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Abstract

Facial attribute recognition, the automatic detection of human-describable vi-

sual features from face images, has important applications across numerous domains

including biometrics, visual search, and accessibility. While deep learning has revo-

lutionized the field of facial recognition, the learned representations often lack inter-

pretability. This dissertation argues for an approach that explicitly models face im-

ages as semantically meaningful facial attributes. Representing faces using attribute

vectors instead of embeddings can yield more interpretable models that facilitate

the identification and mitigation of biases, while also reducing the need for frequent

retraining.

The key contributions of this dissertation span four areas: (1) A novel technique

for interpreting the visual features learned by deep face attribute models, based on

concepts from human cognition research. (2) An improved facial attribute recognition

method that constrains deep networks to only utilize information from spatially rel-

evant regions for each attribute. (3) An unsupervised approach to discover the most

visually discriminative groupings of images, to address issues of attribute choice in

existing datasets. (4) DoppelVer, a challenging new face recognition benchmark com-

prised of look-alike individuals, which reveals the difficulty of modeling fine-grained

similarity between highly similar classes.

Through extensive experiments, this dissertation demonstrates the effectiveness

of the proposed techniques for improving the performance, generalization, and inter-

pretability of facial attribute recognition.

The overarching conclusion is that facial attribute recognition benefits from a

research paradigm that combines deep learning with attribute modeling. Such an

approach yields face recognition systems that are interpretable, fair, and efficient.

This dissertation motivates further research into novel model architectures, training

schemes, and benchmarks to extend these results and realize the full potential of facial

attribute recognition for both scientific progress and real-world impact in domains like

biometrics, human-computer interaction, and accessibility technology.
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Chapter 1

Introduction

Facial attributes are human-describable visual features of the face such as age, gender,

ethnicity, emotion, hair color, nose size, and presence of a beard. The automatic de-

tection of these attributes has important applications across many domains including

law enforcement, security, human-computer interaction, visual search, and market-

ing. From a research perspective, facial attributes are utilized for topics like facial

recognition, biometrics, image retrieval, image generation or augmentation, human

computer interaction, and few shot learning.

Research into automatically recognizing high-level facial attributes like gender

and race dates back to at least 1990 [41]. Facial attribute recognition was first popu-

larized in 2008 with the FaceTracer search engine [73]. Despite the relative youth of

the field, research interest in facial attribute recognition has declined over the past

decade. This is largely due to the transformative impact of deep learning, which has

enabled end-to-end models that operate holistically, without explicit facial attribute

detection [24, 149, 160].

The allure of deep learning is understandable. Deep neural networks can au-

tomatically learn to map from raw pixels to target outputs, obviating the need for

intermediate steps like face detection, facial feature extraction, and attribute classifi-

cation. What’s more, deep learning models frequently outperform traditional machine

learning pipelines. However, this power comes at a price. The feature representations

learned by deep networks are inscrutable to humans, making it difficult to under-

stand how the model is making its decisions. Spurious correlations and biases in the
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training data can be picked up and amplified. Generalization to new identities and

environments is unreliable. Perhaps most importantly, improvements in deep model

performance do not necessarily translate into insights that grow human knowledge.

Machine learning, at its core, began with the promise of modeling human per-

ception. Deep learning has evolved this goal into something else entirely, shifting the

focus to performance on benchmark tasks. In this dissertation, I am interested in illu-

minating the mechanisms behind deep networks to encourage a better understanding

of human recognition and perception.

The use of semantically meaningful attributes as an interim task provides four

distinct advantages over holistic deep learning:

• Transparency and interpretability

• Bias detection

• Data efficiency

• Scientific understanding

To be clear, we are not arguing against deep learning as a tool. Deep neural net-

works have revolutionized many aspects of artificial intelligence, from computer vision

to natural language processing. However, we believe that for facial analysis tasks, it

is important to consider deep learning’s limitations and explore alternative paradigms

that prioritize interpretability, fairness, efficiency, and human understanding.

In addition to the aforementioned benefits of attributes in deep learning recogni-

tion frameworks, facial attributes provide significant value for accessible technology.

With an aging population in the United States and countries across the world, more

and more individuals are losing their sight [63, 81]. Work in facial attribute recog-

nition can benefit these individuals. Wearable devices can be developed that can

provide feedback to users, giving detailed descriptions of faces. Imagine a grand-

mother meeting her new grandchild for the first time with such technology. Facial
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attributes, as well as human describable features of visual scenes more broadly, can

give individuals back some form of their sight through language.

This dissertation presents research that advances the field of facial attribute

recognition. The overarching goal is to enhance facial attribute recognition capabil-

ities through a deeper comprehension of the descriptive visual characteristics of the

human face. The key contributions are as follows:

1. A novel approach to interpret the visual features utilized by deep facial attribute

models, drawing insights from human cognition research.

2. An improved facial attribute recognition method that constrains deep networks

to utilize information only from spatially relevant regions for each attribute.

3. An unsupervised technique to discover the most visually discriminative group-

ings of images, addressing the issue of attribute selection in existing datasets.

4. DoppelVer, a challenging new face recognition benchmark comprising look-alike

individuals, which highlights the difficulty of modeling fine-grained similarity

between highly similar classes.

The organization of this dissertation is as follows: In Chapter 2 we provide nec-

essary background to the topics presented and research discussed. Specifically, it

reviews the field of attribute recognition within computer vision, as well as feature

extraction for face verification as a whole. Chapter 3 explores the perceptions of deep

vision models when making facial attribute predictions. By utilizing concepts from

human cognition research we develop a technique for interpreting the visual features

utilized for attribute prediction. Based on our findings, Chapter 4 details an improved

method of facial attribute recognition. The augmentation to the learning process en-

forces that deep vision models only utilize information from spatial locations on the

input image which contain information that is relevant for detecting each attribute.

Chapter 5 addresses issues in publicly available attribute recognition datasets. An

issue shared by nearly all publicly available attribute data is that of attribute choice.
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We present a method for automatically grouping images into the most relevant cate-

gories based on visual information. Chapter 6 introduces a novel benchmark for facial

recognition tasks. The dataset is comprised of doppelgangers, which are individuals

with high visual similarity. DoppelVer features a novel axis of difficulty when com-

pared to other benchmarks. We show that state-of-the-art facial recognition methods

fail to effectively model similarity between similar classes. Chapter 7 concludes the

dissertation with a summary of our findings and discusses the meaningful trends,

which might motivate important future research directions.
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Chapter 2

Background

Parts of this chapter have been previously published. The relevant works are detailed

in Appendix A: 1, 2, and 3.

This chapter provides background research related to the key concepts discussed

in this dissertation. We begin by thoroughly reviewing the literature on visual at-

tributes, with a particular emphasis on facial attributes. This information is relevant

throughout the dissertation. Next, we offer insights into gender recognition in humans

and model interpretability, which are primarily pertinent to the content covered in

Chapter 3. We then discuss works from the field of semantic segmentation, as this

background is relevant to Chapter 4. Furthermore, we provide an overview of image

clustering, which is related to the work presented in Chapter 5. Finally, we review

facial verification and existing benchmark datasets, establishing the necessary back-

ground for Chapter 6.

2.1 Facial Attributes

Facial attributes – human-describable features of faces – were introduced to the com-

puter vision community in 2008, with their first application being image search [73].

Kumar et al. identified a problem with the image search engines of the time, realizing

that simple descriptive search terms would not produce expected face image results.

Attributes were then used for face recognition and verification as well as, again, for

image search and retrieval [74, 75, 141] before attribute recognition itself became the
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focus of research.

Well before the introduction of facial attributes, recognition of gender and age

from faces were well-established problems in the computer vision community [37,

115, 126]. One of the earliest works on gender recognition from faces utilized a neural

network that predicted sex directly from image pixels [41]. This method, like many

others, required the face images to be scaled, aligned and cropped in order to perform

well. In [21], the authors also took a holistic view of the face, creating so-called holons

– reduced feature vectors learned via an auto-encoder – to perform identity, emotion

and gender recognition. Research has shown that both age and ethnicity play a

big role in gender recognition. For example, gender recognition performance has

been shown to degrade when models are trained on a mixture of ethnicities, rather

than focused on a target ethnicity [38]. In addition, gender recognition performance

significantly depends on age, with young males and older females posing challenges

for the models [8, 43].

One of the earliest works on age recognition focused on cranio-facial development

theory, developing models to describe the changing shape of the face as it aged [76].

Focusing on texture as well as shape, active appearance models – statistical models

– were developed for age recognition from face images [78]. Success was also found

in age estimation by considering a collection of images from an individual in order to

determine the aging pattern for that person [39]. Age estimation from face images

remains a very challenging problem in the computer vision community because each

person ages differently, and so it is a profoundly individual problem [125]. Adding

to the challenge of age recognition problems, they can be considered a categorical

classification problem (e.g. to what age group does this face belong?) or a regression

problem (e.g. what is the age of this face?), depending on the context and data

available.

Attributes exist in domains other than faces, including pedestrians, objects, and

actions. An attribute is simply a describable feature, and so it lends itself nicely

to many problems in computer vision. Pedestrian attributes can include clothing,
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gender, hair color and length, as well as part visibility and pose [183]. Attributes of

objects can include multiple categories: shape, color, texture, part, and material as

well as global or local presence of the attributes [9, 31]. Attributes of actions include

pedestrian attributes, object attributes as well as action-specific attributes such as

environment and motion [89].

The problem of attribute recognition has gained a lot of attention in the research

community over the past decade, mostly due to the wide applicability of attribute

prediction for real-world applications. Pedestrian attributes have been used in surveil-

lance for re-identifying individuals and searching for suspects based on a description

of their visual attributes [98]. The application of attribute detection to surveillance

is ultimately an image search problem where a query of attributes is provided and

the most relevant results are returned. Thus, most image search techniques can di-

rectly correlate with surveillance, and many have utilized facial attributes [137, 141].

Applying attribute recognition to surveillance can lead to quicker identification and

save a significant amount of human hours.

Another application of attribute recognition is in human computer interaction

(HCI). Many applications that involve HCI benefit from knowledge of the user. For

example, proper greetings rely on gender information (e.g. Mr., Ms.). A user’s ex-

pression can determine whether or not they are enjoying an application (e.g. smiling

or frowning). More specifically, attributes have been used by companies such as Face-

book in order to improve accessibility of their platform, providing image descriptions

to those with visual impairments [113]. Other applications of facial attributes in HCI

include active authentication, the process of continuously authenticating a user on

a device. Attributes have already been successfully deployed for this problem [134,

135, 136]. Being describable features by definition makes facial attributes widely

applicable to many real-world problems.

Focus in attribute research has been dedicated to the general discovery of at-

tributes for building datasets and vocabularies for preexisting data. Note that these

approaches operate in a broader scope than just facial attribute recognition. [9] made
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strides to automatically aggregate and label data from noisy internet sources. They

cite work that uses gender, race, and other attributes to improve face verification

and search. Expanding on this concept, the authors mine websites that have diverse

images and automatically label the images based on captions. This allows for diverse

vocabulary discovery and improved predictions across multiple object types. A simi-

lar approach, with the goal of learning attributes in large datasets, draws connections

between semantically unrelated objects by looking at their visually describable at-

tributes [131]. For example, zebras, beetles, and street crossings all share the stripes

attribute. With the development of several large-scale labeled datasets for the prob-

lem of facial attribute recognition, the field has grown significantly.

In the following sections we detail the research in facial attribute recognition

from images and videos. We will also present work in the general field of attribute

recognition, when applicable. All the while we will be introducing datasets and

discussing methods based on traditional machine learning and computer vision as

well as those based on deep learning.

2.1.1 Related Research

Attributes are not solely applicable to faces. They have been successfully applied to

objects, pedestrians and actions. Here we provide a brief history of each field, from

early works to state-of-the-art.

Attributes of objects include textures, colors, patterns, shapes and many other

describable features. Early methods for attribute recognition were focused on aiding

object recognition. These initial works recognized basic patterns, textures, and col-

ors [33, 59, 79, 93]. As researchers became more active in the field, the focus shifted

to describing objects, rather than simply naming them [31, 120]. Many researchers

utilized object attributes for few and zero-shot learning as they provide a compact

description of objects that a system may not have seen previously. In [165], Wang et

al. focused on dependencies between objects and attributes, improving both attribute

and object recognition. [147] identifies attributes (e.g. shape, color, material) of 3D
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objects with the goal of helping autonomous robots understand and interact with the

world around them.

In [157], the authors present a dataset (AirplanOID) and a method for under-

standing objects in fine-grain detail, using attributes. The dataset contains images

of airplanes and attributes such as facing direction, is-airline, location, etc. More

recently, Wang et al. further explore attributes for object recognition [166]. Their

approach utilizes attributes as additional information during model training, requiring

no attribute labels at test time.

Attributes of actions include descriptive features such as environment, pose, ob-

jects involved, etc. that can be used to break an action down into its component

parts. One of the first works in action attribute recognition modeled the human vi-

sual cortex. This was accomplished by applying motion-direction sensitive units to

video inputs, thereby recognizing human body, head, hand and general animal ac-

tions [58]. [89, 175] and [140] all focused on identifying action parts in still images.

In [89], the authors used attributes of a scene to understand actions. Yao et al. used

a combination of given action verbs (e.g. bending, squatting, riding, etc.) along with

poselets and objects to predict actions from still images [175]. In [140], the authors

presented a method which learns a template for a variety of actions in order to lo-

calize actions in a frame. Zhang et al. presented a multi-task learning method in

which attributes and actions are learned simultaneously [184]. [148] and [13] focused

on attributes for action recognition in 3D. State-of-the-art methods rely on supervised

deep learning in order to recognize attributes of actions [17, 66].

Attributes of pedestrians include whole-body attributes such as clothing, pose,

etc. as well as facial attributes. Identifying attributes in this context can be challeng-

ing due to viewpoint and extreme pose changes. With a focus on gait analysis, [180]

used K Nearest Neighbors and spectral clustering to identify attributes such as gender

and age from gait information including speed, acceleration, rhythm, etc. In work

done by Deng et al., support vector machines were trained on a large-scale dataset to

recognize attributes of pedestrians [25, 26]. The authors collected the PETA dataset
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for these works, which is still a benchmark in the field [26]. In recent years, deep

learning has become the standard for pedestrian attribute recognition, with the focus

on convolutional and recurrent neural networks [18, 98, 178, 186, 190]. Convolutional

neural networks are useful for localization of pedestrian attributes, while recurrent

neural networks are successful in identifying attribute relationships. Automatic recog-

nition of pedestrian attributes has applications in soft-biometrics, surveillance and

autonomous vehicle guidance.

2.1.2 Theory and Application

We review work on facial attribute recognition from images and video and separate

work into two categories: traditional methods and deep learning.

2.1.3 Attribute Recognition with Traditional Methods

Prior to the advent of deep learning in all aspects of computer vision, other tradi-

tional methods, such as support vector machines were used for attribute recognition.

In 2008, Kumar et al. built a face search engine that they called FaceTracer [73].

This search engine operated on user queries involving one or more of the available

attributes. For example, “smiling Asian men with glasses.” The search engine would

then return face images that exhibited the desired traits. The search engine was built

on a set of attribute classifiers, capable of identifying binary facial attributes in an

image. The attribute classifiers were built on four feature sets: face region, pixel data

color space (e.g. RGB, HSV), normalization method, and data aggregation method.

Support vector machines (SVMs) were then trained for every region, feature type,

and parameter combination. Adaboost is then run on this set of “local SVMs” to

generate a set of strong classifiers. Finally, a global SVM is trained by finding the

union of the strong classifiers. Along with the FaceTracer search engine, Kumar et

al. introduced a dataset by the same name. At the time of publication, the dataset

consisted of over 3.1 million face images, 17,000 of which were manually labeled with

10 attributes: age, gender, race, hair color, eye wear, mustache, expression, blurry,
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Figure 2.1: Sample images from the FaceTracer dataset [73].

lighting, and environment. Sample images from the FaceTracer dataset are shown in

Figure 2.1.

A year later, the same group shifted their research focus toward face verification

using attributes [74]. Face verification aims to address the following question: given

two images, do they belong to the same person? The authors developed two different

methods to generate descriptions of faces, using attribute and simile classifiers. SVMs

are used as attribute classifiers, trained on a collection of low-level features, similar

to the previous work [73]. They introduced additional low-level features such as edge

magnitudes and gradient directions. As a part of this work, the authors introduced a

new dataset, PubFig, for face verification. Sample images from the PubFig dataset

are shown in Figure 2.2. Additional data was collected in order to train facial attribute

classifiers. 1000 images were labeled for each of 65 binary attributes using Amazon

Mechanical Turk. Simile classifiers were used as well to identify the similarity of a

face to a set of reference faces. For each reference individual, a classifier is trained

on each region to distinguish that region from the same region on other faces. These

simile classifiers allowed for comparisons between faces without requiring additional

labels. The final face verification system utilized a hybrid of attribute and simile

classifiers and achieved state-of-the-art accuracy. After the release of PubFig, the

authors tested their attribute classifiers on all images in the dataset, providing 65

attribute scores for each image along with the image data. Some methods utilized

these scores as labels in order to train attribute classifiers [136]. In 2011, the same
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Figure 2.2: Sample images from the PubFig dataset [74].

group again used facial attributes for improved face verification and image search [75],

extending the set of attributes to 73.

Several groups realized the potential of facial attributes to improve image search

and retrieval with natural queries [73, 137, 141, 156]. With a focus on surveillance,

Vaquero et al. utilized pedestrian attributes for search and retrieval in low-quality

video [156]. Others have explored different ways to perform multi-attribute search

queries [137, 141]. [141] improved over previous ranking methods that required indi-

vidual models for each search term. Instead they used correlations amongst attributes

to provide additional information to the search query. Their Multi-Attribute Retrieval

and Ranking (MARR) method benefited from the strong relationship amongst at-

tributes. The authors labeled a subset of the Labeled Faces in the Wild (LFW)

dataset [56] (9992 images) with 27 binary attributes (a subset from the work of [74]).

