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ABSTRACT 

Multi-agent reinforcement learning has been the subject of considerable interest and effort 

for its potential as a means of specifying behavior policies for multi-agent systems. 

Specifically, on-policy algorithms based on gradient estimation have achieved state-of-the-

art performance on end-to-end control problems once thought beyond the scope of machine 

learning methods. 

In seeking to apply the benefits of MARL to practical control of physical autonomous 

systems, we must begin to account for three factors: (1) the presence of other autonomous 

elements in the environment configuration space, which may or may not be amenable to 

coordination; (2) non-idealities in sensing the configuration of the environment (e.g. 

locality and limited observability); and (3) variability in the number of sensed dynamical 

elements. 

The attention head, a relational ML structure originally designed for extraction of abstract 

natural language features, is structurally well suited to addressing these challenges. This 

work presents a systematic argument and framework for the use of attention as an input 

layer to enable learning of neural policy models in changing multi-agent environments 

which are not well-suited to other representations. 

In benchmark physical simulations, it is shown that such models achieve competitive 

performance on cooperative and mixed cooperative/competitive MAS control tasks as the 

agent cohort is arbitrarily changed. Prospective advantages of attention-based architectures 
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for physical autonomous systems in select applications are discussed, as well as drawbacks 

associated with explainability and potential for emergent behavior. 
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CHAPTER 1. INTRODUCTION 

1.1. Background 

In the study of autonomous systems, multi-agent systems (MAS) are those systems with 

multiple independent controllable elements (“agents”) interacting simultaneously, and in a 

decentralized fashion, with an uncontrolled environment [1]. At each instant in time, each 

agent has an observation (often a vector) representing some information about the state of 

the environment, and performs some vector action (e.g. a command velocity) to perturb 

the environment in order to advance a design goal. 

MAS designs have proven powerful for solving problems in defense, surveying, logistics 

and other areas demanding distributed action over large regions, with potential non-local 

gains for locally suboptimal agent behavior [1]. In recent years, this potential has grown 

still greater with the advent of multi-agent reinforcement learning (MARL) [2]. 

The promise of MARL is to apply machine learning methods to the discovery of multi-

agent scenarios where effective policies have proven inaccessible in explicit form. Much 

of the research in this area has targeted algorithm design, leveraging self-play or game-

theoretic reward attribution to shape the optimization trajectory [3]. However, there has 

been comparatively little work on correct architectural design for MARL policy models. 

1.2. Problem description 

Many of the problems discussed in the MAS/MARL literature to date have the property 

that the number of control-relevant dynamical elements may vary in the same setting from 

episode to episode, or from moment to moment (“polyvalence” for convenience). For 
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example, a polyvalent “dogfight” environment might consist of two opposing teams of 

fighter pilots in an otherwise empty space, the “red” team having some indefinite number 

of pilots m and the “blue” team having n. At any time, any of the pilots may be shot down 

or involved in a collision, removing it from the environment. Such environments have 

unique demands for autonomous control policies, namely (1) behavior that is in some sense 

at least “weakly optimal” for varying numbers of observed states, within reasonable bounds 

(“variadic”); and (2) invariant to the permutation of these states as represented. 

This work concerns the specification of decentralized control policies for agents in such 

settings, specifically by machine learning to capture efficient group behavior that is not 

feasible to express analytically. The potential for unexpectedly sophisticated and efficient 

strategies for underspecified tasks to emerge from such stochastic optimization is 

illustrated well by works such as [4], [5]. Section 2.1 provides some explanation of the 

policy gradient methods that enable translation of the classical discrete RL paradigm to 

continuous control-domain problems. In 2.2, some consideration is given to the subsequent 

problem of imputing reward to individual agents in a MAS so as to direct the training 

trajectory toward cooperative behavior, after [6]. 2.3 provides a rationale for attention as a 

compelling numerically-optimizable structure for capturing polyvalent environment states 

by analogy to the natural language processing problem. Finally, 2.4 discusses existing 

applications of this technology in the growing MARL literature to date, and identifies three 

key areas for contribution: (1) development of flexible monolithic policies that are 

amenable to taking any (constrained) number of states as inputs, (2) implementation of 

continuous rather than discretely selected control actions, and (3) full decentralization of 

the group strategy into individual attention-based policy models.  
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CHAPTER 2. LITERATURE REVIEW 

2.1. Overview of reinforcement learning 

Reinforcement learning is typical of machine learning methods in that it concerns the 

numerical optimization of a model mapping input data to output data. The essential 

distinctions are merely: 

1. The input data represent some state property of an environment which is to be acted 

upon, and; 

2. The output data represent an action which an agent (i.e. a system under the control 

of the model) is to exert upon the environment. 

The data are thus interactive; that is, the state trajectory of the environment depends on the 

history of actions. For this reason there is generally little or no a priori information about 

the distribution of environment states. Instead, a reward function associates a (possibly 

random) real number to each state-action pair, which is to be maximized (cf. minimization 

of loss or error). This quantity should, by design, represent a desirable control outcome; a 

simple case might be the negative of the Euclidean distance to some goal state. 

2.1.1. Discrete RL 

If states and actions are discrete and finite, the RL problem reduces to the specification of 

a Markov decision process. The reward associated with each state-action can be stored and 

used as inputs to a Bellman equation. 
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The control policy is then a matter of selecting the action associated with the greatest value 

of Q for each state. Q-learning is known to converge to the optimal policy when the 

necessary assumptions are met [7]. 

