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ABSTRACT

The Coso Range contains faults that have been active in the Holocene. 

Some of these faults have moved about 100 years ago, possibly with the 

1872 Owens Valley earthquake. Exploratory trenches exposed offsets up to

3.4 meters for one faulting event. Thus, a magnitude of 7.5 could be ex­

pected on these faults based on displacement versus length equations. 

Recent local and regional earthquakes have caused property damage in the 

city of Ridgecrest.

The tectonics of the Coso Range have been described as having arcuate 

and ring faults both of which suggest the presence of a circumscribed sub­

sidence bowl or caldera-like feature. Data presented in this paper sug­

gest the tectonism of the Coso Range is in transition between stresses 

from the right-slip, San Andreas fault-plate interaction and the exten- 

sional tectonics of the Basin and Range province. Arcuate faults in the 

Coso Range are interpreted to have been produced by the regional stress 

field, rather than being from volcanogenic origin. Focal mechanisms of 

small-magnitude earthquakes support the stress directions indicated by 

local fault patterns. Fumeroles in the area are primarily associated 

with oblique-slip faults, rather than with arcuate or ring faults. The 

geothermal reservoir is, therefore, much different from that of a caldera 

or subsidence bowl, and the overall geothermal potential is probably less 

than the earlier estimates.

This diverse structural zone between the Sierra Nevada and Walker 

Lane could be caused by a clockwise rotation of the Sierra Nevada Range

about its northern axis.
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1.0 INTRODUCTION

The Coso Range contains diverse rock types and geomorphology. The 

volcanic rocks include basalts, andesites, dacites, and rhyolites. The 

basement rocks include granitic, diorite, gabbro, and occasional meta- 

morphic septa. Most of the volcanic rocks are Quaternary age with erup­

tions as early as 40,000 years ago.

Roquemore (1977) reported that the Coso Range contains a group of 

west- and east-tilted blocks with a multitude of grabens. Most of the 

warping has occurred since mid-Pleistocene and represents between 2000 

to 3000 feet of differential uplift; the deformation rate is determined 

to be 1.82 millimeter per year, vertically.

Walter and Weaver (1980a), in a study of the seismicity of the Coso 

Range, found that during the first two years of seismographic-network 

operation (1975-1977), 4200 local earthquakes (with magnitudes ranging 

from 0.5 to 3.9) were recorded within or immediately adjacent to the 

Coso Range. The structure indicated by a seismicity study (Walter and 

Weaver, 1980b) is a complex, conjugate strike-slip pattern with major 

zones that strike north-northwest and show right-slip movement, with a 

general north-south compression consistent with all fault-plane solutions.

Roquemore (1978a) reported that the Coso Range is a tectonic block 

bounded by the Owens Valley graben boundary faults, that splay around the 

eastern and western sides of the block. The Coso block has horst and 

graben structures, internal second order, with north-south trending. 

Strike-slip faulting has resulted in conjugate Riedel and en echelon 

faults which internally complicate the horst and graben structures.
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Seismicity of the Coso Mountains is related to known faults in most cases, 

and the earthquake focal mechanism matches the geologic evidence (Roque- 

more, 1977) for fault style and orientation (Walter and Weaver, 1980b). 

Experimental and field data suggest that all of the major structures are 

compatible with regional spreading and associated north-south compression 

and east-west extension, and are typical within the Basin-Range and Sierra 

Nevada transition zone.

Roquemore (1978b) noted that the Coso Range contains several major 

active fault systems. These include the Charlie fault (now named the 

Little Lake fault), the Haiwee fault, and the Airport Lake fault which 

dominate other (lesser developed) faults in the area. The orientations 

of these faults range from northwest to north and south and have right- 

slip displacement indicated by offset landforms and left-stepping en 

echelon dip-slip morphology.

The northwest-trending Little Lake fault can be traced south from 

Little Lake, through Indian Wells Valley, and on south to the Garlock 

fault. Along its length are well developed rhombohedral depressions and 

pressure ridges that document lateral movement. Blancan (von Huene, 1960) 

sediments are warped by the fault into an anticlinal structure more than 

25 meters high. The southern end of the fault bends nearly 90 degrees to 

the east as it approaches the Garlock fault (Zbur, 1962). Activity of 

the fault is indicated by offset Holocene (i.e., post-Pleistocene or 

recent) materials and evidence of numerous recent earthquakes ranging in 

magnitude from 3.8 to 5.0.

Most of the major active faults in the Coso Range are typical range

front faults that trend north and south. Field evidence suggests that
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these faults are all acting as part of the same structural system. There 

are major left-lateral offsets located along the Garlock fault which is 

to the south of the Coso Range. The Garlock fault serves as a boundary 

zone between the Mojave block and the Basin- and Range-physiographic 

province. The Sierra Nevada fault zone, which is situated to the west 

of the Coso Range, has been considered one of the more active zones in 

southern California (Hileman et al., 1973).

1.1 PURPOSE AND SCOPE

The purpose of this study is to (1) map and determine the morphology 

and activity of faults in the Coso Range, (2) determine the present 

structural mechanics of the Coso Range, (3) explain the structural develop­

ment based on (1) and (2) above, and to (4) suggest a tectonic model for 

the structural development of the Coso Range and surrounding areas based 

on recent geologic history.

State-of-the-art methods in fault detection and analysis were applied 

in implementing the procedures discussed in this report. Photography at 

varying scales and time of day was utilized. Also, field verification of 

data was done along all geologic zones and appropriate annotations were 

made on a map (i.e., offset stream and shutter ridge). Exploratory 

trenching was accomplished to expose fault planes, to provide a means 

for dating the faults, and to determine recurrence intervals.

The method of investigation used for this study is listed as follows:

1. Collect and review all appropriate published and unpublished

reports and data.
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2. Acquire all available aerial photography for the region (in 

this case low-sun-angle, low-altitude photography was available).

3. Interpret the photographs.

4. Accomplish detailed field work including field verification.

5. Accomplish exploratory trenching.

6. Construct scarp profiles.

7. Prepare active fault maps and a technical report.

1.2 PREVIOUS WORK

The Coso Range is included in a portion of land that was withdrawn 

from public land during the early 1940s. Prior to that time, geologic 

investigations were restricted to broad-scale regional studies such as 

those done by Whitney (1865), Gilbert (1875), Goodyear (1888), Fairbanks 

(1896a,b), Campbell (1902), Spurr (1903), and Knopf (1911).

Small mining efforts resulted in geological reports on the Coso Range 

and nearby areas. These investigators include Warner (1930), Ross and 

Yates (1943), Frazer et al. (1943), Chesterman (1956), Power (1959), and 

Hall and Mackevett (1962).

The Coso formation was studied especially from the paleontological 

aspect by Schultz (1937).

Other studies that mention the Coso Range (although not the prime 

focus) include Kelley (1937, 1938) and Hopper (1947).

Structural studies of the Coso Range were undertaken by von Huene 

(1960), Zbur (1963), and Healy and Press (1964).

Geologic mapping of the Coso Range has been completed by Roquemore

(1977), Duffield and Bacon (1977), and Stinson (1977).
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Several reports have now been published that deal primarily with the 

definition of the Coso geothermal resource area (see Literature and Bata 

Review paragraph in subsequent text).

1.3 GEOGRAPHY

1.3.1 Location and Access

The Coso Range is in the southwest corner of the Basin and Range 

physiographic province (Figure 1). The massif of the Sierra Nevada (to 

the west) is separated from the Coso Range by Rose Valley. Owens Lake is 

on the northern boundary, the Argus Range is to the east, and the Indian 

Wells Valley is to the south.

Access to the Coso Range is good along Highway 395 from which two 

dirt roads (bladed) lead into the study area. Cinder Road leaves the 

highway at Red Hill (a prominent cinder cone in Rose Valley), and Coso 

Road leaves the highway at Gill's Oasis (a roadside rest area) also in 

Rose Valley. Other routes include a 4-wheel drive road which leads south 

from the settlement of Darwin and two 4-wheel drive roads that lead north 

from the compounds of the Naval Weapons Center.

NOTE

It should be made very clear at this point that only 

the west portion of the Coso Range can be entered 

without permission from the Naval Weapons Center.

A locked gate blocks each of the access roads into 

the range.
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1.3.2 Human Activity

The study area is totally rural and located mostly on military re­

stricted land. There are a few small population concentrations nearby. 

These villages include Pearsonville, Little Lake, Cartago, Dunmovin, Grant, 

and Olancha and are located generally along Highway 395. Ridgecrest and 

China Lake are two substantially larger communities which are located in 

the Indian Wells Valley to the south. Small pumice mines in the unre­

stricted areas of the Coso Range produce lightweight aggregate, planting 

material, and decorative rock.

1.3.3 Topographic Mapping and Aerial Photography

Topographic coverage comprises four maps drawn to a scale of 1:62,500. 

These are (1) Haiwee Reservoir, (2) Coso Peak, (3) Mountain Springs Canyon, 

and (4) Little Lake. The photographs and surveys for the 1:24,000 series 

are completed, but they will not be available for three to four years. 

Conventional aerial photographs are available from the U.S. Geological 

Survey (USGS) and the U.S. Air Force. Special-purpose, low-altitude 

photography was used for the study, and was made available by the National 

Aeronautics and Space Administration (NASA).

1.3.4 C1i ma te

The climate of the region is associated with hot summers, cool to 

cold winters, large diurnal temperature variations, low humidity, little 

cloudiness and visibility restrictions, and prevailing southwest winds. 

Russell (1926) classified the Coso Range in a transition between hot and 

cold desert with a January isotherm greater than 32°F. To be more pre­

cise, at the 3400- to 4400-foot elevation in the Coso Range, there exists 

a 32°F isotherm (adapted from Naval Weapons Center data). According to



the Naval Weapons Center weather summary, 1946 to 1976, the mean annual 

precipitation is 2.96 inches.

1.3.5 Flora and Fauna

8

Much of the soil at the higher elevations of the Coso Range support 

a mixed Joshua tree and pinon pine, timber-type ground cover. The median 

elevations support Joshua trees and Shadscale brush, and the lower eleva­

tions are typified by creosote bush and Shadscale brush.

Mammalian populations in the area include ground squirrels, pocket 

mice, cricetine rats and mice, hares, and rabbits. A few bats are com­

monly seen on summer evenings.

Indigenous and migratory birds found in the Coso Range are the golden 

eagle (Aquila chrysaetos), hawks, prairie falcons (Falco mexicanus), Amer­

ican kestrels (Falco sparverius), owls, roadrunners (Geococcyx califomi- 

anus), and native quail. Chukars (Alectovis chukar) were introduced into 

the area and are abundant near springs.

Indigenous large mammals observed in parts of the area include the 

mountain lion (Felis conolor), bobcat (Lynx rufus), coyote (Canis latvans), 

kitfox (Vulpes macvotis ssp), and the badger (Taxidea taxus). Exotic mam­

mals include the feral burro (Equus asinus), the feral horse (Equus cabal- 

lus), and domestic cattle.

1.4 PHYSIOGRAPHIC SETTING

The Coso Range forms a natural barrier at the south end of Owens 

Valley. It is bounded on the north by Owens Lake (dry) and bounded on 

the south by Indian Wells Valley; both are closed basins. Coso Peak is 

the highest point in the Coso Range with an elevation of 8160 feet



9

approximately 2500 meters). The lowest topographic contour has an average 

elevation of 3000 feet (approximately 900 meters). The physiography is 

generally a moderately uplifted horst block with minor horsts and grabens 

within it. In places, the boundary between the Coso Range and the Argus 

Range is barely discernible. In the northern portion of the area, the 

Argus Range is separated from the Coso Range by Etcheron Valley; however, 

the southern portion is not separated by any physiographic feature. At 

its northeast corner, the Coso Range is separated from the Inyo Range by 

the Centennial Flats, a broad graben valley.

1.5 GEOLOGIC SETTING

The Coso Range basement rock is a tectonically isolated sliver of 

the Sierra Nevada batholith composed of cretaceous plutons and minor 

metamorphic septa. Volcanic cover, Pliocene to Pleistocene in age, is 

present throughout much of the area and generally occurs as thin sheets 

of basalt and andesite flows no more than a few tens of meters thick.

Pliocene to Pleistocene sedimentary rocks of the Coso Formation are 

found throughout the area, however, the greatest exposures are around 

the west and north flanks of the range. These sediments record a complex 

geologic history. The basalt units are generally coarse gravels derived 

from the Coso Range with little contribution from the Sierra Nevada.

Above the gravel lies fine grained, lacustrine sediments including vol­

canic! astics. Within this unit is subaerial and subaqueous andesitic 

to rhyolitic tuffs. The entire formation is tilted away from the range, 

indicating the uplift of the range (Roquemore, 1977).
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Blancan and younger sediments are found on the south flank of the 

range (von Huene, 1960) where they are warped into an assymetrical, east- 

plunging anticline.

1.6 LITERATURE AND DATA REVIEW

All relevant published material pertaining to the Coso Range and 

Basin and Range province was reviewed. Unpublished and some published 

data were obtained from the Navy Geothermal Program. Data pertaining 

solely to the Coso Range are limited. The following references were 

generated either directly or indirectly by the Navy Geothermal Program: 

Austin and Pringle (1970), Koenig et al. (1972), Teledyne Geotech (1972), 

Furgerson (1973), Combs (1975), Duffield (1975), Lanphere et al. (1975), 

Combs (1976), Combs and Jarzabek (1977), Duffield and Bacon (1977), 

LeSchack et al. (1977), Stinson (1977), Fournier et al. (1978), Fox 

(1978a), Fox (1978b), Galbraith (1978), and Hulen (1978).

