji j

translate these torques to forces at the robot’s feet. The effective radius re f f and angles θi

would be determined based on the robot’s geometry and the feet’ position during the stance

phase of locomotion.

The terms αn and ωn come from the IMU sensor data at time n, which provide the

necessary dynamic information about the robot’s acceleration and rotational movement,

contributing to estimating forces due to environmental interactions. As determined by the

contact estimation network using these inputs, the contact state will inform the Finteraction

term. For instance, if the contact state indicates a foot is in the air, the corresponding

elements in Finteraction related to that foot should be 0, reflecting no ground interaction

forces for that limb.

23

2.3.3 Contact Estimation

This section discusses our deep learning-based approach for estimating contact states.

We define the contact state for each leg, labeled as l ∈ {RF, LF,RH, LH}, using the vector

C =
[

cRF cLF cRH cLH

]
, where cl ∈ {0, 1}. Here, ’0’ represents no contact, and ’1’

indicates firm contact with the ground. Given the input data, our goal is to correctly es-

timate the contact state C, treating this as a classification problem within our deep neural

network. The contact state vector C can assume one of 16 possible states, ranging from

all feet in the air to all feet making contact with the ground. We convert the binary vector

C to a decimal state S ∈ {0, 1, . . . , 15} for easier processing. For instance, a contact state

Ci =

[
1 0 1 0

]
is converted to S i = 6.

The contact estimation network is composed of two convolutional blocks and three

fully connected layers, as shown in Figure 2.4. Each block includes two one-dimensional

convolutional layers followed by a one-dimensional max pooling layer. The convolutional

layers are designed to extract deep features from the input data. To enhance computational

efficiency in terms of memory usage and run time, a one-dimensional kernel is employed.

This kernel traverses the time domain, with padding applied to maintain data dimensions.

The ReLU activation function is used for nonlinearity in the convolutional layers. To pre-

vent overfitting, a dropout mechanism is applied to the second convolutional layer. Finally,

a one-dimensional max-pooling layer is added at the end of each block to downsample the

data.

24

Figure 2.4: The architecture of the contact estimation network

2.3.4 Processing Contact Estimation Input Data

The contact estimation network takes sensor measurements from the joint encoder,

IMU, and kinematic, avoiding the force and torque sensor as input. For a synchronized

time n, the sensor measurements are concatenated as z(1−6)
n = [qn q̇n an ωn P f n v f n]

a(1−3)
n =

[
axn ayn azn

]
(2.29)

w(1−3)
n =

[
wxn wyn wzn

]
(2.30)

q(1−12)
n =

[
qRF1n qRF2n qRF3n qLF1n . . . qLH3n

]
(2.31)

25

q̇(1−12)
n =

[
q̇RF1n q̇RF2n q̇RF3n q̇LF1n . . . q̇LH3n

]
(2.32)

p f (1−12)
n
=

[
pPRFxn pPRFyn pPRFzn pPLFxn . . . pPLHzn

]
(2.33)

v f (1−12)
n
=

[
vVRFxn vVRFyn vVRFzn vVLFxn . . . vVLHzn

]
(2.34)

where q⊤n is a 12× 1 vector of joint encoder measurements (rad) at time n, q̇⊤n is a 12× 1

vector of joint angular velocity (rad/sec), an is the linear accelerations (m/sec) from the

IMU in the IMU frame, ωn is the angular velocity (rad/sec) in the IMU frame, p⊤f n is a

12 × 1 vector with foot positions calculated from forward kinematics, and v⊤f n is a 12 × 1

vector that carries the linear velocities of each foot. Both p f n and v f n are represented in the

robot’s hip frame. To infer the relationship between data across the time domain, we create

a window with size w and append previous measurements within this window into a 2D

array Dn =

[
z⊤n−w z⊤n−w+1 . . . z⊤n

]⊤
Dn is a w × 54 array. The network takes Dn as input

and estimates the contact state S n as output each time.

2.3.5 The UKF Module

The UKF-Manifolds is a specialized variant of the UKF designed for environments

where the state space is characterized by manifold structure. This adaptation is particularly

significant in complex applications such as quadrupedal robot localization and state estima-

tion. Unlike traditional approaches where state variables are simple Euclidean vectors, in

these robots, the state variables often reside on intricate manifolds, such as rotation matri-

ces within the special orthogonal group. UKF-Manifolds strategically selects sigma points

26

on these manifolds and utilizes their geometric properties for more precise state estimation.

This methodology, not only maintains the validity and accuracy of state estimates, but also

prevents the emergence of invalid state values—like the loss of orthogonality in rotation

matrices—which are common pitfalls in standard UKF implementations. This precision is

crucial in quadrupedal robots, where accurate state estimation directly influences stability

and maneuverability, enhancing the robot’s ability to navigate and interact with complex

environments effectively.

For stochastic process on Riemannian manifolds, the theory of Lie groups [17] is used

to define the robot’s state estimation; the IMU gyro sensor-fusion model is a UKF-M based

filter, which is a standard 3D kinematic model based on internal inputs. The PINN-UKF is

based on the methodology proposed in [18]. The modification of the PINN UKF involved

uses the outputs of the PINN module to mitigate IMU drift.

