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Abstract

Anomaly detection aims to identify unusual patterns in data that significantly

diverge from normal instances. When an anomaly is detected, specific steps are

undertaken to address and resolve the issue. Despite significant advancements in

anomaly detection techniques in recent years, challenges such as low recall rates,

extreme class imbalance, and high noise levels persist. The success of mitigation

closely depends on the detection phase. As a strategy to enhance anomaly detection,

developing a system that creates an ideal environment for this purpose is proposed.

In the realm of supply chain security, to counteract anomaly attacks and enhance

mitigation, we suggest the ’3D Unclonable Optical Identity’ as a solution for product

verification. This tag, designed with a distinctive 3D structure, is exceedingly difficult

to replicate, even with advanced fabrication methods. The security of this ID rests

on the difficulty of duplication, rather than on secrecy. To address issues such as

class imbalance and the impact of noise in practical applications, we utilized UE4 to

generate thousands of simulated images from different angles and lighting conditions.

This method assists in the development of an anomaly detection system capable of

identifying counterfeit tags.

Another challenge in anomaly detection is identifying anomalies across various

data types, necessitating a versatile, data-agnostic method for representing typical

samples. Because of these challenges, specific models are frequently developed for

different anomaly detection applications. A possible solution is to employ a single

model to detect diverse types of anomalies. The generative model, especially the

diffusion model, has attracted attention due to its ability to create high-quality images

and potential in enhancing anomaly detection. We propose a latent diffusion-based

multi-class anomaly detection model. This model learns latent representations of
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non-anomalous samples and is capable of detecting anomalies in multiple classes.

Our extensive evaluations on benchmark datasets such as MNIST and CIFAR-10

have shown that our approach outperforms current state-of-the-art methods in latent

diffusion-based anomaly detection.

Anomaly detection in the biomedical imaging field presents unique challenges,

chiefly in accurately segmenting anomaly areas and quantifying anomaly behaviors.

Gould Syndrome, a rare genetic multi-system disorder, is one such case. We have

developed a Gould Syndrome Detection pipeline to detect gene changes based on

vascular SMC phenotype. Additionally, calcium imaging, a crucial regulatory mech-

anism for cerebral blood flow, is addressed in our work. We have created SEANVC

(Simple Semi-automated Analytical Tool for Astrocyte Ca2+ Signals and Vascular

Responses in Neurovascular Coupling) to assist researchers in identifying anomalous

Ca2+ signals and their corresponding vascular responses.
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Chapter I

Introduction

1.1 Overview

The field of anomaly detection has garnered increasing interest across various do-

mains due to the application of advanced techniques. Recent advancements in deep

learning have enhanced the representation of complex data, significantly benefiting

anomaly detection in handling high-dimensional, graph, or spatial data. These devel-

opments have led to partial or complete solutions to numerous application challenges

in anomaly detection across sectors like medical data analysis, risk management, and

AI safety.

Unlike many deep learning tasks, anomaly detection often operates without data

labels, complicating the identification of anomalies as labeling information, when

available, is generally insufficient to encompass all anomalous scenarios. Traditional

methods such as PCA and nearest neighbor algorithms often fall short in these appli-

cations. Recently, the focus has shifted towards deep learning-based semi-supervised

and unsupervised algorithms.

This thesis introduces a novel anomaly detection and mitigation pipeline that

learns the latent features of cross-domain knowledge, enhancing the robustness of
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anomaly detection across different domains. We have implemented this pipeline

in three specific applications 1)3D Unclonable Optical Identity for Universal Prod-

uct Verification [4] 2) Latent Diffusion based Multi-class Anomaly Detection [5]

3)Anomaly detection in the biomedical imaging field.

1.2 3D Unclonable Optical Identity for Universal Product

Verification

Reliable identification (ID) is essential for improving the global supply chain by

aiding stakeholders in detecting issues like IP theft, counterfeiting, and mishandling.

For daily commercial use, IDs must be securely attached to the product or its original

packaging, cost-effective for less expensive goods, and user-friendly for verification

purposes.

We propose a novel type of ID that is irreproducible, reliable, and applicable

to a wide range of products, including electronics and high-value items. This ID,

in the form of a sheet containing randomly distributed micro-bubbles, utilizes the

3D spatial locations of these particles as its unique feature. These irreproducible

features, introduced unintentionally during fabrication, help keep manufacturing costs

low. Moreover, reproducing a specific ID focuses on replicating the characteristic 3D

features rather than confidential aspects, eliminating the need for a secretive product

database.
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1.3 Latent Diffusion based Multi-class Anomaly Detection

The anomaly detection [6, 7] landscape has evolved significantly with the rise of

deep learning, improving feature representations for various data types. Traditionally,

anomaly detection algorithms have focused on one-class scenarios where the model

learns a probability density function for a single class, treating any deviation as

an anomaly. Our approach extends this to multi-class anomaly detection, where

the model learns to identify boundaries across various normal object classes without

access to category labels during training or inference.

In this work, we developed a multi-class anomaly detection framework using the

Latent Diffusion Model (LDM) within the Denoising Diffusion Probabilistic Model

(DDPM) framework. This model uses the generative capabilities of the diffusion

model to ascertain the congruence between input and reconstructed images, deter-

mining their category alignment.

1.4 Anomaly detection in the biomedical imaging field

Pixel-wise segmentation in medical imaging is labor-intensive and requires precise

localization by clinical experts for accurate diagnosis. Despite achieving human-level

performance in general and medical image segmentation, convolution and transformer-

based architectures struggle with overlapping objects, often resulting in low confidence

in pixel-wise accuracy.

To address this, we propose an architecture that integrates and extracts manifold

features from both low-resolution images for contour-like object segmentation and

high-resolution images for differentiating boundaries of overlapping objects. This ar-



4

chitecture utilizes a multi-objective function with a distance-based loss to enhance

overall model confidence in pixel-wise segmentation. We applied this technique to

segment various anatomical structures in different imaging modalities with high con-

fidence.

1.4.1 Gould Syndrome Detection

Gould Syndrome, a rare multi-system genetic disorder, is characterized by a range

of abnormalities, including those affecting the brain, eyes, muscles, and kidneys.

Emerging evidence suggests a broader spectrum of associated abnormalities. Our

study focused on detecting the proportion of smooth muscle cells with irregular tex-

tures using image segmentation, which assigns one of three labels to each pixel: back-

ground, normal cell, or abnormal cell. This segmentation allows us to calculate the

percentage of anomalous cells, distinguishing our approach from traditional segmen-

tation that typically segments based on different object types rather than textural

characteristics.

1.4.2 Simple Semi-automated Analytical Tool for Astrocyte Ca2+ Signals

and Vascular Responses in Neurovascular Coupling

Understanding neurovascular coupling (NVC) is crucial as it underpins diagnos-

tic techniques like fMRI and PET scans, providing insights into the relationships

among neurons, astrocytes, and vascular cells. The rapid advancements in imaging

and analytical technologies have significantly improved our capability to analyze as-

trocyte Ca2+ dynamics and vascular responses in vivo. However, existing analytical

tools lag behind these technological advancements, often failing to analyze both as-

pects simultaneously in an efficient and accurate manner. Our project developed a
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semi-automated tool that streamlines the analysis of Ca2+ dynamics and vasomotor

responses, enhancing throughput while retaining accuracy.
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Chapter II

Literature Review

2.1 Problem Definition

2.1.1 Natural and Anomalous Properties

The nature of anomaly detection is to identify anomalous samples in data based

on a predefined concept of normality. A straightforward approach to this problem is

to define normality based on the given data and then classify any data that does not

conform to this normality as anomalous. However, unlike many other tasks that focus

on majority events, anomaly detection targets minority events, leading to numerous

unique and challenging issues.

• Boundary Challenges. Defining normality from a given dataset is challenging

because it is impossible to showcase all possible normal cases within a finite

dataset. Consequently, the boundary between normal and abnormal data often

remains obscure. Additionally, manually labeled data can be incorrect or noisy,

further complicating the clarity of this boundary.

• Unknown Anomalies. Typically, we have very little knowledge about the
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characteristics of anomalies. They may differ from normal data in various as-

pects, such as the structure of the data, the data distribution, or even attack

behaviors on the data. Some anomalies may remain unknown until they are

discovered, such as novel network attacks or rare data types.

• Class Imbalance. Anomalies occur with extremely low frequency compared to

normal data instances, resulting in highly imbalanced datasets. In most cases,

it is impossible to obtain a large amount of labeled anomaly data.

2.1.2 Real-World Challenges

The subsection already highlights three problems stemming from the nature of

anomalies. However, in real-world applications, one encounters additional challenges.

Some of these challenges are intrinsic to the properties of anomaly detection, while

others relate to the specific tasks that anomaly detection addresses.

• High Dimensional Anomaly Detection. On one hand, high-dimensional

data suffers from the curse of dimensionality, which can lead to the problematic

concentration of distances between normal and anomalous data. On the other

hand, abnormal characteristics often manifest in low-dimensional latent spaces,

while remaining hidden in the original high-dimensional space. A straightfor-

ward solution is to perform anomaly detection in a low-dimensional space ex-

tracted from the original high-dimensional space. The challenge then becomes

how to identify representation features capable of capturing meaningful infor-

mation from both the data and the task. This is extremely important and poses

a significant challenge due to the unknown nature of anomalies.

• Lack of Anomaly Labels. The primary purpose of anomaly detection is to
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identify changes in behaviors or object appearances that are extremely sub-

tle compared to their normal counterparts. In most real-world applications,

it is very difficult or even impossible to collect a sufficiently large number of

labeled anomaly data samples. For example, in network security applications,

while normal traffic is abundantly available, there are nearly infinite patterns

of traffic that are anomalous, and it is impossible to label or even observe all

anomalous traffic patterns. Given the limitations in the availability of anoma-

lous data, fully supervised models are impractical for real-world applications.

Consequently, much recent research has focused on unsupervised approaches to

anomaly detection. The main difficulty with unsupervised methods is that mod-

els rely solely on the assumptions of what constitutes an anomaly. As discussed

in the previous section, these anomalies may remain unknown, meaning that in

many cases, assumptions may not align perfectly with the data. Semi-supervised

anomaly detection, which trains models using only a small amount of anomaly

data, has become another focus of recent research. The main challenges now

relate to how to use small amounts of data to learn features representative of

other anomalies, especially those with different structures.

• Malicious Actions. One major application area for anomaly detection is iden-

tifying malicious actions, ranging from traditional cyber intrusion detection and

fraud detection to the recent challenge of deep fake detection. Anomaly detec-

tion algorithms must continually evolve to keep pace with attackers. As a

result of this ongoing competition, anomalous behaviors keep evolving, partic-

ularly when attackers are aware that anomaly detection algorithms are being

used. In such cases, attackers can quickly adapt to the algorithms, modifying

their malicious behavior to make it appear normal, thus presenting a significant

challenge to maintaining effective security measures.
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• Low Recall Rate. Due to their rarity and diverse nature, anomalies are chal-

lenging to identify in real-world applications. To address the extreme imbalance

between normal and anomalous instances, many current algorithms attempt to

balance labels during preprocessing procedures. However, this approach can

lead to the incorrect classification of many normal instances as anomalous. De-

spite numerous improvements to anomaly detection methods in recent years, a

low recall rate remains a major challenge in this field. This issue is particularly

critical in unsupervised methods, where establishing a clear boundary between

normal and abnormal instances is quite difficult.

• Noisy Labels Dealing with incorrect labels presents another significant chal-

lenge in anomaly detection. The boundary between normal instances and

anomalies is often blurry in many applications, leading to a strong possibility

that even expertly labeled data could contain incorrect and erroneous labels.

For instance, in medical image analysis, many anomalous cells are difficult to

detect by human eyes, including those of medical experts. The most intuitive

approach to addressing these issues is to employ unsupervised models, which

do not rely on labeled data and therefore circumvent the problems associated

with inaccurate labeling.

2.2 Density Estimation

All density-based methods for anomaly detection operate on the assumption that

normal data follows a specific distribution. Given a known data distribution and a

training dataset composed of normal instances, these methods calculate the likelihood

of new test data fitting this distribution. Under this assumption, anomalous data

should exhibit a lower likelihood compared to normal data, as they deviate from the
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expected distribution patterns. This foundational assumption allows these methods

to effectively identify discrepancies that indicate anomalous behavior.

2.2.1 Parametric density estimation

The most classic method of density estimation is parametric density estimation,

where the density of the data can be expressed as a function of certain parameters.

The density function can be represented as f(θ, x), where x represents an observation

and θ denotes the parameters estimated from the given data. This approach assumes

that the data adheres to a known distribution type, such as normal, exponential, or

Poisson, and the task involves estimating the parameters of this distribution based

on the observed data.

2.2.1.1 Gaussian Distribution

The most basic distribution assumption is multivariate Gaussian distribution.

Gaussian distribution uses two parameters to describe the distribution, µ to represent

the distribution mean and σ to imply the standard deviation. Different methods uses

various ways to calculate distance between test data instance and mean value and set

up threshold detecting anomalies.

The most intuitive way is based on [8], it implies distance between normal data and

distribution mean should be inside 3σ. Because under Gaussian distribution, µ± 3σ

contains 99.7% of all data instances. Following this idea, people begin to use the box

plot technique to detect the anomalies. The classic version of box plot in [9] shows

the usage of lower quartile(Q1) and higher quartile(Q3). Based on the definition, all

normal data should located between Q1 − k(Q3 − Q1) and Q3 + k(Q3 − Q1), where
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k is a customized parameter always choose as 1.5. Fig2.1 from [10] clearly shows the

structure of a box plot.