1.7 AERIAL PHOTOGRAPHY INTERPRETATION

Aerial photographs of the study area were available from USGS and 

from NWC photographic files. Photographic missions were flown by person­

nel from Miramar Naval Air Station, NASA, and by local photographers for 

various studies and at scales ranging from 1:6000 to 1:60,000. Both 

color prints and black and white prints were produced and made available. 

In some cases, both infrared and microwave imaging were used.

Low-sun-angle conditions are apparent in most of the low-altitude 

photography. The sun angle in the photography is very similar to that
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discussed by Cluff and Slemmons (1972) and clearly illuminates and accen­

tuates fault features.

The photographs were interpreted and transferred to a map utilizing 

a zoom transfer scope. The resultant maps and photographs were then taken 

to the field for verification.

1.8 FIELD VERIFICATION

Each mapped, fault zone was traversed on foot to verify the fault 

features and to examine the terrain for indications of offset. The pro­

cedure and terminology for this phase of work were taken from Clark (1973) 

and Slemmons (1977).

1.9 SCARP PROFILING

All of the fault zones, except the Little Lake fault (because it is 

lateral slip), were surveyed based on work by Wallace (1977). By assuming 

that the fault scarps in the Coso Range are forming by systematic offsets 

and the resulting earthquakes rather than by creep, profiling becomes a 

useful tool in recognizing the sequential displacement history of the 

faults.

Most of the faults in the Coso Range are geomorphically fresh. The 

erosion rate in this part of the Basin and Range province is very slow, 

and, in fact, probably slower than in the pilot study area described by 

Wallace. The basis for this statement is that the areas of Nevada which 

were studied by Wallace have freeze-and-thaw cycles, and the area of 

concern in this study has generally none. Because of this fact, it should
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be understood that the numerical values arrived at in this study are 

probably too high.

For this study, a K & E self-indexing, geological survey alidade was 

used. This instrument has a pendulum device that automatically corrects 

for the slight residual tilts of the plane table and sets the indices 

used to read both the horizontal and vertical multipliers and the elevation- 

angle scale. The scales are read optically and the instrument gives re­

sults that are approximately four times more accurate than those results 

obtained with conventional alidades (K & E Surveying Instrument Manual, 

1964).

Readings were taken at very close intervals (1.0 to 0.2 meters) up 

the scarp slope. Through the eyepiece, values for the vertical stadia 

scale, the horizontal stadia multiplier, and a center scale for the zenith 

angle can be seen. The Stadia-Arc Method, described in the K & E Surveying 

Manual (1964), is the easiest and most common method of data reduction and 

can be done on-site with a pocket calculator. Using this method, the 

stadia interval (top stadia hair minus the lower stadia hair) is deter­

mined first. Second, the horizontal multiplier and vertical stadia scale 

are read, then the following computations are made:

s - H ■ Dh

V - 50 = V

S(VC) = Dv

Dv - DI ’ Dvc

where

S = Stadia interval

H = Horizontal multiplier
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\ = Horizontal distance

V = Vertical stadia scale

Fc = Vertical stadia scale corrected

Dv = Vertical distance from the instrument

DI = Height of the instrument

Dvc = Vertical distance corrected

After the above computations have been made, the data points can 

be plotted either by hand or by computer. The main advantage of this 

method of measurement is that, in the event of future movement of the 

fault, there will be very accurate baseline information that can be re­

measured and to which data may be compared.
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2.0 DESCRIPTION OF ACTIVE FAULTS

2.1 INTRODUCTION

In this chapter, the discussion of each fault includes references 

to the Index for Active Faults of the Coso Range and to Plates 1 through 

4, located in the envelope-type pocket inside the back cover of this 

report.

In this study, active faults are defined as being either 10,000 years 

of age or younger.

2.2 LITTLE LAKE FAULT

The Little Lake fault (Plate 1) splays eastward from the Sierra 

Nevada frontal fault near the Little Lake Hotel and continues south 

across Indian Wells Valley to the Garlock fault (St. Amand, 1958; von 

Huene, 1960). The surface trace of the fault mapped here is over 

11.6 kilometers in length. Only the northern segment was mapped in 

this study for the following reasons:

1. It has a marked expression in the 400,000-year-old basalts.

2. It offsets young alluvium on the Sierra Nevada front.

3. The south end of the fault crosses the north-south trend of 

the Airport Lake fault.

4. As the fault enters the deep alluvial basin of Indian Wells 

Valley, the fault expression changes to short, segmented, and highly 

eroded scarp traces not easily seen on existing photography.

One-half kilometer west of the Little Lake Hotel, the Little Lake

fault merges with the Sierra Nevada frontal fault. In this area, young
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alluvium and landslide debris are offset 30 meters by right-slip dis­

placement. The overall geomorphic expression consists of aligned springs, 

shutter ridges, hillside troughs, and linear troughs (Figures 2 and 3).

The fault is exposed in a railroad-cut just south of Wickline Canyon 

(Plate 1). In Section 20, a 140,000-year-old (Duffield et al.) basalt 

flow (basalt of Red Hill, Duffield and Bacon) is offset forming a linear 

trough with no measurable displacement because of the homogeneity of the 

rock on both sides of the trough. South of that point, a 440,000-year- 

old (Duffield and Smith, 1978) basalt cliff (basalt of lower Little Lake 

Ranch, Duffield and Bacon, 1977) is offset 250 meters in a right-slip 

sense (Figure 4). Because the offset sliver of basalt was eroded by 

Owens River and thereby cannot be measured directly, the fault displace­

ment was reconstructed for this study with the aid of a cardboard model.

The result was a determination that a minimum of 250 meters displacement 

has occurred since the eruption of the 440,000-year-old lava flow.

The fault pattern is well exposed atop the basalt of Lower Little 

Lake Ranch (Figure 5). The pattern is a series of en echelon normal- 

slip faults that form rhomboid-shaped depressions (Figure 6) and ellipsoid- 

shaped ridges (Figure 7). Between the depressions and ridges, linear 

troughs (Figure 8) exist and, depending on the topography of the flow 

surface, there are occasional side-hill troughs.

In Section 33, Plate 1, the Little Lake fault has a long (2 kilo­

meters) segment which has an apparent normal displacement with the west 

side down. The mechanism of this segment, however, does not easily 

permit normal faulting in the orientation in which it is situated. First 

of all, the overall fault displacement is clearly right slip, therefore,



FIGURE 2. Aerial view of the Sierra front showing 
shutter ridge caused by the Little Lake 
fault.
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FIGURE 3. Aerial view of a sidehill trough formed in association 
with the shutter ridge shown in Figure 2.



FIGURE 4. Aerial view of 250 meters of_right-slip 
displacement caused by the Little Lake 
fault in a 400,000 year old lava flow.



FIGURE 5. Aerial view of tectonic depressions and linear troughs 
along the Little Lake fault.
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FIGURE 7. Ellipsoidal ridges formed along the Little Lake fault.
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the apparent normal-slip displacement must be a result of this mechanism. 

The normal-slip displacement along other segments of the fault are part 

of en echelon patterns or part of rhomboid structures formed by sinuous 

traces along the fault trace. Adjacent to this segment, the fault zone 

steps almost a kilometer to the west (left step). Mechanically, as the 

fault has stress applied, this segment would have stress vectors that 

could permit the formation of a thrust (Figure 9). In fact, the scarp 

has a rounded, rubble surface produced by a wide zone of crushed basalts 

as opposed to a steep, fairly sharp break as displayed in normal faults 

produced by en echelon breaks. It is concluded, therefore, that the 

Little Lake fault contains a segment nearly 2 kilometers long which is 

probably a thrust fault associated with right-slip displacement.

Below longitude 35°53‘ and east of latitude 117°501, Plate 1, a 

window was found in the lava flow that exposed lacustrine sediments.

These sediments informally called the White Hills formation are probably 

much younger than Blancan (Duffield and Bacon, 1977) as reported by von 

Huene (1960). Through the White Hills formation, the fault pattern of 

the Little Lake fault dissipates into short, segmented, dip-slip scarps. 

The scarps are easily eroded and many have served as wind barriers fa­

cilitating dune formation. Because of the lack of relief and proper 

aerial photography, this area was not included in this study. The 

mapped length of the Little Lake fault is 24 kilometers at present.

2.3 SOUTHERN SEGMENT OF THE AIRPORT LAKE FAULT (PLATE 2)

In this area, normal faults are associated with right-slip displac- 

ments, in left-stepping en echelon patterns; however, grabens also occur
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FIGURE 9. Schematic model indicating how thrust 
faulting has occurred on the Little 
Lake fault.
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along the entire length of the Airport Lake fault. The graben in Sections 

32, 33, 4, and 5 (Figure 10), is nearly 2 kilometers wide. Near lati­

tude 35°551, ther is another graben 1 kilometer wide (Figure 11). In 

Section 16, there is a small graben with flipped stones on the upthrown 

side of the east flank. These stones have a desert pavement on the up- 

thrown surface. The stones are coated with desert varnish and the under­

side of the stones are stained a bright red-orange color (Figure 12). 

Probably 20 to 30% of the stones in the pavement have the orange side 

facing up. Stones are generally ellipsoidal in shape and 4 to 20 centi­

meters in major diameter. Disturbances by wind are not likely because 

of the large surface area of the stones in contact with the ground, they 

weigh several kilograms, they are in low profile with ground, and there 

is no selective size of stone that is flipped. The surface on which the 

pavement has formed is elevated by faulting above any local drainages 

and is subjected only to sheet wash which may form from rain drop ac­

cumulation on the surface. Evidence of any substantial erosion by water 

is nonexistent. Therefore, it is concluded that the stones were flipped 

to their present position by Holocene seismic activity. The wet flank 

of this graben was trenched for this study, and the results are reported 

in Chapter 3. The trench is located in alluvial fan material that is 

the youngest (not including contemporary fans) in a sequence of at least 

four alluvial fans of different ages (according to D. B. Slemmons in an 

oral communication in 1980).

Section 16, and the south portion of Section 9, contain debris flows 

and alluvial fans. In Section 9, there is evidence for right-slip dis­

placement in the form of shutter ridges and offset stream channels. In
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FIGURE 10. Aerial view of a 2-kilometer-wide graben located on the 
south end of the Airport Lake fault.



FIGURE 11. Aerial view of a 1-kilometer-wide graben 
located in Coso Basin on the Airport 
Lake fault.
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FIGURE 12. Stones that have been overturned by seismic shaking.
Note the orange oxidation stains formed on the under­
side of these stones. The largest stone pictured is 
about 20 centimeters in length.



the south portion of Section 4, the fault approaches the base of the 

mountain block forming very sharp, steep faceted spurs (Figure 13).

In Sections 3 and 33, there is a graben formed in basalt; however, the 

faulting extends into young alluvium on both ends (Figure 11). In 

Section 28, the faulting again approaches the mountain front where the 

bedrock is highly fractured and altered. The altered rock is formed 

partially from crushing in the fault zone; however, as the fault con­

tinues north, hydrothermal alteration is dominant.

2.4 THE NORTHERN, COSO HOT SPRINGS, AND HAIWEE SPRINGS SEGMENTS OF THE 

AIRPORT LAKE FAULT (PLATE 3)

On the bottom end of Plate 3, Sections 15, 16, 21, and 22, there are 

abundant offset stream channels and offset ridges in a right-slip sense. 

Shown in Section 22, an abandoned hot spring as well as active fumeroles 

and hot springs shown in Section 16, provide evidence for deep fault 

planes and hydrothermal convection, at present and in the recent past. 

Generally, areas in Sections 16 and 21 lack hydrothermally-altered zones 

and fumeroles such as Coso Hot Springs. The Coso Hot Springs are along 

an en echelon left step of the Coso Hot Springs fault segment of the 

Airport Lake fault (Figure 14). The Coso Hot Springs fault has dip-slip 

displacement with up to 3 meters of offset. Fumeroles are aligned along 

its length (red areas, Figure 15). In Section 33, there is a massive 

landslide (hummocky area, Figure 16) in the zone between the left step 

of two en echelon fault segments. This phenomenon is common in the 

Coso Range including several locations along the Sierra Nevada front 

(Figure 17). Areas located between en echelon faults are subjected to
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FIGURE 13. Aerial view of faceted spurs formed along the Airport 
Lake fault.
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FIGURE 14. Aerial view looking north along the south segment of 
the Airport Lake fault. The Coso Hot Springs segment 
may be seen in a northeast orientation.



FIGURE 15. Aerial view looking south along the Coso 
segment of the Airport Lake fault. Note 
of fumerolic activity.

Hot Springs 
the abundance
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FIGURE 16. Aerial view of the northeast end of the Coso Hot Springs 
segment of the Airport Lake fault. Note landslide in 
hill above the hot springs.



FIGURE 17. Aerial view of the Sierra Nevada front. Note landslide.
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extensional stresses as seen in the conceptual model on Figure 18. From 

Section 21 to the top of Plate 3, the faulting adheres closely with the 

mountain front. Offset stream channels, tectonic depressions, and small 

grabens all provide evidence for right-slip displacement along this seg­

ment of the fault. Northward, the fault is dispersed in basalt sheets 

and is not seen as a single, continuous fault until it reaches the north 

end of Coso Range where it enters the Owens Lake playa. The total mapped 

length of the Airport Lake fault is 30 kilometers.

2.5 ACTIVE BREAKS ALONG THE EAST SIDE OF AIRPORT LAKE (PLATE 4)

The faulting on the east side of Airport Lake is left-stepping 

en echelon normal faults. The faults on the east side of Airport Lake 

together with the Airport Lake fault form the deep graben of Coso Basin. 