However, these constraints are quite stringent, and very rarely apply to the control of 

physical systems. In particular, if the environment is non-stationary, the value associated 

with a state-action pair may change. Additionally, the restriction of the control policy to an 

MDP obviates the possibility of continuous control, making it unsuitable for e.g. vehicular 

navigation. 

2.1.2. Continuous RL 

Although the focus of this work is on policy architectures suitable for MARL settings, 

rather than the learning algorithms themselves, it becomes necessary to establish how we 

arrive at useful values of the attention matrices. To that end, we first briefly discuss the 

single-agent case of a policy gradient optimization method, and then show how the multi-

agent generalization follows as the problem of estimating an optimal attribution of marginal 

reward to many such agents. 

By optimizing “on-policy,” we make it our objective to maximize the expectation of reward 

in the model parameters 𝜃, over some period of interest, i.e. 

𝜃∗ = argmax
𝜃

𝔼 [∑ 𝑟𝑡

𝜏

𝑡=0

]  

𝒂𝑡 = 𝜋𝜃 ∘ 𝜔(𝒔𝑡) 

(𝒔𝑡+1, 𝑟𝑡) = 𝜙(𝒔𝑡 , 𝒂𝑡) 



5 

 

 

where: 

• 𝑟𝑡 is the reward associated with the state-action pair at time t; 

• 𝒔𝑡 is the environment state vector; 

• 𝜔 is a mapping from the environment state space onto the agent observation space, 

which may be the identity, introduce noise, mask unobserved states, etc.; 

• 𝒂𝑡 is the action taken at time t; 

• 𝜋𝜃 is the parametric control policy with parameters 𝜃; 

• 𝜙 is a discrete state transition function representing the environment dynamics, 

which may be abstracted away in model-free learning. 

The general gradient ascent optimization step for this treatment of the problem is, ideally, 

𝜃 ← 𝜃 + 𝛼∇θ𝔼 [∑ 𝑟𝑡

𝜏

𝑡=0

]  

with the learning rate 𝛼 ≪ 1 a hyperparameter determined empirically. However, unless 

the environment dynamics are trivial, neither the expected reward nor its gradient are 

obtainable in explicit form. Instead, we must rely on a subjective advantage �̂�𝑡, a measure 

of the gain in reward associated with the state transition at time t, according to some 

idealized “critic” model. Since �̂�𝑡 should be defined to account for future gains due to the 

present control action (multiplied by some discount scalar), we can rewrite the gradient 

ascent step as 

𝜃 ← 𝜃 + 𝛼∇θ�̂�𝑡[�̂�𝑡] 
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with �̂�𝑡 the moving subjective expectation given timesteps 0, … , 𝑡. 

Although still a challenge, it is considerably easier to estimate a critic function for �̂�𝑡 given 

several samples of the state-reward history; this is the principal matter of the “proximal 

policy optimization” algorithm family [8]. 

This is sufficient for single-agent environments. In MARL, however, we should like to 

reward each agent (i.e. update its weights) only in proportion to its contribution to the 

control objective.  

2.2. MARL approaches 

In 2002, Parsons and Woldridge [9] suggested the following reasonable criteria for decision 

protocols in multi-agent systems, based on a model of agents as players in a game-theoretic 

system; here they are presented with some modification of language to the present context: 
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Table 2.1: Game-theoretic properties of an idealized multi-agent system policy 

Criterion Explanation 

Guaranteed success Guaranteed convergence to an action for all 

players 

Maximizing social welfare Maximization of reward summed over all 

agents 

Pareto efficiency No deviation in policy will increase one 

agent’s reward without decreasing 

another’s; no net utility is simply “left on 

the table” 

Individual rationality No deviation benefits any agent 

individually 

Stability No agent is incentivized to change policy if 

the others hold constant 

Simplicity Policy is computationally tractable 

Distribution No single points of failure; the behavior of 

the cohort is well-defined in the absence of 

information from any one among them 

 

Certain among these are satisfied more-or-less automatically by the structure of the MARL 

environment: “guaranteed success” equates to correctness of the program implementing 

the observation/action/reward loop, and “simplicity” exists in proportion to the resources 

available for the implementation. Others we aim here to determine by experiment: 

“stability” and “individual rationality,” at least in the case where agents have homogeneous 

policies, are both indicated by the empirical convergence of the reward function over many 

iterations of the “game.” The criterion of “distribution” is what will be addressed by 
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training over many different cardinalities of the agent cohort, reasoning that the reward 

function will fail to converge if the policy is ill-defined for any of these. 

It is worth noting that maximization of social welfare and Pareto efficiency are 

considerably more difficult to argue and are indeed outside the scope of this work. 

Reinforcement learning does not generally treat problems where an optimal outcome (or 

even a slightly improved one) may be shown to exist analytically, since there usually exist 

better alternatives. These represent arguments in favor of the continued need for optimal 

control theory, as well as the relatively new fields of explainable and trustable artificial 

intelligence. However, in Section 2.4 a proof is discussed for improved suboptimality 

bounds from attention on broad classes of offline multi-agent learning problems [10]. 