Figure 2.1: Box Plot Structure

Another approach introduced by [11] is based on the Mahalanobis distance be-

tween the test sample and the expectation of training samples. The definition of

Mahalanobis distance shows as follows:

DM(x) =
√
(x− µ)⊤S−1(x− µ) (2.1)

where x is test data, µ indicates the mean of training samples and S is the covari-

ance matrix. We can notice that calculating the Mahalanobis distance is equal to

estimate the parameters of multivariate Gaussian distribution based on training data

and evaluating the log-likelihood of a test point according to the estimated distri-

bution. Compared to modeling each dimension of the data independently, fitting a

multivariate Gaussian captures linear interactions between pairs of dimensions.
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2.2.1.2 Mixture Distribution

The assumption of Gaussian distribution may not always show the correct situa-

tion in the real world application. Thus, many people start to focus on the mixture

distribution problem. The mixture distribution problem has two different cases. In

the first case, we assume the normal data and abnormal data are following different

distributions. The second case, however, assumes normal data itself is a mixture of

two different distributions.

In the first case, we usually use distribution M to representation the distribution

of normal data and A to indicates the distribution of anomalous data. Under the

assumption, each data instance fall in distribution A with distribution λ and fall in

distribution M with distribution 1 − λ. Thus, the generative distribution of all the

generative data D, can be written as

D = λA+ (1− λ)M (2.2)

Then the problem can be described as given a dataset generated by the distribution

D, figure out the data generated form distribution A.

In [12], the author proposed an algorithm based on the measurement of log like-

lihood change with or without each element. In the initial status, it assumes all the

data belongs to distribution M . At each time, we remove one element from distribu-

tion M and assume it belongs to distribution A and calculate the log likelihood. The

log likelihood defines at time t is

LLt(D) = |Mt| log(1− λ) +
∑

xi∈Mt
log (PMt (xi))

+ |At| log λ+
∑

xj∈At
log (PAt (xj))

(2.3)
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The change from time t− 1 to time t is to remove an element xt from group M and

add it into group A and calculate the log likelihood again. Where we can show as

Mt = Mt−1 − {xt} (2.4)

At = At−1 ∪ {xt} (2.5)

Then we can calculate the difference between LLt−1(D) and LLt(D), if the difference

is larger than some threshold, then we can permanently set xt into group A. Other-

wise, we can put xt into group M and test for another data instance. When we go

though all the elements in the dataset, we can finally get two groups of data A and

data M .

In the second case, normal data belongs to the mixture of different distributions.

Gaussian mixture models are frequently used under this situation [13]. EM algorithm

is used to estimate the parameters of parameters of distributions. Once any test data

found not belong to any estimated models, then it can be considered as anomalies.

2.2.2 Nonparametric Density Estimation

In real world application, real distribution is always hard to model by any pre-

defined model. In that case, nonparametric statistical models are applied. Nonpar-

matric statistical models have less assumptions compared to parametric models and

they don’t define any prior.
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2.2.2.1 Histogram Based Model

The most intuitive way to model data nonparametrically is through the use of

histograms, a method widely recognized in anomaly detection literature [12,14]. His-

togram based anomaly detection typically involves two steps. In the training step,

a histogram is constructed using the feature values from the training data. During

the testing step, the algorithm determines whether any test instance belongs to one

of the histogram bins. If a data instance lies within any of the bins, it is considered

normal. Otherwise, the test data is classified as anomalous.

However, a significant challenge with histogram-based models is determining the

appropriate bin size. If the bins are too small, test instances are more likely to fall

into empty or rarely occupied bins, potentially leading to a high false positive rate.

Conversely, if the bins are too large, both normal and anomalous test instances may

fall into frequently occupied bins, resulting in missed detections of anomalous data.

In many real-world applications, finding an optimal bin size that balances the false

positive and false negative rates is a challenging problem.

Histogram usage can be extended to multivariate data [15, 16]. The basic idea

involves creating attribute-wise histograms. After training histograms based on dif-

ferent attributes, the testing process involves obtaining an anomaly score for each

attribute based on the height of the bin containing the attribute value. Various al-

gorithms can then aggregate these individual scores to compute an overall anomaly

score, enhancing the model’s ability to detect anomalies in complex datasets.
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2.2.2.2 Kernel density estimation

Another non-parametric technique is kernel density estimation, which uses a ker-

nel function to replace the discrete histogram in a continuous way. This idea of non-

parametric density estimation comes from parzen windows estimation [17]. If we as-

sume p(x) is the density function to be estimated, then with the dataset {x1, x2, ..., xn}

generated by p(x), the density function estimated by this n data can be expressed as

p̂(x) =
1

n

n∑
i=1

δn (x− xi) (2.6)

where δn is a kernel function. The standard kernel density estimation, along with a

more recent adaptation that can deal with modest levels of outliers in the training

data.

2.2.3 Energy Based Models

Energy based models are generative models which use energy function to express

the probability density of variables. The energy function Eθ(x) can be expressed as

pθ(x) =
1

Z(θ)
exp (−Eθ(x)) (2.7)

where Z(θ) =
∫
exp (−Eθ(x)) d is the partition function which ensures the sum of pθ

equals to 1 [18]. The training process of original energy based models are computa-

tionally expensive, since the gradient descent in optimize process is based on Markov

chain Monte Carlo(MCMC) [19]. In order to solve this problem, score matching

method [20] and stochastic gradient Langevin dynamics [21] are introduced. In en-

ergy based models, Eθ is always used as an anomaly score for the reason that it is
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monotonically decreasing as the density pθ increases.

Deep belief networks [22] and deep Boltzmann machines [23] are two deep energy

based models have been introduced. These two algorithms model the training data

based on both input x and latent state z which can be written as Eθ(x, z). Com-

pared to the traditional energy based models which only based input x, latent state

can catch latent probabilistic dependencies in data distributions. Research in [18]

using deterministic latent layers to replace the probabilistic latent layers which could

evaluate Eθ(x) and use it as anomaly score in anomaly detection tasks.

2.3 Feature Extraction

2.3.1 Deep Learning Based

Deep learning based anomaly detection models aim to use different deep learn-

ing structure to extract useful low dimensional features from high dimensional data.

Under this category, deep learning models are only used as a tool for feature ex-

traction. Anomaly scores are decided after the feature extraction. In other words,

feature extraction and anomaly scoring are two independent steps. We can represent

the feature extraction step as

z = ϕ(x; Θ) (2.8)

where ϕ : X 7→ Z is a deep neural network based feature extraction function, with

X ∈ RD, Z ∈ RK and normally D ≫ K. Then another function f works on Z is

designed to assign anomaly score from feature space. Because f and θ are not trained

at the same time, there is connection between these two functions.

Traditional dimension reduction methods like principal component analysis [24]
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and random projection [25] are also been used as the feature extraction step in

anomaly detection. However, deep neural networks have been showing a much better

capability in extracting features and non-linear feature relations [26].

One intuitive way of using neural networks in feature extraction is to directly use

popular pre-trained deep learning models to extract low dimensional features. With

the development of deep learning, models we can choose like VGG [27], ResNet [28]

can have a pretty good feature extraction results. In addition, feature representations

pre-trained on one dataset can usually be transferred to a anomaly detectors on

another dataset. As we can see in [29], One-class support vector machines(SVM)

can be initialized with VGG models pre-trained on ILSVRC [30] then fine-tune on

MNIST data [31] in order to improve the anomaly detection rate. Also, [32] shows

ResNet models pre-trained on MNIST can improve the anomaly detection rate in

video surveillance datasets.

Instead of using a pre-trained deep neural network, train a unique feature extrac-

tion model is another way. For example in [33], three autoencoder networks are built

in order to get feature of appearance, motion, and joint information of appearance

and motion in a anomaly detection task on video data.

Using a deep neural network as feature extraction in anomaly detection has many

advantages. First of all, we can choose a feature extraction model from different state

of art deep neural network models. Also, the implementation process is not hard due

to the public availability of all deep neural networks. In addition, feature extraction

works pretty well in some applications. However, the input data type is limited and

decided by the extraction model. More importantly, an optimal anomaly score is hard

to get because of the total separation of feature extraction and anomaly scoring.
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2.3.2 Reconstruction Models

The basic idea of reconstruction methods is to learn a model which optimized to

reconstruct all normal data instance and detection the anomalous data instance by

high reconstruction error.

The objective function of reconstruction models can be shown as ϕ(θ) : X → X

which is a feature mapping from data to itself. It includes two steps, the encoding

step

z = ϕe (x; θe) (2.9)

and the decoding step

x̂ = ϕd (z; θd) (2.10)

where we can see that θ is the union of θe and θd and z is the latent representation

of input data x. The propose of the reconstruction model is to train the model and

force the input and output to be the same which means

x = x̂ = ϕd (ϕe (x; θe) ; θd) (2.11)

Thus we can get the θ based on

{θ∗e , θ∗d} = argmin
θe,θd

∑
x∈X

∥x− ϕd (ϕe (x; θe) ; θd)∥2 (2.12)

then the reconstruction error can be defined as

sx = ∥x− ϕd (ϕe (x; θ
∗
e) ; θ

∗
d)∥

2 (2.13)

If no restrictions added in the model, the optimal function the model learn would
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be ϕ = identity. This model is absolutely not we want because nothing is learned in

the training process. Thus some restrictions of the model is required in the training

process.

The first assumption is based on the latent space Z. It assumes that data on some

lower dimensional space is embedded within the data space X, with dimensional of

latent space smaller than data space. For example, if the input data is images in

pixels space, the latent space should capture information such as structure of scenes,

shape, size, texture and so on. This assumption makes sure that a low dimensional

latent space Z exists, which we can get x = ϕd(ϕe(x)).

Another assumption is based on the prototype. It assumes there exists a finite

number of elements in input data space X that correctly describe the data. This

prototype assumption is also common in clustering and classification when we assume

a collection of prototypical instances represent clusters or classes well.

Autoencoder networks is the most frequent used algorithm in reconstruction mod-

els. It uses various type of neural networks to encode the input data and than de-

code to recover it. Autoencoder is originally used for dimension reduction [34, 35].

While nowadays, it becomes the most popular algorithm used in anomalous detec-

tion [36–38]. reconstruction loss function is used to learn the parameter of both

networks. In order to representation the low dimensional feature space, a bottleneck

network is always used and can be seen in Fig2.2

In order to minimize the reconstruction error and detect for anomolies data, fea-

ture extracted in latent space should be highly relevant to normal data instances.

Only in this way, the reconstruction error of anomalous data instance will be much

higher than the reconstruction error of normal data. Then the reconstruction error

can be used as anomaly score.
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Figure 2.2: Autoencoder Architecture from [1]

Some innovative types of autoencoders have been developed to improve the feature

representations. Denoising autoencoder [39] is designed to train data on corrupted

data instance which required to be robust against some small variations. Sparse

autoencoder [40] aims to increase the sparsity in the hidden layer where only top K

most active units is kept. Contractive autoencoder [41] proposed to robust against

small variations around neighbours.

The biggest advantage of reconstruction models is the straightforward detection

idea. Also, autoencoder can be used in different types of data instances. Also with

the development of autoencoders, different types of strong autoencoders have been

introduced in recent years. Though autoencoder is a popular algorithm in anomalous

detection for so many years, it still has some drawbacks. The most intuitive drawback

is the requirement of a clean training dataset. If anomalies accidentally show up in

training data, the feature space will be affected. In addition, the autoencoder is

originally designed for dimensional reduction, the output representation is actually a
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summary of regularities instead of finding the abnormal feature.

2.4 Feature Learning

2.4.1 Generative Adversarial Networks

Generative adversarial network(GAN)-based anomaly detection growth quickly

after it first show up in [2]. The general idea is to learn a latent feature space of a

generative network G so that the latent space well captures the normality underlying

the given data. Then the anomaly score can be defined as the residual between real

instance and generated instance.

AnoGAN [2] is an example of the first usage of GAN in anomaly detection. Similar

with the autoencoder, the training process is only focus on normal data instance. The

main idea is that given input data instances x, try to find out z in the latent feature

space of the generative network G in order to make G(z) and x as similar as possible.

The training of GAN in only normal data will let the generator learn the underlying

distribution of normal data. Once an anomalous image is encoded, the reconstruction

result will be a normal image generated by G. The difference between input image

and reconstruction image will show the anomalous area. The structure of AnoGAN

can be seen from Fig2.3

Figure 2.3: AnoGAN [2] training and anomalous detection structure
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A traditional GAN object function can be written as

min
G

max
D

V (D,G) = Ex∼pX [logD(x)] + Ez∼pZ [log(1−D(G(z)))] (2.14)

where G represent generator and D indicates the discriminator. The parameters of

generator and discriminator are defined as θG and θD respectively. V represent the

value of object function above.

According to the algorithm, the mapping function from input samples to the latent

space is trained in a iterative way. The propose of this process is for each query data

sample x, find out z in latent space which makes G(z) similar to x.

Two loss functions are used in order to find out the best latent value z for each

x: residual loss and discrimination loss. The residual loss is used to measure the

difference between generated samples and query samples in input domain.It can be

written as

ℓR (x, zγ) = ∥x−G (zγ)∥1 (2.15)

while the discrimination loss is used to measure the discriminator response and it is

defined as

ℓD (x, zγ) = ∥h(x)− h (G (zγ))∥1 (2.16)

where γ is the iterative search index in latent space and h is a feature mapping. The

overall loss function based on two loss values is defined as

ℓ(zγ) = (1− α)ℓR + αℓD (2.17)

AnnoGAN is the first paper shows that GAN can be used in anomaly detection

and at the same it introduce a new method mapping latent space to input data.
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However, the biggest issue of AnoGAN is the computational difficulty due to the

iterative search of z for every new input x.