The average fault scarp height is 3 meters. Most of the faulting is in 

Holocene alluvium; however, the upthrown block is located in subaqueous 

tuff (Figure 19). Ramping, left-stepping en echelon patterns all suggest 

right-lateral displacement, although no offset stream channels could be 

found. This fault trends into the 3-mi 11 ion-year-old lava flows of Wild 

Horse Mesa (Figure 20). On the mesa, massive step-fault patterns have 

formed, much like those on the surface of the Bishop tuff in east central 

California. This pattern can be seen in Figure 21. Probably the fault 

pattern, generally confined to a narrow zone in the alluvial materials, 

spreads out laterally in the lava flows, because the lava sheets are 

thin and brittle as compared to alluvium or bedrock. As the fault move­

ment takes place at depth in bedrock, stress is distributed over a large 

area in the overlying lava sheet and fracture and displacement takes
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L J

FIGURE 18. Schematic diagram indicating how landslides 
can form between en echelon faults.



FIGURE 19. Aerial view of the faults on the east side of Airport 
Lake. Note subaqueous tuff on the upthrown block.
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FIGURE 20. Aerial view of faults trending into 
the Wild Horse Mesa.



(a) (b)
Wild Horse Mesa. Bishop tuff.

FIGURE 21. Camparison between fault patterns on Wild Horse Mesa and those on the Bishop tuff.
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place over a large portion of the stressed area. This pattern (ramping 

and sinuous en eohalon) further supports the overall right-shear com­

ponent evident in the faults on the east side of Airport Lake.

Approximately 30 meters south of trench "B" in Section 17, the fault 

crosses a small, modern drainage. The fault offsets the modern fan by 

1/2 meter (Figure 22). According to Shlemons* in an oral communication 

during 1980, based on geomorphological evidence such as the degree of 

subsequent incision by modern erosion, the scarp is not likely to be 

more than 100 years old.

2.6 SUMMARY AND CONCLUSIONS

Field observation was performed on all active faults within the 

study area to obtain morphological data. The data were then compiled to 

help determine the activity and style and amount of displacement on each 

fault.

The Little Lake fault is the only purely right-slip fault in the 

study area. The morphology includes shutter ridges, linear troughs, 

sag ponds, and pressure ridges. Thirty meters of right-slip displacement 

were found in undated material of probable Holocene age. Two hundred 

fifty meters of right-slip displacement were found in a 400,000-year-old 

basalt flow. The overall mapped length of the fault is 24 kilometers; 

however, the fault has the potential for being much longer and provides 

a topic of further study. The complicated mechanics of the right-slip 

movement have produced a thrust displacement on a 2-kilometer segment of

*Roy J. Shlemons is a consulting geologist in Newport Beach, 
California.
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FIGURE 22. View of 1/2-meter of recent normal-slip displacement 
on a fault on the east side of Airport Lake.
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the fault. The southern reaches of the fault enter thick, lake bed 

material which reflects displacement in a highly splayed and diffuse 

pattern.

The southern segment of the Airport Lake fault proved to have right- 

slip displacement based on left-stepping en echelon patterns and associ­

ated tension grabens. Recency of displacement is indicated by flipped 

stones found near the fault scarps. The faulting generally adheres to 

the mountain front, however, occasionally scarps are formed along young 

alluvial fans. These fans are the youngest in a series of at least 

four age groups in the area. It has been estimated that the fan could 

be no older than 10,000 years. Displacement in the fans is dip-slip 

with scarps up to 3 meters in height. Along the fault, the mountain 

front is crushed and altered to a reddish-brown color.

The Coso Hot Springs and Haiwee segments of the Airport Lake fault 

have abundant offset stream channels and ridges. Flowing hot springs 

are common along this portion of the fault. Evidence for extinct 

fumeroles is seen as reddened, altered ground with occasional travertine 

outcroppings. The overall pattern is left-stepping en echelon with 

normal-siip displacement on the en echelon segments up to 3 meters.

The north end of the fault dissipates in lava flows and is not seen as 

a continuous, mappable fault until it reaches the far northern Coso Range. 

The mapped length is 30 kilometers.

The faulting on the east side of Airport Lake is in the form of left­

stepping en echelon faults with dip-slip displacement on each en echelon 

segment reaching 3 meters. The fault crosses recent fan development, 

thought to be less than 100 years old, and displaces it by 0.5 meter.
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The overall, mapped length is 24 kilometers; however, evidence suggests 

that it could be much longer in a southerly direction. This is certainly 

an important future topic of study.
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3.0 EXPLORATORY TRENCHING

3.1 INTRODUCTION

Three trenches were dug for this study. Trench A is on the Airport 

Lake fault immediately west of Airport Lake (Figure 23). Trench B is on 

an unnamed fault zone east of Airport Lake (Figure 24). A third trench 

was dug across the Little Lake fault (Figure 25) late in this study; the 

available data are presented herein.

The location of Trench A was chosen because the fault in that lo­

cality broke the youngest in a sequence of alluvial fans. The location 

of Trench B was chosen because the fault formed a small graben in that 

locality that could be exposed in one trench cut. The trench location 

on the Little Lake fault was chosen because of the existence of a tec­

tonic depression filled with fine sands and clays that often record 

sandblows.

3.2 TRENCH A

Trench A is on the southern Airport Lake fault (Plate 2). At this 

locality, the fault style is dip-slip and is formed in coarse, alluvial 

materials younger than 80,000 years in age (Figure 26). The offset on 

the fault is indicated by displacement of two cinder-rich, alluvial units 

that also contain rare obsidian pebbles (Figure 27).

According to a letter from Charles R. Bacon (1979), the obsidian 

was scanned for zirconium, yttrium, and rubidium. The obsidian comes 

from one of two possible domes in the Coso Range that date 0.090 ± 0.025 

and 0.088 ± 0.038 million years. This means that the glacial stages are



FIGURE 23. Aerial view showing location of Trench A.





m

47

FIGURE 25. Aerial view showing the location of the Little Lake 
trench.



FIGURE 26. View of Airport Lake fault exposed 
Trench A.

in



A -  DEBRIS SLOPE ALO NG  F A U L T  SCARP, CRUDE BEDDING 
IN THE U N IT  WARPS IN A  CONCAVE FASHION TO SCARP 
FACE. A N G U LA R  COBBLE SIZED CLASTS A N D  SAND.

B -  CO NGLOM ERATE W ITH BOULDERS. POSSIBLY A DEBRIS 
FLOW . A LT E R N A T IN G  SAN DY LAYERS W ITH BOULDER 
RICH LENSES. CLASTS ON AN G U LAR .

C -  G R AY SCORIA RICH SAN DY LENSE, SCORIA IS TY P IC A LLY  
1 -2cm IN D IAM ETER  A N D  IS PRESENT AS 30 TO 40 
PERCENT OF THE U N IT .

D -  SAN DY CONGLOM ERATE W ITH 1-2 PERCENT A N G U LAR  
BOULDERS.

E -  G RAY SCORIA RICH SANDY LENSE. SCORIA IS TY PIC A LLY
1- 2cm IN DIAM ETER AND IS PRESENT AS 30 TO 40 PER­
CENT AS 30 TO 40 PERCENT OF THE UNIT.

F -  SANDY MUDSTONE. CONTAINS SOME SLIG HT STR A TIF IC A ­
TIO N IN COURSER ZONES.

G -  GRAY SCORIA RICH SANDY LENSE, SCORIA IS TY PIC A LLY
2- 3cm IN D IAM ETER AND IS PRESENT AS THIS U N IT ALSO 
CONTAINS OBSIDIAN CLASTS 1-2cm IN DIAM ETER.

H -  SANDY CONGLOMERATE W ITH 2-3 PERCENT VER Y ANG ULAR 

BOULDER CLASTS.

FIGURE 27. Log of Trench A.
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represented in the section. Roy J. Shlemons, in his oral communication in 

1980, stated that the upper materials can be no older than 10,000 years. 

However, this information is entirely preliminary. The total offset 

is about 3 meters with the east side downdropped. There is no evidence 

of multiple offsets. The width of the fault zone is approximately 

20 centimeters.

3.2.1 Stratigraphy

The following descriptions are keyed to Figure 27.

Unit H is a sandy conglomerate with angular clasts indicating the 

lack of transportation distance. The bedding characteristics are nil 

with a lack of sorting.

Unit G is a sand-rich zone with abundant scoria and rare obsidian 

clasts. There is a lack of rounding in the scoria which indicates the 

possibility of primary airfall deposition. Slight bedding can be seen 

in the scoria layers.

Unit F is a slightly-stratified, sandy mudstone. The unit is poorly 

indurated and changes in coarseness laterally.

Unit E is a sand-rich zone with abundant scoria and rare obsidian 

clasts. There is a lack of rounding in the scoria which indicates the 

possiblity of primary airfall deposition. Slight bedding can be seen 

in the scoria layers.

Unit D is a sandy conglomerate that is similar in particle size to 

Unit H. Angular boulders■ suggest the lack of transportation distance.

Unit C is a cinder-rich, sandy lens similar in composition to Units E

and G.
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Unit B is a conglomerate with zones of aligned boulders. Alter­

nating boulders with sandy layers suggest rapid changes in the energy 

of the deposition mechanism. This can be attributed to the change in 

slope due to small uplifts along the fault scarp.

Unit A is the debris slope on the scarp face. The composition of 

the alluvium is similar to Unit B and was surely derived from it as the 

scarp face was eroded.

3.3 TRENCH B

Trench B is on the east side of Airport Lake along an unnamed set 

of en echelon faults (Plate 4). This faulting, together with the 

southern segment of the Airport Lake fault, forms the deep graben valley 

known as Coso Basin. Trench B was placed along the fault scarp where 

it was evident from surface expressions that a small, tension graben was 

formed at the base of the fault scarp. The trenching showed this to be 

the case (Figure 28). The overall displacement is about 3.4 meters on 

the east side of the graben (the main fault segment). The total dis­

placement on the west side of the graben is unknown because corre­

sponding units could not be traced (Figure 29). It is assumed, based 

on the attitude of bedding and fault geomorphology, that the displace­

ment is probably comparable to that of the main segment.

A short, preliminary soil profile (unified soil classification) 

was completed on the upper few tens of centimeters in this trench. 

Shlemon also stated that the surface is a weak Ay horizon probably no 

more that 5000 or 6000 years old. No oxidation was evident beneath 

surface clasts. Binding the clasts is a 1-to 2-centimeter fine, platey



A -  SANDY GRAVEL, CLASTS RANGE UP TO 10cm ACROSS, 
GRAY BUFF IN COLOR, SEVERAL ROOTS IN UPPER 
METER, CLASTS ARE COATED WITH CALICHE AND 
ARE MOSTLY VOLCANIC IN ORIGIN, SLIGHT STRAT­
IFICATION TAKES PLACE IN FINER BEDS. CONTAIN 
ABUNDANT OBSIDIAN, GENERALLY SUBANGULAR 
TO SUBROUNDED 2-4cm IN SIZE.

B -  FINE TO COARSE SANDY GRAVELS, BUFF IN COLOR, 
CONTAINS FEW OBSIDIAN CLASTS. CLASTS ARE MOSTLY 
VOLCANIC SOME GRANITIC OR METAMORPHIC.
SLIGHT STRATIFICATION IN FINER BEDS.

C -  COARSE SANDY GRAVEL WITH CAPPING BOULDER LAYER 
LITTLE OR NO STRATIFICATION, LIGHT GRAY BUFF IN 
COLOR. CONTAINS ABUNDANT ROOTS.

D -  MASSIVE WHITE CALICHE LAYER, HIGHLY FAULTED,
HAS A FEW BOULDERS ON UPPER SURFACE.

E -  BUFF MEDIUM GRAINED SANDY GRAVEL, LITTLE OR 
NO STRATIFICATION. NO LARGE CLASTS OR OBSIDIAN.

F -  BROKEN MASSIVE WHITE BUFF CALICHE LAYER.
HIGHLE FAULTED AND FRACTURED. ZONE OF MOST 
INTENSE FRACTURING OCCUR IN THIS LAYER.

G -  BUFF MEDIUM GRAINED SANDY GRAVEL, NO 
STRATIFICATION.

H -  BUFF SUBAQUEOUS TUFF, CONTAINS BOMBS UP 
TO 1m IN SIZE. FEW GRANITIC OR META­
MORPHIC BOMBS. CLEARLY THE SOURCE FOR 
VOLCANIC MATERIALS IN FAN UNITS.

FIGURE 28. Log of Trench B.
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layer. Soil stratum IC has a color of 10 YR 7/3 to 6/4 (Muncell color 

chart) when moist. The structure is massive, loose consistency, friable, 

nonsticky, and nonplastic. There are common, fine, vertical roots. 

Stratum IC is 20 centimeters thick with stratified lenticular clasts.

The general classification is a medium, sandy loam. The contact with 

soil stratum IIC2  is abrupt and smooth.

Stratum IIC2  is 6 centimeters thick and is 10 YR 7/3 (Muncell) in 

color. The matrix is slightly redder than above. The structure is mod­

erate medium to coarse, angular, blocky, hard, friable, nonsticky, and 

nonplastic. There are few medium, vertical roots. The general clas­

sification is a pebbly, loamy sand. The contact with stratum IIC^ is 

abrupt and smooth. Stratum IIC3 is 20 centimeters thick and 10 YR 6/4 

(Muncell) in color. The structure is massive, granular, loose, soft, 

nonsticky, and nonplastic. There are common, vertical, fine roots. 

Approximately 10% angular clasts, 3 centimeters in diameter, are in the 

matrix. The general classification is a fine sand. The contact with 

stratum 1 1 1 i s  clear and wavy.

Stratum I I I C ^  is 15 centimeters thick. The color is 10 YR 7/1 

(Muncell). Structure is weak, fine, subangular, and blocky at the top 

and granular at the base. The material is soft, friable, nonsticky, 

and nonplastic. There is a weak cement at the top that is strongly 

effervescent. Disseminated lime in the matrix is common. The general 

classification is a pebbly sand. The contact with stratum IVCg is 

gradual and wavy.