A year later, [137] focused on developing a meaningful way to combine different at-

tribute scores. They construct a normalized score space based on Extreme Value

Theory. The authors aimed to convert raw SVM output scores to a normalized score

that would be more consistent with human labeling as well as with the scores of

other attributes. After converting the scores, they were able to fuse them to allow for

multi-attribute queries in a shared score space. The authors use the method of [75]

to extract attribute scores from face images.

All of the publicly available datasets up to this point considered facial attributes

to have binary values, that is, the attribute is either present or it is not. This can
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be a very challenging way to view the problem when many attributes are subjec-

tive or exist on a gradient (e.g. some hair is more blond than others). Parikh et

al. aimed to address this issue in [121], focusing on so-called “relative attributes.”

The authors utilize the concept of relative attributes to generate a ranking function

for each attribute allowing for a new type of zero-shot learning in which they can

describe unseen objects relative to previously seen ones. They propose a learning-to-

rank formulation that learns a desired ordering of the training images. This learning

framework resulted in a model that could better capture the strength of a particular

attribute compared to a binary classification model. The authors utilized a subset of

the PubFig dataset in order to learn their ranking functions.

Labeling attributes is a time-consuming process, with each image needing multi-

ple (over 70 in the case of [75]) labels. This became a limiting factor in facial attribute

research very quickly. In [10], the authors introduce a likeness measure as a way to

utilize describable features without requiring an extensive labeling process. The goal

of this work is to improve face verification performance. For each pair of subjects, the

authors create a classifier that is capable of distinguishing between the two subjects.

This process results in many likeness classifiers, or “Tom v. Pete” classifiers, as they

call them. Face images are classified using this collection of “Tom v. Pete” classifiers

giving a set of scores that indicate the person’s likeness to a particular subject in a pair

classifier. This set of scores is then used as a subject’s feature vector which is in turn

used for face verification. This work resulted in human-describable features of faces,

in the form of their likeness to other individuals. That is, “this person looks more

like subject 1 than subject 2, and more like subject 3 than subject 2” etc. [10] built

on the concept of automatically generated attributes as seen in the simile classifiers

of [74].

2.1.4 Attribute Recognition with Deep Learning

In 2015, Liu et al. introduced two large-scale benchmark datasets for the problem of

facial attribute recognition in unconstrained images – CelebFaces Attributes (CelebA)
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Figure 2.3: Sample images from the CelebA dataset [96].

and Labeled Faces in the Wild Attributes (LFWA) [96]. CelebA contains over 200,000

images each labeled with forty binary attributes, which are a subset from those used

in [75] . The CelebA dataset contains a wide range of images including full body and

close cropped faces. The dataset includes these original images as well as cropped

and aligned face images. Sample cropped and aligned images from CelebA are shown

in Figure 2.3. Along with CelebA, attribute labels were added to the popular face

verification benchmark LFW, creating LFWA. LFWA contains roughly 13,000 images,

labeled with the same forty binary attributes from CelebA. Some sample images from

LFW can be seen in Figure 2.4. CelebA and LFWA were the first (and only to

date) large-scale datasets introduced for the problem of facial attribute recognition

from images. Prior to CelebA and LFWA, no dataset labeled with attributes was

large enough to effectively train deep neural networks. With the introduction of this

dataset, many deep learning methods were used for facial attribute recognition [51,

96, 130, 134, 161].

Along with CelebA and LFWA, Liu et al. introduced a method for attribute

recognition that involves two networks: LNet and ANet. LNet is a localization net-

work that localizes the face with weak attribute supervision, and ANet uses the

localized face to predict facial attributes. LNet was built on the widely popular

AlexNet [72] architecture trained on the ImageNet object recognition dataset [23].

After being pre-trained on the large-scale Imagenet dataset, LNet was fine-tuned on
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Figure 2.4: Sample images from the LFW dataset [56, 96].

the original (full body, unaligned) CelebA images using weak attribute supervision.

With the weak supervision from CelebA’s facial attributes, LNet was able to accu-

rately localize the face in a given image. Once the face was localized by LNet, ANet

was trained from the cropped face image. ANet was also built on the AlexNet ar-

chitecture, pre-trained on ImageNet, and fine-tuned on CelebA. This two-network

scheme produced impressive results on CelebA and LFWA.

In 2016, Wang et al. introduced a method dubbed “Walk and Learn” in which

they utilized face tracks as additional supervision for facial attribute recognition [161].

The authors collected additional data by attaching wearable cameras to their bodies

and walking around different areas of New York City. They used face tracking to

identify individuals in every frame and used face verification to pre-train their net-

work. Their deep network was then fine-tuned on the CelebA dataset, producing

improved results on some challenging attributes over [96].

Just a year after the release of CelebA and LFWA, many researchers began to

notice some very serious label imbalance issues. In particular, [130] focused on ad-

justing the label imbalance during network training. The authors introduced a Mixed

Objective Optimization Network (MOON) capable of learning all attributes at once

while at the same time adjusting for label imbalance. We note that prior to this

work, individual models were learned for each attribute, including all of the methods

previously discussed [73, 74, 75, 96, 161]. This was incredibly inefficient and did

not take advantage of a shared representation for all attributes. MOON addressed
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both of these issues by utilizing the popular VGG-16 network architecture [142] and

training from random initialization on CelebA. MOON was the first to combine at-

tribute learning into one network, address dataset imbalance, and train on CelebA

from scratch rather than fine-tune. MOON addressed label imbalance by calculat-

ing source and target distributions for each attribute and applying a weight to the

backpropagation within a euclidean loss in order to adjust for the distribution dis-

crepancies. The source distribution for an attribute was the distribution of positive

and negative instances of the attribute in CelebA, and the target distribution could

be set to any desired distribution, though the authors experimented with an even

target distribution. MOON produced impressive results on CelebA and highlighted

the severe imbalance issues associated with it.

[30] also tackled the problem of multi-task learning for facial attribute recogni-

tion, utilizing a Restricted Boltzmann Machine (RBM) rather than a CNN. Their

model is trained with both the aligned face images from CelebA and facial landmark

points as inputs. The authors extend RBMs to handle multiple tasks and multiple

inputs naming it the Multi-Task Multimodal RBM (MTM-RBM). The MTM-RBM

compares favorably with [96]. To date this is the only method for facial attribute

recognition that utilizes an RBM model.

With the introduction of deep learning in the facial attribute domain, many

began to wonder how robust these models truely are. In [129] they aim to address this

question by introducing an adversary. They develop a Fast Flipping Attribute (FFA)

method that generates adversarial examples that cause classification errors. The FFA

method identifies directions which can generate adversarial examples by inverting the

classification score and calculating the gradient with respect to the inverted score.

Searching along those gradient directions results in images that produce classification

errors. The authors found that some attributes (e.g. wavy hair and wearing necklace)

were more robust to adversarial attacks than others (e.g. big nose and young).

Several groups began to address the problem of facial alignment in attribute

recognition. In [48], the authors introduce the Alignment-Free Facial Attribute Clas-
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sification Technique (AFFACT), which performs data augmentation allowing a deep

convolutional neural network to recognize attributes without first aligning the face

images. The AFFACT method performs augmentation of the dataset through scal-

ing, rotation, shifting, and blurring. Training ResNet [52] architectures, the authors

applied AFFACT data augmentation to CelebA and were able to achieve state-of-

the-art performance. [28] also aimed to address the problem of attribute recognition

from unaligned face images by utilizing a cascade network capable of identifying dif-

ferent regions of the face and recognizing attributes without alignment. Their face

region localization network is capable of detecting face regions based on weakly su-

pervised attribute data. Rather than performing data augmentation like [48], this

work focused on part-based approach to attribute prediction.

Only two years after the introduction of CelebA and LFWA, performance on

the benchmark datasets began to plateau. In [51], the authors aimed to improve at-

tribute recognition accuracy by taking advantage of relationships amongst attributes

both implicitly and explicitly. The authors introduce a new deep CNN architecture

for attribute recognition: Multitask CNN (MCNN). MCNN had fewer than 16 million

parameters compared to the 138 million parameters in the VGG-16 model used for

MOON. MCNN took advantage of attribute relationships by learning a shared rep-

resentation at the lower levels of the network and branching off into spatial attribute

groupings at the higher levels of the network. Finally, attribute relationships were

learned at the score level with an auxiliary network (AUX) that was attached to the

trained MCNN. The combined network, MCNN-AUX utilizes attribute relationships

in three different ways and produced state-of-the-art results on CelebA and LFWA.

Aiming to utilize localization cues to improve facial attribute prediction, [61]

combined the problem of facial attribute recognition with that of semantic segmenta-

tion. Semantic segmentation requires predicting a label for every pixel in an image,

producing a class map over the entire image. The authors aggregated face segments,

provided as a part of the Helen Dataset [80], to create seven segments: background,

hair, face skin, eyes, eyebrows, mouth and nose. They utilize a gating mechanism
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to focus the attribute recognition network on regions of interest for a particular at-

tribute. For example, they focus mouth-related attributes (e.g. smiling, mouth open)

on the mouth segment provided by the segmentation method.

Along a similar vein, [53] uses generative adversarial networks (GANs) to gen-

erate abstraction images that are then used to improve facial attribute recognition

through a multi-stream network acting on the abstraction and original images. The

abstraction images produce a kind of facial segmentation with textual information,

localizing parts and providing additional supervision to the facial attribute recogni-

tion task. The multi-stream abstraction image formulation for attribute recognition

outperformed the recent work of segmentation for improved facial attribute recogni-

tion [61].

As a follow-up to MOON, [49] introduced a method called “Selective Learning” to

perform balancing of multi-label datasets during training of a deep neural network in

order to address the label imbalance in CelebA. The authors introduce a new CNN –

Attribute CNN (AttCNN), which has roughly 6 million parameters, compared to the

16 from MCNN [51]. In MOON, the labels were balanced by considering an overall

dataset source distribution for each attribute. In [49], the authors note that this

does not fully address the problem as each batch that is used to train the CNN may

be more or less balanced than the overall training set. The author’s solution was to

perform label balancing at the batch level. Every attribute in each batch was balanced

according to a desired target distribution by sampling from the over-represented class

and weighting the underrepresented class. The Selective Learning method produced

comparable results to MOON on CelebA and LFWA. The authors also introduced

a new evaluation dataset: the University of Maryland Attribute Evaluation Dataset

(UMD-AED). UMD-AED consists of roughly 3,000 images sparsely labeled with facial

attributes. Some sample images from UMD-AED are shown in Figure 2.5. Each of

the forty attributes in CelebA has fifty positive and fifty negative instances in UMD-

AED, allowing for balanced testing of facial attribute recognition methods. Selective

Learning and AttCNN significantly outperformed MOON on UMD-AED.
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Figure 2.5: Sample images from the UMD-AED dataset [49].

Most research in facial attribute recognition focused on unconstrained images.

Hand et al. shifted the focus to video in [50] using weakly labeled video to train at-

tribute prediction models. The authors labeled four frames in every video of YouTube

Faces [172] – a video dataset collected for face verification – with the forty binary

facial attributes from CelebA. They introduced several methods for utilizing weakly

labeled frames to improve attribute prediction in video: Motion Attention and Tem-

poral Coherence. Their motion attention mechanism focused attribute models on

areas of motion in the video, reducing overfitting, and the temporal coherence con-

straint encouraged nearby frames to have similar network responses, relying on the

fact that nearby frames in a video will likely have similar – but perhaps not the same

– attributes. Combining motion attention and temporal coherence, the authors were

able to train a deep CNN on unlabeled video frames from YouTube Faces, outper-

forming traditional fine-tuning methods. [50] was the first, and only to date, attempt

to utilize video for facial attribute recognition.

We present the average accuracy over all attributes in CelebA for all state-of-

the-art methods in Table 2.1. We can see that since the introduction of the dataset

in [96], only a four percent gain in accuracy has been achieved on average. This

emphasizes that there are many challenges that have yet to be addressed in the field

of facial attribute recognition.

The field of facial attribute recognition is still a very young one, having been

introduced just over a decade ago. Since it’s introduction, huge strides have been
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made, with current systems capable of recognizing facial attributes in unconstrained

images and video. There are many open research directions that will lead to signifi-

cant improvements in the state-of-the-art in facial attribute prediction. With many

applications relying heavily on the recognition of human-describable features, the field

of facial attribute recognition will be of great interest for many years to come.

Table 2.1: Average attribute classification accuracy across all forty attributes in
CelebA for current state-of-the-art methods.

Method Accuracy
Liu et al. (LNet+ANet) [96] 87.30%
Ehrlich et al. (MTM-RBM) [30] 87.00%
Wang et al. (Walk and Learn) [161] 88.00%
Rudd et al. (MOON) [130] 90.94%
Gunther et al. (AFFACT) [48] 91.97%
Hand et al. (MCNN-AUX) [51] 91.30%
Kalayeh et al. [61] 91.80%
Ding et al. [28] 91.23%
Hand et al. (AttCNN) [49] 91.05%
He et al. [53] 91.81%

2.2 Model Interpretability

The rapid growth of complex and opaque decision systems, particularly CNNs, has

led to their widespread application in critical areas such as medicine, security, and

finance. The increasing accessibility of these models through software libraries like

Tensorflow [1] and PyTorch [122] has further contributed to their ubiquity in both

research and industry. However, the lack of interpretability in these “black box”

systems, where the internal logic is hidden from the user, poses significant practical

and ethical challenges [2].

Adadi et al. identify four key motivations driving the field of explainable AI

(XAI): justification, control, improvement, and discovery [2]. While various defini-

tions of interpretability exist within the machine learning community, a formal tech-

nical meaning remains elusive. Lipton suggests that an interpretable model can be
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characterized by its transparency (how does the model work?) and post-hoc expla-

nation (what more can the model tell us?) [88]. In this work, we consider a model

explainable if its decisions are consistent with human intuition and can be compared

to human decision processes.

Existing approaches to interpretability can be broadly categorized into reverse

engineering and design of explanations. Reverse engineering techniques reconstruct an

explanation for a decision based on a dataset of training decision records, while design

methods develop an interpretable predictor model alongside the decision set [42]. A

third approach, simplifying models to fit within a small class of explainable systems,

often sacrifices accuracy and performance for the sake of simplicity and does not

contribute to the advancement of XAI.

Reverse engineering methods, particularly those tailored to CNN architectures,

include visualizations such as heat maps and bounding boxes [88]. Heat mapping

techniques, such as DeConvNet [181], Guided Backprop [102, 145], CAM, and Grad-

CAM [16, 118, 138, 189], highlight important regions within an input image for dis-

crimination. However, these constructions are heuristic notions of image saliency [35]

and are limited to isolated examples, unable to provide overarching generalizations

of a model’s attention.

Design techniques, such as LIME and SHAP, explain classifier predictions by

learning comprehensible sparse local predictors around the decision [99, 128]. How-

ever, Slack et al. demonstrate that post-hoc explanation techniques relying on input

perturbations can be unreliable and easily manipulated to provide innocuous expla-

nations that do not reflect underlying biases [143].

Kim et al. demonstrate that saliency maps should be utilized for explainability

with caution, as some methods produce very similar explanations for trained mod-

els as they do for models with randomized network weights [3]. When using visual

analysis of explanations alone, inductive bias can play a role in our interpretation of

visual features which are most important to the model. Another issue with gradi-

ent based approaches is that they are only applicable to models based on artificial
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neural networks. Finally, many methods (reverse engineering or design techniques)

which produce an interpretation of the input features that are important to a model’s

prediction only provide an explanation for a single sample at a time.

There has been limited work in the explanation of classifiers used in facial pro-

cessing. Most effort has been applied to facial recognition systems. In the context

of facial processing a common predictive task is that of face verification (i.e. given a

pair of images, predict if they depict the same identity). In this case, explanations

should be provided to show which visual features were utilized to make a prediction

of same or different. An issue in explaining model decisions is that humans utilize

contrastive explanations [2]. For example, ”identity A’s eyes are darker than identity

B’s eyes.”

Rajpal et al. provide the performance of LIME on various facial recognition

datasets [124]. The authors tasked human labelers with scoring the utility of the

explanations. Another approach to providing meaningful interpretations of vision

model perceptions is found in the work of Williford et al. [171]. An explainer is

provided with three images: a probe, a mate, and a non-mate. The probe and the

mate are real images of the same identities. The non-mate is an image of the identity

which has been altered such that a prominent visual region has been swapped with

that of another person. Their algorithms are trained to produce a saliency map which

reflects the pixels which make the mate more similar to the probe than the non-mate.

A significant missing contribution is that of global, model agnostic explainability

for facial processing models. Global explainability is important as it provides insight

into the features used by the model across many visual environments. Model ag-

nosticity is important as visual processing systems may have varying computational

constraints.

2.3 Semantic Segmentation

Semantic segmentation is a valuable task in the field of computer vision. The task is to

assign one or more labels to each pixel in an input. Unlike a classification task, which
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predicts which semantic concepts are depicted in an image, semantic segmentation

also finely localizes where such concepts occur. Example applications of semantic

segmentation are autonomous driving, pedestrian recognition, and computer aided

diagnostics [12, 32, 34, 155, 191, 192].

Face parsing, also known as facial semantic segmentation, is a specialized sub-field

of semantic segmentation that focuses on segmenting facial regions into semantically

meaningful parts, such as skin, hair, eyes, nose, and mouth. Traditionally, Conditional

Random Fields were used by all state-of-the-art methods for face parsing [60, 144,

168]. As in many other fields, deep learning became the new state-of-the-art [85, 91,

94, 100, 144].

2.4 Image Clustering

In this section, we detail two broad classes of methods for image clustering. The first

class of methods that we describe jointly learn to compress images into dense repre-

sentations and cluster the dense representations into classes. Fard et al. [174, 108]

propose methods that tune an autoencoder to generate k-means friendly representa-

tions. In [173], Xie et al. pass samples through an encoder to generate representations,

cluster with k-means and correct the cluster assignments with a clustering loss based

on a KL divergence between soft assignments and their target distribution. Borrowing

from Xie et al., [44] and [45] use the same learning framework with an undercomplete

autoencoder to preserve the local structure of input data. Wang et al. [164] pass the

input image through an orthogonal autoencoder prior to applying spectral clustering.