It is generally agreed that there is yet no “silver bullet” algorithm or structure to address 

these conditions, in no small part because the formulation of the MARL problem is so 

heavily dependent on the structure problem under consideration, the rapidly changing state 

of relevant physical technology, and the assumptions made in representing the particular 

problem under consideration [3]. To the extent that at least locally optimal MAS policies 

can be found, progress has been made on determining algorithms for that purpose. The 

counterfactual multi-agent (COMA) [11] family of policy gradient methods generalize the 

on-policy optimization algorithms discussed earlier by having the critic model 

retrospectively estimate the distribution of reward with respect to each agent’s individual 

actions, conditioned upon the actual actions of each other. Multi-agent posthumous credit 

assignment (MA-POCA) [6] improves further by using self-attention in the critic function 

to account for changing agent cardinality; understanding the advantage this entails, and 
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how it can likewise be applied in the agent control policy itself, requires some discussion 

of the attention head structure (see 3.1). 

2.3. Parallels to natural language processing methods 

By way of justifying the use of the attention structure, it is useful to note that the desirable 

properties mentioned in the above definition of a variadic policy (order invariance, variable 

shape) have parallels in the natural language processing (NLP) literature. Bahdanau et al. 

in [12] illustrate and address two classical machine translation conundrums: 

1. The proximity and order of multiple tokens in a string are not uniformly a function 

of their syntactic relationship; and 

2. Valid sentences may be of any length, without diminishing the relevance of earlier 

tokens. 

The attention head structure was developed in [12] and refined in [13] to address these 

problems by defining a learnable “query-key-value” mapping from any finite number of 

vector embeddings onto a single output vector. 

Similarly, we may observe that in many MAS settings, 

1. The mutual objective relevance of any two agents’ observations at a given time 

generally does not depend on any permutation of the agent set (“permutation-

invariant”); and 

2. The elements in the environment, including the agent cohort itself, may have 

various cardinalities, without diminishing the relevance of any single element to 

the objective. 
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2.4. Attention in MARL to date 

The attention architecture is relatively new, and the extent to which its capabilities scale 

with size are even more recently appreciated. Practical adoption in reinforcement learning 

to date, let alone in MARL, is thus fairly limited as of this writing, but the potential of the 

technology in domain-specific applications is nonetheless already strongly indicated by 

recent work [14], [15], [16]. Further, it is thought that the analogous ability to attribute 

varying degrees of attention to different dimensions of stimulus is responsible in part for 

the phenomenon of reinforcement learning in human neurology [17]. 

Zhang et al. [10] show by way of the Bellman error function (which describes performance 

relative to a hypothetical optimum) that if a transformer network converges on a model-

free offline RL problem, it does so with a Bellman error independent of the number of 

agents N, even if N falls far short of justifying the mean-field assumption; and further, that 

for model-based offline reinforcement learning, the suboptimality gap grows relatively 

slowly, in 𝑂(√log 𝑛. By way of demonstration, they compare a transformer-based model 

to a multi-layer perceptron, deep set, and graph-convolutional network on the same MPE 

“Spread” environment discussed in Chapter 5 for N ranging from 3 to 30, showing 

substantial gains in final performance. However, it is not clear whether the authors trained 

a single variadic policy on a mixture of the environment configurations, or specified an 

individual attention-based policy for each based on the same architecture.  

Liu et al. [18] leverage the attention head’s relational structure to construct a 

communication graph of the agents, describing whether two agents have a meaningful 

interaction at each time step of the simulation (either Traffic Junction or Predator-Prey); 
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their states are mutually observable if and only if they are connected in this graph. The 

authors then implement a graph neural network learning algorithm to determine the control 

policy for each agent. This represents a significant step in the use of attention to facilitate 

group behavior in a MAS, but it is limited in two respects: (1) the attention neural network 

is used only once, in a centralized fashion, to construct the communication graph; and (2) 

the environment dynamics and cardinality are held constant during training, limiting the 

extent to which the resulting policies may be generalized. 

More recently, Hu et al. [19] demonstrate that an transformer-based architecture may be 

deployed on many cooperating agents concurrently, decoupling their policy learning while 

maintaining a variadic representation of the environment. They identify several key 

advantages, namely that the transformer architecture enables arbitrary dimension of both 

the input and output spaces of the model, and that the activations within the attention head 

comprise an intuitive representation of the highest-weighted inputs for a given action, 

which aids interpretability. They show that this architecture provides for transfer learning 

from low-valence configurations to higher ones. However, this architecture is only 

demonstrated for discrete actions representing the selection of one observed entity, and it 

is further shown in the same paper that when the action-observation correspondence is not 

preserved, performance is considerably worse than more standard recurrent architectures. 

Thus, while promising, this does not yet represent generalized continuous control. 

It would therefore seem that the areas most in need of contribution are (1) specifying 

monolithic attention-based policies that provide efficient control for any number of sensed 

states within constraints; (2) adapting the transformer/attention architecture to continuous 
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control outputs and showing robustness of performance; and (3) fully decentralizing the 

attention-based agent policies from any kind of central planner. The experiments discussed 

in Chapters 4, 5 and 6 are designed to accomplish these objectives.  
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CHAPTER 3. ATTENTION THEORY 

The scaled dot-product attention head, as described in [13], is defined by 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘

) 𝑉 (1)

𝑄: 𝑛𝑞 × 𝑑𝑘

𝐾: 𝑛𝑣 × 𝑑𝑘

𝑉: 𝑛𝑣 × 𝑑𝑣

 

where Q is a matrix whose rows represent “query” vectors, K is a matrix whose rows 

represent “key” vectors to be compared to those of Q, and V is a matrix of “value” row 

vectors associated to the rows of K. This is by way of analogy to a relational database 

structure. 