Stratum IVCg is 15-plus centimeters thick. The color is 10 YR 6/4, 

6/3 (Muncell) when moist (more clay than above). The structure is
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massive, soft, and very friable. The material is nonsticky and nonplastic. 

There are a few, vertical, fine roots. The general classification is a 

loamy, coarse sand.

The above information and the fact that very few thin clay films 

are in the root tubules and a general lack of colloidal staining on the 

mineral grains suggest a late Pleistocene age for this section according 

to Shlemon (1980). The upper section is probably no more than 3000 to 

4000 years old, Shlemon stated.

3.3.1 Stratigraphy (Figure 28)

Unit H is a buff-colored, mafic, subaqueous tuff. The tuff contains 

several bombs that reach 1 meter in size and abundant, caliche-filled 

fractures. The scarp face is slickensided (Figure 30) with a small- 

pebble-debris fan which increases in thickness with depth. The down- 

thrown west side of the tuff was located by digging a small hole a 

little less than 1/2-meter deep. The rapid caving of the trench walls 

did not permit excavation to the tuff layer.

Unit G is buff-colored, medium-grained, sandy gravel with no ap­

parent stratification.

Unit F is a thick, white caliche layer. This layer is faulted in 

several areas as demonstrated by thin fractures and a 1-meter down-step. 

The lower side of the layer is slightly graded into Unit G. The origin 

of this layer must by subaqueous because of the purity of the calcium 

carbonate and nearly complete lack of sandy materials.

Unit E is a buff-colored, medium-grained, sandy gravel layer. This

unit is very similar to Unit G in the lack of stratification and large

boulders.
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FIGURE 30. Slickensided fault plane in Trench B.
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Unit D is similar to Unit F except that it is thinner. This unit 

is also faulted in the same manner as Unit F, and probably represents 

another sequence of lake formation in the Coso Valley. The calcium 

carbonate is punky but devoid of sandy particles. The upper and lower 

contacts are scarp.

Unit C is a coarse, sandy gravel with a layer of rocks that vary 

from cobbles to boulders at the upper contact. There is little evidence 

for stratification. This unit is high enough in the section to have 

roots from contemporary flora.

Unit B is a fine-to-coarse, sandy gravel containing a few pebbles 

of obsidian. The obsidian pebbles are usually subrounded but clasts 

have been found to be angular, indicating a lack of transport distance 

that suggests they are from an air fall. The other clasts in the unit 

are generally volcanic; however, a few granitic and metemorphic clasts 

can be found.

Unit A is a sandy gravel with a few large caliche-coated clasts, 

thinly dispersed in the matrix. This unit contains abundant subrounded 

obsidian clasts and a lesser number of angular fragments. The obsidian 

is probably from an air fall. Roots from contemporary flora are abundant 

in this unit.

3.4 LITTLE LAKE TRENCH

Toward the end of the present study, the opportunity arose to trench 

the Little Lake fault. The trench was placed on a playa surface of sag 

pond in the fault zone (also called rhombic depression in this report, 

Figure 31). The trench is located across the survey location 3021 in



Little Lake trench showing its position within a 
tectonic depression.
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Section 33 (Plate 1). Because the trench was completed near the end 

of this study during the wet season and the trench began to fill with 

water, a complete logging of the trench could not be done. In spite of 

this problem, however, some data were collected and a preliminary account 

is given here.

The trench, dug by a bulldozer, is 50 meters long and 4 meters deep 

(Figure 32). The displacement seen in the trench is lateral slip, but 

as can be seen in Figure 33, the fault is dipping to the southwest. The 

width of the zone is about 4 meters. The displacement appeared to reach 

the surface.

This trench contains an abundance of liquefaction features that are 

probably relict mud volcanoes. The light layer seen in Figure 34 contains 

most of the liquefaction features. This layer contains carbonized twigs 

and chunks of charcoal, radiocarbon dated at 2545 ± 160 years. Figure 35 

is a close-up of a portion of Figure 34 and shows the fine structure pro­

duced in the liquefaction process. The age dates and preliminary geologic 

observations suggest that a large earthquake has occurred on the Little 

Lake fault in the last 2500 years. Work is continuing to determine recur­

rence intervals.

3.5 SUMMARY AND CONCLUSIONS

The Airport Lake trench (Trench A) was located on a young, alluvial 

fan. The displacement in the trench was seen as 3 meters of dip-slip 

offset of two cinder-rich, obsidian-rare layers. The age of these layers, 

based on volcaniclastic chronology, is between 88,000 and 90,000 years.

A 2-centimeter soil layer forming the surface is thought to be no more
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FIGURE 32. View of the Little Lake trench showing its length 
and width.



1
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FIGURE 33. Truncation of stratigraphy by the Little Lake fault.



FIGURE 34 View of the stratigraphic unit that con­
tains most of the mud volcanos exposed 
by the Little Lake trench.



FIGURE 35. View of the fine structures found in a 
mud volcano exposed by the Little Lake 
trench.



64

than 10,000 years in age. There was no evidence in the trench of more 

than one earthquake.

A trench on faults along the east side of Airport Lake (Trench B) 

exposed a graben with a minimum of 3.4 meters of dip-slip displacement. 

Information indicating multiple events was not seen in the trench.

Based on the soil stratigraphy, the faulting is thought to have occurred 

in the last few thousand years.

The trench on the Little Lake fault, although incompletely studied, 

exposes a 4-meter wide, crushed zone. The fault plane dips to the south­

west. Abundant liquefaction features, probably mud volcanoes, were 

identified along one stratigraphic horizon. This horizon is dated at 

about 2500 years and records a major earthquake since that time.
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4.0 FAULT SCARP PROFILES

4.1 INTRODUCTION

To determine the age of the fault displacements in northern Nevada, 

Wallace (1977) used the geomorphic characteristics of young fault scarps. 

To compare Wallace's data with the data collected for this study of the 

Coso Range, several assumptions were made. These assumtions were:

(1) the climate is similar in both areas, (2) the rock type is similar 

in both areas, (3) the compaction and cementation of the displaced rock 

unit are similar in both areas, and (4) the freeze-and-thaw cycles are 

similar in each area.

The climate and rock types are similar. The freeze-and-thaw cycles 

are more frequent in northern Nevada. Perhaps the most varied factor is 

the compaction and cementation of the displaced rock units. The for­

mation of caliche is an important factor to evaluate in scarp degra­

dation studies. (Although not attempted in this study, a possible so­

lution to the problem may be to obtain the seismic velocity of the 

faulted material to determine its relative compaction and compare this 

value to scarps with well-determined age dates.)

4.2 FACTORS THAT AFFECT SLOPE DEGRADATION IN THE COSO RANGE

The annual rainfall in the Coso Range averages 5 inches. Most of 

that value occurs in a few intense downpours. The freeze-and-thaw cycles 

are such that it would be difficult to estimate through time (i.e., the 

last 12,000 years) the number of cycles per year. In this area,
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freeze-and-thaw cycles do not now cause significant degradation of fault 

scarps. Strong winds are common; velocities often exceed 60 mph.

Rain and wind are the major factors in fault scarp degradation in 

the Coso Range. Most of the young fault scarps are embayed by cross­

cutting drainage channels.

4.3 FAULT SCARP PROFILES

4.3.1 Coso Hot Springs Segment of the Airport Lake Fault

Five profiles were measured on the Coso Hot Springs fault. The 

displaced material is old, alluvial fan material except for profile 5 

which is a young, alluvial fan. Care was taken to avoid areas which may 

have been altered by human activity as well as trails made by feral 

burros.

The scarp profiles are presented in Figures 36 through 40. Each 

profile shows the upper and lower original surfaces, base and crest, 

free face (where not removed by erosion), debris slope, and wash slope. 

Features such as grabens at the base of the scarp and mulitiple bevels 

can be identified.

Profiles 1, 2, and 4 were measured generally along medium-grained, 

hydrothermally-altered alluvium (see Coso Hot Springs segment of the 

Airport Lake fault). Profiles 3 and 5 were located on the northeast 

end of the fault where the offset material is a coarse, alluvial debris.

4.3.2 Southern Segment of the Airport Lake Fault

Figures 41 and 42 are profiles on the southern segment of the 

Airport Lake fault. Profile 1 is on the exact location of Trench A.

The fault scarp formed in coarse-grained, poorly-consolidated alluvial
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FIGURE 36. Scarp profile No. 1 on the Coso Hot Springs segment of 
the Airport Lake fault.

FIGURE 3 7 . Scarp profile No. 2 on the Coso Hot Springs segment of
the Airport Lake fault.
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rIGURE 38. Scarp profile No. 3 on the Coso Hot Springs segment of 
the Airport Lake fault.

FIGURE 3 9 . Scarp profile No. 4 on the Coso Hot Springs segment of
the Airport Lake fault.
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FIGURE 40. Scarp profile No. 5 on the Coso Hot Springs segment of 
the Airport Lake fault.

FIGURE 4 1 . Scarp profile No. 1 on the southern segment of the
Airport Lake fault.
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FIGURE 42. Scarp profile No. 2 on the southern segment of the 
Airport Lake fault.

fan material. Profile 2 is about 200 meters north of profile 1 and is 

on an older, consolidated, coarse-grained alluvial fan.

4.3.3 Faults on the East Side of Airport Lake

Figure 43 is the profile of a fault east of Airport Lake. The 

profile is located exactly at Trench B. The material on the headwall 

of the scarp is highly-consolidated, subaqueous tuff while the footwall 

is in unconsolidated alluvium.

The details derived from all of the profiles are listed in Table 1.

4.3.4 Back-Crest Swale

In the Coso Range, a swale is often found on the upthrown block 

near the crest of normal faults. Swales similar to these can be found



FIGURE 43. Scarp profile No. 1 on the east side of Airport Lake.

in Owens Valley, according to Dave Findley* in an oral communication in 

1979, and in Saline Valley according to John Zellmer* in an oral com­

munication in 1979. This feature also occurs in other regions such as 

the Atacama Desert in Chile according to Pierre St. Amand in an oral 

communication in 1979.

Possible mechanisms for this feature are:

1. Rotational slumping of the free face.

2. Open fracturing parallel to the free face caused by gravi­

tational forces.

*Dave Findley and John Zellmer were graduate students at the Univer­
sity of Nevada at Reno at the time of their conversations with this author.

jii



TABLE 1. Fault scarp profile data.

Profile location Profile
number

Freeface,
degrees

Debris
slope,
degrees

Wash
slope,
degrees

Scarp
height,
meters

Number of 
identified 
events*

Age-years
(Wallace,

1977)

Coso Hot Springs fault 1 29 5 4.1 2B M O O
Coso Hot Springs fault 2 • • • 37 3 4.3 2H M O O
Coso Hot Springs fault 3 26 10 6.2 2BH M000

Coso Hot Springs fault 4 34 16 3.4 IB M 0 0
Coso Hot Springs fault 5 • •  • 31 15 7.1 2BH M 0 0
Airport Lake fault 1 49 33 8 16.9 3BH %40

Airport Lake fault 
Unnamed fault on the

2 69 35 7 4.8 2H <100

east side of Airport 
Lake

1 34 17 3 9.0 2H M O O

*B = Event determined by the presence of multiple bevels; H = event determined by the height 
of the scarp based on a 3.5-meter average (Wallace, 1977).
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3. Open fracturing parallel to the free face caused by multi­

ple faulting.

Possible reasons for the formation of back-crest swales can be 

derived from exploratory trenching, especially if the stratification 

of sediment in the trench is rotated (slumped). In the Coso Range, 

trenches have not shown this to be the case. However, the trenches do 

show an abundance of cracking on the upthrown side of the fault which 

could be caused by gravity fractures parallel to the free face. These 

cracks are usually not filled. Finally, if the swale is due to multiple 

parallel faulting, the phenomenon should be pervasive all along the length 

of the scarp. The profiles do not show this to be the case. Therefore, 

evidence suggests that slope failure is the most likely mechanism to 

produce the swale. Furthermore, since near vertical, fault scarps are 

common in the Basin and Range province, slumping would be expected when 

the scarp is freshly formed.

4.4 SUMMARY AND CONCLUSIONS

Based on fault scarp profile data, the Coso Hot Springs segment of 

the Airport Lake fault has undergone displacement as recent as about a 

hundred years ago. The highest scarp reaches 7.1 meters.

The Wallace (1978) method of fault age dating leads to the con­

clusion that the southern segment of the Airport Lake fault has under­

gone displacement as recently as about forty years ago; however, this 

is certainly anomalous because the last likely event that could have 

displaced faults in the Coso Range was the 1872 Owens Valley earthquake, 

and indeed profile 2 suggests movement of about that age. An earthquake
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since that time, large enough to produce the scarp, would not have gone 

unnoticed.

Profile data on the east side of Airport Lake suggest displacement 

about a hundred years ago.
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5.0 SEISMICITY

5.1 INTRODUCTION

The eastern Sierra Nevada zone has long been recognized as having 

rapid tectonism and the associated high rate of seismicity. Earthquakes 

in the Owens Valley, the Walkers Pass, and the Tehachapi areas have shaken 

Indian Wells Valley. The following text is a description of these earth­

quakes as well as a discussion of the local seismicity.

5.2 DESCRIPTION OF NOTABLE EARTHQUAKES

5.2.1 1872 Owens Valley Earthquake

Most of the damage and loss of life from this earthquake was at 

Lone Pine, California. The seismologic details of this earthquake re­

main unknown because no seismograph was operating at that time. Most of 

the known information was made available by local residents and sub­

sequent field studies (Whitney, 1872; Hobbs, 1910).

Fifty-two out of fifty-nine buildings in the town of Lone Pine were 

either wholly or partially destroyed. The ground ruptured for a distance 

of about a hundred miles between the town of Big Pine and Haiwee. The 

average vertical displacement at Lone Pine was 13 feet (Oakshott et al., 

1972).