In order to solve the problem, one intuitive way is to learn another mapping from

data space to latent space instead of only training the one way mapping. EBGAN [42]

first introduced BiGAN architecture in anomaly detection based on the idea from [43].

The basic idea is to build up an encoder E which map the input data x into latent

feature z. In the training process G, D and E are training in a iterative way. BiGAN

uses data instance (x,G(x)) and (G(z), z) to replace the x and G(z) in AnoGAN, the

objective function can be written as

min
G,E

max
D

V (D,G) = Ex∼pX [Ex∼pE(·|x) logD(x, z)]+Ez∼pZ [Ex∼pG(·|x) log(1−D(G(x, z)))]

(2.18)

The anomaly score defined in EBGAN is similar with the definition of AnnoGAN:

ℓG(x) = ∥x−G(E(x))∥1 (2.19)

ℓD(x) = ∥h(x,E(x))− h(G(E(x)), E(x))∥1 (2.20)

ℓ(x) = (1− α)ℓG + αℓD (2.21)

Many other GAN based anomaly detection method have been introduced based

on different GAN architectures. For example, f-AnoGAN [2] which uses Wasserstein

GAN [44] to replace the standard GAN in anomaly detection.

GAN-based anomaly detection algorithms becomes popular in recent years with

the advantage of strong capability in generating realistic data instances. Thus the
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abnormal data instance which hard to reconstruct from the latent space will be easier

to detect. In addition, GAN-based anomaly detection easily benefits from the fast

development of GAN-based models. However, it still has many drawbacks based on

the natural property of GAN. The most serious one is the difficulty of convergence in

training the GAN-based model. Also, a generator may learn manifold different from

the normal data instance especially when anomalous data unexpectedly appear in the

training dataset.

2.4.2 Diffusion models based anomaly detection

The basic design of diffusion models are based on two Markov chains. Given any

data x0 ∼ q (x0), the first Markov chain is called the forward chain, which transfer the

data into noise. Standard Gaussian noise is typical choice when using the diffusion

model because of its unique properties. The forward Markov chain uses T steps, with

Gaussian noise added into the data for each step.

q (xt | xt−1) = N
(
xt;

√
1− βtxt−1, βtI

)
(2.22)

where t = 1, 2, ..., T and β ∈ [0, 1] denotes the noise variance schedule. From the

equation above, given data x0 and step t, we can get the distribution of a noise image

q (xt | x0) = N
(
xt;
√
ᾱtx0, (1− ᾱt) I

)
(2.23)

where here we use ᾱt represent
∏t

s=1 (1− βs)

The other Markov chain represents the reverse process, which begins from the

standard Gaussian noise image and keeps adding small amount of noise in order to
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recover the input data. This process begins at the point

p (xT ) = N (xT ; 0, I) (2.24)

And small amount of Gaussian noise will be added onto the image step by step.

pθ (xt−1 | xt) = N (xt−1;µθ (xt, t) ,Σθ (xt, t)) (2.25)

where µθ and Σθ are the mean value and standard variation of the Gaussian noise

added in each step. In order to reverse the forward process, we set Σθ (xt, t) = βtI

and µθ should estimate 1√
αt

(
xt − βt√

1−ᾱt
ϵ
)
, thus we can set

µθ (xt, t) =
1
√
αt

(
xt −

βt√
1− ᾱt

ϵθ (xt, t)

)
(2.26)

In order to estimate ϵθ (xt, t), a U-net is built to minimize the objective function

L = Et∼[1−T ],x0∼q(x0),ϵ∼N(0,I)

[
∥ϵ− ϵθ (xt, t)∥2

]
(2.27)

where ϵ ∼ N (0, I). From equation above, the U-net model is trained so that, given

any input xt, the output of the U-net model should be equal toN (0, I) In the inference

process we can get

xt−1 =
1
√
αt

(
xt −

βt√
1− ᾱt

ϵθ (xt, t)

)
+ βtz (2.28)

2.4.3 One Class Classification

One-class classification [45,46] refers to the scenario where an algorithm learns to

describe a set of training data and then determines whether incoming test data belongs
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to this trained set. Unlike traditional methods that estimate the density of normal

data, one-class classification-based anomaly detection algorithms directly learn the

decision boundary. This approach focuses on defining a region that encapsulates what

is considered ’normal’, and any data point that falls outside this region is flagged as

an anomaly.

One-class classification is a specialized type of classification problem where only

one class is present during the training process. The primary objective in one-class

classification is to minimize false detections on normal data instances and miss de-

tections on anomalous instances.

To reduce false detections on normal data, one might consider drawing a larger

boundary that encompasses all the data. However, to minimize miss detections on

anomalous data, the boundary must be tight enough. Typically, to address this

trade-off, a prior indicating the false alarm rate α ∈ [0, 1], is specified. Under this

constraint, the goal is to minimize the miss rate of anomalous data instances. The

challenge then shifts to estimating the boundary under a specific α-density level.

The concept of one-class classification originated with the support vector machine

(SVM) approach. A popular kernel-based one-class classification method is the Sup-

port Vector Data Description (SVDD) [47]. Assuming a kernel function k with an

associated feature space F and a feature mapping ϕ we can define:

k(x, x′) =< ϕ(x), ϕ(x′) > (2.29)

The goal of SVDD is to find a hyperplane that encompasses the data with minimal

volume.

The integration of deep learning into one-class classification, such as in deep neural
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one-class classification [48], aims to maximize the distance between the training data

and the origin. Instead of using the high-dimensional input space, the hyperplane is

learned from the low-dimensional feature space extracted by deep neural networks.

The benefits of this approach include that deep neural networks can capture more

useful information from the feature space while simultaneously reducing computa-

tional complexity, which might otherwise be high in kernel function calculations.

One advantage of one-class classification in anomaly detection is its well-established

methodology and the availability of various kernel functions. Additionally, one-class

classification models can be integrated with deep representations to learn better data

representations. However, the learning process may be inefficient if the normal data

distribution is complex, posing challenges in effectively training the model.

2.4.4 Positive-Unlabeled Learning

Positive-unlabeled learning aims to distinguish between positive and negative data

under circumstances where each piece of unlabeled training data could belong to

either category. The use of positive-unlabeled learning in anomaly detection primarily

focuses on a semi-supervised setting where both normal data and unlabeled data are

available [49,50].

Two main methods are utilized in positive-unlabeled learning. The first method

involves selecting reliable negative samples from the unlabeled data, thereby trans-

forming the problem into a traditional supervised anomaly detection problem. The

second approach operates under the assumption that the entire unlabeled dataset

consists of negatives, albeit noisy.

The most challenging part of the first method is identifying reliable negatives
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from the unlabeled data. This challenge can be addressed by calculating the distance

between the unlabeled data and the positive data. In [51], the distance between each

data instance xi and the positive dataset P is defined as

d(xi, P ) = min
xj∈P
∥xi − xj∥ (2.30)

The negative dataset N is then selected from unlabeled dataset U based on maximi-

sation of distance between N and P where

max
N⊂U

d(N,P ), d(N,P ) =
∑
x∈N

d(x, P ) (2.31)

Additionally, clustering methods [52] and density-based methods [53] are also

used to more effectively filter out the reliable negatives. In the second approach, the

challenge lies in dealing with noisy negative data. Both label cleaning methods [54]

and sample re-weighting [55] have shown good results. A particularly interesting idea

is based on reconstruction methods [56].

2.5 Measure based methods

Measure based methods refer to algorithms which learn feature representation

based on one specific anomaly measurement. The objective function can be written

as

{Θ∗,W ∗} = argmin
Θ,w

∑
x∈X

ℓ(f(ϕ(x; Θ);W )) (2.32)

s(x) = f (ϕ (x; Θ∗) ;W ∗) (2.33)
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where f is a given anomaly score function applying to the latent space. Based on

the anomaly scoring function, f may include parameter of W . Different from other

algorithms we discussed above, f is a given fixed function, algorithms under this

category only focus on finding a feature representation function specific to anomaly

scoring function f .

2.5.1 Distance-based Measure

Distance-based anomaly detection algorithms based on optimized feature space

based on distance-based anomaly scoring functions. Distance-based anomaly scoring

function are the most intuitive methods with the benefits of easy implementation. A

large number distance-based anomaly scoring functions have been introduced, such

as k-nearest neighbor distance [57], Distance-based outliers [58] and so on. The

biggest challenge of directly using distance-based methods is that when facing high

dimensional data, distance will no longer be a good indicator. This challenge can

be well solved by reduce the dimensional of data space before applying the distance

measurement.

[59] first talked about this approach. A random neighbor distanced-based anomaly

scoring method is used in this work. Instead of directly applying the anomaly scoring

function to the high dimensional data, they created a low dimensional feature space to

let the function apply. The main idea is to create the low dimensional feature which

makes the nearest neighbor distance of anomalous data significantly larger than the

distance of normal data.

Assume we have dataset X and a subset S randomly sampled from X. A is used

to represent the anomaly dataset and N is used to represent the normal dataset. The
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loss function can be represented by

L =
1

|X|
∑

x∈A,x′∈N

max {0,m+ f(x′, S; θ)− f(x, S; θ)} (2.34)

where

f(x, S; θ) = min
x′∈S
∥ϕ(x; θ), ϕ (x′; θ)∥2 (2.35)

and m is predefined constant between two distance. The random distance is directly

used as anomaly score in the evaluation stage. Following the same mechanism, we can

deal with other given anomaly scoring function by just replace the scoring function

f given in this project.

[60] introduced a simpler idea compared to [59]. The representation learning

is based on the distance between randomly projected representation and optimized

representation. The objective function is written as

θ∗ = argmin
θ

∑
x∈X

f (ϕ(x; θ), ϕ′(x)) (2.36)

where ϕ is a neural network which the objective function aim to optimize and ϕ′ is a

random mapping function which has the same structure with ϕ but has fixed random

weights. f is the distance measurement function. In the process of optimizing the

objective function, model learns the underlying pattern in the data from a random

neural network. However, this method ignore the relationship between data which

leads to the sensitivity when facing the anomalous data.
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2.5.2 Clustering-based Measure

The object of cluster-based anomaly detection is to find a feature representation

which make normal data stay together and make abnormal data far away from the

normal data. Because of the intrinsic similarity between cluster and anomaly detec-

tion, in many cases the result of cluster can be directly used to determine the anomaly

detection result. Various type of cluster result can be used, such as distance to cluster

centers [61], cluster size [62] and so on.

The challenge of using cluster-based anomaly detection is to find a suitable feature

representation. The reason that we don’t want to directly use cluster algorithm is the

unstable cluster result based on the data. A good feature representation can make

the cluster far more robust than use it on the original data. And we also need to

notice that representations optimized for one specific cluster couldn’t be transferred

to another cluster because of the difference cluster assumption.

Two modules are often used in cluster-based anomaly detection algorithms. One

is applying clustering in forward pass of the network, the other is optimize param-

eters based on the clustering results in backward pass. The object function can e

summarized as

αℓc(f(ϕ(x; θ);W ), yx) + βℓo(X) (2.37)

where ℓc represent the loss of clustering function, yx is the cluster label of data x, lo

is another loss function which enhance other constrains on learning representations.

f is a cluster function with parameter W .

In the testing phase, cluster function f can be directly used to compute anomaly
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score. Because of the clustering property, detecting result is very sensitive to the

input training data. If unexpected anomalous data instance is included in the training

process, the cluster result may be biased. Thus some constrains may added into lc or

lo to increase the robustness against anomalous data in the training procedure.

Cluster based anomaly detection is good at find the representation feature which

easily detect the anomalies and also new development cluster method may always

improve the detection result. However, detection result heavily depends on the clus-

tering result and it is sensitive to the training input data.
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Chapter III

Anomaly Detection Formulation

3.1 Motivation

As discussed in the literature review of this work, there are generally two tradi-

tional viewpoints to anomaly detection: probabilistic view and algebraic view. In the

probabilistic approach, the goal is to estimate the probability density function that

governs the normal class of data either parametrically (MoG) or non-parametrically

(KDE). In the algebraic approach, on the other hand, the objective is to find a trans-

formation between the feature space into a latent space on which the normal class of

data could be separated from the anomalous data. Both these approaches have been

utilized with various degrees of success.

Shortcomings of the traditional approaches have been elaborated in the literature

review section. However, two main issues need to be reiterated. First, if samples of

all possible anomalous data are not available, there will be little that can be done

to learn the transformation between the feature space into the latent space that can

predict the actual boundaries of the normal class. Second, estimating the probability

density of the normal class could be intractable, especially in the case of very high-

dimensional data (e.g., images, videos or point-clouds).
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Therefore, the main motivation for this dissertation is to establish the theoretical

and computational foundations for allowing an implicit estimation of the probability

distribution of the normal data, predicated on the relationships between the data

domain, feature space, and latent distributions that govern the normal data. The

success of this approach will address two fundamental problems. First, implicit es-

timation of the density will not require any prior knowledge about the governing

probability distribution of the normal class. Second, predicating the estimated den-

sity upon the relationships between the mappings across the feature, domain, and

latent spaces enforces constraints on the learning and feature representation modules

to prevent them from learning identity mappings. This will have the added benefit

of establishing a tighter bounds on the estimated densities to improve robustness.

3.2 Anomaly detection Structure

Given a normal class of data, Dn ∈ RN , there is a latent space Fn ∈ RM that can be

reached from the data space through a deterministic mapping Dn
Φ−→ Fn. Within this

latent space the normal data class will be governed by a latent probability distribution

function p(Dn|θ) and the latent space will be governed by p(θ|ξ). We have three goals

in mind:

1. Find a non-identity mapping ρ between the data domain back to itself through

the latent space Fh: Dn
ρ−→ Dn.