 

Figure 3.1: Calculation flow through a single attention head [20] 

Intuitively, this represents a kind of “soft search” for a convex combination of the value 

vectors given by the rows of V, where the weights are defined by the similarity of the rows 

of Q to the columns of K. 
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The problem of attention, then, is to find useful assignments of Q, K and V. In general, K 

and V are some learned mappings of the same set of inputs; in natural language processing, 

these inputs are usually semantic vector embeddings of each of the words in a sentence, 

often masked or concatenated with a positional encoding, e.g. [21]. 

Self-attention, the case of interest to this work, is the case where Q also maps this same set 

(thus 𝑛𝑞 = 𝑛𝑣); it associates a scalar measure of “relatedness,” under some learned relation 

represented by the combination of Q and K, to each pair of inputs, and these become the 

weights for each row of V. 

In RL (or indeed more general dynamical control problems), we can replace the semantic-

space vectors from the natural language setting with measurement vectors drawn from the 

state of a physical system. This brings us nearer to being able to treat the machine learning 

problem as a state-space control problem, where the learned model takes the place of the 

control plant. 

Consider an RL environment with a polyvalent continuous state space and (without loss of 

generality) a component-wise normalized action vector space: 

𝒪 = (ℝ𝑑𝑜)𝑛𝑜 

𝒜 = [0, 1]𝑑𝑎  

𝜋𝜃 ∶ 𝒪 → 𝒜 

𝜙 ∶ 𝒮 × 𝒜 → 𝒮, ℝ 

𝜔 ∶ 𝒮 → 𝒪 

where: 
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• The observation space 𝒪 is an ordered set of 𝑛𝑜 zero-padded vectors in ℝ𝑑𝑜, with 

𝑛𝑜the number of observed states and 𝑑𝑜 the greatest state dimensionality; 

• The action space 𝒜 is a vector assigning a normalized control value to each of 𝑑𝑎 

control axes; 

• 𝜋𝜃, 𝜙, 𝜔 are respectively the parametric agent control policy, environment state 

transition function, and observation mask function as defined previously. 

Rather than a single vector, the observation space 𝒪 is notated as an arbitrary-size set of 

vector observations of dynamical elements, or equivalently a matrix of 𝑛𝑜 row vectors; the 

importance of this convention will become apparent. The semantics of the row vectors need 

not be homogeneous so long as they are internally separable, e.g. by a “one-hot” encoding 

of the data type; and a maximal 𝑛𝑜 may be specified so that the dimension of the 

observation matrix is well-defined. Excess elements (or entire rows) may be set to zero 

with no effect on the output. 

Note that the observation space is not necessarily equivalent to the state space (i.e. total 

observability is not guaranteed), although it may be so if the observation mapping 𝜔 is the 

identity. 

Since the output of this mapping is always simply a vector, it is trivial to compose it with 

other (learned) transformation, i.e. fully-connected/feed-forward neural network layers, as 

part of a larger policy learning pipeline. Where 𝑂𝑡  [𝑛𝑜 × 𝑑𝑜] = 𝜔(𝑠𝑡) , we can then define 

𝑄𝑡 = 𝑂𝑡𝑊𝑄 for a matrix of weights 𝑊𝑄  [𝑑𝑜 × 𝑑𝑘], and likewise define 𝐾𝑡 and 𝑉𝑡 with 

𝑊𝐾  [𝑑𝑜 × 𝑑𝑘], 𝑊𝑉  [𝑑𝑜 × 𝑑𝑣]. The stochastic control policy 𝜋𝜃 with parameters 𝜃 ⊃
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{𝑊𝑄 , 𝑊𝐾 , 𝑊𝑉}, having a single attention head layer and fully connected neural layers 

implementing a function 𝐹𝐶 ∶ ℝ𝑑𝑣 → 𝒜, is then the composition: 

𝑎𝑡 = 𝜋𝜃(𝑂𝑡) = 𝐶𝑙𝑖𝑝0
1 ∘ 𝐹𝐶 ∘ 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑂𝑡𝑊𝑄 , 𝑂𝑡𝑊𝐾 , 𝑂𝑡𝑊𝑉) 

where 

𝐶𝑙𝑖𝑝0
1(𝒙)𝑖 = {

0, 𝑥𝑖 ≤ 0
1, 𝑥𝑖 ≥ 1

𝑥𝑖 otherwise
 

is used to constrain the normalized output to a physically reasonable range. 

 

Conveniently, since the attention output function is linear except for the addition of softmax 

(which is trivially differentiable), it is itself easy to differentiate. There is thus no additional 

difficulty in computing the backwards gradient step of a learning algorithm, except for the 

addition of dimension.  
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CHAPTER 4. METHODOLOGY 

To study the proposed attentional MARL methodology, a series of simulated physical 

environments were implemented in the Unity engine, based on OpenAI’s MPE benchmark 

environments for MARL [22]. First, in a proof of concept, a small homogeneous group of 

roving agents must coordinate to cover a set of landmarks as quickly and closely as possible 

while minimizing collisions amongst themselves, sharing only partial state information. 

Second, the MPE “Tag” environment implements a considerably more complex game: a 

team of evaders must work together to dodge and distract a team of pursuers, in the 

presence of multiple static obstacles. 

This work takes the approach of time-series analysis of the reward trajectories of the agents 

in each task, reasoning that the reward functions are defined so as to directly measure some 

property relevant to the performance of the multi-agent system. By choosing this measure, 

we obtain a simultaneous view of the convergence trajectory, computational cost and final 

performance for each policy neural network tested. This also enables study of the effect of 

time-domain perturbations on training, as in Section 6.3.3.  