The Owens Valley earthquake is believed to be the greatest earth­

quake on record in the western United States, excluding Alaska (Oakshott, 

1972). Damage was noted as far as about three hundred miles from the 

epicenter. The Indian Wells Valley comprised several small farms and 

ranches as well as an adobe building (which served as a stagecoach
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stop and general store) located in the mouth of Indian Wells Canyon. 

Whitney (1872) states that this adobe building was partially destroyed 

during the Owens Valley earthquake.

Information pertaining to the recurrence interval along the Owens 

Valley fault zone is still incomplete. However, according to Oakshott 

et al., 1972, geologists and seismologists working on the problem state 

that strain builds up in that area to the point of rupture in a few 

hundred years.

5.2.2 1917 Owenyo Earthquake

The details of this event consist of information tainted by ambi­

guity. According to the Professor in charge of Seismological Investi­

gations, W. J. Humphreys (1917), there was an earthquake on 7 July 1917, 

located at latitude 36°40‘ and longitude 118°011 (Owenyo) which was of 

intensity seven. Humphrey states in his report that the Los Angeles 

aqueduct was broken in the earthquake. This report was submitted to 

the Weather Bureau, Washington, D.C., 2 February 1918. There was no 

other mention of the earthquake in this report.

Andrew H. Palmer, observer, U.S. Weather Bureau, in a report entitled 

"California Earthquakes During 1917" (Palmer, 1918), stated that an earth­

quake occurred on 6 July, latitude 36°40‘, longitude 118°01' (Owenyo) with 

an intesity of seven. The following is from his report: (Editorial 

note: the following articles are reproduced herein exactly as they were 

published originally. No attempt has been made to edit them in order to 

preserve the original meanings and flavor.)
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Some of these questions, however, are answered in the following ex­

cerpt from Palmer's paper:

"The earthquake hazard is well recognized by residents 
of California, and it is a factor which is considered by 
careful investors. Earthquake insurance is in growing 
demand. However, owing to the absence of trustworthy 
statistics in the past, rates have been more or less arbi­
trary, and most of them have no scientific basis. More­
over, through a gentlemen's agreement among California 
newspaper editors the subject of earthquakes is tabooed 
in the daily press. The general public promptly plunges 
into a kind of hysteria when a severe earthquake occurs, 
but soon relapses into complacement indifference to the 
subject when the immediate danger is over. A seismologist 
can therefore expect but little sympathy or support in 
the serious investigation of earthquakes."

5.2.3 1946 Walker Pass Earthquake

March 15, 1946, the principal earthquake occurred at 35°44‘ N,

118°02' SW; origin time = 05:49:36. A total of 20 measured (Chakrabarty,

1949) aftershocks followed through 1 February 1947. The magnitude of the

main shock was 6.3. The location can be found on Figure 44.

The following is a news story which appeared in the Naval Ordnance

Test Station (NOTS) Rocketeer, Tuesday, 19 March 1946.

"Station residents were jolted from their sleep last 
Friday morning at 0521 when a sharp earthquake rocked the 
entire desert area in the first of four perceptible tremors 
felt that day.

The second shock came 18 minutes later at 0539 when 
the day's most severe quake set more than a few people to 
worrying whether their roof would hold up under much more 
of that kind of treatment.

A third and mild trembler put in its appearance 
at 0600 while still another rocked the earth at 1121 
later in the day. A number of slight settling quakes 
occurred Friday night and Saturday morning.

This is important to the people of this city, for 
we also are preparing to bring water from the Sierra.
It is known that there is an old fault between us and
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the Sierra and in the earlier plans for the Hetch-Hetchy 
enterprise two conduits were planned through the danger 
zone as insurance against interruption of supply.

It if should appear that these breaks in the 
Los Angeles aqueduct, occurring on the same day, were 
due to seismotic disturbances we should know it in 
order that in building our own works we may take the 
necessary precautions, which may be two conduits and 
extra strength through the danger zone.

Since we have come to understand that an earth­
quake is nothing but the slipping of the earth for a 
few hundred feet along some fault in the rocks that 
phenomenon has lost most of its terror. The mischief 
that any earthquake of which there is human experience 
can do can be prevented by proper construction. The 
burning of San Francisco was due to improper construc­
tion of the main water conduit supplying this city.
We must take no more chances. If it appears that an 
earthquake damaged the Los Angeles tunnel, we must 
see to it that the danger is guarded against in our 
own enterprise."

The paradox surrounding this earthquake begins with a paper written 

by Mr. William Mulholland entitled, Earthquakes in Their Relation to the 

Los Angeles Aqueduct (Mulholland, 1918), and published in the same 

journal issue (BSSA, Vol. VIII, 1918) as was Palmer's paper. No men­

tion is made by Mulholland of the Owenyo earthquake. Furthermore, no 

mention of the earthquake was made in any of the local Owens Valley 

newspapers nor does the Los Angeles Department of Water and Power have 

any record of the event. The University of California at Berkeley was 

the recording station for the Weather Bureau, and there is no record of 

the earthquake there.

"July 6th. What was probably the most severe earth­
quake of the year occurred in the Owens Valley at 3:01 a.m. 
on this date. This shock had an intensity estimated at 
VII. It caused a break 160 feet long in the concrete 
flume of the Los Angeles aqueduct at a point between the 
Haiwee Reservoir and Owens Lake, in Inyo County. Under 
the direction of Mr. William Mulholland, Chief Engineer



80

of the aqueduct, the damage was temporarily repaired by 
bridging the break with steel pipe. Since that time the 
flume has been rebuilt and reinforced. The water supply 
in Los Angeles was not cut off, because the break occurred 
above the Haiwee Reservoir, which has a capacity sufficient 
for the storage of several weeks' supply of water for the 
city. In commenting upon this earthquake the San Francisco 
Chronicle published the following editorial on July 17th:"

At this point, Palmer reproduced part of the story printed by the

San Francisco Chronicle. Several paragraphs were omitted by Palmer that

are important to the story. The entire story is reproduced in the

following.

Occasional Breaks May Be Expected From Natural Causes

"There are two very serious breaks in the Los Angeles 
aqueduct, which some are disposed to attribute to a "plot" 
If the I.W.W. or German intrique.

There is no doubt of the hatefulness of the I.W.W 
or of their desire to do anything to hurt anybody.
Whether the foreign public enemies are spending money 
for such work is more doubtful, as it apparently would 
not pay.

Just now it is becoming the habit to attribute 
all calamities to the public enemy, foreign or domes­
tic. But there are misfortunes even in peace, and 
they will occur from natural causes during the war.
The cause of these breaks should be ascertained if 
possible and made public.

They may be the result of the earthquake of a 
few days ago which disturbed the ground in part of the 
Sierra foothills and if that is the cause of these breaks 
it should be made known. A moderate seismotic dis­
turbance acting upon some weak point might make a good 
deal of trouble.

According to seismologists at the California Institute 
of Technology, the earthquakes were centered about ten 
miles north of Inyokern in the Sand Canyon area where 
falling rocks tore gapping holes in the Owens River Aque­
duct. The aqueduct carries water to Los Angeles and also 
supplies NOTS, but officials said no water shortage would

THE LOS ANGELES AQUEDUCT
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occur as present reserves would last until the pipeline 
could be restored to service.

Although the quake was considered as severe as the 
tremor that devastated Long Beach in 1933, slight cracking 
of a few walls was the the only damage that could im­
mediately be ascertained at NOTS."

5.2.4 1952 Kern County Earthquakes

The main shock of the Kern County earthquake occurred on the White

Wolf fault (WWF, Figure 44) with a magnitude of 7.7 (California Division of

Mines and Geology, CDMG, 1955). Significant aftershocks occurred through

June 1953 (Richter, 1955). The effects on Indian Wells Valley are written

in the following newspaper account from the NOTS Rocketeer, Wednesday,

July 23, 1952.

"One of the strongest earthquakes in state history 
rocked most of California at 4:55 a.m. Monday.

Damage to the Station was slight. A vane in a 
section of overhang at the extreme west portion of 
Michel son Laboratory shop area was broken off with 
an estimated $10 damage. A safety valve was popped 
in the Public Works garage, releasing live steam.

Several water lines were reported broken in the 
housing area by the trouble board. Circuit breakers 
were tripped and electricity flow was momentarily 
halted on a few lines when wires were swung together.
No serious or permanent damage was reported however.

An undetermined amount of china and glassware 
was broken to Station residences, particularly in the 
trailer areas. One unconfirmed report described the 
floor of a house as having split open. LCDR W. R. Pool, 
housing officer, reported a lamp broken and John Richmond,
Community Manager, told of the chimes on his grandfather 
clock ringing from the shake.

A lighting fixture was shaken loose in the housing 
office directly over the rent collection counter and 
another fixture was knocked loose in the Public Works 
building.



Confusion of waking suddenly in the night was 
responsible for two minor casualties here.

Harold C. Berry, a leadingman sheetmetal worker, 
was limping around at work Monday as the result of 
bruising his big toe when he ran into the closet in­
stead of out the bedroom door when the earthquake shook 
him awake and he decided it would be safer out of doors 
than in his house.

Ray E. Smith, assistant fire chief, was awakened 
by a tiny bell ringing in the cage of his pet parakeet.

Thinking something might be after the bird, he 
leaped out of bed about the time the room started to 
rock and roll. He was pitched against the wall where 
he recieved a small cut on the nose.

Canned goods were thrown to the floor in the 
Commissary Store and several bottles were broken.
Three fire alarm boxes, one at Armitage Field and 
two in the housing area were touched off. Most 
serious damage from the quake occurred in Tehachapi, 
approximately 75-80 miles from the Station on the 
road to Bakersfield.

Eleven persons including nine children, were killed 
in their beds by collapsing walls. A major part of the 
business section was destroyed and an outbuilding at 
the women's prison was made unusable.

The railroad water tower at Tehachapi collapsed 
into the street, crushing a car and ramming it against 
a telephone pole in a 'V' shape. The city water tower 
was also severely damaged and residents suffered from 
a water shortage.

Two ambulances, five medical corpsmen, and 
Dr. Arthur Shufro, of the Station infirmary, were 
dispatched with medical supplies to the stricken town.
An R4D, a twin-engine transport plane, flew to 
Tehachapi air strip from Armitage Field in case air 
evacuation of casualties was necessary.

It was piloted by LT W. L. Cranney, instrument 
training and special devices officer at NAF, with 
H. A. Johnson, enlisted pilot first class, as co-pilot. 
LT Cranney reported the hospital there had lost the 
use of its sterilizing equipment and that Edwards Air 
Force Base was setting up field kitchens and trucking 
in water.



Two other R4Ds and two Beechcrafts were put on 
standby service at NAF in case they were needed.

The five corpsmen were Raymond Loveless and 
Robert J. Wallace, HMls; Rodney Rollo, HM2; Jerome 
Ciecmierowski, HM3, and Everett Hidlebaugh, HM.

Four security policemen were dispatched from 
the Station to Tehachapi for possible use in 
directing traffic, keeping the peace and guarding 
against looting. They were officers C. E. Ball,
J. C. Phillips, C. D. Zills and H. 0. Creech.

Officer Zills, in an eye-witness account to the 
Rocketeer, described damage to the women's prison, 
at first reported on the radio as untenable, as slight. 
Peace Officers from the California Highway Patrol, 
Bakersfield, and Tehachapi itself numbered an estimated 
50, he stated.

The back porch of the hospital had caved in, he 
added and patients had been moved to the front lawn.
There was no panic anywhere in the town, he observed. 
Walker Pass, the road from Bakersfield and Highway 466 
from Mojave were all closed until they could be checked 
for damage and earths!ides.

The Ridge Route was also closed by the Highway 
Patrol because of slides from the quake. Highway crews 
estimated that three days will be required to open the 
highway, the Bakersfield Californian reported.

Liberty was held up in the Station Marine barracks 
in case Marines were needed as firefighters or guards 
against looting in Tehachapi. All fire stations in the 
desert area were ordered to stand by and off-duty men 
were called in at Inyokern Fire Department.

The Tehachapi damage was declared a major disaster 
by the Red Cross and the Station Red Cross unit offered 
its services and went on a standby basis.

Two railroad tunnels between Tehachapi and a nearby 
town were collapsed and eight miles of track in Tehachapi 
Canyon were twisted out of shape.

Highway Patrol officers reported the Kern River 
Canyon closed at the mouth. Thousands of tons of rock 
and earth are blocking both ends of the canyon, according 
to a (GAP IN NEWSPAPER ACCOUNT).
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The quake was given a rating of 7 1/2 by Caltech 
seismologists. This compares with the 1906 San Francisco 
earthquake, 8 1/4, and the Long Beach quake of March 10,
1933, of 6 1/2 in which 127 were killed and 4150 injured.

This rating scale has zero slightly less than the 
magnitude of the smallest recorded shocks. Magnitude 
of an earthquake is the common logarithm of the maximum 
displacement, expressed in microns, of the trace written 
by a standard torsion seismometer at an epicentral dis­
tance of 100 kilometers.

A reading was taken on a seismograph in tower 13 
on G-2 range Monday morning. A photograph of the 
reading has been sent to Caltech for interpretation.
The instrument here is one of the most sensitive in 
the world because of the solid foundation of surrounding 
country and consequent lack of 'background noise.1

According to Nelson R. Williams, head of the 
atmospheric studies branch of Test Department, who 
with Quenton Dalton is in charge of the seismograph, 
the local instrument has recorded quakes as far as 
6000 miles away.

Tehachapi is approximately 5-6 miles north of the 
Garlock fault, which runs through the Tehachapi Mountains.
This fault, which branches off the San Andreas Fault at 
Gorman, passes south of Tehachapi and the Station and 
through the Randsburg - Johannesburg - Red Mountain 
triangle. It is named after the village of Garlock, a 
few miles west of Randsburg and approximately 25 miles 
south of the Station.