The states of a moving robot in a discrete dynamic system are represented as:

χn ∈ M =
{
Cn ∈ R

3×3, vn ∈ R
3,Pn ∈ R

3, bgn ∈ R
3, ban ∈ R

3
}

(2.35)

where χn denotes the state of a robot belonging to a parallelizable manifold M; n is

the current timestamp; vn =
(
vEn , vNn , vUn

)
is the velocity vector vEn velocity east, vNn ve-

locity north; Pn = (En,Nn,Un) is robot coordinate in the navigation coordinates; bgn =(
bωx,n , bωy,n , bωz,n

)
is the gyro bias; ban =

(
bax,n , bay,n , baz,n

)
is the accelerometer bias; and Cn is

a special orthogonal group that represents 3D rotation [17].

SO(3) :=
{
Cn ∈ R

3×3 | CnCT
n = I3, det Cn = 1

}
(2.36)

where I3 is the identity matrix. Based on the time derivative of CnCT
n = I3, a skew-

symmetric matrix CT
n Ċn was obtained:

27

CT
n Ċn + ĊT

n Cn = 0 (2.37)

The CT
n Ċn as a skew-symmetric matrix is often noted as [ω]×:

CT
n Ċn = [ω]× =


0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 (2.38)

where [ω]×is in the Lie algebra of S O(3). The Lie algebra is a vector space and can be

decomposed into:

[ω]× = ωx


0 0 0

0 0 −1

0 1 0

 + ωy


0 0 1

0 0 0

−1 0 0

 + ωz


0 −1 0

1 0 0

0 0 0

 (2.39)

where ω =
[
ωx, ωy, ωz

]
is in the vector of angular velocities. For the ω constant, the

solution of the ODE is:

Cn = exp ([ω]×n) (2.40)

where exp() is the exponential map on the SO(3) and C0 = I. The exp() map was

derived from the time derivatives of χn ∈ M

Analogous to the Gaussian belief in the Kalman filter, the UKF-M algorithm constructs

a probability distribution as χn ∼ N (χ̂n, Pn) for the random variable χn ∈ M as:

χn = φ (χ̂n, ξn) , ξn ∼ N (0,Pn) (2.41)

where χ̂n is viewed as the mean estimate at timestep n;φ is the propagation function;

ξn ∈ R
d is a random Gaussian vector; N is the Gaussian distribution; and Pn ∈ R

d×d is the

28

covariance matrix. φ (χ̂n, ξn) ∈ M is derived by initiating from χ̂n and integrating
∑d

i=1 ξ
i
nVi

where d represent the dimension of the associated vector fields.

Given that the probability distribution of χn is denoted as p (χn). further information

regarding χn is acquired through the measurement yn as:

yn = h (χn) + vn (2.42)

where h represents the observation function, and vn ∼ N (0,Rn) signifies the white

Gaussian noise. The UKF module utilized gyro measurements and acceleration as inputs

to update the random variable χ. The measurements of this standard 3D kinematic model

were expressed as:

yn =
{
µn ∈ R

3, abn ∈ R
3
}

(2.43)

where µn =
(
ωxn , ωyn , ωzn

)
represents the gyroscope, and abn =

(
axn , ayn , azn

)
denotes the

accelerometer. The UKF-M algorithm[18] updated the state and covariance by combining

measurements yn and system states χn.

In PINN UKFM, the output of the PINN module was utilized to filter the noise and

minimize the norm errors. Proxy-states ûθ serves as the calibrated IMU measurements for

the filtering process. The states of the proxy-states are represented as:

yn = y′n = âθ =
{
µn ∈ R

3, abn ∈ R
3
}

(2.44)

where yn
′ = ûθ represents the PINN module output as the proxy-states. Using the

propagation function[18], PINN UKF built the robot model. First, the gyro measurements

are used to calculate the rotation matrix:

Cn+1 = Cn exp
((
µn − bgn + w(0:3)

n

)
× dt

)
(2.45)

29

Then the robot acceleration is used to calculate the calibrated robot acceleration.

a = Cn

(
abn − ban + w(3:6)

)
+ g (2.46)

where g = [0, 0,−9.8] represents the gravitational constant and a represents the cal-

ibrated acceleration. Based on the calibrated robot acceleration, the model updated the

speed as:

vn+1 = vn + a × dt (2.47)

where vn =
(
vEn , vNn , vUn

)
denotes the velocity vector. Based on the velocity vector, the

model updated the position vector as:

Pn+1 = Pn + vn × dt +
ad2

t

2
(2.48)

where Pn = (En,Nn,Un) is the coordinates in the navigation coordinates. Finally, the

model uploaded the gyro and accelerometer biases as:

ba,n+1 = ba,n + w(6:9)dt (2.49)

bg,n+1 = bg,n + w(9:12)dt (2.50)

where bg,n represents the gyro bias, and ba,n represents the accelerometer bias.

The probability distribution of χ and the propagation function remain constant; thus,

the posterior distribution p (χn | yn
′) is calculated as p (χn | yn). The proxy-states yn

′ provids

information about the sigma point ξn. First, the sigma points ξn are computed as:

χ(i)
k|n =



µn if i = 0,

µn +
(√

(d + λ)Pn

)
i

if 1 ≤ i ≤ d,

µn −
(√

(d + λ)Pn

)
i−d

if d + 1 ≤ i ≤ 2d,

(2.51)

30

where λ = (α2 − 1)d, and d is the dimensionality of the state.

where λ is the scale parameter [19]; α is a tuning parameter chosen by the practitioner

[20] (typically small to ensure stability); d is the dimensionality of the state space; Pn is

the covariance matrix at time step n; and col(·) j extracts the jth column from the matrix,

representing the weight associated with the jth sigma point.