2. Keep adding noise to latent space θ and get a latent variable ξ ∼ N(0, 1). Find

an implicit mapping ω between ξ and p(θ): ξ
ω′
−→ θ. The whole mapping process

between latent space θ can be defined as Fθ: θ
ρθ−→ θ.

3. Predicate the mapping ρ on ω such that both DKL [p(Dn|θ)||p(Dn|ρ)] and
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DKL [p(θ|ξ)||p(θ|ρθ)] are minimized.

Accomplishing the above three goals allows us to implicitly sample the probability

density of the normal class data without the need to explicitly model it, while pro-

viding a non-identity mapping between the normal class to itself, predicated on its

implicit density model. Through this non-identity mapping provides a metric (goal

3 above) that can be utilized to determine whether a data sample is normal or an

anomaly. Our proposal structure can be seen from Fig3.1

Figure 3.1: Anomaly Detection Pipeline Structure

The significant advantage of the proposed model is that it can be utilized upon

any traditional regression, classification, localization, or segmentation framework to
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be employed as a unified anomaly detector for various applications.

3.2.1 Data Domain to Feature Space

Given the data from the normal class Dn ∈ RN , I proposed a deterministic encoder

Ef to be designed to establish a mapping between data domain Dn and the feature

domain Fn ∈ RM .

Ef : Dn

Φf−→
θ
Fn (3.1)

where θ is the normal class model, and Φf is the deterministic encoder mapping from

RN to RM .

However, since we can’t assume we know the number of classes included in the

training data. This multi-cluster latent space cannot be trained via traditional auto-

encoder. In order to appropriately train the classifier for anomaly detection, I plan

to add a diffusion process to learn a mapping from noise image to normal class latent

space. I plan to use a diffusion model that takes as input a latent random variable ξ

and produces samples from the normal class domain. The diffusion is in the form of

a model Gω with the loss attributed as follows:

Gω : L = argmaxDKL [pω(X|ξ)||pθ(X|ρθ)] (3.2)

where X is the produced sample in the latent space θ, n is normal class distribu-

tion, and ξ is the latent random variable distribution.

To ensure that the generator is sampling from the correct implicit distribution, I

plan to design an encoding discriminator Eω with a discriminative loss of:
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E : L = argminDKL [p(Fg|ρ)||p(Fn|θ)] (3.3)

where Fg and Fn are the samples drawn from the generated data and the real

data belonging to the normal class.
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Chapter IV

Case Studies

4.1 Anomaly detection via diffusion model

4.1.1 Introduction

The field of anomaly detection [6, 7] has gained substantial popularity in recent

years, as techniques in this domain are increasingly applied across various sectors.

The advent of deep learning has significantly enhanced our capacity to represent

complex data. This advancement facilitates improved feature representation for high-

dimensional, graph, or spatial data in anomaly detection. Currently, we observe the

utilization of anomaly detection in areas such as medical data analysis, risk man-

agement, and AI safety, to name a few. In most real-world applications, access to

anomalous data is not feasible, and normal data often comprises various types of ob-

jects. For instance, in invasive species detection, access to anomaly data is limited,

and the normal dataset includes different local animal species.

Many contemporary anomaly detection algorithms are designed for one-class anomaly

detection. In this approach, the model is trained on samples from a particular class.
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The model learns a probability density function that captures behavior for that spe-

cific class. Samples from other classes are considered anomalies, regardless of whether

they belong to normal data or not. For multi-class anomaly detection, a model should

learn a probability density function for all classes to delineate the boundaries of all

normal data.

In this study, we aim to construct an unsupervised anomaly detection model ca-

pable of identifying anomalies across various normal object classes. Specifically, the

training data consists of normal samples from several different object categories. Dur-

ing both training and inference processes, we do not have access to the category labels

of any samples in the training data.

A commonly adopted methodology in anomaly detection involves the use of image

or feature reconstruction. This approach assumes that a well-tuned model can con-

sistently generate normal samples, even in the presence of potential anomalies in the

input data. However, many widely used reconstruction networks often fail to meet

the stringent requirements of this task. This failure is evidenced by an observed

”identity shortcut” pattern. This shortcut leads to the direct replication of the in-

put, potentially allowing for the accurate replication of even anomalous samples and,

consequently, hampering their detection.

This challenge becomes more pronounced in contexts where the normal data distri-

bution is inherently complex. When attempting to construct a unified model capable

of reconstructing a broad range of objects, the model must endeavor to understand

the joint distribution. Resorting to an ”identity shortcut” might be a simpler path,

but it compromises the model’s effectiveness in anomaly detection.
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The ever-increasing volume of digital data necessitates the development of sophisti-

cated probabilistic models to handle inherent noise and distortion. Diffusion Denois-

ing Probabilistic Models (DDPM), a unique category within these models, provide an

innovative approach to the information bottleneck problem. Trained to systematically

de-noise corrupted inputs, these models reshape the strategy for noise management.

Unlike traditional models where the bottleneck is an intrinsic property, DDPM views

the bottleneck as an externally adjustable feature during model inference. While

previous studies have explored DDPMs as autoencoders with externally adjustable

bottlenecks, none have harnessed this property for reconstruction-based anomaly de-

tection. This paper aims to fill this void, delving into novel insights and methodologies

to leverage DDPMs for enhanced anomaly detection.

In this work, we proposed a multi-class anomaly detection structure based on the

LDM model. We examined the use of latent space within the DDPM framework and

developed a classification model that utilizes the generative capabilities of the diffu-

sion model. This is to determine whether the input and reconstructed image belong

to the same category.

4.1.2 Method

4.1.2.1 Diffusion models

The basic design of diffusion models are based on two Markov chains. Given any

data x0 ∼ q (x0), the first Markov chain is called the forward chain, which transfer the

data into noise. Standard Gaussian noise is typical choice when using the diffusion

model because of its unique properties. The forward Markov chain uses T steps, with
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Gaussian noise added into the data for each step.

q (xt | xt−1) = N
(
xt;

√
1− βtxt−1, βtI

)
(4.1)

where t = 1, 2, ..., T and β ∈ [0, 1] denotes the noise variance schedule. From the

equation above, given data x0 and step t, we can get the distribution of a noise image

q (xt | x0) = N
(
xt;
√
ᾱtx0, (1− ᾱt) I

)
(4.2)

where here we use ᾱt represent
∏t

s=1 (1− βs)

The other Markov chain represents the reverse process, which begins from the

standard Gaussian noise image and keeps adding small amount of noise in order to

recover the input data. This process begins at the point

p (xT ) = N (xT ; 0, I) (4.3)

And small amount of Gaussian noise will be added onto the image step by step.

pθ (xt−1 | xt) = N (xt−1;µθ (xt, t) ,Σθ (xt, t)) (4.4)

where µθ and Σθ are the mean value and standard variation of the Gaussian noise

added in each step. In order to reverse the forward process, we set Σθ (xt, t) = βtI

and µθ should estimate 1√
αt

(
xt − βt√

1−ᾱt
ϵ
)
, thus we can set

µθ (xt, t) =
1
√
αt

(
xt −

βt√
1− ᾱt

ϵθ (xt, t)

)
(4.5)
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In order to estimate ϵθ (xt, t), a U-net is built to minimize the objective function

L = Et∼[1−T ],x0∼q(x0),ϵ∼N(0,I)

[
∥ϵ− ϵθ (xt, t)∥2

]
(4.6)

where ϵ ∼ N (0, I). From equation above, the U-net model is trained so that, given

any input xt, the output of the U-net model should be equal toN (0, I) In the inference

process we can get

xt−1 =
1
√
αt

(
xt −

βt√
1− ᾱt

ϵθ (xt, t)

)
+ βtz (4.7)

4.1.2.2 Architecture with Latent Diffusion models

As depicted in Fig 4.1 our multi-class anomaly detection model comprises three

components: a compression model, a diffusion network, and a classification network.

The compression model compresses the image into a lower-dimensional space. The

diffusion network reconstructs the latent space of normal data, while the classification

network determines whether the input and output of the compression model belong

to the same class. An anomaly class is detected if the input and output are classified

into different classes.

The input of compression model is the original image x, the compression procedure

can be expressed as z = E(x), and the decode procedure can be denoted as x′ =

D(z). The architecture of our compression model, based on work [63], trains an

autoencoder considering both perceptual loss and adversarial objectives. Therefore,

during the image compression, it accounts for not only pixel-wise information but

also the composition of image parts from a codebook constructed by the image.

Utilizing a compression model before the diffusion model in anomaly detection
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Figure 4.1: An overview of our framework, which comprises a compression
model, a diffusion model, and a classification model. The compression
model constructs an encoder and decoder to create a latent space. The
diffusion model continuously adds noise during the forward process and
estimates the input latent data in the reverse process. The classification
model determines whether the input image and the reversed input image
belong to the same class.

provides several benefits:

i The computational complexity during the training of the diffusion model is

reduced since this model operates in the latent space.

ii The latent space prevents the DDPM reconstruction structure from encounter-

ing the ”identity shortcut” issue, which arises when the network consistently

produces a copy of the input data.

iii A compression model allows for flexibility in choosing an appropriate latent

space for the DDPM process. Typically, both the input and output of the

autoencoder should depict the original image. In this study, however, we’ve

also experimented with transforming the autoencoder’s output into an edge
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label, a change that can reduce the propensity for the structure to fall into the

”identity shortcut” issue.

The input of the diffusion model is the latent space vector z from compression

model. Then following the forward process of the DDPM from equation 4.2. Given

any time t ∈ [0, T ], the latent space zt can be calculate by

zt = z0
√
ᾱt + ϵt

√
1− ᾱt (4.8)

where ϵt ∼ N (0, I).

With the t becomes larger and larger, more and more Gaussian noise is added into

the image and the latent vector zt loose its original spatial structure and looks near

the Gaussian noise. In the reverse process, we can follow the equation 4.7. We need

to train the U-net model ϵ(x, t) in order to let it predict the noise ϵ.

In our anomaly task, the result of DDPM reconstruction should be the same with

input latent vector z if it is a latent representation from normal data. In practice, the

reconstruction could keep the similarity of input if the reverse process begins from

time t. As the choice of t becomes larger, the output would become more random

and lose the ability to keep the input similarity even it comes from a normal data

instance.

As illustrated in Fig 4.2 the classification network determines whether the input

image and the reconstructed image belong to the same category. The classification

network takes in a channel-wise concatenation of the input image x0 and the recon-

struction estimation x̂0. A CNN-based architecture is employed for this classification

network. One challenge in this classification is that we only have access to normal
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Figure 4.2: Illustration of the training process within the classification
model. If the reversed input equals the forward diffusion process, the
input image and reversed image are considered to belong to the same
class. If the reversed input equals random noise, the input image and
reversed image are considered to belong to different classes.

data instances, providing us with only positive labels.To obtain negative labels, for

each training data input x0 we reconstruct x′
0 by reversing the DDPM process from

a random noise latent space.

4.1.3 Experiment

4.1.3.1 Datasets and metrics

This research primarily employs two datasets: MNIST [31] and CIFAR-10 [64].

MNIST is an extensive database of handwritten digits, ranging from 0 to 9, with

images sized at 28× 28 pixels. CIFAR-10 is a widely-recognized image classification

dataset containing ten distinct object categories, each image being 32×32×3 in size.

For anomaly detection studies associated with both datasets, the prevalent approach

is the one-versus-rest scenario. In this, one object category is treated as normal data,
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while the others are deemed anomalies. Notably, prior literature hasn’t explored the

MNIST dataset in a many-versus-one scenario. In this setting, models are trained

on nine categories as normal data, with the remaining category considered anoma-

lous. For the CIFAR-10 dataset, Semantic AD [65] has tackled the many-versus-one

scenario using transfer learning. Meanwhile, UniAD [66] employed an embedding

method in a many-versus-many context.

In our study, we explore the many-versus-one setting for the MNIST dataset and

delve into the many-versus-many scenario for the CIFAR-10 dataset, employing a

fundamentally distinct approach.

In this paper, all the experiments are using the Area Under the Receiver Operating

Curve(AUROC) as the evaluation metric. AUROC scored is defined based on False

Positive Rate(FPR) and True Positive Rate(TPR).

FPR =
FP

FP + TN
(4.9)

TPR =
TP

TP + FN
(4.10)

where FP represents false positive, TN represents true negative, TP represents true

positive and FN represents false negative.

4.1.3.2 Reconstruction selection

Reconstruction-based anomaly detection algorithms are one of the most researched

topics in anomaly detection. Numerous studies [2,39,67] have been developed in recent

years. The primary assumption behind using a reconstruction model is that the re-

construction distribution should closely match the normal distribution. This assump-
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Figure 4.3: Reconstructions using our model trained on the MNIST
dataset, excluding all instances of the digit ’0’. The figure depicts re-
construction results for normal data, anomalies from the same dataset,
and anomalies from a different dataset.

tion rarely fails under the one-versus-rest setting because learning the distribution of

one category is typically straightforward. However, in a many-versus-one setting or

many-versus-many setting, normal data includes different object categories, making

the distribution challenging to describe. Often, the reconstruction-based model falls

victim to the ”identity shortcut” issue, where the output always attempts to replicate

the input, regardless of the context.