This is the second major earthquake in the last 
six years in this area. A series of shocks ranging up 
to 6.3 magnitude rocked the Walker Pass area about 12 
miles west of Highway 6 on March 15, 1946."

5.2.5 1961 Brown Earthquake

On October 19, 1961, an earthquake of magnitude 5.2 occurred east 

of Brown, approximately 10 kilometers northwest of Ridgecrest (Figure 44). 

The earthquake was felt at China Lake, Ridgecrest, Independence, Bakers­

field, and Los Angeles. A foreshock of magnitude 3.4 was felt at China 

Lake about 8 minutes before the main shock (Richter et al., 1962).
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The following is taken from an account of the local effects noted 

by Roland von Huene (a geologist at NWC).

"...(I) Little Lake (Mrs. Sullivan): Hot water gas 
vent pipe pulled out of wall, bottles knocked off of 
shelves, apparently no structural damage. Felt first 
event quite well - then about 10 min later a second 
event was shaking then a sharp jolt occurred.

(2) Nine Mile Canyon and Route 6 (Mr. Julian): Fig­
urines knocked off shelves. No structural damage. Felt 
a first slight shaking then about 10 min later (9:10) a 
sharp jolt accompanied with shaking. Trailer rocked.

(3) Richfield Station Route 6, approximately
7/10 mile~north of Kern-Inyo County Line (Mr. Hornbeck):
Trailer swayed. Trees rustling and rumbling noise. No 
structural damage. Very slight 1st event, but approxi­
mately 10 min later a good shaking occurred followed by 
a sharp jolt.

(4) Brown Road and Route 6 (Dr. Flagg): Was in bed 
at time of quake. Shaking and jolt woke him up. No 
structural damage.

(5) Brady (Mr. Ernst): Didn't notice 1st event.
But felt a good jolt and shaking about 9:10 p.m.
Heard a loud rumbling noise. No structural damage.
An employee who resided at Homestead was in bed and 
was awakened by the first quake.

(6) Mobil Gas Station in Inyokern: Just felt 
a strong jolt accompanied by shaking. Several cans 
of oil knocked off shelves (2nd quake).

(7) One mile south Lei iter (Mrs. Jean Purling):
Beds moved. Swaying motion. No noticeable vertical 
movement just a sharp jolt. No damage.

(8) Two miles north Leliter (Duel-Berg Farms):
Bottles knocked off shelves. China fell to south side 
of building. No structural damage..."

The following was obtained by Glenn Roquemore from an interview.

LB Range, Naval Ordnance Test Station: Fluorescent 
lights hung by "S" chains were stretched down to shoulder 
level. Machine lathe was rotated 180 degrees. Cabinets 
fell to the floor, blocks in block wall were shifted and
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cracked (Figure 45), water pipe was pulled from concrete 
foundation (Figure 46). Telephones poles were tilted 
(Figure 47).

5.2.6 1962 Walker Pass Earthquake

On September 16, 1962, a magnitude 4.9 earthquake occurred near 

Walker Pass about 10 kilometers west of Ridgecrest. Near the Sierra 

front, rocks fell and the quake was felt in a area that included Inyo- 

kern, the southern Sierra Nevada, the southern San Joaquin Valley, 

Fresno, and Los Angeles (Richter et al., 1962).

The following is an account of the local effects adapted from notes 

taken by R. T. Zbur (Naval Ordnance Test Station) and W. R. Moyle (U. S. 

Geological Survey):

"ON EARTHQUAKE - 16 September 1962 at 0536 
R. T. Zbur and W. R. Moyle

No Name Canyon: Approximately 1/2 mi in canyon,
Los Angeles road. South wall of canyon - 1 ft-diameter 
boulders traveled about 15 ft down a 45 deg slope.
Cracks in road several millimeters wide - striking 
SSE. Along with cracks on sand band (slumping). Many 
small rocks and boulders slid down sand back (40 deg 
slope). North wall of canyon (along Los Angeles aque­
duct road) - six ft by 2 ft boulders in road- 40 deg 
slope. Two ft by two ft boulder moved appoximately 
5 ft off a 5 deg slope.

Sand Canyon: Approximately 1/2 mi west of Los Angeles 
aqueduct siphon at canyon constriction. South-southeast 
wall of canyon - slope approximately 50 deg - cracks 
visible in thin fan. Fault zone approximately 2 ft wide 
and about several hundred feet long, extending from a 
crack through a dike. Minor landsliding. Same pattern 
of cracks observed on north wall of canyon and directly 
across from south-southeast wall cracks. On north wall 
landsliding and slumping more pronounced. However, the 
slope is about 55 deg. Cracks resembled an erosion phe- 
nomemena from a distance - closer inspection shows cracks 
discontinuous.

Nine Mile Canyon: Small rocks and boulders up to 
1 ft-diameter found along road - slope is very steep



FIGURE 45. Closeup view of machine shop wall showing cracking
and grouting along the foundation where the wall 
shifted about 2 centimeters off the foundation.
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FIGURE 46. Water pipe and concrete retainer wall. The water pipe 
pulled from the concrete which was patched. Later, 
however, events have begun to remove the patch.
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tho' - about 75 to 80 deg in places. Slide material 
apparently less severe here than in canyons to the south.
Cracks - on north wall about 1/2 mi west of aqueduct 
siphon and along road - cracks in an indurated sand 
ungoing saltation deflation.

Homestead (Dr. J. C. Shrader): Felt shock - was 
standing outside by auto - car swayed. Audible rumble 
similar to a subway train - estimated motion of ground 
to be about 2 oscillations per second. Motion was ap­
parently uniform - no sharp movement like October 16,
1961, quake. Dr. and wife felt two smaller tremors 
between 2:00 a.m. and 4:00 a.m. No audible sound.
Slight shaking. No damage observed.

Brady's Cafe (Hw.y 6 and 395): Felt shock - lights 
swayed in cafe and a few dishes and cupboards rattled.
Heard a rumbling sound that appeared to come from under 
the cafe - no damage.

Nine Mile Canyon and Hw.y 6 and 395: Felt shock - was 
sitting in chair reading newspaper (no name given in notes)- 
no household articles fell - large objects swayed a little- 
small noise heard, like a semitruck pulling into driveway."

5.2.7 February 1977 Ridgecrest Earthquake

On February 14, 1977, two small earthquakes occurred along the same

fault (Airport Lake fault) as the 1961 event. The magnitudes were 3.2

and 3.7. Both quakes were felt in both Ridgecrest and China Lake

(Derr et al., 1977). The following account is taken from the Daily

Independent, Monday and Tuesday, February 14 and 15, 1977.

RIDGECREST - Earthquake activity beginning about 
midnight has been rattling the Indian Wells Valley all 
morning, but as of press time, has resulted in no re­
ported damage.

Seismologists at Cal-Tech report that the strongest 
of the quake was at 5:58 a.m. with a Richter reading of 
3.8. The epicenter of the earthquake, according to Cal­
Tech, is at China Lake.

Most of the earthquakes, occurring at 15 to 30 min­
ute intervals, are not noticable, according to China 
Lake Naval Weapons Center spokesman Harry Parode, who 
reports that the strongest jolt awakened his wife, Helen.



Bill Finnegan, at China Lake's Earth and Planetary 
Sciences Division, says that it is not yet known precisely 
where the quake is centered.

Jack Crawford, head of the Weapons Department at 
China Lake, said he felt the earthquake as a mild shock 
followed by a stronger one.

MILD AFTERSHOCKS BEING FELT LOCALLY 
15 February 1977

RIDGECREST - Mild aftershocks from the China Lake 
earthquake early Monday were continuing into the pre­
dawn hours this morning.

The main shock of the 3.8-Richter-scale quake was 
recorded at 5:58 a.m. Monday. It was preceded by several 
small foreshocks, seismographs show.

The first aftershock came about two minutes after 
the main spike, according to Fred Davis, a physicist 
from the Earth and Planetary Sciences Division of the 
Naval Weapons Center.

The aftershocks, which "might be felt, but just 
barely," began to space out at 10 to 15 minute intervals 
until 11:00 a.m. when they dropped to approximately 
hourly intervals, Davis said.

The United States Geological Survey (USGS) from 
Menlo Park has reported the earthquake epicenter at 
approximately two miles north of the Naval Air Facility 
at Armitage Field.

USGS scientists are still attempting to detect 
the approximate depth of the quake, with such infor­
mation to be used when later scouting the area for 
signs of physical fracturing or telephone pole 
realignment.

The Garlock fault is believed innocent of causing 
the quake through slippage, with the blame more likely 
falling on one of many small, unnamed faults under the 
valley.

Several local residents reported waking from their 
sleep when the quake struck. Some reported feeling 
motion for up to four seconds, which is not at all 
unusual according to Cal Tech graduate student Carl 
Johnson. In fact, it would be unusual if no one was 
awakened, he said.
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5.2.8 March 1977 Ridgecrest Earthquakes

On March 7, 1977, two earthquakes occurred in the Ridgecrest area. 

The first earthquake was magnitude 3.0 and the second was magnitude 3.2 

(Derr et al., 1977).

The following is a newspaper account of the earthquake from the

Daily Independent, Tuesday, March 8, 1977.

RIDGECREST - Seismographs were not working yesterday 
afternoon at the China Lake Naval Weapons Center's Earth 
and Planetary Sciences Lab, but it didn't matter.

When the first of two earthquakes jarred the 
building about 2 p.m., the people working there felt 
it.

"I was sitting in a chair and there was a small 
jolt that just lasted a second or so," said Harold Cronin.

Secretary Reta Roquemore, whose earthquake-expert 
boss, Dr. Pierre St. Amand was out of town and missed 
the local show, agreed, "We felt it."

"My desk moved forward," said Mrs. Roquemore, 
who noted that some of her co-workers mentioned 
hearing a noise before they felt the shock.

She noticed people beginning to move towards 
the seismograph, too, unaware that the machinery 
was not working.

Cal Tech reported that the first jolt about 
2 p.m. measured 3.2 on the Richter scale. A second 
earthquake at 3:16 p.m. measured 3.0.

Epicenter of the earthquakes was believed to 
be about five miles southwest of China Lake, perhaps 
in the vicinity of the White Star Mine. At Hi-Desert 
Sauna and Spa, however, at the White Star Mine, Ruth 
Kirley reported that no one there felt the earthquake.

At the Daily Independent, the earthquake jarred 
desks and set an entryway hanging light swaying.

No damage was reported.
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5.2.9 1979 Walker Pass Earthquake

On June 14, 1979, there was a magnitude-4.3 earthquake near Walker 

Pass (Figure 44). Reports from Ridgecrest and China Lake residents in­

clude moderate shaking of houses, about 60% of the residents were awakened, 

and there were reports of audible rumbling. No damage was reported.

5.2.10 Local Seismicity

One of the first indications of high seismicity on the southeast 

side of the Sierra Nevada came in a paper by Allen et al., (1965).

Figure 48, shows the relative location of a few earthquakes larger than 

magnitude 6 that have occurred near Indian Wells Valley. Figure 49, 

is a strain release map using earthquakes of magnitude 3 and larger in 

the strain calculations (Allen et al., 1965). When both Figures 48 

and 49 are taken into account, it becomes obvious that an abundance 

of high-magnitude earthquakes as well as low-magnitude earthquakes 

occur in the region including Indian Wells Valley. After this work, 

little research was accomplished until seismicity for geothermal ex­

ploration became important in the Coso Range.

Walter has completed the most thorough examination of local seis­

micity to date. Walter found that fault-plane solutions show a regional 

north-south compression. Also, earthquakes located in northwest-striking 

zones generally have right-slip focal mechanisms, those in northeast- 

striking zones have left-slip focal mechanisms, and those in north-south 

striking zones have both normal-slip and lateral-slip focal mechanisms. 

These conclusions are in strong agreement with the geologic evidence that 

demonstrates dominant northwest-striking, right-slip faults with north- 

east-striking, left-slip and north-south striking, conjugate faults.
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Figure 44, shows the regional seismicity from 1932 to 1977. The 

epicenters are from Cal Tech and USGS seismic networks (Fuis et al.,

1977, 1978; Friedman et al., 1976; Hileman et al., 1973). The 

dominant northeast band of seismicity in Figure 44 is identical to the 

trend shown in Figure 49. These data further support the geologic evi­

dence of rapid tectonism in the Coso Range and Indian Wells Valley areas. 

Figure 50 shows several epicenter alignments in the Coso Range and northern 

Indian Wells Valley. Relatively speaking, there is somewhat of a seismic 

gap about 5 kilometers wide along the Sierran front (seen in Figure 50) 

except for a band of seismicity trending in a northeast direction across 

the Coso Range. Data presented later suggest that this zone may be a 

thrust and is consistent with the regional tectonics. The seismic pattern 

conforms very well with the fault pattern of the area. The area around 

the letter "I" is the north end of Indian Wells Valley which is a closed 

basin sandwiched between the north-south-trending Sierra Nevada and Argus 

mountain ranges. The seismicity in this area forms a north-south align­

ment with normal-fault focal mechanisms. The seismicity and the geo­

morphology suggest an east-west extensional mechanism for Indian Wells 

Valley. Where the south end of the Coso Range begins, south of the letter 

"B," there is a discontinuity in the orography. The range fronts and 

associated valleys bend to the west. This can be seen to the east in 

Panamint Valley as well. As the geomorphology changes, the dominant 

focal mechanism shifts to northwest trending, right-lateral strike- 

slip. The strike of the focal-mechanism-derived fault planes parallel 

the northwest trend of the valleys almost identically. About 2 kilo­

meters east of the letter "B," there is a major north-south trend in the
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FIGURE 50. Plot of local microseismicity from September 1975
to September 1977. (1) Indian Wells Valley, (N) Nine
Mile Canyon, (B) southern Coso Range, (R) Rose Valley,
(L) Louisiana Butte, (F) northeast Coso Range, (H) Haiwee 
Reservoir, (C) northern Coso Range, (D) Darwin. The box 
indicates the location of the geothermal area. (Modified 
from Walter and Weaver, 1980.)
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seismicity. The valley in which this seismicity occurs is north-south 

trending and, not so surprisingly, the normal fault focal mechanisms are 

north-south as wel1.