These sigma points are then propagated through the robot model to yield the set of

transformed sigma points y jn .

Next, the PINN-UKFM utilizes the Kalman update equations to refine the state estimate

and covariance as follows:

Kn = Pξnyn P−1
ynyn

(2.52)

x̂+n = φ
(
x̂n,Kn(y

′

n − ȳn)
)

(2.53)

P+n = Pn − KnPynyn KT
n (2.54)

where y
′

n is the output from the PINN module (proxy-states), Kn is the Kalman gain

matrix, x̂+n is the updated state estimate, Pn is the prior covariance matrix of the state, and

P+n is the updated covariance matrix.

The unscented transformation[21] approximates the posterior p (ζn | yn
′) for ξn as:

p
(
ξn | y′n

)
∼ N

(
ξn,P+n

)
(2.55)

31

ξn = Kn
(
y′n − yn

)
(2.56)

where ξn represents the gaussian white noise mean.

The unscented approximation to the posterior p (ξn | yn
′) is thus the distribution of a

Gaussian ξn+ ξ̄n+with ξ̄n
+ ∼ N (0,Pn

+)[18]. Then, PINN UKF approximates the posterior

distribution p (χn | yn
′) as:

χn ≈ φ
(
χ̂+n , ζ̄

+
n

)
, ζ̄+n ∼ N

(
0,P+n

)
(2.57)

χ̂+n = φ
(
χ̂n, ξn

)
(2.58)

χn ≈ φ
(
φ
(
χ̂n, ξn

)
, ξ+n

)
(2.59)

where ξn
+represents the posterior noise. The posterior distribution p (χn | yn

′) reduces

to a Bayesian estimation problem [17] that incorporated the information from the PINN

module.

2.4 Experimental Result

2.4.1 Validation of Contact Estimator

In validating our proposed estimation framework, we analyze the estimated ground

reaction forces and foot velocities overlapped with a single leg’s estimated and ground

32

truth contacts in a forest dataset. As shown in figure 2.5, the foot velocity is captured in

two subplots: the upper subplot presents the foot velocity Vz with ground truth contact

phases indicated in yellow, while the lower subplot demonstrates Vz with the estimated

contact phases shaded in blue. The congruence between the shaded regions and the foot

velocity fluctuations reveals the accuracy of contact phase estimation, affirming the model’s

capability to discern contact events.

Similarly, the ground reaction forces represented as Fx, Fy, and Fz, are depicted in the

two lower graphs, again with ground truth contacts and estimated contacts. The estimated

contact periods align closely with spikes and troughs in Fx, Fy, and Fz, which correspond to

the dynamics of actual foot-ground interactions, underlining the proficiency of our contact

estimator.

The estimated contacts exhibit a high degree of overlap with the ground truth con-

tacts, suggesting that the estimation method can reliably predict contact events, even in the

forest dataset’s inherently unpredictable terrain. This overlap is indicative of the model’s

potential to adaptively learn and accurately represent the leg’s interaction with a complex

environment. Moreover, comparing the estimated ground reaction forces and the ground

truth indicates that our method can effectively capture the nuanced physical interactions

between the robot leg and the forest floor.

2.4.2 Validation of PINN-UKF

This subsection presents the demonstration of the UKF module, which is built upon the

output of the PINN module. The main objective of this module is to reduce the effect of

state noise using the Gaussian noise hypothesis. The outcomes achieved with PINN-UKFM

surpassed those obtained with the only virtual sensor algorithm. Without coordinate input,

33

Figure 2.5: Contact Estimation and Ground Reaction Force Prediction

the robot coordinates are updated in the robot model using the UKF module. The PINN

module effectively mitigated the impact of robot sensor drift and yielded a dependable

state estimation that closely approximate the true state of the robot. Thus, the updated

robot position of PINN UKFM is also closer to the true state.

Figure 2.6: Compare trajectories between virtual sensor only and PINN-UKF

34

Additionally, the UKF-M module could estimate the robot’s speed, which included [ve,

vn, vu]. Next, the modeling results were compared to the measurement states to verify

PINN-UKF correctness. As shown in Figure 2.7, compared to the UKF algorithm, PINN-

UKF provides a better estimate of vu.

Figure 2.7: Compare 3D velocities implement with PINN

2.5 Conclusion

This study has demonstrated a significant advancement in the field of robotic state es-

timation through the strategic integration of an Unscented Kalman Filter (UKF) with a

Physics-Informed Neural Network (PINN). Our research has showcased how this com-

bination can rigorously constrain the dynamic model of a robot, thereby enhancing the

accuracy and reliability of the state estimation process. The UKF, renowned for its capabil-

ity to handle non-linearities and uncertainties inherent in robotic navigation, when paired

with the PINN, ensures that the dynamic state of the robot adheres closely to the underly-

ing physical laws. This synergy mitigates the risk of model divergence and significantly

35

reduces the detrimental effects of IMU sensor drift over time.

Further strengthening our methodology, implementing a learning-based contact esti-

mator using proprioceptive sensory data has proven to be a pivotal innovation. Unlike

traditional methods that rely heavily on external sensors or visual data, our approach uti-

lizes intrinsic sensory inputs to detect contact events. This method has shown exceptional

promise in environments where external sensors fail or are impractical, providing a ro-

bust alternative that maintains accuracy and operational integrity in obscured or complex

settings. The contact estimator plays a crucial role in reinforcing the robot’s navigation sys-

tem, effectively reducing reliance on potentially erratic IMU data and thus, curbing sensor

drifting.