Diffusion models show immense potential in image generation. Because the forward

process of diffusion involves adding noise to the image, the reverse process becomes

unstable. This instability can be beneficial, as it can prevent the model from taking

the ”identity shortcut” when evaluating an anomalous instance. However, it can also

cause the reconstructed version of normal data to differ from the input. As seen in

Fig.4.3 the reconstruction results change from timestamps 0 to 500. The stability of

the reconstruction of normal data starts deteriorating after the diffusion timestamp
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Table 4.1: AUROC score of anomaly detection on MNIST dataset

Anomaly digit 0 1 2 3 4 5 6 7 8 9
Autoencoder 53.1 60.2 62.2 57.8 55.2 56.9 56.3 50.3 63.1 51.2
AnnoDDPM 57.0 54.6 57.3 51.0 54.8 57.3 60.9 53.1 58.9 52.1
DDPM [70] 65.0 61.4 67.5 65.8 59.9 65.5 61.5 51.2 61.5 52.1
Our Method 64.9 73.2 72.6 69.7 69.7 68.7 68.0 72.6 71.5 56.3

200. Yet, the reconstruction results for anomalies begin to deviate from the input even

before the diffusion timestamp 200. Therefore, we have chosen diffusion timestamp

200 in this study to effectively detect anomalous data.

4.1.3.3 Anomaly detection on MNIST

For our MNIST experiments, we adopted a many-versus-one setting. In each

iteration, one digit was designated as anomalous data while our model was trained

using images of the remaining nine digits. The architecture of the compression and

diffusion models is grounded on the Latent Diffusion Model [68]. For the compression

model, we employed a 3-layer autoencoder with channel sizes of [64, 128, 256]. This

model compresses the image from a size of 32× 32 down to a 8× 8× 3 latent space,

and it also incorporates a VQ-regularization [69] term. Subsequently, the diffusion

training is facilitated by a 3-layer U-net model with channel sizes [224, 448, 672].

For classification, we deployed the ResNet-18 model. The input to this classifier is a

concatenation of the original and the reconstructed image. As observed from Table 4.1

when our model is compared to three other reconstruction-based anomaly detection

methodologies, our method consistently outperforms the others. Specifically, across

all ten experiments, our model ranked as the most effective in nine out of the ten

anomaly detection tests.
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Table 4.2: AUROC score of anomaly detection on CIFAR-10 dataset

Anomaly classes {01234} {23456} {45678} {67890}
Autoencoder 50.4 51.4 60.8 51.2
AnnoDDPM 52.3 56.4 54.7 56.2
DDPM 57.6 51.8 54.6 53.3
Our Method 64.5 60.1 54.0 57.4

4.1.3.4 Anomaly detection on CIFAR-10

For the CIFAR-10 dataset, our experimental approach was grounded in the many-

versus-many setting. In each iteration, we designated five distinct classes as the ’nor-

mal’ dataset and the remaining five as ’anomalous’ datasets. To clarify, in Table 4.2,

the numerals 0 through 9 respectively symbolize the classes: airplane, automobile,

bird, cat, deer, dog, frog, horse, ship, and truck.

The architectural foundation of our model for the CIFAR-10 dataset remains con-

sistent with that employed for the MNIST dataset. However, our results on the

CIFAR-10 were not as promising as those on the MNIST. Even though our model still

surpassed other existing reconstruction-based algorithms, the performance decrement

can primarily be attributed to the less stable reconstruction results on the CIFAR-10

dataset.

This instability might arise due to CIFAR-10 images being more complex and diverse

in content than MNIST’s handwritten digits. Thus, while our model demonstrates

superiority over other reconstruction-based approaches, there remains a potential for

refining and optimizing it further, especially when tackling complex datasets like

CIFAR-10.
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4.1.4 Summary

Tackling multi-class anomaly detection is a formidable challenge, given the intri-

cate distribution characterizing normal data. Our approach, anchored in the latent

diffusion model, underscores the promise and efficacy of this method for addressing

such anomaly detection challenges. Notably, our model presents a remedy to the

identity-shortcut predicament that frequently plagues conventional reconstruction-

based anomaly detection mechanisms. A promising frontier for ensuing research in

this domain is delving deeper into methodologies that can further stabilize the reverse

process in diffusion during anomaly detection tasks.

4.2 3D Unclonable Optical Identity

4.2.1 Introduction

Table 4.3: Ideal secure ID requirements and the features of popular ID
techniques in use today.

ID cost Reproduction Cost Verification Cost Application Scenarios
Ideal Secure ID Low High Low Wide

Traditional Optical ID Low Low Low Wide
Hologram Low Medium High Wide

Nanostructure, DNA Low High High Wide
PUF Medium High Low Limited to electronic device

Reliable identity (ID) is the cornerstone for the improvement of global supply

chain, as it helps owners and participants in the supply chain to detect the IP theft,

counterfeiting, mishandling and other potential risks. For the convenience of daily

commercial activities, product ID need to meet several conditions. For example,

the ID needs to be safely attacked to the product or on the original package. The

manufacturing cost of the ID should be low enough to be used for less expensive goods.

The verification process should be convenient to the users. People have developed
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numerous techniques to ensure and protect the production IDs, however techniques

meets all these requirements are still in a lack. For example, bar-code [71,72], quick-

response (QR) code [73] and radio-frequency ID (RFID) [74] can easily be copied and

used on counterfeited goods. Holograms, DNA marks [75] and nanomaterials based

IDs [76], which are based on unique and random micro/nano-structures, typically

require equipment in labs for verification. The silicon based physical unclonable

function (PUF) [77] is only realized in integrated circuit chips and thus not suitable for

non-electronic productions. The features of these popular commercial ID techniques

are listed in Table 4.3. The requirements on ideal secure ID techniques are also listed

for comparison.

In this project, we propose a novel type of IDs that is irreproducible, reliable,

and applicable on most productions, including but not limited to electronics and high

value goods. The ID is in sheet form, including randomly distributed micro-bubbles.

The unique feature of each ID is based on 3D-spatial locations of the particles. The

irreproducible features are introduced during the fabrication in an unintentional way,

which helps keep the fabrication cost low. While to reproduce a specific ID, the char-

acteristic 3D feature reproducing rather than secret features, the product database for

verification does not have to be kept secret. The novelties of our technique include:

• 3D structure information of each ID is exploited, which makes the duplication

unlikely even with the state-of-art fabrication techniques. The ID security relies

on the duplication difficulties instead of any secrets.

• The IDs fabrication is adaptable to 3D printing, which makes the technique

applicable on most physical items with firm or flexible solid surfaces, such as

electronics, clothes, food packages, and pharmaceuticals. The IDs can also be

applied on as-fabricated items.
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• The ID features are recognized by machine-learning enhanced affordable op-

tical systems, which makes the verification user-friendly and feasible in daily

commercial activities.

• Environmentally sensitive materials can be used, which allows the IDs to irre-

versibly record the environmental experience such as an exposure to radiation

or high temperature.

4.2.2 Attack and Defense Model

Along the life cycle of a physical product item, it may go through different stages,

such as design, manufacturing, distribution, and being deployed. Here we define the

attack and defense model through several assumptions. Assumption 1: ID register

is trusted. The original item owners are responsible for the item registration. They

can only register their items with their own names/brands. Assumption 2: product

database provides write access to authorized registers and read access to the public.

Original owners can add the item information and identity into a product database,

which provides public read access while the write access is only open to the original

owners. Assumption 3: no secrets. For the item that is available on market, we

also assume the adversaries have complete knowledge about the items they try to

compromise, and the adversaries have accesses to all known technology. It is worth

noting that this is an assumption of the most powerful attacking, indicating that

there is no secret (e.g., private key) for the adversaries. Assumption 4: a verifier

representing the receiver is required every time when the item possession is transferred,

and the verifier is trusted. When the item is transferred to a new party or enrolled into

a new system, honest verification should be performed. Since the verifier is responsible

for the verification results, we assume the verifier is trusted. The verifier shall have
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read access to the product database. Although the Assumption 4 typically requires

human involving, it is NOT an extra demand as in most scenarios people present on

item receiving. The important thing is to make the verification user-friendly without

requiring professional training. The target of the defense strategy is to make the ID

reproducing and reuse difficult enough. Thus, we can ensure that with reasonable

cost, the adversaries can ONLY make an insignificant number of compromised items

to pass the verification successfully. The definition of an insignificant number can be

0 or a small percentage, depending on the specific application scenarios.

4.2.3 Experimental

4.2.3.1 Bubble Tag Preparation

In this work, epoxy resin (EcoPoxy, Morris, MB) was selected to create bubble

tags, which was composed of two parts: liquid resin (Part A) and liquid hardener

(Part B) [78]. Bubble tags were prepared by mixing Part A with Part B at a volume

ratio of 1:1 in a plastic cup and then manually stirring with a glass rod for 5 minutes.

Thus, numerous air bubbles were generated in the mixture. After that, the mixture

was poured into a plastic petri dish as a sample with trapped bubbles. After 48

hours, the sample was completely cured at room temperature and was able to be

used as a bubble tag. Figure 4.5 shows the size of our prototype tag compared with

an American quarter coin. Each intersection point can be seen as the center of one

tag, the size of each tag is about 2 cm× 2 cm × 0.5 cm and it is much larger than

what we need.

It is noted that torching was a promising method to control the bubble size and

concentration. Herein, a butane torch (Corkas) was utilized at 30 cm away from
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Figure 4.4: Standard deviation of the number of bubbles and average
bubble count for the samples at different torch times. Insets: sample
torched for a) 0, b) 15, c) 30, d) 45, and e) 60 seconds. (Scale bars: 0.5
mm.)

the surface of the sample to remove unnecessary bubbles from epoxy resin. A series

of experiments were designed to investigate the effects of torch time on the devia-

tion/average count, in which different torch times (0, 15, 30, 45, and 60 seconds)

were applied to the samples. Then, a high precision measurement system (Micro-

Vu Vertex System, Windsor, CA) was used to image and measure the bubble size

and number in the samples with different torch times as shown in Figure 4.4. It is

found that the increase of torch time results in the decrease of bubble quantity and

generation of rippled surfaces (as shown in Figure 4.4d) and e)), which may bring

background noise in the following bubble tag detection. Only when the torch time

was 15 seconds, the samples had the smooth surface, lower standard deviation in the

number of bubbles, suitable bubble density (10-12 bubbles/1.5 mm2), and average

bubble size of 14 µm. As a result, the torch time was determined as 15 seconds.
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Figure 4.5: Size of our tag compared with a quarter coin (about 40 tags
in the disk).

(a) (b)

(c)

Figure 4.6: Tag imaging sample from different imaging devices.
(a)microscope (b)digital camera (c)cellphone camera with macro lens
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4.2.3.2 Bubble Tag Imaging

To easily locate the bubbles in different depths inside a sample, the sample was

made via the aforementioned protocol and after curing, horizontal and vertical lines

were drawn on the surface of this layer with a permanent marker. The distance

between the adjacent horizontal/vertical lines was 1 cm. The high precision measure-

ment system (Micro-Vu Vertex System, Windsor, CA) was used to image the bubbles

at each crosshair at 4 different depths, which has the imaging resolution of 0.1 µm

along X, Y, and Z-directions. Images can be taken in color or monochrome using a

highly sensitive camera that has a 36:1 zoom range [79]. The light-emitting diode

(LED) lights have a lighting angle range from 25 degrees to 90 degrees and have about

a 10,000-hour lifespan [79]. The brightness and pattern of the LED lights can also be

customized to take images.

In the verification process, we also tried different look out devices. Figure 4.6

shows imaging result from microscope, digital camera and cell phones. Cell phone

camera may not good enough to catch the bubbles in our tag, however a $10 worth

macro lens as a cellphone accessory may clearly get the results.

Table 4.4: Database Structure

number ID center position layer depth identifier Product Information

i pi (xc, yc)i

0 (x0, y0)i,0, (x1, y1)i,0, ..., (xm0 , ym0)i,0 1. Manufacturer
z (x0, y0)i,z, (x1, y1)i,z, ..., (xm1 , ym1)i,z 2. Ingredients
· · · · · · 3. Product description
nz (x0, y0)i,nz, (x1, y1)i,nz, ..., (xm2 , ym2)i,nz 4. Expiration date
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4.2.4 System

4.2.4.1 Initial Strategy

From the figure of our 3D tag, we can notice that the location of particles can be

seen as the identifier of our tag, thus we need to build up a 3D coordinate system and

save the (x, y, z) information for each particle in our sample. In order to collect the

depth information z, we took images on different focal planes for each sample. By

adjusting the distance between each focal plane, we can make sure each particle only

appears in one or two images. The depth of the focal plane can be used to indicate

the depth information of the particle. For the horizontal information x, y we can get

it from the images we take. Also, we define the cross point on the top level as the

origin of our coordinate system.

The position of the cross point in sample images can be easily found by using

the Sobel Operator. Sobel Operator can detect the edge of cross lines, thus we can

get the cross point by calculating the intersection points of four edges. The Sobel

Operator can be shown as follows:

Lx =


1 0 −1

2 0 −2

1 0 −1

L

Ly =


1 2 1

0 0 0

−1 −2 −1

L

As we can see from the sample figure, the shape of our particles is a circle. We
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have two ways to find out the position of all circle patterns in the sample image.

The naive way is using the Hough Transform method [80]. This method can find out

all the circle shape patterns in the images. However, under real-world circumstances

the sample image may be noisy, using Hough Transform we will get a large number

of noisy data. Furthermore, we may change the materials of particles in the real-

world application. When the shape of particles changed, Hough Transform will not

correctly detect the particles. Another method we could use to detect particles is

machine learning based object detect algorithms [81]. The first advantage of machine

learning based algorithms is that they can easily adapt to the change of particle

shapes. Furthermore, it can ignore the noisy information if the model can be well

trained. However, training a generalized machine learning model requires a large

number of data. The creation of training data will cost months in our laboratory.