Affeldt et al. [5] use multiple autoencoder architectures to generate multiple repre-

sentations from the input data. The representations are then clustered with spectral

clustering. The authors of [15] propose an architecture in which a neural network

reduces the dimension of input images. The learned representations are clustered and

the corresponding pseudo labels are used as supervision for training the network.

The second group of works that we highlight are miscellaneous techniques for

improving cluster performance. Li et al. [83] use a boosting method to train on easier
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samples, then gradually expose the model to more challenging data. [47] utilizes an

ensemble of classifiers to generate cluster assignments and compute a similarity graph.

Finally the similarity graph is pruned to extract high confidence cluster assignments.

[27] uses a modified VAE in which the latent space is sampled from a mixture of

Gaussian distributions. Clustering is achieved by calculating how far the mixture

distribution is from the normal distribution. Lastly, Li et al.[84] implement multi-

view autoencoders for multi-view data with shared weights. Their network structure

has a deep embedding clustering layer which recalculates cluster centers each iteration.

2.5 Face Recognition and Existing Benchmarks

2.5.1 Face Recognition

Face recognition is separated into three well-defined steps: (1) face detection and

localization, (2) extraction of features from the detected face, and (3) classification

(verification or identification) [70]. The first task is to decide whether or not there are

faces in an image. If there are one or more faces, then the system identifies bounding

boxes for each face. The feature extraction step generates a feature vector from the

localized face. This feature vector should be discriminative enough to separate images

of one identity from images of other identities. Lastly, there is the classification step.

This is separated into two classes of techniques: identification and verification. In

the identification scenario the system is aware of a finite number of identities and it

should learn to match each image sample to one identity class. For the verification

task the model is only provided with supervision in the form of a binary label which

represents either same or different, and so pairs of images are compared at each step.

Any face recognition system that is meant to be deployed in “the wild” will need to

perform all three of these steps. That being said, each step is commonly considered

an active research topic.
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2.5.2 Existing Benchmarks

There are a large number of datasets collected and presented for the purpose of facial

feature extraction and classification. Many of these datasets are designed either for

training or evaluation. Here we describe the major datasets that already exist for the

purpose of model evaluation and benchmarking and compare them with the proposed

DoppelVer dataset.

Labeled Faces in the Wild (LFW) [56]: The LFW dataset was created by

Huang et al. in 2007. At the time of publishing, many face recognition datasets

were collected by small teams of researchers with the intent of collecting facial im-

ages in constrained settings. LFW however was meant for studying the problem of

recognizing faces in unconstrained settings. The dataset contains 13,233 images and

7,549 identities. The researchers behind LFW contributed significantly to the field by

presenting a dataset organization that focused on the honest reporting of results for

the task of open-set face recognition. Their dataset contains a development view and

an evaluation view as well as splits for 10 fold cross-validation. The current SOTA

accuracy on LFW is 99.8% (±0.2001) [6].

AgeDB [110]: This dataset was introduced in 2017, with a focus on accurate

hand-labeling of age. This is a useful database when performing tasks such as age-

invariant face verification, age estimation, and face age progression. The database

contains 16,488 images of 568 identities with accurate-to-the-year age labels. The

average number of images per individual is 29, with an age range of 1 to 101 years

old, the average age for an individual being 50.3 years. AgeDB provides four face

verification protocols, each split into 10 folds following LFW’s process. These four

protocols restrict the age variance across sample pairs. The provided protocols cap

age range to 5, 10, 20 and 30 years respectively. The current SOTA accuracy on

AgeDB 30 is 98.7% [7]

Cross-Age LFW (CA-LFW) [188]: The authors of this database posit that

methods reporting accuracy on LFW’s benchmark are optimistic. To show this, CA-



26

LFW has both positive and negative pairs which depict a large age gap, while also

providing negative pairs which are of the same race and gender. These visually similar

negative pairs emphasize the effect of age difference on classifier performance. This

dataset contains the same identifies as LFW with 6,000 image pairs. The current

SOTA accuracy on CA-LFW is 95.87% [24]

Cross-Pose LFW (CP-LFW) [187]: CP-LFW was proposed by the same

authors as CA-LFW and was released one year later. This publication shifts focus to

the important task of face verification in the presence of extreme pose. They note that

nearly all images in LFW are near-frontal, suggesting that results on LFW provide a

poor representation of a face recognition method’s performance when deployed into

a real setting. The current SOTA accuracy on CA-LFW is 92.08% [24]
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Chapter 3

Deep Vision Model Perception of
Gender From Faces

3.1 Introduction

In recent years, convolutional neural networks (CNNs) have achieved remarkable per-

formance on a wide range of computer vision tasks. However, this advancement has

come hand-in-hand with a substantial increase in model complexity [19], making it

difficult to understand how these models perceive and process visual information.

This lack of interpretability is a major challenge, as it hinders our ability to trust

and rely on these systems, especially in critical applications [2]. To be clear, inter-

pretability is an important problem for many models. CNNs and deep networks have

simply exemplified the issue of models which are capable of modeling highly complex

patterns.

In this chapter, we present a novel architecture-agnostic approach for interpret-

ing the perceptions of vision models when making predictions on facial data. We

draw inspiration from cognitive science research of human face perception to develop

techniques for analyzing and explaining the perceptions of vision models. As a basis

for exploring this topic we utilize a CNN trained to predict gender with a large face

dataset.

Our experimental design, motivated by human perception research [150], system-

atically occludes key facial regions and measures the impact on model performance.

This technique allows us to identify the most influential visual features and under-
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stand how the model’s attention shifts based on available information. Comparison

to well-established characteristics of human face perception demonstrates that our

method produces interpretations that are consistent with the human decision-making

processes [107]. As such, our explanations are accessible and understandable to a

wide audience.

By bridging the gap between vision models and human cognition, this chapter

contributes to the development of more interpretable and trustworthy artificial in-

telligence systems, paving the way for their wider adoption in critical applications.

Additionally, we cultivate an understanding of the importance of specific visual data

to the prediction of particular facial attributes. We apply this knowledge in Chapter 4.

The key contributions of this chapter are as follows:

1. We introduce a novel occlusion-based technique for interpreting the perceptions

of vision models, which is architecture-agnostic and applicable to a wide range

of models.

2. We demonstrate the effectiveness of our approach by analyzing ResNet-50 [52]

on the task of gender classification using the large-scale CelebA dataset [96].

3. We identify key facial regions and information encoding patterns that are most

influential for the model’s predictions, and show how the model’s attention shifts

based on the available information.

4. We draw parallels between the model’s perceptions and well-established charac-

teristics of human face perception, demonstrating that our interpretations are

consistent with human decision-making processes.

3.2 Proposed Method

In this section, we introduce a novel occlusion-based technique for interpreting the

perceptions of vision models. Our approach is architecture-agnostic and applicable

to a wide range of models that accept images as input data. While we focus on
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gender recognition in this chapter, our method can be easily extended to other facial

attributes.

We consider a black box classification model that maps the feature space (RGB

images) to the decision space (output predictions) through a non-transparent learning

process. Our goal is to identify image regions that significantly impact the model’s

output by occluding targeted areas of the input images and measuring the corre-

sponding changes in model performance. The selection of occlusion regions is based

on research of human perception. To this end we define five primary facial regions

consistent with cue-driven human perception [111, 150]: eyebrows, eyes, nose, mouth,

and chin.

Occlusions are modeled as the removal of visual information from a target region

by replacing all pixel values in the region with a pixel value of 0. This operation

restricts the model’s ability to extract meaningful visual features from the occluded

area.

We aim to search for informative occlusion regions that cause a significant de-

crease in the target score for predicting a given class. Instead of relying solely on class

probability, we utilize accuracy, precision, and recall scores as indicators of meaning-

ful regions. Accuracy provides information on the general importance of a region to

the model’s predictions, while precision, and recall score indicate potential model bias

and class-skewing when data is obscured.

We adopt the language of configural and featural importance to describe the role

of different facial regions in the model’s decision-making process. A region with high

configural importance will produce lower metric scores when it is isolated and oc-

cluded, indicating that it significantly contributes to the model’s overall performance

in combination with other image regions. Conversely, a region with high featural

importance will itself be predicted with higher accuracy than a non-featurally im-

portant region, demonstrating that it contains sufficient information for prediction

on its own. Notably, featurally important regions exhibit high intra-class similarity,

showing strong distinctions between samples of different classes while resembling each
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other within the same group.

To assess the configural and featural importance of facial regions, we train two

distinct predictive models. The first model is trained on images with all visual features

available, without any occlusions. The second model is trained on images with all

visual data removed, except for the target region. Evaluation of both models is

performed with both non-occluded images and occluded images. For the first model,

the absolute difference between performance metrics is used to select regions of high

configural importance. For the second model, high metric scores for non-occluded

images indicate the featural importance of the target region. Performance on the

occluded images indicates the distinctness of the target region between labeled classes.

Figure 3.1 provides a visual aid for understanding the system.

The two models serve to eliminate spurious correlations and local explanations

that are not robust to artifacts. The first model assesses how well the base classifier

can classify an image with a region absent, analogous to the neuro-scientific concept

of configural importance. The second model tests the classifier’s ability to accurately

determine the class of the image based on an isolated region, referred to as featural

importance in human studies.

As our method primarily seeks to express decision justifications using transparent

human vocabulary, we employ extensive analysis to generalize understandable pat-

terns in network behavior. A behavior that has been observed and validated through

experimentation is referred to as a trend. These trends comprise a set of rules describ-

ing the logic behind the black box model, thereby providing interpretability at a global

level. To ensure the generalizability of our explanations, we test our trends using 5-

fold cross-validation on both high (224x224) and low (32x32) resolution datasets.
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Figure 3.1: The Two Directions of Evaluation. The figure shows the testing phase
for two ResNet-50 instances: one trained on full facial images (first row) and another
trained on occlusion images of a given region Υ (second row). The test accuracy
for the full facial dataset is p, and the accuracy for occlusion images is pm. In the
first scenario, the absolute difference between these values, q, measures the configural
importance of Υ. In the second scenario, p indicates the featural importance of Υ,
while pm determines the distinctness of Υ samples between classes.

3.3 Experiments

3.3.1 Model

To demonstrate the capability of our technique we train ResNet-50 [52], from scratch,

on the task of gender recognition. This is accomplished by replacing the final fully

connected layer with a linear layer which produces a single output. The sigmoid

function is applied to the output of the network. During training, the output is

passed into the binary cross entropy loss function and the model weights are updated

using the Adam optimizer [67]. During inference we apply a threshold of 0.5 to the
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output to produce an attribute prediction. We implement this network with PyTorch

[122]. Hyperparameter selections are provided in Table 3.1.

Table 3.1: ResNet-50 Model hyperparameters, selected based on a grid search.

Field Low Res. Model High Res. Model

Image Size 32x32 224x224
Batch Size 128 128

Learning Rate 0.0005 0.001
Epochs 50 50

Momentum 0.4 0.5
Dropout 0.5 0.3

3.3.2 Data

Our experiments utilize the challenging, publicly available dataset, CelebA [96]. Orig-

inally collected for attribute classification, CelebA contains roughly 200,000 images.

The images are split into training, validation, and test splits with approximately 80%,

10%, and 10% of samples respectively. The samples in CelebA vary widely with re-

gard to subject pose, illumination and image quality. The class balance of CelebA is

42% male and 58% female. We want to mimic the settings for cognitive experiments

in order to be able compare machine and human perceptions. To this end we define

five primary facial regions consistent with cue-driven human perception [111, 150],

and index them accordingly: 1. Eyebrows, 2. Eyes, 3. Nose, 4. Mouth, 5. Chin.

To do this we extract 68 landmarks using the DLib landmarking tool provided

in OpenCV [11]. To increase the robustness of local explanations, we consider an

important region within the context of its surroundings. This includes analyses of a

feature (e.g. only the nose), the horizontal extension of the feature (e.g., the nose

and cheeks, from ear to ear) and distinct combinations of the prior. Furthermore,

symmetrical and axis-distributed information encoding is tested for by systematically

removing horizontal and vertical image data. 67 total variations of the CelebA dataset

are generated. Descriptions of all datasets can be found in Tables 3.2 and 3.3.
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Table 3.2: Samples from each of the occlusion datasets used in analysis (Part 1). We
generate 67 total variations of the original image set.

Dataset Occlusion Examples

Right to left
Segments 1 - 7

The segments successively
occlude increasing vertical
image percentages in incre-
ments of 1/7 the image size,
moving from right to left.

Left to Right
Segments 1 - 7

The segments successively
occlude increasing vertical
image percentages in incre-
ments of 1/7 the image size,
moving from left to right.

Top to bottom
Segments 1 - 5

The segments consecutively
reveal horizontal strips
surrounding facial regions,
moving from top to bottom.

Bottom to top
Segments 1 - 5

The segments consecutively
reveal horizontal strips
surrounding facial regions,
moving from bottom to top.

Permutation blackout pairs
Segments 1 - 10

The segments remove ev-
ery possible unique combi-
nation of two distinct fa-
cial regions, along with their
immediate horizontal sur-
roundings.
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Table 3.3: Samples from each of the occlusion datasets used in analysis (Part 2). We
generate 67 total variations of the original image set.

Dataset Occlusion Examples

Permutation blackout triples
Segments 1 - 10

The segments remove ev-
ery possible unique combi-
nation of three distinct fa-
cial regions, along with their
immediate horizontal sur-
roundings.

Just region
Segments 1 - 5

Each of the five segments
retains only the horizontal
strip containing a single fa-
cial region.

Region blackout
Segments 1 - 5

Each of the five segments re-
moves only one horizontally
extended facial region.

Just region contoured
Segments 1 - 5

Each of the five segments
display only the contoured
facial region without any
surrounding facial informa-
tion (e.g. the eyebrows ab-
sent the forehead.)

Region blackout contoured
Segments 1 - 5

Each of the five segments re-
moves one contoured facial
region (e.g. occluding the
nose while preserving the
cheeks.)
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3.4 Results

We conducted experiments on both low (32x32) and high (224x224) resolution ver-

sions of the CelebA dataset. The significant results from each are reviewed in the

following sections.

3.4.1 Low Resolution Image Data

ResNet-50 performs gender prediction on low-resolution, aligned, facial images with

99.99% accuracy. We generate a q-list, a sorted descending list of changes in testing

accuracies, corresponding to when the full facial image is visible compared to when

the region given by the map m is occluded (the first direction in our method). The

q-list quantitatively characterizes the relationship between the input perturbation

defined by deleting an isolated region and the model’s performance.

The list indicates that the ranking of regions, in order of greatest to least effect on

classification accuracy, is: Nose, Mouth, Eyebrows, Eyes, Chin. Testing the model’s

ability to predict the gender of only an individual region (the second direction in our

method) yields an interesting polarity. The ranking, from most to least significant, is:

Eyes, Eyebrows, Mouth, Chin, Nose. These two lists illustrate the difference between

a region’s configural importance (its predictive effect when missing) and its featural

importance (its intraclass similarity). For example, the nose is the most configurally

important and least featurally important region, implying that it enhances the effect

of other facial elements on performance and is more powerful when combined with

other regions than when used alone for gender prediction.

The low-resolution model relies heavily on the mouth for discrimination. When

this region is occluded along with any one or two others, it produces lower classifi-

cation accuracies than any other combinations of two or three regions. Images with

two regions occluded, where one is the mouth, are classified with an average accuracy

of only 49%, while the average accuracy of images with any two regions except for
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the mouth occluded is 73.5%. As long as the mouth is preserved, we can remove up

to three facial regions and still outperform 80% of the permutation blackouts that

remove only two. Metrics demonstrate over a 26% increase in accuracy when provid-

ing lower (nose and below) as opposed to upper (strictly above the nose) facial data.

These behaviors show that the model prioritizes lower facial data when evaluated on

low-resolution images.

3.4.2 High Resolution Image Data

With high-resolution data, ResNet-50 once again reaches near-perfect (99.97%) ac-

curacy for gender prediction. However, the introduction of high-resolution images

causes the model to shift focus from the lower to the upper face. The q-list gener-

ated from individual region occlusions reflects the expected change in high-priority

regions, with the order from most to least being: Eyes, Nose, Eyebrows, Mouth, Chin.

Interestingly, the ranking of region intraclass similarities remains entirely unchanged

from the 32x32 case: Eyes, Eyebrows, Mouth, Chin, Nose. This suggests that while

the featural contribution of each region is consistent between high and low resolution,

the model’s attention shifts towards the upper face when processing high-resolution

images.

3.4.3 Generalizable Behaviors

Several trends uniformly hold across both high and low-resolution data:

1. Vertical vs. Horizontal: Classification accuracy decreases consistently when

information is removed vertically, but more aggressively when deleted horizon-

tally by landmark. Vertical cross-sections of the face are generally only informa-

tive when at least 57% of the face is shown, with accuracy steadily decreasing

in average increments of 5.5% with each occlusion before this threshold. In con-

trast, removing horizontal cross-sections consecutively causes stronger decreases

in accuracy (an average of 15%) and does not result in the same uniform de-

crease seen with vertical removals.
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2. Spatial Distribution of Information: Performance changes symmetrically

when occluding vertical regions of the face from right to left or left to right. This

property is not observed when deletion regions shift horizontally from bottom

to top or from top to bottom, with each horizontal removal corresponding to

a unique landmarked region and causing a distinct change in accuracy. The

potency of a vertical cross-section is given by the density of facial features

within it, while the importance of a horizontal component is determined by the

q-list ranking of the contained region.

3. Classification Bias: Classifying images with three or more upper facial re-

gions occluded results in low precision (around 0.4) and high recall (around

0.9), indicating a strong model bias toward the male class when information is

removed. When classifying the lower vs. upper face, ResNet-50 switches from

a very high to a very low recall, with the appearance of information contained

in the nose/cheeks shifting the balance of class predictions and resulting in sig-

nificantly more positively-labeled (male) samples. The upper face is predicted

female with extreme bias, while the lower face is frequently categorized as male.