In conclusion, the combined use of UKF and PINN forms a robust framework for robot

state estimation, ensuring high fidelity in dynamic modeling and reducing sensor drift.

Meanwhile, the contact estimator emerges as a crucial component, enhancing the system’s

resilience to environmental variabilities and sensor inaccuracies. Our findings affirm the

potential of this integrated approach to significantly improve robotic systems’ operational

reliability and efficiency, particularly in challenging real-world applications. Future work

will focus on refining these techniques and exploring their applicability across different

robotic platforms and more diverse operational contexts.

The integration of Physics-Informed Neural Networks (PINN) with Unscented Kalman

Filters (UKF) has demonstrated significant advances in robotic state estimation. How-

ever, the limitations inherent in the physical constraint models used within this PINN-UKF

framework, alongside the challenges posed by the rigid dynamics of traditional robotic

platforms, highlight critical areas for improvement. The next chapter introduces an inno-

vative spine implementation to address these issues. This development moves away from

traditional rigid body constraints, embracing a more flexible dynamic system that better ac-

36

commodates the complex movements of quadruped robots. Furthermore, the approach in-

corporates learning-based methods to effectively manage the chaotic dynamics introduced

by the spine implementation, thereby offering a robust solution to the limitations identified

in the initial methodology.

37

CHAPTER 3

INTELLIGENT DESIGN FOR QUADRUPED ROBOT ON A DYNAMIC,

FLEXIBLE SURFACE WITH AN ACTIVE SPINE

3.1 Introduction

This chapter addresses the limitations of the previously discussed Physics-Informed

Neural Network (PINN) and Unscented Kalman Filter (UKF) methodology. While these

tools effectively enhance robot state estimation, they struggle with physical constraints and

rigidity when navigating complex terrains. The conventional rigid body model typically

employed offers limited flexibility and shock absorption, posing significant challenges in

dynamic environments. To counter these issues, this study introduces an innovative mod-

ification: replacing the traditional rigid body with a dynamic spine implementation. This

change significantly improves flexibility and shock absorption, which are critical for ma-

neuvering through challenging terrains. However, integrating a spine introduces complex-

ity by altering the robot’s entire dynamic system during movement, making traditional

modeling techniques less effective due to the chaotic nature of the new dynamics. Reser-

voir Computing is employed to manage this complexity, providing a robust solution for

handling the chaotic dynamics induced by the spine, thereby ensuring more accurate and

adaptable state estimation in dynamic environments.

The approach incorporates the design of a quadruped robot equipped with a dynamic

spine, utilizing Reservoir Computing to enhance performance. Four bending sensors are

integrated within the spine to modulate spinal forces for balance and enable closed-loop

control of the Center of Mass (CoM) relative to dynamic surfaces. This passive system

modeling allows the robot with a flexible spine to traverse rough terrain more efficiently,

with increased agility and reduced impact forces, thereby improving overall mechanical

38

performance. Moreover, the paper introduces the development of a novel, intelligent con-

trol mechanism tailored for quadrupedal robots operating on dynamic, flexible surfaces.

This system relies on a hierarchical distributed control mechanism that enables the legs to

adjust centralized frames for optimal functional performance cooperatively. This approach

not only circumvents the physical limitations of traditional methods by leveraging learning-

based Reservoir Computing, it also avoids the need for conventional contact estimators in

state estimation, establishing a new paradigm in robotic design and functionality.

3.1.1 Motivation

The design and analysis of dynamic systems, especially chaotic ones, have always been

challenging tasks [22] [23]. To address these issues, we proposes a novel methodology

that combines together the use of Reservoir Computing, Lyapunov control algorithm, and

bending sensors integrated with a continuous dynamics spine. The central objective is

to design a quadruped robot with a dynamic spine capable of navigating uneven terrain

while minimizing energy costs and enhancing agility [24] [25]. We also prove the stability

of the proposed system to ensure a successful implementation, addressing the issues of

chaotic behavior[26]. The developed model has possible applications in fields such as

search and rescue operations, the military sector, mining, construction, and robotics for

autonomous exploration and monitoring [27]. Additionally, the results can help researchers

better understand the dynamic behavior of legged robots, contributing to the improvement

of future designs.

39

3.1.2 Method Rationale

The proposed approach utilizes Reservoir Computing to achieve our goal and integrates

a bending sensor into a continuous dynamics spine.[26] [28] This allows the reservoir to

adjust spine force balancing and use closed-loop control to continuously map the Center of

Mass (CoM) onto the dynamic surface [29]. Additionally, hierarchical distributed control

mechanisms developed for each leg are utilized to change centralized frames for better

functional reflection cooperatively [29]. Employing these methods enables the training of

the quadruped robot on uneven surfaces in simulation and deployment in the real world

with the ability to adapt to changing environments [24].

3.1.3 Applications

The developed model has significant applications in the field of robotics for better un-

derstanding the dynamic behavior of legged robots and soft robots better, leading to the

design of more effective and stable robots. In soft robotics, the proposed methodology

could contributes to overcoming the challenges related to flexible structures’ control. By

integrating bending sensors into the continuous dynamics spine and employing reservoir

computing to adjust spine force balancing, soft robots with flexible spines could navigate

uneven terrain while reducing energy costs and improving agility [24]. The results are ap-

plicable in various fields, including search and rescue operations and the medical sector,

where soft robots’ ability to operate around delicate structures are essential [25].