Figure 51, shows the focal mechanisms from October 1975 to September 

1977. The northwest-trending, right-slip, focal mechanisms are dominant 

with the normal-slip, focal mechanisms occurring as conjugate systems 

resulting from the primary right-slip tectonics.

The tectonics of the Coso Range, as demonstrated by the seismicity, 

suggest east-west spreading brought about by the right-slip movement. This 

opening begins at the Garlock fault and continues northward at least 

400 kilometers. The Coso Range may represent a pressure ridge in the 

regional picture. Indian Wells Valley and the closed basin which contains 

Owens Lake both represent regional sag ponds in this scenario. These 

observations are discussed in Chapter 8.

5.3 SUMMARY AND CONCLUSIONS

Regional and local seismicity has caused damage to communities of 

China Lake and Ridgecrest. One of the largest earthquakes in California 

history occurred within 100 kilometers of the study area. Microseismicity 

occurs every day and demonstrates a very high rate of tectonism in the 

Coso Range. The potential for large magnitude earthquakes near Indian 

Wells Valley is probably as high as anywhere in California.

The alignment of epicenters and focal mechanism plots both agree 

with the geologically-obtained data on the local tectonic mechanism.
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FIGURE 51. Plot of focal mechanisms for the Coso Range.
(Modified from Walter and Weaver, 1980.)
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6.0 CALCULATION OF DESIGN EARTHQUAKE

6.1 INTRODUCTION

When a fault has not produced significant historical earthquakes, 

calculation of a design earthquake proves useful. The design earthquake 

is defined as the earthquake of highest, credible magnitude a given fault 

can produce based on either statistics of the length or the displacement 

of faults that have historical earthquakes or both. The representation 

of this data is in the form of curves that plot the parameters of mag­

nitude versus length and magnitude versus displacement as well as other 

modifications (Tocher, 1958; Iida, 1959, 1965; Albee and Smith, 1966; 

Bonilla, 1967, 1970; and Bonilla and Buchanan, 1970). Slemmons (1977) 

has normalized these curves in the equation M = a + b log x, that be­

comes the basis for the calculations presented herein. In the equation, 

log x will be replaced by log L (length) and log D (displacement). The 

statistical calculations by Slemmons (1977), include groupings of data 

for faults of all types in North America (NA), faults of all types world­

wide (WW), all lateral-slip faults (LS), and all normal-slip faults (NS). 

These data can be used to calculate a design earthquake.

6.2 DESIGN EARTHQUAKE (LITTLE LAKE FAULT)

For calculations done for the Little Lake fault, a length of 24 kilo­

meters was used. The limitations to this length designation are that the 

Little Lake fault merges with the Sierra Nevada frontal fault and could 

be considered much longer, and the Little Lake fault has not been mapped
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to the south. Therefore, 24 kilometers is a minimum length. The dis­

placement value used in the calculations is based on 250 meters of right- 

slip displacement on a 400,000-year-old basalt.

In Table 2, the Little Lake fault results are listed by type of fault, 

magnitude, and recurrence interval based on 250 meters of displacement in 

the last 400,000 years. All magnitudes were calculated using length only.

TABLE 2. Design earthquake data for the Little Lake fault.

Fault type Magnitude Displacement,
meters

Return interval, 
years

NA 6.4 0.49 784

WW 6.8 1.05 1680

LS 6.5 0.675 1080

6.3 DESIGN EARTHQUAKE (AIRPORT LAKE FAULT)

The length of 30 kilometers chosen for the Airport Lake fault is a

minimum length. The fault is dispersed in lava flows at its north end

and, therefore, arbitrarily ended there for this study. The south end

of the fault was not mapped in this study. The displacement on the fault

is based on 3.4 meters on normal-siip seen in the exploratory trench, and 

125 meters of right-slip in a basalt assumed to be 400,000-years-old.

The age of the basalt has not been determined. The flow has been placed 

in the geologic column between two flows dated by potassium-argon as

400,000 and 1 x 10^ years (Duffield and Bacon, 1977).

The magnitude of the design earthquake on the Airport Lake fault 

was calculated from the length and the displacement. The date of the



3.4 meters of offset is not known and, therefore, not used in the return 

interval calculations. Table 3 lists the results of these calculations 

for the Airport lake fault.

TABLE 3. Design earthquake data for the Airport Lake fault.

Fault type Magnitude vs 
displacement

Displacement,
meters

Return interval, 
years

NA 7.3 3.4 • •  •

WW 7.4 3.4 . . .

NS 7.4 3.4

Fault type Magnitude vs 
length

Displacement,
meters

Return interval, 
years

NA 6.6 0.65 2080

WW 6.9 1.25 4000

NS 7.0 • • • • • •

LS 6.6 0.83 2656

6.4 DESIGN EARTHQUAKE (EAST SIDE AIRPORT LAKE FAULT)

For the fault on the east side of Airport Lake, a length of 11 kilo­

meters is probably very close to reality; however, further study could 

extend the fault to the south. The displacement chosen is 3.4 meters of 

normal slip as seen in the exploratory trench. The age of this displace­

ment is unknown and, therefore, a recurrence interval is not provided. 

Table 4 lists the calculated results for these faults.
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TABLE 4 . Design earthquake data for the faults 
on the east side of Airport Lake.

Type of fault Magnitude Displacement,
meters

Return interval, 
years

NA 7.3 3.4 ...

WW 7.4 3.4 • • •

NS 7.4 3.4 ...

NA 5.9 3.4 ...

WW 6.4 3.4 . . •

NS 6.5 3.4 • • .

LS 6.1 3.4 . . .

6.5 SUMMARY AND CONCLUSIONS

The design earthquake is often used when no historical earthquake 

information is available on a specific fault. According to the design 

earthquake formulas, the average magnitudes (M), displacements (D), and 

return intervals (RI) are as follows: The Little Lake fault, M = 6.6,

D = 0.74 meter, RI = 3000 years; faults east side of Airport Lake 

M = 6.7, D = 3.4 meters.

Other faults in the area such as the Garlock, Sierra Nevada, and 

Kern faults are much longer. These faults are capable of producing an 

earthquake much larger than those mapped in this study.
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7.0 PRESENT LOCAL TECTONIC PATTERN

7.1 INTRODUCTION

This chapter, based primarily on original geologic and geomorphic 

information, provides the basis for a synthesis of present-day tectonics 

in the Coso Range region of southeast California. This interpretation is 

relevant to the assessment of the structure development of the Basin and 

Range province. Presented is a view of important observations based on 

the patterns of faulting, geomorphology, and geochronology; a synthesis 

drawing from these evidences is presented.

Four major points that relate to the tectonic interpretation of the 

Coso Range are listed as follows:

1. The structure is consistent with the Basin-and-Range stress 

patterns.

2. The rate and style of vertical and horizontal displacement 

suggest transition between strike-slip tectonics to the west and exten- 

sional tectonics to the east.

3. Arcuate faulting in the Coso Range results from the strike- 

slip component of regional stress there.

4. The fumerolic activity is controlled largely by faults with a 

significant oblique-slip component, and thus is unrelated to caldera 

formation as suggested by earlier workers (see Chapter 1). Each of these 

points is discussed in the following paragraphs.
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7.2 STRUCTURE CONSISTENT WITH BASIN AND RANGE STRESS PATTERNS 

7.2.1 Graben Valleys and Tilted Blocks

Rose Valley (Figure 52) separates the Coso Range from the Sierra 

Nevada. According to Healy and Press (1964), it represents a southward 

extension of the Owens Valley graben. Their interpretation is consistent 

with later work carried out by Slemmons (personal communication), who 

found that faults mapped in the southern Owens Valley connect with those 

mapped by Allen et al., (1965) and by Roquemore (1977), (Naval Weapons 

Center Technical Publication 6036, being published). The valley fill in 

the center of Rose Valley is over 1670 meters thick, which indicates 

substantial down-faulting on the valley margins. Basin structures of 

this type are typical of a 240-kilometer zone along the Sierra front 

(Healy and Press, 1964). The west side of Rose Valley is bounded by 

the northeast-striking Sierra Nevada frontal fault zone, where Duffield 

and Smith (1978) report over 1200 meters of vertical movement. To the 

east of Rose Valley, there are several step-faulted, west-tilted blocks 

of the Pliocene Coso Formation (Power, 1958). The faulting in Rose 

Valley is high-angle, normal-slip and results in low- to moderately- 

tilted fault blocks.

Coso Valley (Figure 52) is in the south-central portion of the 

Coso Range. This graben valley is bound on the west by the Airport 

Lake fault, which is a left-stepping, en echelon, range-front fault.

Two asymmetrical graben structures, one of which is nearly 2 kilometers 

wide, are within the zone of faulting. The Airport Lake fault strikes 

north 10 degrees to north 20 degrees east and dips from 50 degrees east



FIGURE 52. Fault map of the Coso Range. (AP) Airport Lake, (LLF) 
Little Lake fault, (LL) Little Lake, (SLM) Sugarloaf 
Mountain, (CHS) Coso Hot Springs, (CP) Cactus Peak, 
(UCF) Upper Cactus Flat, (MF) McCloud Flat, (CF)
Cactus Flat. The shaded area marks the topography 
above 5000 feet. The hatched areas are rhyolite domes.
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to vertical. Bounding the east side of Coso Valley is the highly step- 

faulted Wild Horse Mesa. Along this zone, thin sheets of basalt and 

andesite lava flows are broken by high-angle, normal faults with a sinuous, 

left-stepping, en echelon pattern. The Coso Hot Springs fault (east of 

Coso Hot Springs in Figure 52) strikes north 25 degrees east with a dip 

of 45 degrees to 55 degrees southeast and bounds Coso Valley on the north. 

It probably connects the Airport Lake fault and Haiwee Springs faults in 

a single en echelon zone. The right-oblique-slip displacement along this 

zone is consistent with orientation of the maximum compressive stress at 

north 15 degrees to north 25 degrees east, and the minimum compressive 

stress at north 65 degrees to north 75 degrees west. These stresses 

are shown, together with a detailed schematic drawing of faults in the 

Coso Basin graben, in Figure 53. The direction of extension stress is 

rotated about 25 degrees clockwise from that obtained by Carr (1974) for 

the Nevada test site to the east.

7.2.2 Strike-Slip Faults

Most of the normal faults in the Coso Range are generally north­

trending and have right-slip displacement associated with them either as 

right-oblique-slip or as left-stepping, en echelon pattern. Examples of 

right-slip faults include the Airport Lake fault, Wild Horse Mesa, and 

the Little Lake faults. The Airport Lake fault is a prime example of an 

en echelon fault associated with right-slip movement, as evidenced by a 

right-slip, offset basalt flow and by the typical, left-stepping en echelon 

pattern in Coso Valley. On Wild Horse Mesa (Figure 54) a pattern of 

sinuous, left-stepping fractures stair-step-down west to the Coso Basin 

(see Coso Hot Springs, Figure 52). The Little Lake fault (Figure 53) is
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FIGURE 53. Schematic diagram of the southern 
Coso Range showing the local stress 
orientation. o 3 is the direction of 
least compressive stress, and ai is 
the direction of maximum compressive 
stress. The star symbols are cinder 
cones. The cones enclosed by a 
dashed line are the same age and 
composition.
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perhaps the most spectacular example in this part of the Basin and Range 

province; it has many of the typical landforms characteristic of strike- 

slip faults (Slemmons, 1977), including rhombic depressions, benches, 

side-hill ridges, linear troughs, and shutter ridges. Such clear mani­

festations of horizontal movement are rare east of the Walker Lane in the 

Basin and Range province, as evidenced by the lack of its being mentioned 

in the literature of the area.

7.2.3 White Hills Anticline

The White Hills anticline, which strikes north 65 degrees to north 

75 degrees west, is a clear example of a primary fold. Its orientation 

is perpendicular to the direction of maximum compressive stress which is 

inferred by the faulting pattern (north 15 degrees to north 25 degrees 

east, Figure 53). The Wilson Canyon fault, running parallel to this fold 

and north of it, was active in pre-Quarternary time and had left-slip 

movement (Zbur, 1963). At present, this fault is seismically inactive 

(Walter and Weaver, 1980).

7.2.4 Alignment of Volcanoes

Nakamura (1977) found that the orientation of average tectonic 

stress may be determined by utilizing dike patterns and the alignment 

of volcanic cones. With equidirectional tectonic stress the dikes often 

extend radially from a central source, but with differential horizontal 

stress, they tend to be parallel to the direction of maximum horizontal 

compressive stress. Assuming a single source of the magma of the basaltic 

cones near Volcano Peak (Figure 53), the lineup of cinder cones (north 

50 degrees west) indicates the same general direction of minimum compres­

sive stress as shown by the faults and the White Hills anticline.
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Evidence for the single magma source for these cones is (1) Close spatial 

relation along a line and (2) similar composition of the basalts (Duffield 

and Bacon, 1977).