4. Highly Influential Regions: In both low and high-resolution situations, one

region is heavily prioritized for discrimination (the mouth in the former case,

eyes in the latter). By identifying this feature, model decisions can be recon-

structed with good accuracy (an average minimum threshold of 39% accuracy

with the worst-performing combination of this region and one other, and an

average maximum of 74% accuracy with its best-performing combination).

These trends describe high-impact factors on the decision processes of ResNet-50,

with potential applications in data compression and feature selection. For example,

by eliminating the mouth and chin regions, which are of low priority to the high-

resolution model, we can discard nearly 40% of the image data and still maintain

98% classification accuracy. Similarly, training with only the extended horizontal

eye region visible, which on average covers only 18% of the face, we can reach 77%
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accuracy, significantly outperforming any previous facial isolations.

Compared to existing local interpretability techniques that often require imprac-

tically large numbers of input perturbations, the proposed method simultaneously

finds highly influential decision regions, explicitly measures the model’s sensitivity

to each region, and preserves comparative speed and simplicity. Furthermore, by

averaging our metrics over the entirety of the CelebA dataset, we avoid the pitfalls

of noisy input and chance correlation found in methods that analyze by example,

demonstrating the effectiveness of the proposed featural scheme.

3.4.4 Incorporating Heat Maps

For comparison, we use the Class Activation Mapping (CAM) method [123] to gener-

ate saliency maps of sample images. An example is displayed in Figure 3.2. Features

that are highly weighted by the model in the final convolution layer, and thus con-

sidered influential for discrimination, appear red in the corresponding visualizations.

The simplicity of our method allows for seamless combination with many other

techniques. The proposed method integrates with heat-mapping to yield a visual

representation of how the model shifts attention based on the available information.

The saliency masks shown in Figure 3.3 summarize where the CNN looks within

an image to make predictions. The results support many of our evaluations. The

third and fourth images in each row show alternate portions of the face occluded, but

with the eyes still visible. In these cases, the model discriminates using the active

eye region. When the eyes are occluded, as in the second column (displaying only

lower facial data), the model uses information found around the mouth to determine

classifications.

While some generalizations can be made from these saliency maps, the first

column of Figure 3.3 depicts a prominent issue with them: inconsistency. Each

sample produces a unique map, but due to lack of standardization, we can only draw

imprecise conclusions about saliency from individual samples. There is also a risk of

variation among sample constructions.
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Figure 3.2: Example heat map generated with CAM on ResNet-50 trained with high
resolution images. The red regions are highly weighted by the model (in the final
convolution layer) during classification. Best viewed in color.
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(a) Full Face (b) Bottom Half (c) Top Half (d) Eyes, Lower

(e) Full Face (f) Bottom Half (g) Top Half (h) Eyes, Lower

Figure 3.3: A selection of CAM heat maps generated with various occlusions. The
maps show the redirection of model attention to new regions when previously priori-
tized information is no longer available.

To exemplify the issue, see the saliency map depicted in Figure 3.4. This map

provides little specificity regarding featural importance or information distribution.

The figure is not representative of all potential saliency maps, but this itself indicates a

larger problem: Heat maps can only provide local interpretability, and if this one were

to be chosen in a random selection and used for explanation, almost no statements

could be made about model interpretability.

3.4.5 Discussion: A Comparison with Human Perception

The development of deep neural networks has led to near-human performance in

automated gender recognition systems [115]. However, the specific visual cues and

their contributions to gender categorization have been a topic of interest in psychology

and neuroscience. These cues, which can be classified as either shape or surface

cues [112], have been studied to understand their role in human perception of gender.

Research in neuroscience supports three key observations regarding gender recognition

in humans:

1. Shape cues, both in-plane and three-dimensional, provide significant informa-

tion about gender that human observers can exploit and are prioritized over
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Figure 3.4: A non-informative CAM heat map.
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surface cues, forming the basis for distinguishing facial parts [112].

2. Face recognition is typically guided by the diagnosticity of distinct local features

such as the eyes and mouth [111].

3. Face perception normally emphasizes holistic or configural aspects of the face

over specific features [36, 103, 162], but missing information can disrupt this

process and lead to a more feature-based approach.

The majority of research has focused on organizing the contribution of various

visual cues, with occlusion being the most popular method of evaluation. Human

studies on cognition produce results which, by construction, can be directly compared

to our own.

1. Eyes as Predictors: Nestor [112] and Russell [132] propose that the luminance

difference between the main features - the eyes and mouth - and the rest of the

face generates a pattern more typical of female than male faces. In other words,

the greater the contrast between the luminance of the eyes and the other regions,

the more likely a face will be considered female. The authors claim that the

use of cosmetics is highly persuasive in this regard. As almost every candidate

in CelebA darkens the eye region, this implies that human predictions of the

eye region will be significantly female over male. This hypothesis is congruent

with ResNet-50’s observed class-skewing of eyes as female, which almost exactly

follows the class distribution of genders in CelebA. Dupuis-Roy [29] applied

the Bubbles technique to show that the eyes/eyebrow are the most important

facial cue for accurate gender discrimination. In summary, both the human and

machine are more likely to identify eyes as male or female, and correctly classify

gender on that basis.

2. Determinative Featural Importance: Nestor et al.[111] attempt to use fea-

ture segmentation to diagnose the relative use of distinct local features, such
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as the eyes and mouth. Since we conclude that ResNet-50 prioritizes the learn-

ing of a specific facial region in horizontal passes, both machine and human

processes use a few featurally important sections for gender recognition.

3. Switching Attention: Tanaka [150] experiments with facial inversions to sug-

gest that the previously observed bias towards the eye region was attentional,

and could be overridden by redirecting participant attention to the mouth. This

almost identically parallels the heat maps in the previous section: when eye in-

formation is available, it is used deterministically for classification. However,

when the eye/brows region is obscured, both the model and the human switch

to reliance on the mouth for predictions.

4. Common Occlusions: Freud et al. [36, 117] test the effects of masks and

sunglasses on human face processing, and remark on the difference between

lower and upper facial data availability. They determine that due to lack of test

subject exposure, humans recognize faces wearing masks much less accurately

than those wearing sunglasses. Our analysis using permutation blackouts is

versatile enough to form similar conclusions: ResNet-50 will recognize masked

faces more accurately than those wearing sunglasses. Our method provides

explanations whose complexity can be scaled up or down depending on the

need of the target audience, making them widely accessible.

In this chapter we present a novel framework for explaining the decisions of deep

learning models targeting gender recognition. We use a methodological occlusion

technique to construct machine explanations that closely resemble cataloged human

decision justifications. By converging on highly influential facial regions and extract-

ing spatial information encoding, we show both the simplicity of our method and the

informativeness of our results in comparison to existing works on interpretability.

The findings in this work suggest the importance of specific visual features for the

recognition of particular facial attributes. Results suggest that information from the

entire face is not necessary for effectively classifying the presence of an attribute. In
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the next chapter we will explore improving facial attribute recognition by intentionally

confining the model’s attention to regions of the face which contain visual information

related to the direct attribute being predicted.
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Chapter 4

Parsing Faces with Semantic
Segmentation for Improved Facial
Attribute Recognition

4.1 Introduction

In 2015, deep learning methods became popular for facial attribute recognition, with

the introduction of two large-scale datasets for the problem: CelebA and LFWA

[96]. With the introduction of these large scale datasets, the number of deep learning

methods for the problem of attribute recognition increased dramatically. Although

CelebA allowed for significant progress to be made in the field, it has been shown to

have significant label imbalance and noise [86, 87]. We detail issues with available

data in more detail in Chapter 5. The label imbalance has resulted in methods

which report optimistically high metric scores due to significant skew towards negative

sample count. Methods which are trained to perform well on CelebA and LFWA are

unlikely to generalize well to unseen images.

To address this issue, we propose a joint learning architecture in which at-

tribute recognition is combined with semantic segmentation. We call this architecture

AttParseNet. Semantic segmentation is the problem of classifying every pixel in an

image as belonging to one or multiple classes. State of the art methods for semantic

segmentation utilize convolutional neural networks (CNNs) and seek to identify a

class for each pixel in an image [40, 97, 116]. Semantic segmentation requires that
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the trained model learns to localize high-level visual features in diverse input images.

To enable our method we have generated a novel, weak labeling of attribute

segments for the CelebA dataset. These label segments are derived from automatically

detected facial landmarks. These segments are weak because there is no manual

revision of the extracted facial landmark data. Regardless, these attribute segments

provide meaningful additional supervision for our classifier.

We utilize semantic segmentation as a means to enforce that AttParseNet learn to

localize the facial regions which are associated with each attribute. This task guides

model attention to the correct region of the input image. In addition, the predicted

segmentation masks are used as the only input to the attribute classification heads at

the end of our network architecture. This technique restricts the visual data which

are used for making attribute predictions.

As we demonstrated in the previous chapter, the availability of various visual

data can significantly alter the model’s predictions for a given facial attribute. The

restriction of visual data to regions which are valuable for a given task has a significant

positive effect on the model’s performance and generalizability. We also showed that

our gender predicting CNN attends to features of the entire face despite singular

facial regions being responsible for much of the model’s ability to discern gender. We

apply these findings by reducing the model’s attention to finite areas. Our results

show that this technique achieves increased generalization to unseen data.

Very few works address the problem of semantic segmentation of faces. Kalayeh

et al. propose segmenting the face into parts for improved attribute recognition [61].

This however still differs from our approach, which makes attribute predictions based

on segmentation labels. This effectively enforces that the model make predictions

about attribute presence based restricted visual data.

To summarize, this work’s contributions include:

• AttParseNet: a multi-task CNN for simultaneous attribute localization and

recognition using a weakly labeled training approach.
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Figure 4.1: Layout of facial landmarks extracted from OpenCV and OpenFace.

• A framework for generating semantic segmentation labels in the context of facial

attributes.

• Weak attribute segments for the full CelebA dataset.

4.2 Proposed Methods

The proposed method consists of two main parts: the generation of weak segmentation

labels, and the multi-task learning framework. In the following sections we detail each.
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4.2.1 Segmentation Label Generation

Teaching the model to localize facial attributes is facilitated by semantic segmentation

labels. This form of labeling assigns classes to each pixel in an input image. For the

scope of this work, the pixels of each image in CelebA are labeled with the presence

or absence of 40 attribute classes. The binary labels for the classes are provided along

with the CelebA dataset. Example attribute classes are smiling, wavy hair, young,

etc. Our semantic segmentation labels are represented as masks of the same height

and width as the input images and a depth of 40 channels (one for each attribute

class). Segment masks have a value of 255 in regions where the attribute is present

and 0 everywhere else. Hand-labeling this data is expensive and slow, so we opt

to automate the process by introducing a weak labeling strategy, which requires no

human supervision.

Generation of segment labels begins by extracting a set of facial landmarks from

each image in CelebA. Figure 4.1 shows the layout of the 68 facial landmarks that

are used. We utilize the OpenCV and OpenFace landmark detectors to extract these

points [11, 179].

OpenCV’s facial landmark detector is a pre-trained model that localizes 68 key

facial points in an image. It extracts Histogram of Oriented Gradients (HOG) features

and applies a cascade of regression trees to iteratively refine the landmark positions,

starting from an initial estimate. OpenFace’s landmark detector is a pre-trained set of

CNNs which produce response maps without knowledge of other landmark positions.

These response maps are produced from expert models at a variety of scales and and

angles. These response maps are considered jointly to produce point estimates for

each landmark.

In both cases, the final output is a set of 68 facial landmark coordinates that

accurately identify the jawline, eyebrows, nose, eyes, and mouth. This approach

is fast, efficient, and robust to variations in facial pose, expression, and lighting

conditions. We first pass all images through the OpenCV detector. Images which
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Figure 4.2: Examples of the 10 base regions used to generate weak semantic segmen-
tation labels. These regions are overlayed with the original images for visualization
purposes. The segment regions are show in blue and landmark points are red.

do not receive predictions are passed through the OpenFace detector. This technique

yields fiducial points for over 99% of CelebA. The remaining images are hand-labeled

with landmarks.

The set of collected 68 facial landmarks are used to define a set of base facial

regions. The base regions are below chin, chin, cheeks, mouth, above mouth, nose, eyes,

eyebrows, ears, and top of head. The chin, mouth, nose, eyes and eyebrows regions are

precise because they are defined directly from the 68 landmark points. The remaining

5 regions are established by combining these precise regions with information about

facial geometry. For example, the top of head region is created by using landmarks

from the eyebrows and information about facial geometry, since no landmarks for the

forehead are given. We refer to these regions as rough segments. Figure 4.2 shows

the different regions used in the generation of attribute segments. For example, the

mouth region is defined as the polygon which has vertices at landmark points {49-60}.

Each of the 40 attribute labels in CelebA are mapped to a set of base regions

which contain the visual features necessary for detecting a given attribute. We assume
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that the attribute Smiling occurs in the base region of mouth. Some attributes, such

as No Beard, are located in multiple facial regions: below chin, chin, cheeks, and above

mouth.

Combining this information with the attribute labels in CelebA enables a nearly

automatic system for producing segmentation labels for the entire dataset. This

method is significant because it provides a framework for producing additional layers

of supervision on arbitrary attribute recognition tasks.

To generate the segmentation masks we begin by referencing the 40 attribute

labels provided with the CelebA dataset. Each segmentation mask begins as a black

image, all pixels set to 0. If the attribute is labeled as present, we fetch the base

regions which the attribute is mapped to. The correct polygons are formed and filled

with pixel values of 255. Each image in CelebA receives 40 segmentation masks,

resulting in over 8 million segmentation masks total.

We consider the segmentation labels to be weak for two reasons: 1) our rule-

based method for generating segments relies on automated facial landmark extraction,

which may result in imprecise landmarks and regions. For example, misaligned mouth

landmarks can lead to incorrect mouth segments. Moreover, the absence of hair

landmarks means that all hair-related attributes (e.g., brown hair, wavy hair) have

rough segments derived from the top of head region. 2) the physical manifestation

of several attributes is unclear, leading to proposed segments that may not provide

adequate coverage. For instance, there is ongoing debate in the field of expression

and micro-expression recognition regarding the indicators of a smile: whether it is

solely the mouth or if other facial deformations around the eyes also play a role.

In this work, we assume that the mouth is responsible for mouth-related attributes,

potentially missing out on other facial cues.

4.2.2 Attribute Segmentation and Recognition

Once the weakly labeled attribute segments have been generated, the next step is to

build a model that learns to recognize attributes. Attribute recognition and segmen-



51

Figure 4.3: AttParseNet, our multi-task learning architecture. Input of an image is
provided and is passed through 6 shared convolutional layers. The network outputs
segmentation masks and attribute predictions.

tation are learned jointly with a CNN architecture that we call AttParseNet. The

task of semantic segmentation is used to improve our model’s attribute recognition

accuracy and generalizability.

The proposed multitask attribute segmentation and recognition model is an eight-

layer CNN. The architecture for the CNN is shown in Figure 4.3. The model consists

of six convolution layers, the first using filters of size 7x7, and the remaining layers

using filters of size 3x3. The number of filters in each layer is as follows: 75, 200, 300,

512, 512, and 40. Max pooling is performed after the first convolution layer. After

the final convolution layer, the model produces 40 feature maps, each of size 96x76.

Each feature map represents a facial attribute and the location in which it occurs.

The generated segmentation labels are the same size as the input images. To com-

pare the masks with the feature maps from the final convolution layer, we perform

downsampling to a size of 96x76. The downsampling operation utilizes nearest neigh-

bor interpolation, which assigns each pixel in the downsampled image the value of the

nearest pixel in the original image without any averaging or blending. This method

is chosen to retain the binary nature of the segmentation masks, as it preserves sharp

edges and avoids introducing intermediate values. These downsampled feature maps

are then passed into two loss computation modules: the semantic segmentation loss

and the facial attribute recognition loss.

The semantic segmentation loss is formulated as mean squared error (MSE) be-

tween the output feature maps and segment labels. In this context, MSE loss is
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used to measure the reconstruction error between the predicted segmentation masks

and the ground truth masks. Given an input image, the model generates C feature

maps of size h × w, where C represents the number of attributes or classes in the

dataset. These feature maps are then compared with the downsampled ground truth

segmentation masks of the same size. The MSE loss for a single image is calculated

as follows:

MSE =
1

C × h× w

C∑
c=1

h∑
i=1

w∑
j=1

(yc,i,j − ŷc,i,j)
2

where yc,i,j represents the value of the downsampled ground truth mask at posi-

tion (i, j) for attribute c, and ŷc,i,j represents the corresponding predicted value from

the model’s output feature map. By minimizing the MSE loss during training, the

model learns to generate segmentation masks that closely match the ground truth

masks, thereby improving its ability to identify the spatial location of visual features

necessary for attribute recognition.

For the recognition task, the feature maps are flattened but not concatenated.

Each flattened feature map is passed into a separate fully connected layer with a

shape of 7296x1. This results in a final 40-dimensional output prediction. The facial

attribute recognition loss is calculated using binary cross-entropy (BCE) loss. BCE

loss is commonly used for multi-label classification tasks, where each sample can

belong to multiple classes simultaneously. In this case, each facial attribute is treated

as an independent binary classification problem. The model predicts the presence or

absence of each attribute based on the flattened feature maps.

Given a batch of N images, the BCE loss for the facial attribute recognition task

is computed as follows:

BCE = − 1

N

N∑
n=1

C∑
c=1

[yn,c log(ŷn,c) + (1− yn,c) log(1− ŷn,c)]

where yn,c is the ground truth label for attribute c in image n, and ŷn,c is the

predicted probability of attribute c being present in image n. The BCE loss penalizes
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the model for incorrect predictions and encourages it to learn the correct attribute

labels.