40

3.2 Methodology

This section introduces a state-space model for the coupled mechanical system of a

quadrupedal robot with a spine. This decomposition results in two bipedal systems, into

which Reservoir Computing is integrated to model the dynamics of the quadrupedal robot

via spine state measurement [30]. Once the dynamic behavior of the quadruped robot

with the spine is known, the Lyapunov Control algorithm is employed to ensure stability

[31]. Additionally, a feedback loop is utilized to verify whether the robot center of mass is

mapping onto the dynamic surface accurately [29].

3.2.1 Problem Formulation

Consider a dynamical system consisting of two subsystems connected to a spine in-

dexed by ε ≜ {(1, s), (2, s), (s, 1), (s, 2)}. The notation (i, s) refers to the connection between

subsystem i (either 1 or 2, representing the legs) and the spine. The compatibility constraint

between the subsystems and the spine is given by λe + λē = −Fs, where λe and λē represent

the coupling forces between the subsystems and the spine, and Fs denotes the total external

force applied to the spine. [31]Therefore, there are four variables for the coupling forces,

corresponding to the four connections in the system.

The coupled mechanical system considered in this work is composed of two subsys-

tems, with subsystem 1 representing the front legs and subsystem 2 the hind legs, where

qi ∈ Qi ⊂ R
ni for i = 1, 2. The spine connects the two subsystems. The dynamical equations

of motion for the coupled mechanical system[31] are given by:

41



D1q̈1 + H1 = B1u1 + J⊤e λe + J⊤s Fs

D2q̈2 + H2 = B2u2 + J⊤ē λē − J⊤s Fs

Ds ẍs + Hs = Bsus + J⊤e λe + J⊤ē λē + Fs

s.t. ce,q (q1, q2, xs) ≡ 0, λe + λē = −Fs

(3.1)

where, Di, Hi, and Bi denote the inertia matrix, Coriolis and gravitational term, and actua-

tion matrix respectively for subsystem i. ui ∈ R
mi denotes the control input for subsystem

i. Additionally, Ds, Hs, and Bs denote the corresponding terms for the spine. The variables

xs ∈ R
ns and ẍs are the position and acceleration of the spine, respectively. The term Je

(Jē) is the Jacobian matrix which maps the subsystem variables to the connection variables

corresponding to λe (λē).

The compatibility constraint, ce,q(q1, q2, xs) ≡ 0, ensures that the displacement of the

connection points e on the front legs and ē on the hind legs matches the position of the

spine. This constraint, along with the force-balance equation λe + λē = −Fs, enforces

compatibility between the subsystems and the spine, and completes the description of the

coupled mechanical system.[31] The coupling forces λe ∈ Λi ∈ R
li can be solved explicitly

using the following equation:

λe =
(
JeD−1

1 Je − JēD−1
2 Jē

)−1
·
[
JeD−1

1 (H1 − B1u1) + JēD−1
2 (H2 − B2u2)

]
−

(
JeD−1

1 Je − JeD−1
2 Jē

)−1 [
jeq̇1 + jq̄q̇2 + Fs

] (3.2)

where, Je(q1, q2, xs) = ∂ce,q/∂qi, where i ∈ {1, 2}, and e ≜ (i, j), ē ≜ (j, i) ∈ E. Fur-

ther, Je and Jē are the Jacobians of the coupling constraints with respect to the subsystem

configurations. The matrices D−1
1 and D−1

2 refer to the inverses of the mass matrices of the

subsystems. Furthermore, J̇e and J̇ē represent the time derivative of the Jacobians with re-

42

spect to subsystem configurations. The term Fs represents the force generated by the ideal

spine to balance the forces exerted by the front and hind legs.

3.2.2 Reservoir Computing

The spine state xs is measured using bending sensors mounted along the spine’s length

to model the system’s dynamic behavior using Reservoir Computing [22]. The bending

sensors’ signals are then processed through a Reservoir Computing layer that employs Echo

State Networks (ESN) to generate a time series prediction of the system’s state [30]. The

Reservoir Computing layer comprises three major components: the input, reservoir layers,

and readout. The input layer maps the bending sensor signals into the Reservoir Computing

space, while the reservoir layer is composed of a randomly connected network of neurons

that transforms the input into a high-dimensional feature space. The Reservoir Computing

layer then feeds the transformed input into a linear readout layer to estimate the system’s

response, the only trainable part is the readout, which is ridge node, can be trained by state

of training and y[t], where the state of training is the activation of the reservoir trigger by

x[t] [31], as shown in Figure 3.1.

Figure 3.1: Figure shows the general picture of spine implementation with reservoir com-
puting.

43

The spine in the figure 3.1 has four segments with three actuators generate force to

balance the center of mass into the dynamic surface [29]. The spine serves as the internal

structure and is enveloped by muscle-like material to mimic a real dog spine, creating

a continuous model. This design is more suitable for collecting input data for reservoir

computing, as shown in Figure 3.2.