The policy neural networks were implemented in PyTorch, using the Unity ML Agents 

framework [23] as an interface between the simulation state and the input/output layers of 

the network. 
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Figure 4.1: Comparison of architectures studied 

Figure 4.1 presents the three neural network architectures compared in this work. The 

leftmost is the attention-based architecture discussed hitherto. The center architecture 

implements a convolutional neural network (CNN), summarized in [24], [25]. The local 

environment state surrounding each agent is represented by a discretization into volumetric 
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cells, where the value in each channel corresponds to the type of entity occupying its cell 

(i.e. the representation is permutation-invariant). Such architectures have produced expert-

level performance on benchmark RL tasks in games [26] as well as model-based 

simulations of grid control problems subject to locality and partial observability [27]. 

Finally, a permutation-variant “feed-forward” policy neural network (right) is implemented 

in each task as a baseline for comparison.  
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CHAPTER 5. LEARNING POLICIES FOR COOPERATIVE NAVIGATION IN POLYVALENT 

ENVIRONMENTS 

5.1. Summary 

Group navigation strategies for arbitrary-sized multi-agent systems require permutation-

invariant control policies which can accommodate a range in the number of sensed states 

without detriment to performance. This chapter presents a neural network architecture for 

a decentralized control policy on a 3D dynamical implementation the OpenAI MPE 

“Spread” cooperative navigation benchmark, using the permutation-invariant attention 

head structure as an input layer. In simulation, this policy architecture vastly outperforms 

a permutation-variant feed-forward architecture and demonstrates modest performance 

gains with substantially smaller compute costs compared to a more conventional CNN 

architecture. 

5.2. Methodology 

The “Spread” environment is a test case demonstrating the suitability of the attention-based 

architecture for cooperative decentralized control using a single policy for varying numbers 

of agents and objectives, in the absence of any communication other than shared state 

information. 

Two models with otherwise identical hyperparameters (2 layers, 32 ReLU neurons [28]) 

are tested for comparison. The first is a simple fully connected neural network controller, 

taking as input a single concatenated, zero-padded observation vector ∈ ℝ𝑑𝑜×𝑛𝑜. This 

representation is not permutation-invariant and is considered as a baseline. 
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The second uses a convolutional input layer, taking as input a grid tensor representation of 

the agent’s surroundings (20 × 20 × 2, with the channels corresponding to landmarks and 

agents, containing a 0-1 encoding of whether the given entity type is present in that cell). 

This implementation of the environment differs from the standard implementation 

(described in [22] and utilized in [10]) in a few meaningful ways: 

• The contact dynamics are simulated in three dimensions rather than two, and 

kinematics consider material properties (drag, elasticity of collisions) to provide a 

closer approximation to practical environments. 

• The maximal number of agents and the sizes of the policy neural networks are 

considerably smaller due to compute constraints (1x NVIDIA RTX 3060 12GB). 

More conventional architectures are chosen for comparison, to provide a sense of 

the difference made by the attention layer even in minimal implementations. 

• Learning is online rather than offline. That is, rather than learning to associate a 

value to each state-action pair sampled randomly from a historical dataset, agents 

in this implementation learn as they interact with the nonstationary environment, 

providing a sense of potential for “lifelong” learning in situ. 
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The overall environment specification is given by: 

𝒪 = ℝ4 × (ℝ2)2𝑛 

𝒜 = [0, 1]2 

𝑟𝑔 = − ∑ min
1≤𝑗≤𝑛

‖𝒙𝑖
𝑡𝑎𝑟𝑔𝑒𝑡 − 𝒙𝑗

𝑎𝑔𝑒𝑛𝑡‖

𝑛

𝑖=1

 

𝑟𝑖
𝑘 = {

−1 if colliding with a teammate
0 otherwise

 ∀𝑘 ∈ 1, … , 𝑛 

𝑟𝑡
𝑘 = �̂�𝑔

𝑘 + 𝑟𝑖
𝑘 ∀𝑘 ∈ 1, … , 𝑛  

with 

• 𝒪, 𝒜 the observation and action spaces as defined previously; 

• 𝑟𝑔 the group reward component for the MA-POCA algorithm [6] as a function of 

target landmark positions 𝒙𝑖
𝑡𝑎𝑟𝑔𝑒𝑡

 and agent positions 𝒙𝑗
𝑎𝑔𝑒𝑛𝑡

 in the plane; 

• 𝑟𝑖
𝑘 the individual reward component; 

• 𝑟𝑡
𝑘 the total reward assigned to agent k, which is the sum of the MA-POCA 

imputation of group reward �̂�𝑔
𝑘 and the individual reward 𝑟𝑖

𝑘. 

The observation represents a concatenation of each agent’s own position and velocity with 

the instantaneous relative position of each other agent and target at sample time (i.e. 

observations are in the local frame). The action vector is interpreted as a normalized 

command force to be applied to the agent along the ground plane axes. 
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5.3. Numerical results 

Figure 5.1 summarizes the total group reward for the navigation task over a complete 

episode (2500 steps) at each time step of training. This presents an aggregate measure of 

the speed and accuracy with which the agents converge upon the targets and is therefore a 

useful proxy for total final performance. Figure 5.2 is a graph of the average individual 

collision penalty in each episode; thus, it roughly inversely proportional to the “per-capita” 

time rate of collisions in the system. 