Figure 4.7: System working principle

Our strategy of getting enough data is creating simulated data. We created thou-

sands of simulated images with a clean background and round-shape particles. Then

we used the Hough Transform method to detect the position of particles and feed the

result into the machine learning model. Then we can use a small number of real data

to make the model detect the real particles.
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4.2.4.2 Architecture and Pipeline

Our 3D tag consists of two parts: (i) a certain number of small particles(e.g.

bubbles) and (ii) cross lines on the surface of our tag. The position of particles

is in charge of generating a unique, unclonable identifier for tracking and tracing

commodities in the supply chain. The cross line on the surface is in charge of finding

the initial focal plane and locate the center of the tag.

Figure 4.8: Depth information from imaging: (a) schematics showing
depth information extraction by adjusting the sample height or adjusting
the lenses position and (b) images obtained from one sample by adjusting
the sample height

We obtained the depth information by controlling the objective focal plane. For

microscope system, the depth of field (DOF) is typically very shallow. As shown in

the fig4.8, only particles near the objective focal plane (i.e. within the DoF) can be

clearly recorded on the image. The depth information accuracy is decided by DoF

and calculated by

DoF =
2NCD2f 2

f 4 −N2C2D2
(4.11)

Where N is aperture, C is circle of confusion, D is focusing distance, and f is focal

length. For the microscope system to be used in the proposed project, the DoF is

from 5 to 30 µm. Given the system information, the depth corresponding to particular
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particles can be extracted. In order to record the particles at different levels, we first

set the focus plane to the top of the tags where we can clearly see the cross lines.

Then we move the position of the lenses and take an image for each millimeter change.

Figure 4.8 shows the images taken from our samples by microscope.

As show in Figure 4.7 the procedure of implementing a machine learning based

tag enrollment system for each sample is as follows:

1. Use a series number p to denote the smaple

2. Adjust the location of the lens in order to clearly see the cross markers on the

top of the sample, also put the intersection point at the center of the lens.

3. Take one image at the top layer then move the lens vertically down, and take

one image for each z millimeter.

4. Use yolo algorithm on each image to find out the center of each bubble, we

use (xm, ym, nz) to denote mth bubble in layer n and save all the data into our

database

5. Use edge detection algorithm find out the center point (xp, yp), save it into our

database

The procedure of authentication process for each sample is as follows:

1. Adjust the location of the lens in order to clearly see the cross markers on the

top of the sample, also put the intersection point at the center of the lens.

2. Move the lens vertically down s millimeter and take one image

3. Use yolo algorithm find location of bubble location in this image
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Algorithm 1 3D tag authentication

Input:
Product series number, test identifier, center position, distance to top ← pi,
{(x, y)pi,test}, (x̂, ŷ), s;
The database information test identifier in layer k, center position← {(x, y)pi,kz},
(x̂′, ŷ′);

Output:
1: Initial parameters m,n = 0
2: Calculate center shift distance (δx, δy) = (x̂′, ŷ′)− (x̂, ŷ)
3: Find out k such that kz ≤ s ≤ (k + 1)z
4: for all (x, y) such that (x, y) ∈ {(x, y)pi,test} do
5: n = n+1
6: for all (x′, y′) such that (x′, y′) ∈ {(x, y)pi,kz} do
7: if D((x+ δx, y + δy), (x′, y′)) < dthreshold then
8: m = m+1
9: Break
10: end if
11: end for
12: end for
13: if m

n
> sthreshold then

14: printf(”test sample matches tag pi”)
15: else
16: printf(”test sample does not belong to the database”)
17: end if
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4. Use edge detection algorithm find out the center point of this image

5. Compare the image with its neighbour images enrolled in the database. If the

similar rate is larger than a threshold rth, then we determine that the test

sample matches with this tag entry; otherwise, we determine that this sample

does not belong to the database.

However, because we couldn’t save all the 3D information into several 2D images,

the test image may slightly different from the data we saved in the database. For

example, we assume the depth of the test image is between layer k and layer k + 1

in the database, which means kz < stest < (k + 1)z With the movement of the focus

plane, some bubbles show up in layer k or layer k+1 will disappear in the test image.

We assume in the registration process, we record all the bubbles in this 3D model,

which means each bubble at least appears in one layer we saved in the database. Thus

if the test sample and the target sample are the same one, we know that

{(x, y)i,kz} ∪ {(x, y)i,(k+1)z} ⊆ {(x, y)i,stest} (4.12)

We can define the distance between test image and the sample saved in our database

based on the percentage of bubble in test image which can also be found in layer k

or layer k+1. The equation can be wrote as follows:

f(pi, ptest) =
#bubble in test sample and sample i

#bubble in test sample
(4.13)

Because of noise interference and small error in detection algorithm, the position

detected for the same bubble may be slightly different in different detection. Thus

we use euclidean distance between two points to determine whether these two points
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are in the same location.

D((x, y), (x′, y′)) =
√
(x− x′)2 + (y − y′)2 (4.14)

Two points are determined to belong to the same location if their distance is not

larger than a threshold, we will discuss the infection of the threshold in the evaluation

subsection.

4.2.4.3 Application Scenario

Figure 4.9 illustrates the communication flow in the real application scenario. Our

3D tag is really small, it can be placed anywhere inside the package. Users can use a

smart phone with our 3D tag reader software to take an image of the tag and download

the tag-related information from the centralized database. The communication flow

of our 3D tag system is as follows:

Step 1: 3D tag reader take an image 3D tag

Step 2: Reader find out the center position and identifier information of the tag.

Step 3: Reader send the information to the centralized database for authentication.

The authentication process is as algorithm 1 shows.

Step 4: The centralized database sends the authentication result and corresponding

product information to the reader.

Figure 4.9: Communication flow in real application scenario.
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4.2.5 Evaluation

4.2.5.1 Object detection

In the process of training our object detection model, we first manually labeled 50

sample images. For the reason that we only want the algorithm find out the bubbles in

the focus plane rather than the blurry bubble out of focus. We can see the difference

in Figure 4.10 We manually labeled 50 samples and train the YOLO model based on

these 50 samples.Our image size for training is 1024× 1024, our batch size is 5. The

result of our training result is as Table 4.5 shows.

Most of undetected bubble are under motion blur situation where it looks similar

with the out of focus object. Thus, if too much motion blur exists on the object,

the algorithm will consider object is out of focus and will not correctly detect them.

Another detection error is that some out of bubbles are incorrectly detected. The

reason for this situation is because of some incorrect labeling in the manual labeling

process.

Figure 4.10: Bubble in focus plane versus bubble out of focus plane
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Table 4.5: Training YOLOv5 NEURAL NETWORK RESULTS

Epoch Precision Recall mAP value

200 0.11 0.23 0.08
300 0.12 0.25 0.10
400 0.13 0.51 0.12
500 0.62 0.39 0.41
600 0.65 0.80 0.66
700 0.73 0.83 0.75

Table 4.6: Design Parameters for 3D Tag

Variable Parameter Value

z distance between different layers 1mm

dth distance threshold between same point 1mm

sth similarity threshold in identification 0.4

n number of layers we saved 4

4.2.5.2 Performance evaluation of 3D pipeline

In this subsubsection, we analyze the effectiveness of pipeline efficiency in the

real world application. We built 100 samples, each sample included 4 layer images,

which we saved into the database, and one test image which we used to evaluate our

pipeline. The settings of our experiment is listed in Table 4.6 and the verification

result can be seen as the Figure 4.11 shows.

From the experiment result we can see that when we verify the tag with it’s own

image, the similarity of all 100 test images are all above 0.3. Actually the similarity of

97 test samples are larger than 0.5. However, when we verify the tag with a random

image from our dataset, all test images have similarity smaller than 0.25, 98 of them

are smaller than 0.2. There is a huge gap between 0.2 and 0.5, we can set a threshold

between 0.2 and 0.5, if the similarity is larger than the threshold then the test image

belongs to the tag. If the similarity is smaller than the threshold, the test image does

not belong to the tag. If we set the threshold equal to 0.4 in our experiment, than

the accuracy of our verification process is equal to 0.995.
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Figure 4.11: Tag verification results

To further evaluate the performance of verification process, we used Unreal Engine

4(UE4) to simulate the whole process. Unreal engine is a game engine which can

provide us different light condition and camera settings. The simulation is very fast

after we built the model, it takes about two minutes to build one sample and takes

all the images we need. Further more, we test our samples within different light

environment and camera settings. Figure 4.18 shows the difference between simulation

tag samples and real tag samples. In this experiments we simulate 400 samples and

trained a new YOLO model to detect the black points on the simulation images. Then

we exactly follow the whole process in the real tag verification part. Figure 4.13 shows

the result of the verification process of our simulated samples.

Figure 4.12: Comparison between simulation tag and real tag:
(a)simulation tag built based on UE4 (b) real tag built based on resin

This experiment result is very similar with the previous experiment result. Among

400 test images from the correct tag, about 93% of them have similarity larger than
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0.5. While with the 400 test images from the incorrect tag, about 93% of them have

similarity smaller than 0.3. Also, if we choose 0.4 as the threshold to identify whether

the test images belongs to the tag or not, the accuracy is about 96.9%.

Figure 4.13: Simulated tag verification results

4.2.6 Reformulation with Anomaly Detection

The result of using YOLO could highly depend on the training data and verifica-

tion data. The user would get their verification data under different circumstances,

for example different verification devices, or different light conditions. Thus our multi-

domain anomaly detection system will help under this situation. As we can see from

Fig.4.14

The input of compression model is the background image x, the compression

procedure can be expressed as z = E(x), and the decode procedure can be denoted

as x′ = D(z).

The input of the diffusion model is the latent space vector z from compression

model. Then we follow the forward process of the DDPM from equation 4.2. Given
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Figure 4.14: Anomaly Detection in 3D tag

any time t ∈ [0, T ], the latent space zt can be calculate by:

zt = z0
√
ᾱt + ϵt

√
1− ᾱt (4.15)

where ϵt ∼ N (0, I).

As t becomes larger and larger, more and more Gaussian noise is added into the

image and the latent vector zt looses its original spatial structure and looks near the

Gaussian noise. In the reverse process, we can follow the equation 4.7.

In our localization task, the result of DDPM reconstruction would then be the actual

point localization based on the background subtraction.
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4.2.7 Security Analysis

The ID-based verification relies on several essential factors, including 1) registered

ID, 2) database storing the ID information, 3) proper ID reading, and 4) securing

communication between database and ID reader. In this scenario, the compromising

of database (on cloud), ID reading (by cellphone for example), and the communication

are related to more general cyber-attacks and thus are not discussed in this paper. The

exclusive counterfeiting attack that is specifically targeting our technique is the ID

reproducing. As discussed in Section 4.2.2, the ID information is public, which means

the adversary can get the 3D structure information. To reproduce the structure,

popular manufacturing techniques, such as casting [82], printing [83], and lithography

[84,85], can be used.

Different techniques have different advantages and limitations for the ID tag repro-

ducing. For example, the casting is suitable for 3D structure, the cost is economical,

but the precision is only around 100µm. Therefore it is impractical to present struc-

tures with feature size below 100µm. In addition, it is also difficult to fabricate some

complex patterns like the separate particles in our ID tags. Different from casting,

modern printing techniques provide more precise and controllable ways for the manu-

facturing. However, the printing performance in several aspects like precision, speed,

and cost, are mutually restrictive. Although the precision of 3D printing can be up

to 10 µm (i.e. several thousands of dpi) with uniform materials, it is challenging to

handle different ones.

Lithography is another technique that has been widely used for micro-structure

manufacturing, from cost-efficient printed circuit board to expensive advanced CMOS

processing. Considering from the perspective of economic rewards, the counterfeit-

ing may only use mask-based contact lithography [84] or maskless lithography [85]
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(e.g. digital light processing, DLP), both providing precision up to 10 µm. Since the

lithography is layer-based operation, multiple rounds are necessary to stack several

layers for the 3d structure manufacturing. The number of layers depends on the ver-

ification protocol. For example, if the verification requires images from five different

depths, then the adversary has to fabricate at least 5-layer counterfeited ID tags with

corresponding thickness.

It is worth noting that lithography only generate binary patterns with sharp edges

(i.e., black-while, no gradient gray). Considering the particles that are out of focus but

still shadowed in the depth-related image (gradient gray) are also used for verification,

a counterfeited ID will need more layers (>5 in this example) to clone the shadows

as well. Using the Figure 4.10 as an instance. Although only one image is used for

verification, the adversary needs to generate two layers at different depth, such that

first counterfeited layer can be in focus to show clone the in focus bubble while the

second counterfeited layer is ”properly” out of focus to clone the shadow of the bubble

that is out of focus. According to the z-direction distribution, the thickness of each

counterfeited layer needs to be adjusted as well. Thus, the manufacturing cost will

increase rapidly.

Overall, casting and 3D printing are technically difficulty to manufacture pat-

terned 3D structure with feature size at or blow 10 µm. Lithography, on the other

side, can provide higher precision but the layer-based operation mode makes the 3D

structure reproducing expensive. Potential manufacturing issues, such as the layer

curing and the interface between layers, may result in further challenges to the ad-

versary during the imaging and verification.
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4.2.8 Summary

In this article, we presented an innovative unclonable 3D tag that carries a unique

identifier that can be used on all kinds of materials. The effectiveness of tag recog-

nition has been verified via experiments based on our 3D tag prototype. Our 3D

unclonable can be printed directly on products or their packages, integrated onto

PCBs of electronic products. Compared with existing approaches, our 3D unclonable

tag has the following advantages: (1) The random 3D structure and uncontrollable

process during tag fabrication make the tag hard to clone. (2) The fabrication pro-

cess can be done by a 3D printer which makes our tag can be applied on all physical

surfaces. (3) Our proposed tag look-up system has a user-friendly verification pro-

cess. (4) Environmentally sensitive materials can be used in our tag, which makes it

possible for the IDs to irreversibly record the experience such as exposure to radiation

or high temperature.