For AttParseNet to learn from both the segmentation and recognition tasks in

one framework, each task has its own loss function. During training, the total loss

for the model is computed as an equally weighted sum of the semantic segmentation

loss and the facial attribute recognition loss: Total Loss = MSE + BCE

The proposed multitask CNN architecture offers several advantages. By sharing

features across both tasks, the model can learn more robust and generalized repre-

sentations. The weak semantic segmentation task in AttParseNet provides an added

level of supervision to the problem of attribute recognition for free. By “free,” we

mean that there is a very small amount of human labeling required, and the segments

are generated using facial landmark points and weakly labeled using the image-level

attribute labels provided with CelebA.

Adding weakly labeled semantic segmentation to AttParseNet forces the model

to activate on regions of interest when learning attribute representations, which leads

to a more robust and generalizable attribute model. We showcase this in our exper-

iments. It is important to note that the weak segments are used only at

training time and are not needed during testing.

4.3 Experiments and Results

4.3.1 Datasets

We begin our experimentation on the CelebA dataset. Introduced by Liu et al.

[96], CelebA consists of 202,599 celebrity face images, each annotated with 40 binary

attributes such as gender, age, hair color, and facial features like smiling or wearing

glasses. The dataset was carefully curated to provide a diverse set of images with

varying poses, backgrounds, and lighting conditions, making it a challenging and

representative dataset for evaluating the performance of attribute recognition models.

Example images can be seen in Figure 4.4.
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Figure 4.4: Sample images from the CelebA dataset [96].

The images in CelebA were sourced from the Internet and cover a wide range

of real-world scenarios. The dataset is divided into three subsets: a training set

containing approximately 162,000 images, a validation set with 20,000 images, and

a test set with the remaining 20,000 images. This split allows for proper model

development, hyperparameter tuning, and unbiased evaluation of the final trained

models.

One notable aspect of the CelebA dataset is that it features both cropped and

aligned images, as well as full body, unaligned images. In our experiments, we crop

the full body, unaligned images with our extracted landmark points. These images are

used for training AttParseNet, as this allows the model to learn from more natural and

unconstrained facial representations. For training the baseline network, we use the

cropped and aligned images, which provide a more focused view of the facial region.

Both AttParseNet and the baseline network require input images with dimensions of

218x178 pixels. Therefore, we resize the cropped images and segmentation labels to

218x176 and 96x76 pixels, respectively.
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Figure 4.5: Sample images from the LFWA dataset [96].

To further validate the generalization capability of our trained models, we also

evaluate their performance on two additional datasets: LFWA [96] and UMD-AED

[49]. The LFWA dataset contains 13,232 face images of 5,749 identities, annotated

with the same 40 attributes as in CelebA. We report results on the entire LFWA

dataset to assess how well our models perform on a different distribution of images.

The UMD-AED dataset, despite its modest size of 2,800 facial images, proves to

be a powerful tool for exposing vulnerabilities in attribute models. Each image is

annotated with a subset of the 40 attributes found in CelebA and LFWA datasets.

A unique characteristic of UMD-AED is its balanced distribution of positive and

negative samples for each attribute, with 50 instances of each. This equilibrium

enables the dataset to effectively uncover the limitations of attribute models. Images

of LFWA and UMD-AED can be found in Figures 4.5 and 4.6 respectively.

By evaluating our models on multiple datasets with varying characteristics, we

aim to provide a comprehensive analysis of their robustness and ability to generalize

to different domains.
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Figure 4.6: Sample images from the UMD-AED dataset [49].

4.3.2 AttParseNet Training

AttParseNet is trained exclusively on the unaligned, cropped images from the CelebA

training split, without any additional external data. This approach ensures that the

model learns to extract relevant features and perform attribute recognition solely

based on the information available within the CelebA dataset.

The training process for AttParseNet consists of two stages. In both stages, we

use the Adam optimizer [67] with a learning rate of 1E-3 to update the network

weights. The Adam optimizer is chosen for its adaptive learning rate capabilities and

efficient convergence properties.

In the first stage, the model is trained for 10 epochs, during which the net-

work weight updates are based solely on the MSE loss computed from the semantic

segmentation task. The semantic segmentation task involves predicting a coarse seg-

mentation mask for each facial attribute, providing a high-level understanding of the

spatial distribution of attributes. By training the model initially on this task, we

allow the network weights to warm up and converge to a reasonable starting point.

This stage helps in reducing the MSE loss to a level where the values of the BCE loss
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become comparable, facilitating effective joint learning in the subsequent stage.

The second stage of training involves a multi-task learning approach, where

AttParseNet is trained simultaneously on both the segmentation and recognition

tasks for 22 epochs. During this stage, the MSE loss from the segmentation task

and the BCE loss from the attribute recognition task are summed to form the total

loss. The BCE loss measures the discrepancy between the predicted attribute prob-

abilities and the ground-truth attribute labels, while the MSE loss ensures that the

model maintains its ability to generate accurate segmentation masks. By optimizing

both losses jointly, AttParseNet learns to capture the intricate relationships between

facial attributes and their spatial localizations. We hypothesize that joint learning

reduces the risk of learning spurious correlations between the occurence of facial at-

tributes and other visual features of images which might co-occur with attributes in

the training data.

We emphasize that during the validation and testing phases, we do not use the

segment labels. The model’s performance is evaluated solely based on its ability

to predict the presence or absence of facial attributes given an input image. This

approach aligns with real-world scenarios where ground-truth segmentation masks

are not available during inference.

4.3.3 Baseline Model Training

The baseline model is trained using the aligned images from the CelebA training

split, ensuring a fair comparison with AttParseNet. By utilizing the aligned dataset,

the baseline model benefits from the implicit alignment provided by the image-level

attribute labels, which serves as weak segment supervision.

The training process for the baseline model consists of a single stage, where the

model is trained solely on the attribute recognition task for 22 epochs. We employ

the Adam optimizer [67] with a learning rate of 1E-3 to update the network weights,

leveraging its adaptive learning rate capabilities and efficient convergence properties.

During training, the BCE loss is computed based on the discrepancy between the
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predicted attribute probabilities and the ground-truth attribute labels. The model

learns to capture the relationships between facial attributes and their corresponding

visual features present in the aligned images.

It is important to note that the baseline model shares an identical architecture

with AttParseNet, including the same hyperparameters. The key difference lies in

the absence of the segmentation learning task, which allows us to isolate the effects of

learning localization alongside attribute recognition. By focusing exclusively on the

attribute recognition task, the baseline model serves as a reference to evaluate the

impact of joint learning and localization on AttParseNet’s performance.

In the following sections, we present and analyze the experimental results, com-

paring the performance of AttParseNet with the baseline model across different eval-

uation metrics and datasets.

4.3.4 Experimental Setup

We implemented both the proposed AttParseNet architecture and baseline attribute

classifier using PyTorch [122]. The CelebA dataset was split into training, validation,

and test sets according to the provided partitions. Training was accelerated using two

NVIDIA GTX-1080 TI GPUs. To prevent overfitting, we employed early stopping by

monitoring the loss on the training and validation sets, stopping training when the

losses became comparable.

4.3.5 Results on CelebA

The baseline model, trained on aligned CelebA images without segmentation, achieved

an average attribute accuracy of 86% on the aligned test set. In comparison, AttParseNet

achieved an average accuracy of 87% on the unaligned test set. While the absolute

improvement is small, it is substantial considering the accuracy is averaged over 40

attributes. Figure 4.7 shows the accuracy achieved by both networks for each at-

tribute. Table 4.1 details which attributes specifically benefited from joint training

with segmentation.
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Figure 4.7: Average accuracy achieved on each facial attribute for the proposed archi-
tecture and a baseline model. The models are evaluated on the unaligned and aligned
data sets respectively. AttParseNet is trained with the weak semantic segmentation
task (best viewed in color).
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Table 4.1: Attribute improvement comparison table. A ✓ represents an improvement
of average accuracy score for AttParseNet over the aligned baseline.

Attribute Name CelebA LFWA UMD-AED

5 o Clock Shadow ✓ ✓ ✓
Arched Eyebrows × ✓ ✓
Attractive ✓ ✓ ✓
Bags Under Eyes ✓ ✓ ✓
Bald × ✓ ✓
Bangs × ✓ ✓
Big Lips ✓ ✓ ✓
Big Nose ✓ ✓ ✓
Black Hair × ✓ ✓
Blond Hair ✓ ✓ ✓
Blurry ✓ ✓ ✓
Brown Hair ✓ ✓ ✓
Bushy Eyebrows ✓ ✓ ✓
Chubby × ✓ ×
Double Chin × ✓ ×
Eyeglasses × × ✓
Goatee ✓ ✓ ×
Gray Hair ✓ ✓ ✓
Heavy Makeup × ✓ ✓
High Cheekbones ✓ ✓ ✓
Male × ✓ ✓
Mouth Slightly Open × ✓ ✓
Mustache × ✓ ✓
Narrow Eyes ✓ × ✓
No Beard ✓ ✓ ✓
Oval Face ✓ × ✓
Pale Skin ✓ × ✓
Pointy Nose ✓ × ✓
Receding Hairline ✓ ✓ ✓
Rosy Cheeks ✓ ✓ ✓
Sideburns ✓ ✓ ×
Smiling × ✓ ✓
Straight Hair ✓ ✓ ✓
Wavy Hair × ✓ ✓
Wearing Earrings ✓ ✓ ✓
Wearing Hat × ✓ ✓
Wearing Lipstick × ✓ ✓
Wearing Necklace ✓ ✓ ×
Wearing Necktie × ✓ ×
Young ✓ ✓ ✓
Total Improved 24 35 34
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Interestingly, about half of the attributes that did not improve occur in rough

face segments (segments constructed from predicted landmark augmentations, see

Figure 4.1). These are always on the face periphery. The lack of improvement may

be due to our tighter face cropping compared to the aligned CelebA crop, reducing

available contextual information for attributes like Mouth Slightly Open, Smiling,

and Eyeglasses.

4.3.6 Generalization to LFWA and UMD-AED

To evaluate the generalization of AttParseNet, we tested it on the LFWA and UMD-

AED datasets, both relevant for facial attribute recognition. LFWA is widely used,

while UMD-AED has nearly perfect attribute label balance. Tests are completed by

collecting predictions from AttParseNet and the baseline model for all data in each

dataset, then accuracy is calculated based on the ground truth labels.

LFWA is examined first. See Figure 4.8. We note that all attribute classes show

increased performance besides Eyeglasses, Narrow Eyes, Oval Face, Pale Skin, and

Pointy Nose. The accuracy differences for the latter three were minor (less than 1%),

while some attributes are recognized by AttParseNet as much as 30% more accurately.

Eyeglasses is an attribute which would benefit from an expanded segmentation mask

for additional visual features.

Next, results on the UMD-AED dataset are analyzed. Accuracy for this trial is

shown in Figure 4.9. Here we see improvement on all attributes besides chubby, double

chin, goatee, Sideburns, wearing necklace and wearing necktie. Each of the attributes

that are not improved upon show less than 1% difference of accuracy, on average.

This being said, AttParseNet and the aligned baseline are separated by nearly 40%

accuracy for some attributes. It is of note that many of the accuracy scores for the

aligned baseline classifier are within 5% of 50% accuracy score, suggesting it learned

a degenerate majority-class output function for 23 attributes.

These experiments suggest that the joint learning of semantic segmentation
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Figure 4.8: Average accuracy achieved on each facial attribute for the proposed ar-
chitecture and a baseline model. AttParseNet is trained with the weak semantic
segmentation task (best viewed in color).



63

Figure 4.9: Average accuracy achieved on each facial attribute for the proposed ar-
chitecture and a baseline model. AttParseNet is trained with the weak semantic
segmentation task (best viewed in color).
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alongside attribute classification greatly improves the performance of a base classi-

fier. The results also suggest that enforcing features for attribute prediction coincide

with the visual features which make up the target features reduces the likelihood of

over-fitting, even in the presence of very few labels per attribute.

In this chapter we introduce a new method for facial attribute recognition from

images, which we call AttParseNet. Our proposed method adds weakly labeled se-

mantic segmentation of attributes as an additional level of supervision in the attribute

recognition network. We also introduce a rule-based method for generating weakly

labeled facial attribute segments based on landmark points. Using these weakly la-

beled attribute segments we are able to add a segmentation loss to the facial attribute

recognition model, in addition to the attribute recognition loss. Combining these two

learning tasks in a single network results in improved facial attribute recognition and

generalizability of our model on unseen data.

We demonstrate the effectiveness of our method, comparing AttParseNet with

the a baseline model that has the same network architecture, but is trained without

the segmentation task. AttParseNet is able to take advantage of weakly labeled seg-

mentation data to better localize and recognize facial attributes, requiring no facial

landmarking at test time. In addition, there is some evidence that the semantic seg-

mentation task has a regularization effect on the learned network weights, leading to

improved model generalization to unseen data. We emphasize that the work pre-

sented in this chapter required very little hand-labeling and no new data

was collected. Rather, we introduced a rule-based method to create weak semantic

segmentation labels for added supervision in the task of attribute recognition.

Despite these improvements, issues with the existing facial attribute datasets are

well documented. Architectural changes can only yield limited improvement without

also improving the quality of the input data. In the next chapter we discuss known

issues with available datasets and propose a novel unsupervised labeling technique.
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Chapter 5

Attribute Data and Consensus
Subspace Clustering

Parts of this chapter have been previously published. The work is detailed in Ap-

pendix A: 2.

5.1 Introduction

In the previous chapter we detail a novel method of attribute recognition that im-

proves on performance metrics for attribute prediction and generalization to unseen

image sets. We believe that continued improvement to the field of attribute recogni-

tion will require the collection of more high-quality attribute data. In this chapter

we discuss the currently available attribute recognition datasets and provide insights

into their short-comings. In addition, we present a novel method of unsupervised

image labeling and clustering. Although the method achieves limited performance

for images with fine-grained visual features, it is an early step toward future systems.

5.1.1 Attribute Data Problems

Despite the relatively widespread use of facial attributes for downstream tasks [20,

54, 62, 73, 167], there are few available datasets which include facial attribute labels.

To the best of our knowledge the available datasets are: CelebA, LFWA, UMD-AED,

UTKFace, and FairFace [49, 77, 96, 185]. The first three datasets are labeled with

the same 40 attributes and contain 202,599, 13,232 and 2,800 samples respectively.
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UTKFace and FairFace contain only labels relating to age and race.

One of the most prominent issues with available facial attribute datasets is label

imbalance. Many datasets, such as CelebA [96], suffer from significant class imbal-

ance, where certain attributes are underrepresented compared to others.

This imbalance can lead to biased models that perform poorly on minority classes

and rely on spurious correlations between unbalanced features [49, 130]. Label imbal-

ance can arise due to various factors, including the inherent distribution of attributes

in the population, data collection biases, and annotator biases. For example, at-

tributes like young or attractive may be over-represented in datasets that primarily

consist of celebrity images, as these attributes are more common among celebrities.

Similarly, annotator biases can lead to inconsistent or incomplete labeling of certain

attributes, especially those that are subjective or ambiguous.

Hand et al. [49] provide attributes which are subjective and frequently misla-

beled: oval face, attractive, high cheekbones, and arched eyebrows. Their work also

shows that lipstick is inconsistently labeled. Lingenfelter et al. demonstrate signifi-

cant racial and gender bias for the big Nose and big lip attributes [86, 87]. The same

group also shows that nearly 7% of CelebA samples are simultaneously labeled with

contradicting features. An example is a sample labeled as demonstrating both wavy

hair and bald. Their analysis suggests that as many as 25% of CelebA’s attribute

classes demonstrate issues which call into question their utility for downstream tasks.

To mitigate the effects of label imbalance, researchers have proposed various

techniques, such as data augmentation, oversampling, and loss weighting. However,

these methods often fail to address the underlying causes of imbalance and may

introduce additional biases or artifacts in the training data.

The choice of attributes and the quality of annotations in facial attribute datasets

can also pose challenges for attribute recognition systems. Many datasets rely on a

fixed set of attributes that may not be exhaustive or relevant for all applications. For

example, attributes like attractive or heavy makeup are subjective and may not be

useful for tasks like identity verification or demographic analysis.
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These issues motivate our next contribution, a method of unsupervised label as-

signment for image datasets. We avoid label biases by constructing a feature extractor

which is entirely self-supervised. This technique results in extracted features corre-

lating to the most important trends of the images seen at train time. The extracted

features are clustered into groups which represent data driven visual attributes.

5.2 Unsupervised Image Labeling

Supervised learning has achieved remarkable success in various domains, including

biometrics and computer vision. However, the performance of supervised methods

heavily relies on the availability of large-scale, labeled datasets, which can be time-

consuming, expensive, and sometimes infeasible to obtain. To address this problem,

unsupervised learning methods, particularly clustering, have gained significant atten-

tion as they aim to discover meaningful patterns and structures in unlabeled data.

Traditional clustering methods, such as k-means [101], Gaussian Mixture Models

(GMMs) [22, 106], and spectral clustering [114], have been applied in biometrics and

computer vision. However, they often struggle to effectively group visual data. The

reasons for this are two-fold. First, the image feature space is high-dimensional.

This is problematic due to the curse of dimensionality [65], where the performance

deteriorates as the dimensionality increases. Second, the visual features spatially

correlate to one another. Clustering methods expect a flattened input, which removes

the important spatial organization of the input data.

We posit that a mixture of traditional methods and deep learning has the po-

tential to improve performance of unsupervised labeling of data. Recent advances

in deep learning have been leveraged to overcome limitations of clustering on im-

age datasets, with techniques such as autoencoders [55] and variational autoencoders

(VAEs) [68] showing promising results in learning compact and meaningful represen-

tations of high-dimensional data without the supervision of classification labels.

The learned feature space from autoencoder architectures can be further re-

duced with matrix factorization techniques, such as Non-negative Matrix Factoriza-
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tion (NMF), and a consensus of clustering results can be used as a powerful technique

to enhance the robustness and stability of clustering results.