 

Figure 5.1: Group performance reward on cooperative navigation task vs. training step for each tested 

architecture 

 

Table 5.1: Legend and summary of Figure 5.1 

Run Terminal group reward Training time 

• Attention -6.765 37.06 min 

• CNN -9.642 1.166 hr 

• Feed-forward -22.763 35.11 min 
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Figure 5.2: Mean individual collision penalty on cooperative navigation task vs. training step for each tested 

architecture 

 

Table 5.2: Legend and summary of Figure 5.2 

Run Terminal individual reward Training time 

• Attention -0.023 37.06 min 

• CNN -0.114 1.166 hr 

• Feed-forward -1.007 35.11 min 

 

5.4. Discussion 

It is apparent that, as expected, the permutation-variant feed-forward policy function fails 

to improve meaningfully by convergence. This follows because parameters are not shared 

between successive input neurons even when representing entities of the same type; thus, 

gradient updates are distributed unevenly over the input layer and it is substantially harder 

to learn any useful behavior. 
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The variadic, permutation-invariant grid tensor CNN architecture performs much better, 

and approaches convergence by step 2 × 106 . However, it takes the longest to train of the 

tested architectures, by nearly a factor of two for the same number of simulation steps. 

The attention-based policy architecture provides a modestly better final group performance 

on the navigation task than the CNN architecture, with a substantially smaller compute 

requirement (37 minutes vs. 70 minutes). 
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CHAPTER 6. PERFORMANCE OF ATTENTION-BASED POLICY ARCHITECTURES IN MIXED 

COOPERATIVE-COMPETITIVE ENVIRONMENTS WITH TIME-VARYING DYNAMICS 

6.1. Summary 

An important consideration for multi-agent autonomous system control “in the wild” is 

whether the system will act safely and reliably in environmental conditions not part of the 

distribution considered at the time of design. This may be due to the presence of other 

autonomous actors in the environment, or simply due to a shift in the distribution of 

environmental conditions. Here we investigate the potential of learned attention-based 

evasion policies to adapt to such conditions, speculating that the relational structure of 

learned attention policies should provide certain benefits over alternative policy neural 

networks. In two experiments, we find that (1) small attention networks trained for group-

level achieve both faster convergence of behavior and better final performance against 

expert teams of pursuers, as compared to other compact learned policies; and (2) this 

capability is robust to persistent distribution shift of the physical characteristics of the game 

area. To the best of the author’s knowledge, this is the first such comparative study of the 

effects of time-domain distribution shift on in situ continued multi-agent reinforcement 

learning. 

6.2. Methodology 

In the “Tag” environment [22], agents are divided into two multi-agent teams: the “good” 

or “evader” agents (1 ≤ 𝑛 ≤ 3) receive a group penalty 𝑟𝑔𝑒 = −1 for colliding with 

pursuers, and an individual penalty at each timestep for exiting a unit bounding box. The 
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“bad” or “pursuer” team (3 ≤ 𝑚 ≤ 5) receives a group reward 𝑟𝑔𝑝 = 1 for each collision 

with an evader, incentivizing group maneuvers. There are also 2 ≤ 𝑙 ≤ 4 randomly placed 

static obstacles with which agents may collide. 

This section proceeds in three stages: first, since this is a mixed cooperative-competitive 

environment, “self-play” [4] is used to concurrently train attention-based pursuit and 

evasion policies, providing a baseline pursuer policy to train against in future steps as well 

as validating that the policies do at least roughly converge in the presence of changing 

environment dynamics. 

Second, evasion control policies based on the same feed-forward, CNN and attention-based 

architectures used for comparison in Chapter 5 are successively trained against static teams 

of the pursuit agent trained in self-play. This is to provide a direct comparative measure of 

the performance on the evasion task. 

Finally, the same is repeated, but with obstacles deterministically toggled on and off every 

5 × 105 training steps. This time-domain reversal design is intended to investigate whether 

attention neural networks are as susceptible to the problem of “catastrophic forgetting” as 

reinforcement learners are historically known to be [29]; in short, will 

overfitting/maladaptation to a particular prior distribution of conditions require learning a 

subsequent distribution “from scratch?” 

The complete environment specification is given by: 

𝒪 = ℝ4 × (ℝ4)𝑛−1 × (ℝ4)m × (ℝ2)l 

𝒜 = [0, 1]2 
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𝑟𝑔𝑝 = −𝑟𝑔𝑒 = number of pursuer − evader collisions 

𝑟𝑖
𝑘 = {

0, 𝜌𝑘 < 0.9

10(𝜌𝑘 − 0.9), 0.9 ≤ 𝜌𝑘 < 1

min(𝑒2𝜌𝑘−2, 10) , 𝜌𝑘 ≥ 1
 

𝑟𝑡𝑒
𝑘 = �̂�𝑔𝑒

𝑘 + 𝑟𝑖
𝑘 ∀𝑘 ∈ 1, … , 𝑛  

Variables are defined as in Section 5.2, with the addition that a subscript e indicates a 

member of the evader team, and subscript p a member of the pursuer team. Reward is 

imputed to these groups separately; that is, there are two concurrent instances of the MA-

POCA algorithm optimizing the parameters of two separate policies. 

6.3. Numerical results 

6.3.1. Self-play 

To begin with, two separate attention neural networks are randomly initialized and 

respectively assigned to the individual members of the pursuer and evader teams. 