Our future work mainly focuses on two directions. Finding the suitable environ-

mentally sensitive material inside our sample is our first direction. These kinds of

materials can track the environmental change of commodities in the supply chain.

The other direction is improving the object detection model to verify test images

taken from different tools(e.g. cell phone, camera, and microscope).

4.3 Gould Syndrome Detection

4.3.1 Introduction

Gould Syndrome is a rare, genetic, multi-system disorder. Gould Syndrome is

often characterized by abnormal blood vessels in the brain, eye development de-
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fects, muscle disease, and kidney abnormalities. However, many other aspects of

the syndrome including abnormalities affecting the structure of the brain and lung

abnormalities continue to emerge and the full spectrum is still uncharacteristic.

Figure 4.15: The mutation of COL4A1 gene

Recent study shows that Gould Syndrome is caused by mutations in components

of type IV collagen. Type IV collagen is the main collagen component of the base-

ment membrane which which is important for various physiological and pathological

functions. Collagen IV composed by heterotrimers of COL4A1, COL4A1, COL4A2.

In this research we are focusing on COL4A1 gene as the COL4A1 mutations are

heterozygous dominant of mutations in type IV collagen. The example of COL4A1

mutations can be seen as Fig4.15 shows. In our experiment, we mutate COL4A1 gene

in mice and exhibit age-dependent anterior segment ocular dysgenesis and intracere-

bral hemorrhages, it is shown in Fig4.16.

The next step is to figure the affection of mutated COL4A1 gene in vascular

smooth muscle cells(SMC) phenotype. From Fig4.17 we can see different SMC phe-

notype between mice with normal COL4A1 gene and mice with mutated COL4A1

gene. We can see that most part of smooth muscle cells are similar, the texture struc-

ture of the cells looks like parallel lines. However, smooth muscle cells in mice with
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Figure 4.16: The comparison of mice with normal COL4A1 gene and
mutated COL4A1 gene. The left top figure shows mice in 3 month and
the left bottom figure shows mice in 12 month. The right figures indicate
the percentage of mice with anterior segment ocular dysgenesis.

mutated COL4A1 gene forms irregular cell texture in some particular places.

The critical task is to find out the percentage of anomalous smooth muscle cells

with irregular cell texture. In order to complete this task We used image segmentation

techniques to find out the normal smooth muscle cells and anomalous smooth muscle

cells. Image segmentation aims to give a label to each pixel in the image, in this task

we created three labels, background, normal cell and abnormal cell. Once we get the

segmentation result, we can calculate the percentage of anomalous cells among all

cells. The difference between our task and traditional image segmentation job is that

traditional image segmentation aims to segment based on different objects but in our

task, we aims to segment based on image textures.
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Figure 4.17: Mice exhibit changes in vascular SMC phenotype

4.3.2 Challenges

In this task, we are facing many challenges similar with typical anomalous detec-

tion. Some main challenges are list below:

• Blury boundary The boundary between normal and anomalous cells are not

clearly defined. Because all the data are labeled manually, some texture pattern

between line texture and messy texture are hard to labelled. Actually, in some

figures, the first manual label result and the second manual label result are

different.

• Limited Labeled Data With the usage of deep neural network to finish the

segmentation task, it requires a large amount of training data. However, in our

experiment, The number of mice we could use are very limited. In addition to

that we need to manually annotated all the labels which is impossible to get a

large amount of data.
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• Class Imbalance. Anomalous cell type are hard to find. Most of smooth

muscle cells are structured with normal texture. Messy texture only show up

in small area in the body of gene mutated mice.

Figure 4.18: Unet labeling result vs Human labeling result

4.3.3 Initial Method

We tried to use existing algorithm to solve this problem. From the beginning,

as limited annotated data is available, we used data argumentation to increase the

size of the training data. We used a set of affine transformation like flip, rotate and

mirror. Then we tried to use UNet model to finish the image segmentation task.

We compared the UNet segmentation result between manual labeled result and our

automated process, we can see the result from Figure4.18.

Manually labelled result and segmentation result from UNet shares the same trend.

Notice that there were no statistically significant difference between our method and

human. However, when looking into the details in Fig.4.19 we can find that UNet
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couldn’t catch some of the anomalous texture area. More importantly, UNet segmen-

tation could cut one cell into different part. It is impossible half of the cell is normal

and another half is anomalous.

Figure 4.19: Segmentation result between human vs Unet

I have two future plans for this project. The first one is to build up a unsuper-

vised model to let the model detect anomalous cells. The second one is build up

a texture based segmentation model which directly fit into the smooth muscle cells

segmentation.

4.3.4 Reformulation with Anomaly Detection

The main challenge in Gould Syndrome detection is due to the label quality and

quantity. Anomaly cases are very rare, and the boundary between normal and ab-

normal areas is ambiguous. Thus, we can use our multi-domain anomaly detection

pipeline to address these challenges with only normal data needed in our training

process. The pipeline for using anomaly detection to solve this problem can be seen

in Fig.4.20.

The normal image x serves as the input for the compression model. The com-

pression step is represented as z = E(x), while the decompression step is denoted as



77

Figure 4.20: Gould Syndrome Detection Pipeline

x′ = D(z).

The latent space vector z from the compression model acts as the input for the

diffusion model. According to the forward process of the DDPM described in equation

4.2, for any given time t ∈ [0, T ], the latent space zt can be determined by

zt = z0
√
ᾱt + ϵt

√
1− ᾱt (4.16)

where ϵt follows a normal distribution N (0, I).

As t increases, more Gaussian noise is added to the image, causing the latent vector zt

to lose its initial spatial structure and become similar to Gaussian noise. The reverse

process follows equation 4.7.
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In our segmentation task, the outcome of the DDPM reconstruction should high-

light the anomaly detection area based on the mean square error.

4.4 Vascular Activity and Calcium Dynamics in Neurovas-

cular Coupling

4.4.1 Introduction

Understanding the mechanistic basis of neurovascular coupling (NVC) is critical

as it provides insights into the integrated relationship between neurons, astrocytes,

and vascular cells during activity. Furthermore, NVC forms the basis of functional

techniques such as functional magnetic resonance imaging (fMRI), position emission

tomography that are important diagnostic tools in clinical settings. Calcium is a

crucial second messenger for almost every physiological process, as such it has been

commonly used as an index for various cellular activity. This is even more critical

in non-excitable cells such as astrocytes. Studies have shown that NVC relies on

Ca2+ dependent pathways that trigger the release of diffusible lipid and/or gaseous

messengers that communicate with vascular cells [86–90]. As technical advances get

evolved rapidly, current technologies provide incredible acquisition tools that allow

investigators to critically examine Ca2+ dynamics at the cellular level [3]. The devel-

opment of cutting-edge technologies such as two-photon microscopes accompanied by

the advancement of genetically engineered calcium indicators (GECIs) have furthered

our understanding of astrocyte Ca2+ dynamics in vivo under physiological conditions.

In addition, NVC field has made significant progress over the past decades as neu-

roscientists and vascular biologists join forces with a common goal of uncovering the
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mechanistic basis of NVC in a holistic approach rather than investigating individual

cell types in isolation then inferring the ultimate consequential effects on the remain-

ing cell types of the neurovascular unit. Accompanying the rapid growth of imaging

modalities is the development of acquisition and analytical software [91–93]. Although

these analytical tools have significantly enhanced our ability to analyze Ca2+ signals ,

they are not comprehensive and somewhat lagging the rapid evolvement of acquisition

tools. Two-photon microscopes enable researchers to simultaneously monitor Ca2+

signals and vascular response (aka functional hyperemia) in response to stimuli in

vivo under physiological conditions. However, to our knowledge there is no analytical

software that permits the investigators to analyze both Ca2+ dynamics and vascular

responses simultaneously in a simple, efficient, and accurate fashion. In this project,

we were set out to develop an analytical tool using algorithm that semi-automates the

process so that it can detect and quantify Ca2+ signals and vasomotor response with

relatively high throughput. With this this software, named NVC analysis, we hope

to simplify the analytical process, provide the efficiency yet still retain the accuracy.

4.4.2 Challenges

In this task, challenges are based on how to find out anomalous cell information

from video data. Some main challenges are list below:

• Unknown Components Type The shape and size of cell components are

unknown in this task. It is difficult to tell whether cell components we detected

is a potential useful components or a data noise point.

• Limited Labeled Data Because of the limited experiment results and time

consuming labeling process. Only small amount of data are labeled in the whole
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Figure 4.21: Imaging astrocytic Ca2+ and vascular responses to whisker
stimulation using a two-photon microscope in a behaving mouse [3]. (a)
Layout of a two-photon microscope for awake in vivo imaging with dual-
beam path and articulating periscopes (left) and air-supported Styrofoam
ball for a headfixed running mouse (right). (b) 3D reconstruction of the
barrel cortex of a mouse showing astrocytes expressing GCaMP6f (green)
and vasculature labeled with Rhodamine B-dextran (red). (c) Arteriole
and astrocytic Ca2+ responses from different subcellular compartments to
5s whisker stimulation at different time points.
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process. In this case, we are hard to completely represent the component signal

based on the data we get.

• Class Imbalance. Strong signals only appear in very limited number of frames

in the whole video process. Searching for a continuous process is hard do in the

whole process.

4.4.3 Initial Method and Result

4.4.3.1 Animals

The Animal Care and Use Committee of the University of Nevada, Reno approved

all the animal procedures. All studies were performed on male FVB-Tg(Aldh1l1

cre/ERT2)1Khakh/J (Jax#029655) × 129S-Gt(ROSA)26Sortm95.1(CAG-GcaMP6f)Hze/J

(Jax#024105) between postnatal day 30 (P30) and P90. Animals were injected on 5

consecutive days with tamoxifen (75 mg/kg, Sigma), prepared as a 10 mg/mL stock

in corn oil. Injections started between P21 and P35. Animals were kept on a normal

12-hour light/12-hour dark cycle and had ad libitum access to food and water.

4.4.3.2 Chronic Awake in vivo Preparation

All surgical procedures and isoflurane anesthesia were performed as previously

described 10,11 Briefly, a head-bar was surgically installed on the animal, which was

followed by a craniectomy. Bone and dura over the primary somatosensory cortex

were removed and a double cover glass (i.e., 2.6 mm cover glass glued onto a 3.5 mm

cover glass) was installed over the cranial window (with a smaller cover glass on top

of the brain tissue). The animal was returned to its home cage to recover. Mice

need to be recovered for at least 2 weeks before the first imaging session can take
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place. Prior to imaging, mice were trained on a passive air-supported Styrofoam ball

treadmill under head restrain for 45 minutes and habituated to whisker stimulation

with an air puff on contralateral vibrissae every minute for 5s using a picospritzer III

(General Valve Corp.) for two consecutive days.

4.4.3.3 Vessel Indicators

Texas Red-dextran (MW 70,000; Sigma) was injected via the tail vein (100-200µL

of a 2.3% (w/v) solution in saline) to visualize the blood plasma. The animal was

slightly sedated for the injection and was allowed to recover on the treadmill, with

its head immobilized. The animal needs to be completely awake before imaging can

take place (i.e., at least 30-minute recovery).

4.4.3.4 Two-Photon Fluorescence Imaging and Whisker Stimulations

Fluorescence images were obtained using an in vivo two-photon microscope illu-

minated with a tunable Ti:sapphire laser (Tiberius, Thorlabs), equipped with GaAsP

PMTs (Hamamatsu) and controlled by ThorImage. We can see from Fig4.21. A

Nikon 16X objective lens (0.8NA, 3mm WD) or an Olympus 20X objective lens

(1.0NA, 2.5mm WD) was used. GCaMP6f and Texas Red dextran were excited at

920 nm. Green fluorescence signals were obtained using a 525/50nm band-pass filter,

and orange/red light was obtained using a 605/70nm band-pass filter. Bidirectional

xy raster scanning was used at a frame rate of 3.2Hz. Animal behaviors were cap-

tured using a near-infrared LED (780nm) and a camera at 14Hz. A 5-s air puff that

deflected all whiskers on the contralateral side without impacting the face was ap-

plied using a Picospritzer while vessel surface area and astrocyte Ca2+ responses were

monitored in the barrel cortex (layers 1-3).
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4.4.3.5 Basis for the Development of the Program

The development of our software is founded on Python 3.8, incorporating critical

pakages such as ”numpy” for numerical computations, ”opencv” for image processing,

”tkinter” for the graphical user interface, ”PIL” (Python Imaging Library) for image

manipulation, and ”scipy” for scientific and technical computing. We utilized the

”PyInstaller” package to bundle our application along with all its dependencies into

a single executable file, simplifying distribution and deployment.

Figure 4.22: Possible cell components in the simulation
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4.4.4 Software Development

Our software is developed to simultaneously analyze both astrocyte Ca2+ signals

and vascular response. It involves 5 key procedures. Overall sturucture can be seen

in Fig4.23

1. Pre-processing the image

2. Locating the vessel (e.g. penetrating arteriole)

3. Identifying the ROIs for different subcellular compartments of an astrocyte

4. Processing Ca2+ signals

5. Quantifying Ca2+ signals and vessel diameter

4.4.4.1 Pre-processing the image

Pre-processing the image can help with data visualization by enhancing the con-

trast and/or removing background noise and it involves 2 steps. Normalization is the

initial step that is applied to both the vascular channel and Ca2+ signal channel. The

primary propose of it is to adjust the intensity scale for better visualization of the

original images. Normalization can be achieved by dividing the input image by its

maximum pixel value. The next step involves histogram equalization to improve con-

trast by redistributing the most common intensity values. To illustrate, let’s denote

an image as x. We used nk to represent the number of pixels with intensity value k.