Motivated by these advancements, we propose a novel multi-step clustering ap-

proach called Consensus Subspace Clustering (CSC). CSC aims to reduce the di-

mensionality of input data while carefully selecting the most informative features for

grouping samples into meaningful clusters. By leveraging deep learning, matrix fac-

torization, and consensus clustering techniques, CSC captures complex patterns and

relationships in high-dimensional biometric and visual data.

The main contributions of this chapter are:

• CSC utilizes a convolutional autoencoder and NMF to capture spatial relation-

ships, identify informative features and flatten the input data.

• The flattened features are then passed into a variational autoencoder (VAE) to

extract multiple representations of the flattened data.

• Consensus clustering is applied to combine clustering results from different sub-

spaces, enhancing the stability and reliability of final cluster assignments.

• Experimental results demonstrate CSC’s competitive performance compared to

state-of-the-art clustering methods in unsupervised pseudo-labeling tasks for

biometric and computer vision applications.

The remainder of this chapter is organized as follows. Section 5.3 describes the

proposed CSC method in detail. Section 5.4 presents the experimental setup and

discusses the experimental results.

5.3 Methodology

The CSC pipeline consists of four core modules, as shown in Figure 5.1. The first

module extracts features from input images using an autoencoder. The second module

removes noise and unimportant features by detecting meta-features with Non-negative
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Figure 5.1: Overview of the proposed CSC pipeline. The method consists of four
main modules: i) a flattening module using an autoencoder to extract features from
input images, ii) a denoising module using NMF to remove unimportant features,
iii) a compression module using VAE to generate a low-dimensional representation
of denoised features and iv) a clustering module using spectral clustering to cluster
images from their compressed representations.

Matrix Factorization (NMF) and inspecting reconstruction errors. CSC only retains

features that significantly contribute to the reconstruction error, as these likely dif-

ferentiate classes. These two modules are repeated to generate multiple denoised

versions of the input. The third module is a Variational Autoencoder (VAE) that

projects the denoised features into multiple lower-dimensional representations. The

fourth module applies spectral clustering to these low-dimensional representations.

All four modules are repeated to generate multiple cluster assignments per image.

Finally, an ensemble approach determines the final cluster assignment for each image

based on the assignments from each representation. The following subsections detail

each module.

5.3.1 Feature Extraction

We scale pixel values in each image from 0 to 1 using min-max normalization. A

1-layer convolutional autoencoder then extracts 500 features from each normalized

image via the bottleneck layer (Figure 5.2). Optimizing this model to generate a

good, compact representation requires identifying the significant visual features. We

expect that the learned feature space contains some noise, which we filter out with

NMF.
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Figure 5.2: Feature extraction using our autoencoder. A 1-layer autoencoder is used
to extract features from input images. The representation generated by the autoen-
coder has 500 dimensions.

5.3.2 Denoising Module

We expect that only a subset of the extracted features are useful for clustering images.

Therefore, we filter out features unlikely to play a major role, using the workflow

in Figure 5.3 based on 1-factor NMF. This module is represented by the following

equation:

Vm×n = Wm×k ×Hk×n + Em×n

In our system the latent vector from the flattening module is a vector V with

dimensions m × n, where m is the number of images and n is the dimensionality

of the latent vector. NMF decomposes V into two matrices W and H which have

dimensionality m×k and k×n. Here, k represents the factor of the NMF model. The

factors produced by NMF represent the most dominant trends in the input vector. E

is a matrix representing the error between the original vector and the reconstructed

vector.

Setting the number of factors to k = 1 makes fitting the model difficult for

features that significantly differ between clusters - the most valuable features for

clustering. By attempting to reconstruct the original matrix V , we can select the

most important clustering features based on those with the highest reconstruction

error [133, 163]. We sort features by their absolute error and remove the 50% with the
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Figure 5.3: Denoising extracted features from input images using NMF. The original
data matrix is decomposed into two vectors representing images and their features
in 1-dimensional latent space. The error of the reconstructed data using these two
vectors is used to rank each feature. Only 50% of features that have the largest error
are kept for the next steps.

lowest error. Since the feature extraction and denoising modules are non-deterministic

and sensitive to random factors, we repeat them ten times to obtain different denoised

data versions, concatenating the results for the next step.

5.3.3 Variational Autoencoder

The previous step has removed insignificant features from the original extracted fea-

tures, but the dimensions of the remaining features are still too large (2,500 features)

to perform clustering efficiently. Hence, a VAE is applied to compress the significant

features into a lower dimension (Figure 5.4).

The VAE architecture is similar to that of a standard autoencoder. However,

rather than attempting to encode each input sample into fixed floating point features,

the VAE encodes features into two vectors. These vectors represent the mean and

standard deviation of a Normal distribution. This distribution is sampled to extract

the latent vector. This technique results in a latent space which more smoothly

transitions between classes than a traditional autoencoder.

VAEs are, however, prone to overfitting [146]. Therefore, instead of using one

decoder as in a standard VAE, we use multiple decoders in our implementation to
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Figure 5.4: Compressing images using a VAE. Denoised images are compressed into
multiple representations using a VAE. Multiple representations are obtained from one
image. This is accomplished by adding different noise into the latent space and the
use of multiple decoders to reconstruct the image. The representations of each image
are used for clustering.

ensure that the encoder learns the generalized presentation of the input. At the end

of this module we obtain three compact representations for each image by repeatedly

sampling from the latent space. Output representations are gatherered into 3 groups

by sample number (i.e. group 1 contains representations from the first sample of an

image). These groups are referred to as subspaces.

5.3.4 Basic Subspace clustering

Spectral clustering is performed on each subspace representation to form pseudo labels

for the input data (i.e., each cluster represents a class). We use spectral clustering

rather than k-means to better capture non-linear relationships among images.

In our pipeline, we use the K-Means adaptation of spectral clustering, proposed

by Ng et al. [114], to generate pseudo labels for input images. The clustering proce-

dure first computes the similarity matrix for all samples to use as the input graph.

It then computes the symmetric and normalized Laplacian matrix (Lsym). Then, the
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K largest eigenvectors for Lsym, are computed and normalized to unit length. The

eigenvectors are then used to make up the columns of a matrix. Finally, the algorithm

uses K-means clustering to segment the subspace into K clusters.

To select the optimal number of clusters, we run the algorithm with a different

number of clusters and select the clusters that give us the best ratio r of between-sum-

of-squares and total-sum-of-squares by cluster. Since the input data can be large, for

each number of clusters, we sample the input multiple times and perform clustering

to obtain multiple r. We take the average of all r for each k and select the optimal

number of clusters K such that r is maximized.

5.3.5 Consensus Clustering

We repeat the clustering pipeline 10 times to obtain multiple cluster assignments for

each image. To generate the final cluster assignment for each image, we adopt an

ensemble clustering strategy called weighted-based meta-clustering (wMetaC) [127,

159].

wMetaC uses voting from each cluster assignment to determine the final clusters.

First, an image-image similarity matrix is computed, with each value representing

the likelihood of two images being clustered together. Next, each image is assigned a

weight by summing all pairs it appears in. These similarity matrices form a cluster-

cluster similarity matrix. Finally, hierarchical clustering on this matrix selects the

final clusters.

5.4 Experiments and Results

To evaluate our proposed method, we compare CSC with several existing clustering

methods on two different handwritten digit datasets and one general object classi-

fication dataset. Baseline methods included in our comparison are k-means, Deep

Cluster [154], and Deep k-means [108]. The datasets used for experimentation are

MNIST [82], USPS [57], and CIFAR-10 [71]. Widely used performance metrics are

computed to compare CSC to baseline techniques and state-of-the-art methods.
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5.4.1 Datasets

The datasets that we select for evaluation are USPS [57], MNIST [82], and CIFAR-10

[71]. Each of these collections are relatively small and contain low-resolution images

(32x32 pixels or less). The MNIST dataset contains a total of 70,000 images of

size 28x28 (60,000 images for training and 10,000 images for testing). MNIST is

relatively balanced with each of the 10 classes representing close to 10% of the total

population. The group with most representation makes up 11.25% and the group with

least representation makes up 9%. USPS contains a total of 11,000 images with of

size 16x16. Both datasets have 10 classes, which correspond with the integers ranging

from 0 to 9. Each image depicts a hand-written digit. USPS is mostly balanced with

the largest group representing 17% and the smallest group representing 8%. The

CIFAR-10 dataset contains total of 60,000 images of size 32x32x3 (50,000 images for

training and 10,000 images for testing). This dataset is balanced, with 6000 images

per class. CIFAR-10 provides a much more challenging task due to significantly larger

feature space and diverse class labels: airplane, automobile, bird, cat, deer, dog, frog,

horse, ship and truck.

5.4.2 Methods for Comparison

Effective evaluation of CSC is achieved via comparison to state-of-the-art methods in

the field. In addition, we select k-means as a baseline model. Images are flattened

before being passed to k-means. K-means is run with 10 cluster centers for a maximum

of 1000 iterations or until convergence. We run k-means 20 times on each dataset and

select the run with best results for comparison. The selected state-of-the-art methods

are Deep Cluster [154] and Deep k-means [108]. Results shown in Table 5.1 are those

reported in each publication.

5.4.3 Metrics

We use Accuracy (ACC) and Normalized Mutual Information (NMI) as metrics to

evaluate performance of each method. Accuracy and NMI metrics are used to be
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Table 5.1: Performance of K-means, Deep Cluster, Deep K-means, and CSC on
MNIST, USPS and CIFAR-10 datasets.

Method
MNIST USPS CIFAR-10

ACC NMI ACC NMI ACC NMI

K-means 0.58 0.49 0.48 0.42 0.14 0.12
Deep Cluster 0.86 0.83 0.67 0.69 — —
Deep K-means 0.84 0.80 0.76 0.78 — —
CSC No Flatten 0.85 0.79 0.83 0.78 0.12 0.08
CSC No Filter 0.83 0.76 0.84 0.79 0.14 0.10
CSC No Voting 0.82 0.77 0.82 0.76 0.14 0.10
CSC 0.86 0.81 0.83 0.79 0.15 0.11

consistent with the evaluations in the original descriptions of corresponding methods

included in the comparison. The metrics are calculated as follow:

ACC = maxm

∑N
n=1 1(li = m(ci))

N

where 1(.) is an indicator function, li is the true label, ci is the label assigned by

the clustering method and m(.) denotes all possible one-to-one mappings between

clusters.

NMI =
I(l, c)

(H(l) +H(c))/2

where l denotes the ground truth labels, c is the cluster assignments, I(.) is the

mutual information metric, and H(.) is the entropy.

5.4.4 Results

Table 5.1 shows the Accuracy and NMI for CSC and comparison methods on the

MNIST, USPS and CIFAR-10 datasets. On the MNIST task, CSC far exceeds perfor-

mance of the baseline and outperforms the other methods in accuracy. Deep Cluster

reports slightly better NMI for MNIST and Deep K-means outperforms CSC in both

metrics on the USPS dataset. In the case of Deep Cluster, the margin of difference is

very slight and shows that CSC is competitive with state-of-the-art on this task. Re-

garding Deep k-means, we believe that the architecture is better suited for the smaller

feature space found in USPS. Each image in this dataset contains a total of only 256
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Figure 5.5: UMAP [105] visualizations of the raw USPS dataset (top) and the USPS
dataset after being transformed by CSC (bottom). Each colored dot represents an
input sample.
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features. To reinforce this claim, we point to the method’s decreased performance on

the larger MNIST and CIFAR-10 datasets. We note that the authors of Deep Cluster

and Deep K-means did not evaluate their methods on the CIFAR-10 dataset.

Complete analysis of CSC requires an understanding of how each component

in the pipeline effects the end performance of the model. Referencing the latter

half of Table 5.1, removing the flattening module reports the least change out of all

modules. However, flattening appears to become more important as the complexity

of the dataset increases. Next, the filtering module is particularly important for

MNIST, but less important for USPS. This is likely because the samples in USPS are

mostly separated before being processed by the VAE, see Figure 5.5. Finally, voting

or consensus clustering is very important for stability of clustering results. In our

trials without voting, results can be extremely variable.

In this chapter, we have introduced a novel method for providing pseudo labels

on arbitrary image data, which we call CSC. To the best of our knowledge we are the

first to present a deep clustering method which removes inconsequential features from

input data and learns multiple representations of the data to reinforce the robustness

of selected cluster labels. Our experimentation shows that our work is competitive

with, and in some cases, exceeds the state-of-the-art for deep clustering of image data.

Although this method contributes to the advancement of the field of unsuper-

vised label assignment, we do not find that it is meaningful for the extraction of

facial attributes. Our results suggest that CSC struggles to model fine-grained visual

features. This is likely due to the simplicity of the convolution autoencoder used by

the flattening module.

CSC is in essence a method for extracting arbitrary visual attributes which rep-

resent various classes in the input data. This suggests the question of which facial

attributes separate highly similar individuals. Detection of such attributes will re-

quire a classifier capable of recognizing fine grained details of input images. In the

next chapter we detail a novel dataset intended to further study which visual features

which are most important for determining identity amongst similar individuals.
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Chapter 6

DoppelVer: A Benchmark for Face
Verification

Parts of this chapter have been previously published. The work is detailed in Ap-

pendix A: 3.

6.1 Introduction

The task of face recognition has received considerable attention from computer vision

and pattern recognition researchers in the past 20 years. This is because face iden-

tification has significant utility in the fields of biometrics, visual search, and socially

assistive technologies [4, 70]. Additionally, compute equipment capable of running

increasingly powerful algorithms has become relatively cheap and widely available.

Face recognition technologies have significant impact on society with a market share

of $5.69 billion worldwide in 2023 and a projected $12.05 billion by 2028 [109].

Face recognition is separated into three well-defined steps: (1) face detection and

localization, (2) extraction of features from the detected face, and (3) classification

(verification or identification) [70]. The first task is to decide whether or not there are

faces in an image. If there are one or more faces, then the system identifies bounding

boxes for each face. The feature extraction step generates a feature vector from the

localized face. This feature vector should be discriminative enough to separate images

of one identity from images of other identities. Lastly, there is the classification step.

This is separated into two classes of techniques: identification and verification. In
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the identification scenario the system is aware of a finite number of identities and it

should learn to match each image sample to one identity class. For the verification

task the model is only provided with supervision in the form of a binary label which

represents either same or different, and so pairs of images are compared at each step.

One might suggest that the field of face classification is reaching its maturity,

citing results on the well-known benchmarks such as LFW, AgeDB, or IJB-{A,B,C}

[56, 69, 104, 110, 170]. Rather than assuming that the reported metrics are due

to the techniques solving the task of visually recognizing faces, we hypothesize that

the modern techniques have improved beyond the level of difficulty provided by the

current benchmarks. For example, in 2015 Liu et al. published a result of 99.77%

accuracy on the LFW benchmark [90]. The dataset’s evaluation protocol contains only

6000 images. This means that for nearly a decade methods have been attempting to

show improvements on a method that mis-classifies only 14 images, five of which are

known to be incorrectly labeled. In addition, face identification datasets are often

collected with a focus on quantity, neglecting other important attributes. These

problems provide the motivation for the proposed work.

This chapter introduces a new dataset – DoppelVer – consisting of unconstrained

face images of doppelgangers – that is, individuals who look very similar and are often

mistaken for each other. The purpose of DoppelVer is to challenge current SOTA

facial feature extraction and face verification and identification methods. Although

a number of datasets have been published to this end in the past decade, many of

them are either unavailable or have been nearly solved. DoppelVer offers a specific

challenge for modern face recognition methods, specifically the task of differentiating

individuals who could pass for each other. To the best of our knowledge DoppelVer

is the first dataset to increase face classification difficulty by increasing inter-class

similarity rather than decreasing intra-class similarity.

There are a large number of datasets collected and presented for the purpose of

facial feature extraction and classification. In Chapter 2 Section 2.5 we describe the

major datasets that already exist for the purpose of model evaluation and benchmark-



80

ing. Each of the databases detailed provide an important contribution to furthering

the field of face recognition. These datasets provide unconstrained images and in the

cases of [110, 139, 187, 188] the sample pairs vary along specific axis which were not

well represented in LFW. As mentioned previously, these datasets focus on selecting

positive pairs which are visually dissimilar to one another.

DoppelVer’s goal is to expand on a dimension of challenge which has not yet been

addressed. This dimension is that of visual similarity among negative samples. This

yet unseen challenge will force methods to extract significantly more fine-grained,

prominent features from face images. In order to achieve high performance on Dop-

pelVer, techniques will be required to extract those features which uniquely define a

given identity.

Here we detail the highlights of the DoppelVer dataset, which will be expanded

upon in the remainder of this work.

• DoppelVer contains 390 unique identities, each with at least one corresponding

doppelganger pair.

• We provide the unaltered source images along with cropped, aligned, and cen-

tered (CCA) images.

• There is an average of 72 CCA samples per identity, with a minimum of 11 and

a maximum of 98.

• For the CCA images we provide two evaluation protocols: doppelganger and

Visual Similarity from Embeddings (ViSE). Under the doppelganger protocol

negative samples are select images depicting an identity’s doppelganger. The

ViSE protocol uses a generalized image embedding model to select negative

images that are highly visually similar to the current image sample.

• Both protocols are divided into 10 cross validation splits which are distinct

across identities. The doppelganger protocol’s cross validation splits are made

up of 14,000 image pairs while ViSE’s splits contain 3,500 image samples.
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The remainder of the chapter is organized as follows: Section 6.2 contains a

more detailed description of the DoppelVer dataset including data collection, pre-

processing, labeling, and the generation of the evaluation protocols. Section 6.3

provides results of our experimentation comparing the performance of SOTA facial

recognition pipelines on existing benchmark datasets and DoppelVer.

6.2 Proposed Method

6.2.1 Dataset Collection

In order to construct a dataset for which negative samples are analogous to positive

samples it is intuitive to begin by aggregating a list of identities which bare visual

similarity to human labelers (i.e. doppelgangers). Doppelganger identity pairs were

collected through labeler intuition of similar looking identities and lists of doppel-

gangers publicly available on the Internet. We present a large list of doppelganger

identity combinations, totalling 237 pairs and 390 individuals. For each individual,

100 images were scraped from online sources. The average number of images pre-

sented in the dataset for each person is approximately 72 due to pruning of noisy

samples and duplicates.