Following the example of [4], the teams are pitted against each other successively, and 

checkpoints of their internal weights are taken periodically, in order to condition 

competitive behavior against opponents of a range of skill levels. Since there is no explicit 

stopping condition to indicate a satisfactory baseline, this process continues until the 

reward graph and policy gradient for each model is relatively smooth and stable, illustrated 

in Figure 6.1. 
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Figure 6.1: Self-play training reward trajectory in pursuit-evasion task 

 

Table 6.1: Legend and summary of Figure 6.1 

Team Terminal total reward Training time 

• Pursuit 82.394 6.851 hr 

• Evasion -73.602 6.979 hr 

 

The evasion policy learned in this process exists to provide a putative “self-play” opponent 

for the pursuers and is discarded; the pursuit policy is retained as the “antagonist” for future 

experiments. It is notable that the final reward distribution indicates that the environment 

is favorable to the pursuers. 
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6.3.2. Base task 

The pursuit-evasion game is repeated with the “expert” pursuer team, and the evader team 

given, successively, a randomly initialized attention-based policy neural network, a CNN-

based network, and a permutation-variant feed-forward neural network (as a baseline). 

 

Figure 6.2: Total reward trajectory for tested architectures in pursuit-evasion task 

 

Table 6.2: Legend and summary of Figure 6.2 

Run Terminal total reward Training time 

• Attention -26.564 33.62 min 

• CNN -39.524 1.249 hr 

• Feed-forward -8,588.946 (Training interrupted) 

 

 

Figure 6.2 presents the training trajectory of the net performance outcomes, largely to 

indicate (1) the attention neural network converges in substantially fewer iterations than 
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the CNN equivalent, and (2) the feed-forward network fails to learn the boundary constraint 

within the allotted 2 × 106 iterations, leading to drastically poorer performance than either 

of the permutation-invariant policies (although some improvement is indicated at the very 

last). 

 

Figure 6.3: Group evasion performance trajectory for tested architectures 

 

Table 6.3: Legend and summary of Figure 6.3 

Run Terminal group reward Training time 

• Attention -26.459 33.62 min 

• CNN -39.331 1.231 hr 

• Feed-forward -23.217 (Training interrupted) 

 

 

Figure 6.3 shows a slightly more nuanced picture of the evasion performance by presenting 

only the group reward, i.e. neglecting individual penalties for exiting the soft “bounding 

box.” Here the feed-forward policy (in grey) achieves the best nominal evasion 
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performance, since it largely neglects the distance constraint and maladaptively flees as far 

as possible. Meanwhile, the attention-based policy provides the best representation of the 

intended behavior, quickly converging to a consistent average of 30.25 interceptions per 

episode (averaged over all cohorts). 

6.3.3. Changing environment 

Finally, we examine the evolution of the policies under shifting environment dynamics in 

a time-series reversal design. In this section, training begins in the absence of static 

obstacles for the agents to maneuver around; thus the states of such obstacles are likewise 

unobserved. At timestep 𝑡 = 5 × 105, the obstacles are abruptly enabled, taking the values 

defined in 6.2. At 𝑡 = 1 × 106, they are once again disabled, before finally being re-

enabled at 𝑡 = 1.5 × 106. 

 

Figure 6.4: Attention architecture evasion performance trajectory, with and without periodic switching of 

environment configuration 
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Table 6.4: Legend and summary of Figure 6.4 

Run Terminal reward Training time 

• Attention -27.0775 33.62 min 

• Attention, switching dynamics -28.2093 33.62 min 

 

The attention-based policy neural network trained from scratch under these conditions 

(blue) shows some immediate loss in evasion performance upon these distribution shifts, 

then quickly recovers to approximately its prior efficiency and resuming learning. There is 

very little difference in the final reward trajectory as compared to the original policy trained 

under static conditions (green), demonstrating robustness to catastrophic forgetting and 

perhaps some utility for “lifelong learning” in environments outside the training 

distribution. 

 

Figure 6.5: CNN architecture evasion performance trajectory, with and without periodic switching of 

environment configuration 
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Table 6.5: Legend and summary of Figure 6.5 

Run Terminal reward Training time 

• CNN -49.890 1.231 hr 

• CNN, switching dynamics -170.209 1.233 hr 

 

Figure 6.5 shows the results of the same experiment with the CNN architecture. Here it is 

evident that the policy trained under distribution shift (pink) fails to acquire the prior level 

of evasion performance under static conditions (orange). 

6.4. Discussion 

This chapter exhibits several critical advantages of the attention architecture, including 

unexpected performance gains that greatly aid the case for adoption in practical settings. 

6.3.1. shows that performant competitive equilibria may be reached by attention-based 

policies in “self-play” competition, which evolve smoothly in response to the changing 

environmental conditions created by the opponent. This compounds work such as [4] and 

[30] as evidence for the potential of RL to achieve expert-level performance on broad 

classes of tasks with extremely large state spaces. 6.3.2 shows that even in extremely 

conservative cases, attention overtakes permutation-variant and convolutional 

architectures in final performance, computational complexity and time to convergence on 

a general pursuit-evasion task. Finally, 6.3.3. provides evidence that, among small 

architectures, the relational approach of the attention architecture is uniquely equipped to 

generalize previous learning under abrupt and persistent perturbations of the environment 
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configuration, even when this perturbation introduces novel elements and utilizes network 

parameters which have not hitherto been subject to counterfactual updates.  
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CHAPTER 7. LIMITATIONS 

Several simplifying assumptions have been made in the foregoing experiments, and further 

study will be needed to translate the promise of these results to more practical scenarios. 