The probability of pixels at intensity value k can be calculated as

px(k) = p(x = k) =
nk

n
(4.17)
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Figure 4.23: Software development structure



86

where n is the total number of pixels in the image.

The cumulative distribution function (CDF) for intensity value k is given by:

cdfx(k) =
k∑

l=0

px(l) (4.18)

We then transform image x into image y, such that y = T (x) where T (x) has a

uniform distribution across its intensity values, ideally achieving a flat histogram.

This means that each intensity value should be equally represented across the image,

rather than all pixel values being identical. In other words, the transformed image

should have a linear CDF across the entire range of intensity values.

cdfy(k) = (k + 1) · 1
L

(4.19)

Where k is an integer within a range of [0, 1, 2, . . . ., L-1], and L is the total number

of possible intensity levels. Therefore, the transformation T maps the original image

x to the new image y, ensuring that the number of pixels at each intensity level is

equalized.

4.4.4.2 Locating the penetrating arteriole

Each pixel in the image can be designated as P(i,j,t), where i (row index) and j

(colume index) represent the spatial coordinates of the pixel, and t denotes the time

stamp. A featured image F, which retains the same row and column dimensions as

the original data, is extracted by computing the maximum intensity value at each

spatial location over all time stamps. This is represented as:

f(i, j) = max
t

P (i, j, t) (4.20)
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This featured image provides spatial information on the potential locations of the

vessel. To identify the cross section of an arteriole in our recording, we employed the

Hough Circle Transform [94] method to search for circular-shaped objects within this

image. The Hough Circle Transform method comprises of 4 critical steps:

1. Edge Detection: Initially, the Canny edge detector [95] is applied to the featured

image to delineate the boundaries of all discernible objects. This edge detection

is vital for tracing the contours of vessels.

2. Circle Prediction: An algorithm iterates through every plausible circle center

and radius for pixels located within the detected boundaries. For each potential

circle defined by a center coordinate and a radius, a vote is cast in the corre-

sponding cell of an accumulator matrix, which represents the spatial profile of

vessel candidates.

3. Vote Accumulation: As the edge pixels are processed, votes are cumulated in

the accumulator matrix for various circle configurations. This aggregation of

votes assists in distinguishing between probable circle candidates.

4. Circle Detection: Subsequently, the accumulator matrix is scrutinized to pin-

point the local maxima, indicative of the detected circles. The threshold for

recognizing a local maximum as a valid circle is determined by our training

datasets.

By following this methodology, we can systematically locate and identify of the arte-

rioles.
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4.4.4.3 Identifying the ROIs

In this step, we ascertain the spatial locations of all Regions of Interest (ROIs)

from the Ca2+ channel. The raw image from the Ca2+ channel undergoes the same

pre-processing step as described previously. A featured image is extracted and sub-

jected to histogram equalization to bolster the contrast. Furthermore, there is an

option to denoise the image by either substracting background noise or using median

filter [96]. The background noise subtraction technique operates under the premise

that Ca2+ signals should not be present within the arteriole area. Having determined

the location of the arteriole in the preceding step, we can calculate the average inten-

sity within this region from the Ca2+ channel, designated as background noise. We

then substract the calculated noise intensity from the entire channel. The Median

filter, alternatively, is a non-linear technique that excels at mitigating salt-and-pepper

noise. It replaces each pixel’s value with the median of the intensity values from a 3×3

square kernel surrounding that pixel. It sorts the values within the kernel and adopts

the median value as the new intensity for the central pixel. We utilized the unique

feature of the astrocyte endfeet (i.e., ensheathing the vasculature), and the differences

in signal intensity between different astrocyte subcellular compartments (e.g., endfoot

vs. fine processes) to design our semi-automated detection system to identify endfoot

Ca2+, and fine processes and/or soma independently. This process employed two dis-

tinct parameter sets, empowering users to fine-tune the boundaries of the ROIs from

different subcellular compartments independently. Each set of parameters comprises

two components, t1 and t2. Parameter t1 sets the minimum intensity threshold for

ROI identification, ranging from 0 to 255. Parameter t2 determines the intensity ratio

relative to the surrounding area’s average intensity, ranging from 0 to 1.5. A low t1

and a high t2 increase the software’s sensitivity, and thus detect more ROIs, while

the converse reduces the software’s sensitivity. This dual-parameter strategy provides
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precise control in pinpointing ROIs across different image regions. A separate dis-

played window allows users to visualize and validate the detected ROIs. Users can

manually adjust the parameters to set the sensitivity for detecting ROIs.

4.4.5 Reformulation with Anomaly Detection

The main challenge in Vascular Activity and Calcium Dynamics in Neurovascular

Coupling is that the Vascular signal data and Ca2+ data are from different imaging

channels. Their background, noise level even light condition are different. We can use

our multi-domain anomaly detecion model to detect vascular, cell-body, endfoot and

other Ca2+ signal area at the same time. The structure can be seen from Fig.4.20.

The feature image x serves as the input for the compression model. It includes

both vascular channel Ca2+ channel. the compression process is described as z =

E(x), while the decompression step is represented as x′ = D(z).

The latent space vector z, generated by the compression model, serves as the

input for the diffusion model. Following the forward process of the DDPM outlined

in equation 4.2, at any given time t ∈ [0, T ], the latent space zt can be computed as

zt = z0
√
ᾱt + ϵt

√
1− ᾱt (4.21)

where ϵt is sampled from the normal distribution N (0, I).

As t increases, progressively more Gaussian noise is incorporated into the image,

causing the latent vector zt to lose its original spatial characteristics and resemble

Gaussian noise. The reverse process is governed by equation 4.7.
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In our segmentation task, the result of the DDPM reconstruction should reveal the

anomaly area based on the mean square error.

4.4.6 Processing Ca2+ signals

Once all the ROIs are identified, we proceed with a time series analysis for these

areas. Each ROI is denoted as Rm, representing a set of spatial locations for the mth

ROI. The average intensity of the Ca2+ signal for each time frame is calculated as:

Ik (t0) =
1

|Rm|
∑

(i,j)∈Rm

p (i, j, t0) (4.22)

Where

∥Rm∥

is the number of spatial locations in Rm, and p(i, j, t0) is the pixel intensity at location

(i, j) and time t0.

To attenuate noise and transient peaks in the time series data, we employ the

Savitzky-Golay filter [97]. This digital filter is adept at smoothing the data while

preserving features like peaks, troughs, and width. The filter is applied in the follow-

ing steps:

1. Window Size and Polynomial Degree. We select a sliding window size of 11

data points and a polynomial function of degree 3.

2. Convolution Coefficients. The coefficients for the convolution are determined

based on the chosen degree of the polynomial function and the window size.

These coefficients are crucial for the least-squares fitting process.

3. Polynomial Fitting. At each position of the sliding window, we fit the selected
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polynomial to the data points within the window using a least-squares method.

This technique computes the optimal polynomial coefficients that minimize the

sum of the squares of the differences between the actual data points and the

fitted polynomial curve.

4. Smoothed Value Calculation. The smoothed value for the time series is obtained

by evaluating the polynomial at the central point of each sliding window. As the

window advances across the data points, we compile a complete set of smoothed

values for the time series.

By systematically applying these steps, we enhance the signal quality of the time

series data associated with each ROI, facilitating more accurate subsequent analyses.

4.4.6.1 Quantifying Ca2+ signals and vessel diameter

The determination of vessel diameter utilizes the vascular channel from our input

dataset. Initially, we approximate the location of the penetrating arteriole in the sec-

ond step. With the assumption that the arteriole is circular, the Hough Circle Trans-

form method is employed to identify the center and radius of potential round-shaped

signals. However, since arterioles are not perfectly circular in practical datasets, we

adjust the radius to 2 times the original calculated radius, ensuring the inclusion of

the entire arteriole area within the selected range.

After finding the target area around the whole vessel, another challenge is ad-

dressing the motion blur problem in measuring the vessel diameter. Motion blur is a

common phenomenon in data collection, caused by the relative motion between the

camera and the object during exposure time. It is particularly hard to avoid when

the object is a live animal. This blur significantly impacts the detection of the vessel
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area, as it enlarges the detection region, making it appear larger than it actually

is. To counter this, our software uses the Wiener filter [98] to deblur the vessel re-

gion. The Wiener filter provides an estimation of the original image by minimizing

the mean square error between the estimated and the true images. Subsequently, we

analyze the topological structure [99] within this range to detect the actual vessel

area. The true size is calculated by counting the pixel number within the vessel area

and multiplying it by the ”pixel size” provided by the dataset. The vessel diameter

is estimated using the formula 2
√
Area/π.

For each ROI identified in previous steps, we compute various metrics based on

the smoothed Ca2+ signal. These metrics include the Signal Peak value(α), Onsite

Time, Durtion Time and Peak percentage response. The baseline is established using

the first twenty values of the Ca2+ signal, where no stimulus response is observed.

We calculate the average(µ) and standard deviation(σ) of the these twenty values,

and posit that a signal response occurs if the Ca2+ value exceeds µ+ 3σ. The Signal

Peak value (α) is the highest Ca2+ value observed during the time frame for a given

ROI. Onset Time is defined as the first frame showing a Ca2+ signal response, while

Duration Time is the count of frames showing the Ca2+ signal response. Real time is

deduced by multiplying the ”frame rate” obtained from the dataset. Peak percentage

response is determined using the formula (α− µ)/µ ∗ 100%.

4.4.7 Execution of the Software

4.4.7.1 Detecting vessel diameter, and astrocyte Ca2+

We used NVC analysis to analyze vessel diameter changes and astrocyte Ca2+

transients in response to 5 s whisker stimulation. We imported a time series record-
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ing acquired from Aldh1l1Cre-ERT2 x GCaMP6f mouse using Bergamo II operated

by ThorImage, NVC analysis can identify the cross section of the penetrating arte-

riole from the vessel channel (i.e., red channel), and ROIs astrocyte Ca2+ transients

(i.e., green channel). By implementing background substraction or Median filter,

NVC analysis can remove background noise. By changing the ”endfoot parameters”

and/or ”other parameter”, NVC analysis can identify different ROIs across all frames

independently of each other.

4.4.7.2 Detecting vessel diameter, red blood cell flux, and astrocyte Ca2+

There are recordings that we acquired included both penetrating arteriole and

capillaries. In this case, NCV analysis can simultaneously detect the cross section

penetrating arteriole and counting the number of red blood cells (RBCs) from a user-

defined region of the capillaries.

4.4.7.3 Quantifying the penetrating arteriole diameter, RBCs flux, and

astrocyte Ca2+ transients

NVC analysis automatically calculates the region size, peak value, onset time,

duration and peak percent response. In the result section generated by NVC analysis,

there are arteriole diameter, RBC analysis files, and folder for endfoot, and others.

Each ROIs can be viewed by clicking onto the ID of the region, a separate window

will display the ROI, the curve of the Ca2+ signal from that particular peak.
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4.4.8 Summary

We have described the development and main features of our NVC analysis soft-

ware. With this single software, we are able to detect and quantify vessel diameter

changes, RBCs counts, and astrocyte Ca2+ dynamics from different subcellular com-

partments in response to whisker stimulation. Our NVC analysis is not restricted to

only the Bergamo system operated by ThorImage, but it can also be used to ana-

lyze vascular responses and astrocyte Ca2+ changes recorded from different imaging

systems.



95

Chapter V

Conclusion and Future work

In this dissertation, we investigate the challenges of cross-domain anomaly detec-

tion and mitigation. We propose a novel approach for anomaly detection in multi-

domain situations. This approach is applied to three different applications, including

anomaly tag mitigation in supply chains, multi-class anomaly detection, and bio-

image segmentation and signal analysis. Our major contributions are summarized as

follows:

1. For supply chain security, we proposed a novel type of ID that is irreproducible,

reliable, and applicable to most productions. A novel anomaly detection system

based on the YOLO algorithm is utilized within the tag system to locate feature

points at different depth levels. This structure helps users easily recognize

the ID features and compare them with records in our database. This tag

verification system, together with the 3D features, makes the ID tag feasible for

daily commercial activities.

2. To improve the robustness of the anomaly detection system, we proposed an in-

novative pipeline for the multi-class anomaly detection problem. First, we used

Latent Diffusion Models, which learn the latent features and a mapping from a
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Gaussian distribution to a latent feature distribution simultaneously. Then, we

built a classification system to determine whether the input image belongs to an

anomalous class. We tested our pipeline on the CIFAR-10 and MNIST datasets,

both of which showed significant improvements in experimental results.

3. For the bio-image application, an anomaly detection system is built to help

reduce manual labeling time and improve accuracy. We utilized a U-net net-

work to build an anomaly detection system, which we applied to the Gould

Syndrome detection application. Our labeled results are comparable to those

manually generated by a domain expert, achieved with minimal training data.

In applications involving Vascular Activity and Calcium Dynamics, our system

automatically detects signal changes in Ca2+ and vascular activity.

In the future, our multi-domain anomaly detection pipeline will be used to address

questions involving mixed information. For example, temperature-sensitive materials

could be added to our 3D unclonable tags. In this case, our model will need to consider

both tag shape feature information and the changes in temperature-sensitive materi-

als. The next step for our multi-class anomaly detection is to utilize possible language

information combined with the image. Innovative language-image pretrained models

like CLIP have the potential to improve anomaly detection results by adding more

language information to image anomaly detection. In bio-image analysis, various

signals can be considered together to analyze single neuronal activity.
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