Figure 3.2: The basic logic of x[t] can trigger activation of reservoir, Reservoir and Readout
corresponding Fig. 3.1 Reservoir and Ridge

3.2.3 Lyapunov Control Algorithm

The quadrupedal robot’s spine is expressed as Fs = h(xs, u1, u2), where xs is the spine

state, and u1 and u2 are the external environment inputs. The desired value of spine expres-

sion noted as Fd
s , which is Fd

s = h(xd
s , u1, u2), in this case, if spine input us unknown, we

can design ussuch that Fs goes to Fd
s , which also means xs goes to xd

s . To address this, we

start by defining the tracking error ϵ = Fs − Fd
s . Then, we can express the dynamics of the

tracking error as:

ϵ̇ =
∂h
∂xs

ẋs − L f (xs − us, u1, u2) (3.3)

where ẋs and us are the spine state and input, respectively, and can design us as a function

of the tracking error to achieve the desired control objective. The next design step use the

44

lipschitez property of h(xs − us, u1, u2). Let L be a Lipschitz constant for

|h(x1, u1, u2) − h(x2, u1, u2)| ≤ L|x1 − x2| (3.4)

For all x1, x2 ∈ R
n and u1, u2 ∈ R, use Lipschitz property to define a Lyapunov function

candidate as follows:

V(ϵ, xs) =
1
2
∥ϵ∥2 +

L
2
∥(xs − xd

s)∥2 (3.5)

where ϵ = Fs−Fd
s and L > 0 is the Lipschitz constant of h(xs−us, u1, u2) with respect to xs

To show the stability of the system, we need to show that V̇(ϵ, xs) < 0, where V̇ is the

total derivative of V with respect to time. Taking the total derivative of V , we get:

V̇(ϵ, xs) = ϵT (
∂h
∂xs

)ẋs − ϵ
T (
∂h
∂xs

)us − L∥(xs − xd
s)∥2

= ϵT (
∂h
∂xs

)us − ϵ
T (
∂h
∂xs

)(
∂h
∂xs

)−1L f (xs − us, u1, u2) − L∥(xs − xd
s)∥2

(3.6)

where we have used the fact that ẋs = (∂h
∂xs

)−1(Fs − Fd
s).

Because we require V̇(ϵ, xs) < 0 for stability, we design the feedback control law for us

to satisfy this inequality using a proportional-derivative (PD) controller of the form:

us = kpϵ − kd ϵ̇ (3.7)

where kp, kd > 0 are the proportional and derivative gains, respectively. As shown in

Equation (3.6), substituting this control law into the expression for V̇(ϵ, xs), then get:

V̇(ϵ, xs) = −ϵT (kpI + kd
∂h
∂xs

)(
∂h
∂xs

)−1ϵ − L∥(xs − xd
s)∥2 (3.8)

then the algorithm can guarantee that V̇(ϵ, xs) < 0 for all ϵ , 0

45

3.3 Simulation Result

To improve the stability of the proposed system, we need to measure the spine state xs

more accurately by implementing a continuous dynamic model. For this purpose, we wrap

up muscle-like material on the quadrupedal robot’s spine, converting the discrete model

into a continuous one.

Now we detect readout value to test the network’s performance with a feedback loop,

as shown in Figure 3.3. This is quite important for Echo State Network(ESN) learning

process, as close loop feedback measured spine state, it will check if the Center of Mass is

mapping on the dynamic surface.

After training and testing the data for 1000 time steps, we can determine the Reservoir

network’s prediction, as shown in Figure 3.4. The result fits the non-linear regression.

The purpose to test after training is to test the performance and accuracy of the network’s

predictions.

Next, the simulation used a ”warmup” to initiate the training of the network using a

period of time series data before making the prediction output. This process stabilized the

network’s state, followed by using the trained network to make a prediction[32], as shown

in Figure 3.5. The absolute deviation is quite small which the initial ”warmup” is necessary

for Echo State Network(ESN) learning [30].

46

Figure 3.3: Readout index to demonstrate the reservoir computing’s performance with a
feedback loop

Figure 3.4: First 500 time steps are training data, the test data used to test the performance
and accuracy of the network’s predictions.

Figure 3.5: Absolute deviation is very small and fit the non-linear regression.

47

3.4 Conclusion

This chapter has proposed a novel methodology for designing and controlling a quadruped

robot with a dynamic spine utilizing Reservoir Computing, hierarchical distributed control

mechanisms, and Lyapunov Control algorithm. The developed model can navigate uneven

terrain while minimizing energy costs and improving agility. The proposed methodology

also overcomes the challenges related to flexible structure control, making it possible to

extend the application to soft robotics as well. Additionally, it has proven the stability

of the proposed system. The results have significant applications in fields such as search

and rescue operations, the military sector, mining, construction, the medical industry, and

robotics for autonomous exploration and monitoring, contributing to developing more ef-

fective, stable, and adaptable robots. Our future work will focus on implementing the

proposed methodology on a physical quadruped robot and extend the reservoir computing

to apply other dynamics. This model and methodology will provide valuable insight into

the dynamic behavior of legged robots and soft robots and contribute to improving future

designs.

48

CHAPTER 4

CONCLUSION AND FUTURE WORK

4.1 Conclusion

The concepts and methodologies introduced in this thesis are a contribution to Robot

State Estimation (RSE) for legged robots. The integration of a learning-based contact es-

timation framework, combined with the use of multimodal proprioceptive sensory data

through a Physics-Informed Neural Network (PINN) and an Unscented Kalman Filter

(UKF), enhanced the accuracy and reliability of state estimation. The primary goal of

effectively calibrating the Inertial Measurement Unit (IMU) and providing a detailed de-

piction of the robot’s dynamic state was successfully met, overcoming several limitations

of traditional vision-based systems.

The application of PINN-UKF mitigates IMU drift by imposing constraints on the loss

function through Ordinary Differential Equations (ODEs), thus ensuring that the system re-

mains unaffected by visual impairments and eliminates the need for dedicated contact sen-

sors. The contact estimation component of our system proved adept at identifying contact

events across diverse terrains, enhancing proprioceptive odometry and enabling the gen-

eration of precise odometric trajectories through a contact-aided invariant Kalman Filter.