For one, communication between agents has been modeled as consistently single-hop in 

these scenarios. That is, if an agent is observable to the putative “network,” its state in the 

local frame may be known without the introduction of error by repeated relative 

measurements and signal transmissions. This is not generally true of multi-agent systems, 

and work is ongoing in the matter of how a consensus state measurement can be reached 

between agents in decentralized multi-agent systems with realistic directed communication 

topologies, even when individual measurements are subject to heterogeneous disturbances 

and interference [31] [32]. 

A more general concern is that, as is often the case for learning approaches to sensitive 

problems, the benefit of reaching unexpected solutions by stochastic optimization is a 

double-edged sword. At the beginning of this work, the example of [4] was used to illustrate 

that iterated competition between learning agents can result in surprisingly authentic, 

novel, animal- or human-like approaches to problems yielding solutions better than would 

have been expected. The authors of that work note, however, that these outcomes do not 

necessarily stop where intended; their learning agents, by the end of training, learn to 

exploit unintended behavior of the physical simulation to execute maneuvers which are not 

replicable in the real world, and which exceed the intended scope of permissible behavior. 

Thus, as in any discussion of autonomous systems, it is incumbent upon us to consider the 

safety of system operators and surroundings. This should motivate directed study of neural 
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network explainability, with particular focus on “decoding” attention weights, as the 

technology progresses and moves toward practical adoption.  
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CHAPTER 8. DISCUSSION AND FUTURE WORK 

8.1. Summary 

The goal of this work was to present a systematic treatment of the application of the 

attention head data structure to multi-agent systems, with an emphasis on how 

decentralized attention-based neural network control policy architectures may enable 

multi-agent reinforcement learning on complex cooperative and mixed cooperative-

competitive multi-agent tasks, even with non-stationary dynamics. In Chapter 1, a 

structural argument is presented for the need for such study. Then, in Chapter 2, a review 

of the literature demonstrates that the problem of multi-agent reinforcement learning for 

general environments with variable numbers of states is a current challenge. Recent 

investigations of attention/transformer architectures for MARL tasks are summarized, 

showing that the translation from discrete, centralized and offline environments to 

continuous, decentralized and online practical applications with nonstationary dynamics is 

an open problem. 

Chapter 4 summarizes the prospective approach of the work: the OpenAI MPE benchmarks 

are adopted and generalized slightly to account for three-dimensional contact physics and 

polyvalence of the sensed dynamical elements.  

Chapter 5 presents a paper demonstrating multi-agent reinforcement learning on a 

cooperative navigation task with continuous control outputs. The number of agents and 

navigation targets are both unspecified at execution time, so the objective is to learn a 

performant control policy for any possible environment within the configuration space. It 

is shown that even with desktop-grade compute capabilities, an attention-based control 
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architecture provides substantial final performance gains over a convolutional neural 

network architecture, and both are vastly superior to a non-permutation-invariant fully 

connected neural network architecture.  Additionally, the attention architecture requires 

substantially less computation time to train to convergence. 

Chapter 6 presents a mixed cooperative-competitive pursuit-evasion environment with 

randomized pursuer, evader and obstacle sets. It is shown that the attention-based evader 

policy is consistently the most successful at delaying interception despite a noted pursuer 

advantage in the environment as specified. Additionally, to study the suitability of the 

architecture for in-situ “lifelong learning” modification of the control policy in response to 

sudden changes in environment dynamics, we show using a time-series reversal experiment 

design that attention enables convergence of the policy under sudden removal of obstacles 

to navigation, with no loss of prior performance when the obstacles are restored, suggesting 

robustness to the “forgetting problem” and generalization of the learned relational features. 

8.2. Future work 

As indicated in Chapter 7, future work is likely to be directed largely by considerations of 

practical reliability. The experiments in Chapters 5 and 6 show robust performance 

assuming single-hop communication without uncertainty due to iterated measurements; 

future experiments should focus on generalizing this performance to more realistic 

communication topologies with corresponding signal degradation [18], [33]. Such work 

might be complemented by the use of a “digital twin” to incorporate the non-idealities of a 

network of physical systems [34], [35]. 
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Some work has been done on the use of attention head weights to interpret the causal 

relationships of observations to decisions, with mixed results [36] [37]. Despite the 

compelling tabular representations that they provide, attention architectures are still subject 

to the difficulties created by compositions of nonlinearities, and the resulting weight-based 

predictions are noisy at best [36] or, more conservatively, not at all usefully related to model 

outputs [38]. Further, much of this work has been driven by the extraordinary efficacy of 

transformers on NLP and image processing tasks; very little study has been done in the 

reinforcement learning setting, wherein poorly-understood policy outputs may have 

consequences for physical systems. For want of a compelling analytic approach at the 

present time, extensive inductive study is needed to show with sufficient confidence that 

neural network control policies can be made stable, or at least to prove under what 

conditions they may be known to be unstable. 

8.3. Conclusion 

The sum of these results demonstrates that, among comparable architectures of similar size, 

decentralized attention-based control policies are uniquely positioned to enable efficient 

group behavior for multi-agent systems in environments with unknown or non-constant 

numbers of measured states. Further, such policy models learn robustly even when the 

distributions of the environment configurations abruptly and persistently shift, a property 

that is unique among approaches known to the author. These represent reason to consider 

the (carefully considered) adoption of reinforcement learning of attention- or transformer-

based policies as a tool in the implementation of multi-agent systems for complex or 

underdefined tasks, when it is not feasible to design such systems explicitly.
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