6.2.2 Data Preparation

Data preparation involved two distinct steps: (1) cropping, aligning and centering

the images, and (2) hand removal of erroneous samples and duplicate images.

The first step in the data preparation is to reduce the original images into

cropped, aligned, and centered images. We crop to remove information which is

extraneous to the face recognition task. Alignment and centering are performed as

they have been recognized as important for achieving competitive face recognition

benchmark performance. Alignment involves rotating the image such that the eyes

lie on a horizontal line (i.e. the same y-coordinates). The operation of centering

moves the face in the frame of the image such that it appears centrally. Centering is
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accomplished by repeating edge pixels along either the horizontal or vertical borders of

the image. The cropping operation relies on a bounding box and centering/alignment

rely on facial landmarks. We extract the bounding boxes and facial landmarks for

images in DoppelVer with the MTCNN detector [182].

While processing the dataset with MTCNN, three cases may occur: (1) MTCNN

does not detect a face, (2) MTCNN detects a single face, and (3) MTCNN detects

multiple faces. Images where a face is not detected are pruned from the dataset.

Although MTCNN returns a detected face in most images, not all detections contain

the target identity or a valid face. Each detection is hand-checked for validity during

the cleaning phase of pre-processing. When at least one face is detected, MTCNN

returns a bounding box for the image along with five facial landmarks. The landmarks

provide the detected location of the centers of the eyes, corners of the mouth, and tip

of the nose.

Initially we cropped the source images to the bounding boxes predicted by

MTCNN, but found that the crop was too tight. These crops often removed valuable

information such as the top of head, ears and most of the neck. We expand MTCNN’s

detected bounding box width and height by 50%. This produces crops which contain

more contextual information. There are cases for which the detected face is near the

border of the image, restricting our ability to expand the bounding box. In these

cases we simply set the desired bounding box location to the border of the image.

After cropping, we align the images according to the extracted landmark loca-

tions. Our alignment rotates the images such that the detected landmark for left and

right eyes have the same y-axis coordinate. During the alignment process some im-

age information is lost due to the corners of the image rotating outside of the frame.

Following the lead of the CelebA dataset, we reduce the effects of this information

loss by performing same padding for any pixels that are lost due to rotation [96].

The last pre-processing step is to center the image so that the center most pixel

of the image is within the bounds of the detected face. Centering is performed by

computing a landmark which lies at the mid-point between the left and right eye



83

landmarks. Additional pixels are appended to the horizontal and vertical image

borders such that the center of the face is equidistant to each border. The appended

pixels are simply duplicates of the pixels which are along the border that needs to be

expanded.

We remove unsatisfactory images by hand and by automatic detection. In the

case of hand labeling, labelers began with the original image set collected from the

internet. Their task was to pass over the images and delete any image which contained

erroneous detections (e.g. not depicting the correct identity or images not containing

a face). The set of images which had complete labeler agreement was accepted. The

set of images which did not have agreement were re-labeled. Any remaining images

which the labelers did not reach agreement on were pruned from the dataset. The

images which achieved hand label agreement were passed to the automatic detection

system.

The automatic detection system works by generating embeddings for each face

image in the dataset with the dinov2s model [119]. dinov2s is a general purpose image

embedding model, built to capture a discriminative representation of input images

without finetuning. The cosine similarity is computed between all combinations of

input images’ embeddings to determine samples which are highly visually similar.

To compute the embeddings and cosine similarities efficiently we utilize the fastdup

library [158] from Visual Layer. For any image pair that has exact similarity (i.e. du-

plicate images), one image from the pair is pruned from the dataset. Next, we return

all of the image pairs that are above a threshold of 0.92 similarity. We extract these

images pairs and provide them to human labelers to find near duplicate images (i.e.

images that have been horizontally flipped, color jittered, cropped slightly differently,

etc.), which are removed from the dataset.

6.2.3 Protocol Generation

The DoppelVer dataset contains in total 27,967 carefully curated and processed im-

ages. The question that remains is the best way to utilize these images for assessing
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and benchmarking feature extraction and face classification methods. To answer this

question, we introduce two protocols for evaluation using DoppelVer: doppelganger

and ViSE. Figure 6.1 provides example image pairs for each protocol in DoppelVer

and Figure 6.2 shows samples from CA-LFW and CP-LFW.

Both protocols are made up of positive and negative image pairs. Positive image

pairs in both protocols signify instances where both images depict the same identity.

In the doppelganger protocol, negative pairs are made up of one image sample depict-

ing the current target identity and one image sample depicting their doppelganger. In

the ViSE protocol the negative pairs contain an image sample depicting an identity

which does not generally appear as visually similar to the current identity, but in a

one-off case is visually similar. Such similarity often arises due to comparable pose,

lighting, hair style, clothing, or image background. After generating a large number

of image pairs, we divide the dataset into 10 equally sized splits. Each split is divided

such that images of an identity are in only a single split. Identities are divided the

same in each protocol (e.g. split 0 of the doppelganger protocol depicts the same

identities as split 0 of ViSE).

The doppelganger protocol is generated with our curated list of doppelganger

pairs. We create the pair instances in the doppelganger protocol as follows. First, we

sample 500 image combinations, without replacement, for every pair of doppelgangers

and identities with themselves. After generating all pairs following this criteria we

separate the samples into 10 splits based on their identities and pairs such that the

same identity never shows up in multiple splits. Approximately 10 percent of the

dataset is placed into each split. Finally, from each split we randomly sample 7,000

positive pairs and 7,000 negative pairs. We do this to follow the procedures laid out

by LFW. This protocol has a positive label and negative label ratio of exactly 50%.

It has a gender distribution of 44.96% males and 55.04% female samples respectively.

Identities in each split have a relatively even representation with an average minimum

contribution of 4.31%, average maximum contribution of 19.07%, and an average stan-

dard deviation between representation of 5.32%. In total the doppelganger protocol
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Figure 6.1: Shown above are samples from both protocols of the DoppelVer dataset
– doppelganger and ViSE. We note that negative samples from the Doppelganger
protocol share facial attributes while the image pairs in ViSE frequently share factors
external to the face such as pose, clothing, and background.

Figure 6.2: The upper portion of this figure presents samples from the CA-LFW
dataset and the lower portion contains samples from CP-LFW. The CA-LFW samples
showcase differences in age while CP-LFW’s images showcase differences in pose.
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has 140,000 sample pairs.

To generate the ViSE protocol we use a similar approach to the one described

in the automatic detection of unsatisfactory images. We begin by generating em-

beddings for each image in the dataset with the dinov2s model. Next, we compute

the cosine similarity between images which do not come from the same identity. We

retain all image pairs that have a similarity greater than 0.80. We have found that

this form of mining hard pairs image by image rather than individual by individual

results in significantly more visual similarity between image pairs. Using the same

identities in each split as the doppelganger protocol, we break the protocol into 10

splits with unique identities in each split. This protocol has a positive label and

negative label ratio of exactly 50%. It has a gender distribution of 40.36% male and

59.64% female. Identities in each split have a relatively even representation with an

average minimum contribution of 2.29%, average maximum contribution of 17.61%,

and an average standard deviation between representation of 3.6%. This protocol has

35,000 verification pairs.

6.2.4 Intended Use

The DoppelVer dataset is intended to provide a new challenge for the research com-

munity developing methods in the area of facial recognition. DoppelVer has been

designed to act as an evaluation dataset, not a training dataset. In the past decade

the most effective methods of facial recognition have utilized large training sets such

as CASIA-WebFace, MegaFace, VGGFace2, MS-Celeb-1M [14, 46, 64, 177]. These

datasets contain 34.94K, 1.03M, 3.31M, 10M samples respectively. Although an ag-

gregate of visually difficult pairs is attractive for faster convergence time, DoppelVer

does not contain enough diversity to effectively and ethically train models.

We provide cross validation splits for both protocols in DoppelVer. The purpose

of these splits is two-fold. First, some methods may wish to perform feature extraction

prior to face classification. Such extraction methods should pre-train on external

sources and infer features for each image in DoppelVer. At evaluation time final-
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stage classifiers should be iteratively trained from scratch (using their pre-trained

feature extraction methods) on nine splits and evaluated on the tenth. Performance

should be recorded as an average across the 9 models. We refer to interaction with

the dataset in this way as View 1. Second, methods that wish to train on external

data and perform only evaluation on DoppelVer should use split 0 for algorithm

development and validation of results. The model should not be exposed to data in

any of the other nine splits until final evaluation. Use of the dataset in this way is

called View 2.

Taking motivation from the LFW dataset, we suggest that researchers utilizing

View 1 report estimated mean accuracy (EM ACC) and standard error of the mean

(SEM). We define these metrics in the following way:

µ̂ =
Σ9

i=1pi
9

, SEM =
σ̂√
9
, σ̂ =

√
Σ9

i=1(pi − µ̂)2

9

where pi is the percentage of correct classifications on View 1 when using the ith

split for testing. σ̂ is the estimate of the standard deviation. As noted by the authors

of LFW, it is important that accuracy is computed with parameters and thresholds

chosen independently of the test data. Researchers should not simply choose the

point on a Precision-Recall curve giving the highest accuracy.

For the methods which utilize View 2 of DoppelVer, we advocate for the use

of accuracy (ACC) and area under the receiver operating characteristic curve (ROC

AUC). We elect for the use of ACC and ROC AUC because of the balanced nature of

classes in the Doppelganger and ViSE protocols. In addition, the correct classification

of true positives is equally important to classification of true negatives.

6.3 Experiments

In this section, we highlight the challenges posed by the DoppelVer dataset as com-

pared to other existing evaluation datasets. We detail the methods used for evalua-

tion, the training data, and the process employed for training and testing.
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6.3.1 Evaluation Model

To provide an accurate depiction of the challenge posed by DoppelVer, it is impor-

tant that we evaluate DoppelVer with SOTA face recognition models. Due to ease

of implementation and competitive results we have elected to utilize the techniques

described by Wen et al. in SphereFace2 [169]. In particular we train the 20 layer

SphereFace Network (SFNet-20), initially proposed in [92], with the following loss

functions: COCO, SphereFace, CosFace, ArcFace, and SphereFace2. Following Wen

et al., we equip SFNet-20 with batch normalization to facilitate model optimization.

A complete implementation for training SFNet-20 with the aforementioned loss func-

tions can be found in the OpenSphere GitHub repository [176].

6.3.2 Training and Evaluation Process

For pre-processing, we crop face images in each dataset with MTCNN, resize images

to a size of 112×112, and normalize each RGB pixel [0, 255] to the range [-1, 1]. We

trained our models on a single Nvidia Geforce RTX 3090 GPU. Each model is trained

for 70,000 batches of size 512. The model weights are updated by stochastic gradient

descent with a momentum of 0.9 and weight decay of 0.0005. The initial learning

rate of 0.1 is reduced by a factor of 0.1 at batches 40,000; 60,000; and 70,000.

We train our dataset and protocols with VGGFace2, MS-Celeb-1M, and CASIA-

WebFace [14, 46, 177]. In each run the VGGFace2 dataset was found to produce

the best results on each evaluation dataset. VGGFace2 contains between 80 and 800

images for each identity making it a powerful training dataset for the face verification

task. Evaluation of the trained models is performed on LFW, CA-LFW, CP-LFW,

AgeDB 30, view 2 of DoppelVer’s doppelganger protocol, and view 2 of DoppelVer’s

ViSE protocol. Our measured accuracy and ROC AUC are provided in Tables 6.1

and 6.2 respectively.
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Table 6.1: Average accuracy of face verification for the comparison models trained
with VGGFace2 and benchmarked on various datasets.

Method LFW CA-LFW CP-LFW AgeDB Doppel. ViSE
COCO [95] 99.08 91.25 88.48 89.40 61.14 52.53

SphereFace [92] 99.58 93.15 91.65 93.53 63.48 57.08
CosFace [160] 99.52 93.03 91.37 93.02 63.29 56.93
ArcFace [24] 99.55 93.40 91.18 92.57 63.28 57.70

SphereFace2 [169] 99.53 93.80 90.83 93.38 61.66 55.41
Average 99.45 92.93 90.70 92.38 62.57 55.93

Table 6.2: Average AUC of face verification for the comparison models trained with
VGGFace2 and benchmarked on various datasets.

Method LFW CA-LFW CP-LFW AgeDB Doppel. ViSE
COCO [95] 99.89 96.56 93.57 96.03 65.13 50.53

SphereFace [92] 99.92 97.44 95.50 98.11 68.65 59.41
CosFace [160] 99.91 97.28 95.64 97.86 67.91 58.58
ArcFace [24] 99.89 96.99 95.46 97.53 68.15 59.79

SphereFace2 [169] 99.89 97.55 95.42 98.02 65.43 55.77
Average 99.90 97.16 95.12 97.51 67.05 56.82

6.3.3 Discussion of Results

We are satisfied with the performance achieved by the SOTA methods on the existing

benchmark datasets. SOTA performance on the LFW dataset is 99.8% accuracy. Our

training of SphereFace achieves an accuracy of 99.58%, mis-classifying just 25 samples.

With this result we can be assured that this baseline is competitive with other SOTA

methods. The best published results on the other benchmark datasets are 95.87%,

92.08%, and 98.7% accuracy on CA-LFW, CP-LFW, and AgeDB 30 respectively.

Regardless of loss function, the baseline networks struggle significantly more with

variations in pose than variations in age. CA-LFW and AgeDB appear to present a

similar degree of difficulty to the models.

It is clear from our experiments that the doppelganger and ViSE protocols of

DoppelVer are much more difficult for the classifiers than the other datasets. Results

are better for the doppelganger protocol than the ViSE protocol. This result aligns

with intuition. Two identities that are doppelgangers may in general share facial
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attributes, but variations in clothing, hair style, lighting, and facial expression are

expected when viewing a gallery of images depicting them.

On the other hand, the ViSE protocol contains image pairs which are adversarial

in nature. By this we mean that the combinations of samples are those which a deep

network is expected to struggle to differentiate. Although we use a different deep

convolutional network to select samples which are visually similar than we do for

performing facial recognition, one would expect that the visual features which are

attended to by deep networks would have some similarity.

We believe that methods which will perform well on the ViSE protocol will need

to extract features which are highly specific to the task of facial recognition. In

addition, methods will need to not only detect relevant facial features, but discern if

the features are prominent/defining to the individual’s face.

In this chapter we introduce DoppelVer, a novel evaluation dataset for the tasks of

facial feature extraction and face verification. DoppelVer consists of 27,967 carefully

curated face images, which are used in two face verification protocols of image pairs:

doppelganger and ViSE. We evaluate our methods using several SOTA methods. A

near SOTA baseline model is only capable of correctly performing face verification at

an accuracy of 62.57% and 55.93% in the doppelganger and ViSE protocols respec-

tively. This indicates that despite impressive results on popular benchmark datasets,

there is still work to be done in the field of facial recognition.
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Chapter 7

Conclusion

This dissertation has made significant contributions to the field of facial attribute

recognition, with the primary objective of enhancing performance and understanding

by concentrating on the descriptive visual features of the human face.

In Chapter 3, we introduced an innovative technique for interpreting the visual

features used by deep vision models when predicting facial attributes, drawing in-

spiration from human cognition research. This work offers valuable insights into the

perceptions and decision-making processes of these models, providing a foundation

for more transparent and interpretable facial attribute recognition systems.

Building upon these findings, Chapter 4 presented an improved method for facial

attribute recognition that constrains deep vision models to utilize information only

from the spatially relevant regions of the input image for each attribute. By enforcing

this spatial prior, the proposed approach leads to better generalization, more robust

predictions, and reduced susceptibility to spurious correlations in the training data.

Chapter 5 tackled the common issues found in publicly available facial attribute

datasets, such as suboptimal attribute choices that are either not discriminative

enough or not well-represented in the data. We introduced a novel unsupervised

method to automatically discover the most visually relevant groupings of images.

Finally, Chapter 6 introduced DoppelVer, a new dataset for facial recognition

composed of look-alike individuals. DoppelVer presents a unique challenge to existing

face recognition systems, revealing their limitations in modeling fine-grained similarity

between highly similar classes.
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In conclusion, this dissertation has advanced the state-of-the-art in facial at-

tribute recognition through a multifaceted approach encompassing model interpretabil-

ity, training methodology, and analysis of representations. By focusing on human-

describable attributes, this work realizes benefits in transparency, bias detection,

data efficiency, and scientific understanding compared to end-to-end deep learning

approaches. The work presented here lays the foundation for the development of

more reliable, transparent, and equitable facial attribute recognition systems.

7.1 Future Research

Future research directions based on this work are numerous and promising. Building

upon the insights gained from our study of the utility of visual data in different spa-

tial locations, one could construct more complex alterations to facial data, such as

occluding images with skin-colored regions or swapping facial parts between identi-

ties. These augmentations could be used for improving the generalizability of vision

models, creating adversarial examples for unsupervised learning, and deepening our

understanding of the most valuable facial attributes for downstream recognition tasks.

Another promising avenue is the further improvement of methods for automati-

cally extracting attribute groups based on the content of the training set. Potential

approaches include enhancing the CSC framework to better model fine-grained vi-

sual features and exploring the definition of attributes through relative similarity.

Combining these techniques with CNNs and the visually similar identities from Dop-

pelVer could lead to significant performance improvements in data-driven attribute

discovery.

Lastly, future research should explore the insights gained from the DoppelVer

dataset. Improving deep vision models to accurately classify visually similar individ-

uals is an important step towards more robust facial recognition systems. Extending

the ViSE protocol to include adversarial image pair selection and evaluation on visu-

ally dissimilar positive pairs could provide a more comprehensive assessment of facial

recognition performance.
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Gläser, Fabian Timm, Werner Wiesbeck, and Klaus Dietmayer. Deep multi-
modal object detection and semantic segmentation for autonomous driving:
datasets, methods, and challenges. IEEE Transactions on Intelligent Trans-
portation Systems, 22(3):1341–1360, 2021. doi: 10.1109/TITS.2020.2972974.