This led to good estimates of the robot’s three-dimensional attitude, velocity, and position,

enhancing operational reliability.

Despite these advances, the physical limitations of traditional robotic platforms, par-

ticularly in terms of flexibility and impact absorption, remained a significant challenge.

Addressing these issues, this thesis introduces an innovative approach by implementing

a dynamic spine in a quadruped robot, marking a revolutionary step toward improving

49

robotic mobility and stability. This modification necessitates reformulating the robot’s

dynamic model as the spine altered the entire system dynamics during movement. Tra-

ditional modeling techniques fell short in accommodating these changes, prompting a shift

towards more adaptive and resilient modeling techniques such as Reservoir Computing.

This approach effectively managed the complex dynamics that emerged from the spine’s

interactions during movement, providing a robust framework for real-time adaptive control.

In conclusion, developing a dynamic spine coupled with the application of Reservoir

Computing addressed the inherent limitations observed in traditional robotic platforms and

set a new benchmark in robotic design and functionality. These innovations lay a robust

foundation for future research and development. The methodologies and technologies de-

veloped in this thesis not only enhance the operational capabilities of robotic systems but

also open new avenues for their application in more dynamic and unstructured environ-

ments, promising a future where robots are more adaptable, resilient, and capable of han-

dling the complexities of the real world. We believe that the ongoing refinement of these

technologies and the exploration of new applications will continue to drive the evolution of

robotics, making an indelible impact on both theoretical and practical aspects of robotics.

4.2 Future Work

Building on the results of this thesis, future research will aim to extend and refine

the methodologies developed for enhanced robot state estimation and dynamic spine inte-

gration. Key initiatives include enhancing virtual sensor technologies within the Physics-

Informed Neural Network (PINN) framework to improve sensor fusion accuracy and refin-

ing physical models to capture complex real-world dynamics more precisely. This effort

will encompass expanding state estimation methodologies to complex, unstructured envi-

50

ronments such as underwater or extraterrestrial locations where proprioceptive feedback is

crucial. Additionally, incorporating diverse sensory modalities such as acoustic and ther-

mal sensors will make the state estimation process robust against environmental challenges.

For the dynamic spine implementation described in the second chapter, future work will

involve the physical prototype development and rigorous field testing of the dynamic spine

on quadruped robots, exploring its impact on robotic mobility and stability across various

terrains. This includes expanding the application of Reservoir Computing to manage more

complex dynamic models and developing sophisticated adaptive control algorithms that

adjust in real-time to changes in robot posture and terrain interaction. Furthermore, ap-

plying dynamic spine concepts and Reservoir Computing to soft robotics can pioneer new

functionalities in areas like minimally invasive surgery and disaster recovery. Collaborative

cross-disciplinary studies in biomechanics and material science will be crucial for enhanc-

ing the design and functionality of dynamic spines, potentially leading to innovations in

robotic materials that mimic biological structures.

These works will build upon the robust foundation laid by this thesis, pushing the

boundaries of robotic capabilities and opening up new avenues for research and devel-

opment in adaptive and resilient robotic systems for challenging environments.

51

BIBLIOGRAPHY

[1] D. Selmanaj, M. Corno, G. Panzani, and S.M. Savaresi. Vehicle sideslip estimation:
A kinematic based approach. Control Engineering Practice, 67:1–12, 2017.

[2] Y.-W. Liao and F. Borrelli. An adaptive approach to real-time estimation of vehicle
sideslip, road bank angles, and sensor bias. IEEE Transactions on Vehicular Technol-
ogy, 68(8):7443–7454, 2019.

[3] Z. Liu, Y. Cai, H. Wang, L. Chen, H. Gao, Y. Jia, and Y. Li. Robust target recogni-
tion and tracking of self-driving cars with radar and camera information fusion under
severe weather conditions. IEEE Transactions on Intelligent Transportation Systems,
23:6640–6653, 2021.

[4] X. Xia, L. Xiong, Y. Lu, L. Gao, and Z. Yu. Vehicle sideslip angle estimation by
fusing inertial measurement unit and global navigation satellite system with heading
alignment. Mechanical Systems and Signal Processing, 150:107290, 2021.

[5] W. Li, Z. Xie, P. K. Wong, Y. Hu, G. Guo, and J. Zhao. Event-triggered asyn-
chronous fuzzy filtering for vehicle sideslip angle estimation with data quantization
and dropouts. IEEE Transactions on Fuzzy Systems, 30(8):2822–2836, 2022.

[6] X. Ding, Z. Wang, and L. Zhang. Event-triggered vehicle sideslip angle estimation
based on low-cost sensors. IEEE Transactions on Industrial Informatics, 18(7):4466–
4476, 2022.

[7] A. Wischnewski, T. Stahl, J. Betz, and B. Lohmann. Vehicle dynamics state estima-
tion and localization for high performance race cars. IFAC-PapersOnLine, 52(8):154–
161, 2019.

[8] V. Mazzilli, D. Ivone, S. De Pinto, L. Pascali, M. Contrino, G. Tarquinio, P. Gruber,
and A. Sorniotti. On the benefit of smart tyre technology on vehicle state estimation.
Vehicle System Dynamics, pages 1–26, 2021.

[9] A. Bertipaglia, M. Alirezaei, R. Happee, and B. Shyrokau. Model-based vs data-
driven estimation of vehicle sideslip angle and benefits of tyre force measurements.
In Proceedings of the AVEC Int. Symposium on Advanced Vehicle Control, 2022.

[10] O. Galluppi, M. Corno, and S.M. Savaresi. Mixed-kinematic body sideslip angle
estimator for high performance cars. In European Control Conference (ECC), pages
941–946, IEEE, 2018.

52

[11] E. Villano, B. Lenzo, and A. Sakhnevych. Cross-combined ukf for vehicle sideslip
angle estimation with a modified dugoff tire model: design and experimental results.
Meccanica, 56(11):2653–2668, 2021.

[12] E. Hashemi, M. Pirani, A. Khajepour, A. Kasaiezadeh, S.-K. Chen, and B. Litkouhi.
Corner-based estimation of tire forces and vehicle velocities robust to road conditions.
Control Engineering Practice, 61:28–40, 2017.

[13] J. Guerrero-Ibáñez, S. Zeadally, and J. Contreras-Castillo. Sensor technologies for
intelligent transportation systems. Sensors, 18:1212, 2018.

[14] M. Kissai. Optimal Coordination of Chassis Systems for Vehicle Motion Control. PhD
thesis, Université Paris-Saclay (ComUE), Orsay, France, 2019.

[15] W. Liu, X. Xia, L. Xiong, Y. Lu, L. Gao, and Z. Yu. Automated vehicle sideslip angle
estimation considering signal measurement characteristic. IEEE Sensors Journal,
21(19):21675–21687, 2021.

[16] L. Yuan, Y.Q. Ni, X.Y. Deng, and S. Hao. A-pinn: Auxiliary physics informed neural
networks for forward and inverse problems of nonlinear integro-differential equations.
Journal of Computational Physics, 462:111260, 2022.

[17] A. Barrau and S. Bonnabel. Intrinsic filtering on lie groups with applications to atti-
tude estimation. IEEE Transactions on Automatic Control, 60:436–449, 2014.

[18] M. Brossard, A. Barrau, and S. Bonnabel. A code for unscented kalman filtering on
manifolds (ukf-m). In 2020 IEEE International Conference on Robotics and Automa-
tion (ICRA), pages 5701–5708, Paris, France, 2020.

[19] T.D. Barfoot and P.T. Furgale. Associating uncertainty with three-dimensional poses
for use in estimation problems. IEEE Transactions on Robotics, 30:679–693, 2014.

[20] M. Brossard, S. Bonnabel, and J.P. Condomines. Unscented kalman filtering on lie
groups. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS), pages 2485–2491, Vancouver, BC, Canada, 2017.

[21] S.J. Julier and J.K. Uhlmann. New extension of the kalman filter to nonlinear systems.
Signal Processing, Sensor Fusion, and Target Recognition VI, SPIE, 3068:182–193,
1997.

[22] Dong-Hyun Kim. Highly dynamic quadruped locomotion via whole-body impulse
control and model predictive control. Cornell University - arXiv, Sep 2019.

53

[23] Grant Gibson, Oluwami Dosunmu-Ogunbi, Yukai Gong, and Jessy Grizzle. Terrain-
adaptive, alip-based bipedal locomotion controller via model predictive control and
virtual constraints. 2022 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2022.

[24] Ashish Kumar, Zipeng Fu, Deepak Pathak, and Jitendra Malik. Rma: Rapid motor
adaptation for legged robots. Robotics: Science and Systems XVII, 2021.

[25] Paolo Arena, Fabio Di Pietro, Alessia Li Noce, Salvatore Taffara, and Luca Patane.
Assessment of navigation capabilities of mini cheetah robot for monitoring of land-
slide terrains. 2021 IEEE 6th International Forum on Research and Technology for
Society and Industry (RTSI), 2021.

[26] MLIK SALWA. Next generation reservoir computing. 2021.

[27] Qian Zhao, Kohei Nakajima, Hidenobu Sumioka, Helmut Hauser, and Rolf Pfeifer.
Spine dynamics as a computational resource in spine-driven quadruped locomotion.
2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013.

[28] Satomi Hanasaki, Yuichi Tazaki, Hikaru Nagano, and Yasuyoshi Yokokohji. Running
trajectory generation including gait transition between walking based on the time-
varying linear inverted pendulum mode. 2022 IEEE-RAS 21st International Confer-
ence on Humanoid Robots (Humanoids), 2022.

[29] Amir Iqbal, Sushant Veer, and Yan Gu. Drs-lip: Linear inverted pendulum model for
legged locomotion on dynamic rigid surfaces. 2022.

[30] Mario Calandra, Luca Patanè, Tao Sun, Paolo Arena, and Poramate Manoonpong.
Echo state networks for estimating exteroceptive conditions from proprioceptive
states in quadruped robots. Frontiers in Neurorobotics, 15, 2021.

[31] Wen-Loong Ma, Noel Csomay-Shanklin, Shishir Kolathaya, Kaveh Akbari Hamed,
and Aaron D. Ames. Coupled control lyapunov functions for interconnected systems,
with application to quadrupedal locomotion. IEEE Robotics and Automation Letters,
6(2):3761–3768, 2021.

[32] Andrew P. Sabelhaus, Huajing Zhao, Edward L. Zhu, Adrian K. Agogino, and Al-
ice M. Agogino. Model-predictive control with inverse statics optimization for tenseg-
rity spine robots. IEEE Transactions on Control Systems Technology, 29(1):263–277,
2021.