[33] Vittorio Ferrari and Andrew Zisserman. Learning visual attributes. In Pro-
ceedings of the 20th International Conference on Neural Information Process-
ing Systems, NIPS’07, 433–440, Vancouver, British Columbia, Canada. Curran
Associates Inc., 2007. isbn: 9781605603520.

https://doi.org/10.1109/TPAMI.2021.3087709
https://arxiv.org/abs/1501.00901
https://doi.org/10.1145/2647868.2654966
https://doi.org/10.1145/2647868.2654966
https://doi.org/10.1145/2647868.2654966
https://doi.org/10.1145/2647868.2654966
https://arxiv.org/abs/1611.02648
https://arxiv.org/abs/1611.02648
https://doi.org/10.1167/9.2.10
https://arvojournals.org/arvo/content\_public/journal/jov/933532/jov-9-2-10.pdf
https://arvojournals.org/arvo/content\_public/journal/jov/933532/jov-9-2-10.pdf
https://doi.org/10.1167/9.2.10
https://doi.org/10.1109/CVPRW.2016.99
https://doi.org/10.1109/TITS.2020.2972974


97

[34] Fabian Flohr and Dariu Gavrila. Pedcut: an iterative framework for pedestrian
segmentation combining shape models and multiple data cues. In pages 66.1–
66.11, January 2013. isbn: 1-901725-49-9. doi: 10.5244/C.27.66.

[35] Ruth C. Fong and Andrea Vedaldi. Interpretable explanations of black boxes
by meaningful perturbation. In 2017 IEEE International Conference on Com-
puter Vision (ICCV), pages 3449–3457, 2017. doi: 10.1109/ICCV.2017.371.

[36] Erez Freud, Andreja Stajduhar, R. Shayna Rosenbaum, Galia Avidan, and
Tzvi Ganel. The covid-19 pandemic masks the way people perceive faces. Sci-
entific Reports, 10, 2020. doi: 10.1038/s41598-020-78986-9.

[37] Yun Fu, Guodong Guo, and Thomas S. Huang. Age synthesis and estima-
tion via faces: a survey. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 32(11):1955–1976, 2010. doi: 10.1109/TPAMI.2010.36.

[38] Wei Gao and Haizhou Ai. Face gender classification on consumer images in a
multiethnic environment. In Proceedings of the Third International Conference
on Advances in Biometrics, ICB ’09, 169–178, Alghero, Italy. Springer-Verlag,
2009. isbn: 9783642017926. doi: 10.1007/978-3-642-01793-3_18. url:
https://doi.org/10.1007/978-3-642-01793-3_18.

[39] Xin Geng, Zhi-Hua Zhou, Yu Zhang, Gang Li, and Honghua Dai. Learning
from facial aging patterns for automatic age estimation. In Proceedings of
the 14th ACM International Conference on Multimedia, MM ’06, 307–316,
Santa Barbara, CA, USA. Association for Computing Machinery, 2006. isbn:
1595934472. doi: 10.1145/1180639.1180711. url: https://doi.org/10.
1145/1180639.1180711.

[40] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich fea-
ture hierarchies for accurate object detection and semantic segmentation. In
Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR ’14, 580–587, USA. IEEE Computer Society, 2014. isbn:
9781479951185. doi: 10.1109/CVPR.2014.81. url: https://doi.org/10.
1109/CVPR.2014.81.

[41] B. A. Golomb, D. T. Lawrence, and T. J. Sejnowski. Sexnet: a neural network
identifies sex from human faces. In Proceedings of the 3rd International Con-
ference on Neural Information Processing Systems, NIPS’90, page 572, Denver,
Colorado. Morgan Kaufmann Publishers Inc., 1990. isbn: 1558601848.

[42] Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Franco Turini, Fosca
Giannotti, and Dino Pedreschi. A survey of methods for explaining black box
models. ACM Comput. Surv., 51(5), 2018. issn: 0360-0300. doi: 10.1145/
3236009. url: https://doi.org/10.1145/3236009.

[43] Guodong Guo, Charles R. Dyer, Yun Fu, and Thomas S. Huang. Is gender
recognition affected by age? In 2009 IEEE 12th International Conference on
Computer Vision Workshops, ICCV Workshops, pages 2032–2039, 2009. doi:
10.1109/ICCVW.2009.5457531.

https://doi.org/10.5244/C.27.66
https://doi.org/10.1109/ICCV.2017.371
https://doi.org/10.1038/s41598-020-78986-9
https://doi.org/10.1109/TPAMI.2010.36
https://doi.org/10.1007/978-3-642-01793-3_18
https://doi.org/10.1007/978-3-642-01793-3_18
https://doi.org/10.1145/1180639.1180711
https://doi.org/10.1145/1180639.1180711
https://doi.org/10.1145/1180639.1180711
https://doi.org/10.1109/CVPR.2014.81
https://doi.org/10.1109/CVPR.2014.81
https://doi.org/10.1109/CVPR.2014.81
https://doi.org/10.1145/3236009
https://doi.org/10.1145/3236009
https://doi.org/10.1145/3236009
https://doi.org/10.1109/ICCVW.2009.5457531


98

[44] Xifeng Guo, Long Gao, Xinwang Liu, and Jianping Yin. Improved deep embed-
ded clustering with local structure preservation. In Proceedings of the Twenty-
Sixth International Joint Conference on Artificial Intelligence, IJCAI-17, pages 1753–
1759, 2017. doi: 10.24963/ijcai.2017/243. url: https://doi.org/10.
24963/ijcai.2017/243.

[45] Xifeng Guo, Xinwang Liu, En Zhu, and Jianping Yin. Deep clustering with
convolutional autoencoders. In Derong Liu, Shengli Xie, Yuanqing Li, Dong-
bin Zhao, and El-Sayed M. El-Alfy, editors, Neural Information Processing,
pages 373–382, Cham. Springer International Publishing, 2017. isbn: 978-3-
319-70096-0.

[46] Yandong Guo, Lei Zhang, Yuxiao Hu, Xiaodong He, and Jianfeng Gao. Ms-
celeb-1m: a dataset and benchmark for large-scale face recognition. In Bastian
Leibe, Jiri Matas, Nicu Sebe, and Max Welling, editors, Computer Vision –
ECCV 2016, pages 87–102, Cham. Springer International Publishing, 2016.
isbn: 978-3-319-46487-9.

[47] Divam Gupta, Ramachandran Ramjee, Nipun Kwatra, and Muthian Sivathanu.
Unsupervised clustering using pseudo-semi-supervised learning. In Interna-
tional Conference on Learning Representations, 2020. url: https://openreview.
net/forum?id=rJlnxkSYPS.

[48] Manuel Günther, Andras Rozsa, and Terranee E. Boult. Affact: alignment-
free facial attribute classification technique. In 2017 IEEE International Joint
Conference on Biometrics (IJCB), pages 90–99, 2017. doi: 10.1109/BTAS.
2017.8272686.

[49] Emily M. Hand, Carlos Castillo, and Rama Chellappa. Doing the best we
can with what we have: multi-label balancing with selective learning for at-
tribute prediction. In Proceedings of the Thirty-Second AAAI Conference on
Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intel-
ligence Conference and Eighth AAAI Symposium on Educational Advances in
Artificial Intelligence, AAAI’18/IAAI’18/EAAI’18, New Orleans, Louisiana,
USA. AAAI Press, 2018. isbn: 978-1-57735-800-8.

[50] Emily M Hand, Carlos D Castillo, and Rama Chellappa. Predicting facial
attributes in video using temporal coherence and motion-attention. In Ap-
plications of Computer Vision (WACV), 2018 IEEE Winter Conference on,
pages 84–92. IEEE, 2018.

[51] Emily M Hand and Rama Chellappa. Attributes for improved attributes: a
multi-task network utilizing implicit and explicit relationships for facial at-
tribute classification. In AAAI, pages 4068–4074, 2017.

[52] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 770–778, 2016. doi: 10.1109/CVPR.
2016.90.

https://doi.org/10.24963/ijcai.2017/243
https://doi.org/10.24963/ijcai.2017/243
https://doi.org/10.24963/ijcai.2017/243
https://openreview.net/forum?id=rJlnxkSYPS
https://openreview.net/forum?id=rJlnxkSYPS
https://doi.org/10.1109/BTAS.2017.8272686
https://doi.org/10.1109/BTAS.2017.8272686
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90


99

[53] Keke He, Yanwei Fu, Wuhao Zhang, Chengjie Wang, Yu-Gang Jiang, Feiyue
Huang, and Xiangyang Xue. Harnessing synthesized abstraction images to
improve facial attribute recognition. In IJCAI, pages 733–740, 2018.

[54] Zhenliang He, Wangmeng Zuo, Meina Kan, Shiguang Shan, and Xilin Chen.
Attgan: facial attribute editing by only changing what you want, 2018. arXiv:
1711.10678 [cs.CV].

[55] Geoffrey E. Hinton and R. Salakhutdinov. Reducing the dimensionality of data
with neural networks. Science, 313:504–507, 2006.

[56] Gary B Huang, Marwan Mattar, Tamara Berg, and Eric Learned-Miller. La-
beled faces in the wild: a database forstudying face recognition in uncon-
strained environments. In Workshop on faces in’Real-Life’Images: detection,
alignment, and recognition, 2008.

[57] J. J. Hull. A database for handwritten text recognition research. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 16(5):550–554, 1994.
doi: 10.1109/34.291440.

[58] H. Jhuang, T. Serre, L. Wolf, and T. Poggio. A biologically inspired system for
action recognition. In 2007 IEEE 11th International Conference on Computer
Vision, pages 1–8. Massachusetts Institute of Technology, October 2007. doi:
10.1109/ICCV.2007.4408988.

[59] N. Jojic and Y. Caspi. Capturing image structure with probabilistic index
maps. In Proceedings of the 2004 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition, 2004. CVPR 2004. Volume 1, pages I–I,
June 2004.

[60] Andrew Kae, Kihyuk Sohn, Honglak Lee, and Erik Learned-Miller. Augment-
ing crfs with boltzmann machine shape priors for image labeling. In June 2013.
doi: 10.1109/CVPR.2013.263.

[61] Mahdi M Kalayeh, Boqing Gong, and Mubarak Shah. Improving facial at-
tribute prediction using semantic segmentation. In Computer Vision and Pat-
tern Recognition (CVPR), 2017 IEEE Conference on, pages 4227–4235. IEEE,
July 2017.

[62] Mahdi M. Kalayeh and Mubarak Shah. On symbiosis of attribute predic-
tion and semantic segmentation. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 43(5):1620–1635, 2021. doi: 10.1109/TPAMI.2019.
2956039.

[63] Eleni Kanasi, Srinivas Ayilavarapu, and Judith Jones. The aging popula-
tion: demographics and the biology of aging. Periodontology 2000, 72(1):13–
18, 2016. doi: https://doi.org/10.1111/prd.12126. eprint: https:
//onlinelibrary.wiley.com/doi/pdf/10.1111/prd.12126. url: https:
//onlinelibrary.wiley.com/doi/abs/10.1111/prd.12126.

https://arxiv.org/abs/1711.10678
https://doi.org/10.1109/34.291440
https://doi.org/10.1109/ICCV.2007.4408988
https://doi.org/10.1109/CVPR.2013.263
https://doi.org/10.1109/TPAMI.2019.2956039
https://doi.org/10.1109/TPAMI.2019.2956039
https://doi.org/https://doi.org/10.1111/prd.12126
https://onlinelibrary.wiley.com/doi/pdf/10.1111/prd.12126
https://onlinelibrary.wiley.com/doi/pdf/10.1111/prd.12126
https://onlinelibrary.wiley.com/doi/abs/10.1111/prd.12126
https://onlinelibrary.wiley.com/doi/abs/10.1111/prd.12126


100

[64] Ira Kemelmacher-Shlizerman, Steven M. Seitz, Daniel Miller, and Evan Brossard.
The megaface benchmark: 1 million faces for recognition at scale. In 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 4873–
4882, 2016. doi: 10.1109/CVPR.2016.527.

[65] Eamonn Keogh and Abdullah Mueen. Curse of dimensionality. In Encyclopedia
of Machine Learning. Claude Sammut and Geoffrey I. Webb, editors. Springer
US, Boston, MA, 2010, pages 257–258. isbn: 978-0-387-30164-8. doi: 10.1007/
978-0-387-30164-8_192. url: https://doi.org/10.1007/978-0-387-
30164-8_192.

[66] Fahad Shahbaz Khan, Joost van de Weijer, Rao Muhammad Anwer, Andrew
D. Bagdanov, Michael Felsberg, and Jorma Laaksonen. Scale coding bag of
deep features for human attribute and action recognition. Machine Vision and
Applications, 29(1):55–71, January 2018.

[67] Diederik P Kingma and Jimmy Ba. Adam: a method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980, 2014.

[68] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114, 2013.

[69] Brendan F. Klare, Ben Klein, Emma Taborsky, Austin Blanton, Jordan Ch-
eney, Kristen Allen, Patrick Grother, Alan Mah, Mark Burge, and Anil K.
Jain. Pushing the frontiers of unconstrained face detection and recognition:
iarpa janus benchmark a. In 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 1931–1939, 2015. doi: 10.1109/CVPR.
2015.7298803.

[70] Yassin Kortli, Maher Jridi, Ayman Al Falou, and Mohamed Atri. Face recog-
nition systems: a survey. Sensors, 20(2), 2020. issn: 1424-8220. doi: 10.3390/
s20020342. url: https://www.mdpi.com/1424-8220/20/2/342.

[71] A. Krizhevsky. Learning multiple layers of features from tiny images. In 2009.

[72] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in neural informa-
tion processing systems, pages 1097–1105, 2012.

[73] Neeraj Kumar, Peter Belhumeur, and Shree Nayar. Facetracer: a search engine
for large collections of images with faces. In European Conference on Computer
Vision, pages 340–353. Springer, 2008.

[74] Neeraj Kumar, Alexander Berg, Peter Belhumeur, and Shree Nayar. Attribute
and simile classifiers for face verification. In International Conference on Com-
puter Vision, pages 365–372. IEEE, 2009.

[75] Neeraj Kumar, Alexander Berg, Peter N Belhumeur, and Shree Nayar. Describ-
able visual attributes for face verification and image search. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 33(10):1962–1977, 2011.

https://doi.org/10.1109/CVPR.2016.527
https://doi.org/10.1007/978-0-387-30164-8_192
https://doi.org/10.1007/978-0-387-30164-8_192
https://doi.org/10.1007/978-0-387-30164-8_192
https://doi.org/10.1007/978-0-387-30164-8_192
https://doi.org/10.1109/CVPR.2015.7298803
https://doi.org/10.1109/CVPR.2015.7298803
https://doi.org/10.3390/s20020342
https://doi.org/10.3390/s20020342
https://www.mdpi.com/1424-8220/20/2/342


101

[76] Young H Kwon and Niels da Vitoria Lobo. Age classification from facial im-
ages. Computer vision and image understanding, 74(1):1–21, 1999.
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Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin
El-Nouby, Mahmoud Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes,
Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma,
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Appendix A

List of Publications

1. Facial Attribute Recognition: A Survey

Nathan Thom and Emily M. Hand

In Computer Vision: A Reference Guide. Springer International Publishing,

Cham, 2020, pages 1–13. [152]

Abstract We present a survey of attribute recognition research in the com-

puter vision community over the past decade. Most of our attention is given to

facial attributes, but attributes of objects, pedestrians, and actions are consid-

ered as well.

2. Consensus Subspace Clustering

Nathan Thom, Hung Nguyen, and Emily M. Hand

In 2021 IEEE 33rd International Conference on Tools with Artificial Intelligence

(ICTAI), pages 391–395, 2021. [153]

Abstract One significant challenge in the field of supervised deep learning is

the lack of large-scale labeled datasets for many problems. In this paper, we

propose Consensus Spectral Clustering (CSC), which leverages the strengths of

convolutional autoencoders and spectral clustering to provide pseudo labels for

image data. This data can be used as weakly-labeled data for training and eval-

uating classifiers which require supervision. The primary weaknesses of previous
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works lies in their inability to isolate the object of interest in an image and clus-

ter similar images together. We address these issues by denoising input images

to remove pixels which do not contain data pertinent to the target. Addition-

ally, we introduce a voting method for label selection to improve the clustering

results. Our extensive experimentation on several benchmark datasets demon-

strates that the proposed CSC method achieves competitive performance with

state-of-the-art methods.

3. DoppelVer: A Benchmark for Face Verification

Nathan Thom, Andrew DeBolt, Lissie Brown, and Emily M. Hand

In Advances in Visual Computing: 18th International Symposium, ISVC 2023,

Lake Tahoe, NV, USA, October 16–18, 2023, Proceedings, Part I, 431–444. [151]

Abstract The field of automated face verification has become saturated in re-

cent years, with state-of-the-art methods outperforming humans on all bench-

marks. Many researchers would say that face verification is close to being a

solved problem. We argue that evaluation datasets are not challenging enough,

and that there is still significant room for improvement in automated face verifi-

cation techniques. This paper introduces the DoppelVer dataset, a challenging

face verification dataset consisting of doppelganger pairs. Doppelgangers are

pairs of individuals that are extremely visually similar, oftentimes mistaken for

one another. With this dataset, we introduce two challenging protocols: dop-

pelganger and Visual Similarity from Embeddings (ViSE). The doppelganger

protocol utilizes doppelganger pairs as negative verification samples. The ViSE

protocol selects negative pairs by isolating image samples that are very close

together in a particular embedding space. In order to demonstrate the challenge

that the DoppelVer dataset poses, we evaluate a state-of-the-art face verifica-

tion method on the dataset. Our experiments demonstrate that the DoppelVer

dataset is significantly more challenging than its predecessors, indicating that

there is still room for improvement in face verification technology.
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