7.3 RATE AND STYLE OF VERTICAL AND HORIZONTAL DISPLACEMENTS

7.3.1 Vertical Displacements

Vertical displacements are expresed in the Coso Range as horst-and- 

graben structures, tilted blocks, and step faults. As two examples here 

show, vertical rates are very rapid. A distinctive, capping rhyodacite 

flow above the Coso Formation is offset 600 meters at a site on the west 

flank of the Coso Range (Roquemore, 1977). Duffield and Bacon (1977) 

give an age of about 2.5 million years for this flow. This determination 

of offset is based on the present position atop the Coso Range and the 

location of the same flow buried in Rose Valley, identified by geophysical 

methods (Healy and Press, 1964). The inferred rate of vertical move­

ment based on this offset is 1.8 millimeters per year. Similarly, on 

Wild Horse Mesa, another area of tectonic extension and associated step 

faults has been dated at about 3 million years by Duffield and Bacon (1977). 

The total offset of this flow has not been determined because the lowest 

down-dropped block is buried in the Coso Basin alluvium, but the offset 

is at least 600 meters. This gives a minimum rate of vertical deformation 

on Wild Horse Mesa at 0.2 millimeter per year.

7.3.2 Horizontal Displacements

Geomorphologic evidence can be used to estimate horizontal rates of 

offset on both the Little Lake and Airport Lake faults. The Little Lake 

fault strikes north 40 degrees west from near the Garlock fault. It is
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best exposed near the settlement of Little Lake where a young lava flow 

is offset. The Little Lake fault is predominantly right-slip, and off­

sets a basalt flow dated at 440,000 years (Duffield and Smith, 1978) by 

250 meters. This indicates an average slip rate of 0.6 millimeter per 

year. Since the lava flow is modified by stream erosion, this is prob­

ably a minimum estimate. A shutter ridge along the fault is offset 

only 30 meters, but wash channels are diverted which contain highly- 

crushed, landslide material from the Sierra Nevada. This landslide mate­

rial is determined to be younger than the 440,000-year-old basalt because 

it has not been eroded by the ancient Owens River as has the basalt.

Similar drainage offsets along the Airport Lake fault cannot be used for 

calculation rate-of-movement, because they are highly modified by seasonal 

flash floods. An offset basalt flow, which has not been potassium-argon 

dated, provided a measured displacement of 125 meters on this fault. Based 

on potassium-argon dating and field relations, Duffield and Bacon (1977) 

have placed this flow on their geologic column between two others with 

ages of about 0.400 and 1.0 million years, respectively. These numbers 

imply offset rates ranging between 0.3 and 0.1 millimeter per year on 

this fault.

7.4 FUMEROLIC ACTIVITY ALONG BASIN AND RANGE FAULTS IN THE COSO RANGE 

Austin et al., (1971) and Koenig et al., (1972) noted the presence 

of radial faults projecting outward toward the circumference of a feature 

in the Coso Range that they identified as a ring structure. In this 

interpretation, one would expect fumerolic activity to concentrate along 

these radial faults, and that motion on them should be normal faulting
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because they are extensional. Among the dozens of known hot springs 

in the Coso Range, all but two are associated with faults; the two ex­

ceptions are in the Sugarloaf Mountain area shown on Figure 52, and in 

the Devils Kitchen area 1 mile to the east. However, most of the faults 

in the Coso Range that are associated with hot springs have significant 

components of oblique-slip. (See the foregoing discussion on lateral 

faults.) Two examples are the Airport Lake fault with right-slip offset 

of a basalt flow and the Coso Hot Springs fault with a left-stepping 

en echelon pattern. Both of these faults have the main concentration of 

hot springs in the region. These faults have a strike-slip displace­

ment of a sense consistent with the local tectonic stress pattern as 

seen in Figure 53. The strike-slip character shown is not required by 

ring fault or caldera-like features, nor is ring faulting consistent with 

the tectonic regime.

7.5 ARCUATE FAULTS IN THE COSO RANGE

In the area around McCloud Flat (Figure 55), a set of short seg­

mented, and slightly curved faults define a crude arch. These faults 

have been interpreted (Austin et al., 1971 and Koenig et al., 1972) 

as a structure which resembles those associated with calderas. Chinnery 

(1966) has proposed that secondary faults forming at the ends of large- 

scale, strike-slip, master faults are often arcuate (Figure 55). This is 

a plausible concept for the arcuate faults in the Coso Range because the 

Coso Range is located at the south end of a long zone of right-slip as 

evidenced by the Owens Valley fault zone. Also south of the Coso Range 

is a very different tectonic style as evidenced by the east-west trending,
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Existing fault pattern Fault patterns predicted by
in the Coso Range. Chinnery to occur at the

end of right-slip master 
faults.

FIGURE 55. Diagram showing how Chinnery's concept of 
arcuate faults apply to the Coso Range.
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left-slip, Garlock fault. There is no requirement for arcuate faults to 

be directly associated with volcano-genic origins. In the Coso Range, 

some of the arcuate faults have strike-slip striations on fault planes 

(St. Amand, personal communication) as predicted by Chinnery (1966). Ring 

dikes or other volcanic features cannot be linked with these arcuate faults.

7.6 SUMMARY AND CONCLUSIONS

Austin et al., (1971), Koenig et al., (1972), and Duffield (1975) 

have all interpreted the arcuate features of faulting in the Coso Moun­

tains in terms of recent subsidence within a caldera-like structure.

Thus, under these interpretations, volcanism controls the structural fea­

tures of the region.

In this paper, it has been shown that the sense of faulting is con­

sistent with the predominant principal stress directions of the Basin and 

Range (i.e., east-west extension and northeast-southwest compression).

The volcanic and fumerolic activity are clearly associated with features 

that relate to these stresses, and thus manifestations of them rather 

than indicators of the dominant tectonic mechanism of the area. Also, 

it follows then, the overall assessment of the geothermal potential may 

be reduced by these factors.

The pattern of regional stress developed in this paper is consis­

tent with that stress expected in the southwest Basin and Range province; 

graben structures and normal faulting running north-south. This paper 

documents a significant component of right-lateral, strike-slip motion 

that is consistent with San Andreas-Garlock tectonism to the west and 

south. Therefore, the area fits Wright's (1976) classification of Basin
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and Range province "Deformation Field II" as he predicted it would: The 

Coso Range area is a region of transition between San Andreas-Garlock 

and Basin and Range province, with recent folding and faulting showing 

characteristics of each of these provinces, and some peculiar to itself.
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8.1 INTRODUCTION

Allen et al. (1965) state that the faults of the Owens Valley- 

Death Valley region probably represent features that are transitional 

between true San Andreas and true Basin and Range tectonic patterns.

Wright (1976) identified two deformational fields within the Basin and 

Range province based on his observations as follows: (1) Field I en­

compasses most of Nevada and is characterized by steeply-dipping, normal 

faults oriented north-northeast, (2) Field II is bound approximately on 

the east by the Walker Lane and bound on the west by the Sierra Nevada 

block, (3) Field II contains gently-dipping, normal faults oriented north- 

south, and abundant conjugate shears, and (4) Deformational Field II is 

topographically and structurally distinct from the rest of the Great 

Basin because most of the mountain ranges trend northwestward. Wright 

goes on to state that this region is incompletely studied. Slemmons 

(1967) noted that the Walker Lane, a zone 10 to 20 miles wide and 450 miles 

in length, separates northwest-southeast topographic trends to the west 

and north-south to north-northeast, south-southeast trends to the east.
i

Roquemore (1978) found evidence for structures compatible with a Basin 

and Range/Sierra Nevada transition zone in the Coso Range.

Troxel et al. (1972) suggested that the area north of the Garlock 

fault had been stretched. Davis and Burchfiel (1973) conclude that the 

Garlock fault is a transform structure, that the southern Basin and Range 

province is spreading faster than its northern counterpart, and that the 

Basin and Range province is still being formed by east-west extension
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without significant right shear. This model, however, does not totally 

explain the structural anomaly found in the western Basin and Range 

province. New data allow us to build upon the hypothesis of Davis and 

Burchfiel to explain the anomalous structure found in the western Basin 

and Range province. A discussion of a possible structural mechanism 

follows.

Zoback and Zoback (1980) report that the Sierra Nevada Block has a 

least-principal, horizontal-stress direction oriented west-northwest to 

northwest and is a region of stress transition from strike-slip deforma­

tion on the San Andreas to extensional deformation in the Basin and Range 

province. Zoback and Zoback (1980) also state that the least-principal, 

horizontal stress direction for the Basin and Range is west-northwest and 

is a region of active, crustal spreading by distributed normal and oblique- 

slip, normal faulting. However, the westernmost part of the province ex­

hibits both strike-slip and normal faulting (Slemmons et al., 1979).

My observations indicate that the structure of the Coso Range in 

the western Basin and Range province exhibits a change in properties be­

tween the San Andreas and Basin and Range province, based on (1) a nearly 

east-west orientation in the least-principal, horizontal-stress direction, 

and (2) abundant northwest-oriented, right-slip faults. This seems to be 

true for the remainder of the transition area between the Walker Lane 

and the Sierra Nevada from Mono Lake to the Garlock fault (Carr, 1974; 

Wright, 1976). This observation, if true, suggests the hypothesis dis­

cussed in the following paragraphs.



Tmsmrnmmmmmmmm m m

8.2 TECTONIC MODEL FOR THE AREA BETWEEN THE SIERRA NEVADA AND THE

WALKER LANE

The fault pattern of the western United States and parts of Mexico 

is shown in Figure 56 (modified from Atwater, 1970). The area in question 

is located east of the Sierra Nevada and west of the Walker Lane. The 

region is roughly triangular in shape with the sides of the triangle 

formed by the Sierra Nevada, Walker Lane, and Garlock fault. The dis­

tinct difference in structural trend between the Sierra Nevada, Walker 

Lane, and the Basin and Range province is clearly seen in Figure 56. The 

faults in the Basin and Range province are north-northeast trending. The 

faults along the Walker Lane are northwest trending. The faults in the 

study area are slightly more north than those in the Walker Lane.

If the Walker Lane were a conjugate shear to the deep-seated, north- 

south, compressional forces that extend the Basin and Range province, the 

Sierra Nevada Block would migrate northwestward along the Walker Lane 

failure plane. If the San Andreas fault increased its slip-rate or 

had a higher rate of slip than the Walker Lane, a drag-rotation (clock­

wise) of the Sierra Nevada might be expected to occur. This rotation 

would explain (1) the bend in southern end of the Kern Canyon fault,

(2) the existence of the Garlock fault, and (3) the structural anomaly 

between the Walker Lane and the Sierra Nevada Block, the abundant com­

pressional structures west of the Sierra Nevada Block, and the bend in 

the San Andreas where the Garlock fault intersects it.

Figure 57 is a schematic diagram of Figure 56, showing part of the 

Basin and Range province with a set of opposing arrows representing the 

direction of least-principal, horizontal stress. Arrow indicates the

119
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FIGURE 56. Fault map of the western United States and Mexico.
(EPR) East Pacific rise, (WL) Walker Lane, (G) Gar- 
lock fault, (SN) Sierra Nevada, (SA) San Andreas 
fault, (BRP) Basin and Range province, (GV) Great 
Valley. Block areas are Quarternary volcanic rocks. 
Stippled areas are granitic plutonic rocks. (Modi­
fied from Atwater, 1970.)
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FIGURE 57. Schematic of Figure 56. (SAF) San Andreas fault, 
(GF) Garlock fault, (SN) Sierra Nevada. This 
schematic shows the northwestward migration of 
three sections of crust. The slowest movement is 
seen in yellow. The orange area has an interme­
diate northwest migration velocity. The red area 
has the highest northwest migration velocity and 
corresponds with movement on the San Andreas fault.
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slowest rate of northwest migration. Walker Lane separates the zone of 

east-west extension from areas to the west. A set of opposing arrows 

shows the direction of least-principal, horizontal stress in the area that 

includes the Garlock fault, Sierra Nevada, and the transitional zone 

(seen here as a wedge shape bound by the Sierra Nevada, Garlock fault, 

and the Walker Lane). Also shown is another arrow that denotes the area 

as having an intermediate rate (V^) of northwest migration. The San 

Andreas fault separates the zone and the V-j zone. The V-j zone has 

the highest rate of northwest migration.

Assuming the Sierra Nevada drag-rotated under the above proposed 

conditions, the Garlock fault, the bend in the San Andreas, the com- 

pressional structures west of the Sierra Nevada block, and the different 

structural style of the transition zone could have been the result.

8.3 SUMMARY AND CONCLUSIONS

The zone between the Sierra Nevada and the Walker Lane has long been 

noticed as being structurally different than that of the main Basin and 

Range province. Wright (1975) showed that most of the structures in his 

Deformational Field I (Basin and Range proper) are north-northeast trend­

ing and dominated by normal-siip faulting. This report presents evidence 

that Wright's Deformational Field II (zone between the Sierra Nevada and 

Walker Lane) contains abundant northwest, right-slip faults and north- 

south trending, normal-siip faults and that the Walker Lane is boundary 

between the two structural styles. A plausible hypothesis is a clock­

wise rotation about the northern tip of the Sierra Nevada block.
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9.0 SUMMARY AND CONCLUSIONS

The Coso Range is a highly-active, tectonic area with a potential 

to produce major earthquakes. All active faults within the Coso Range 

were observed in the field to obtain fault-morphology data. The data 

were compiled to help determine activity, style, and amount of displace­

ment for each fault.

The Little Lake fault is the only purely right-slip fault in the 

study area. The morphology includes shutter ridges, linear troughs, sag 

ponds, and pressure ridges. Thirty meters of right-slip displacement 

were found in undated material of probable Holocene age. Two hundred fifty 

meters of right-slip displacement were found in a 400,000-year-old basalt 

flow.

The southern segment of the Airport Lake fault proved to have right- 

slip displacement based on left-stepping, en echelon patterns and on as­

sociated tension grabens. Recency of displacement is indicated by flipped 

stones found near the fault scarps. The faulting generally adheres to 

the mountain front, however, occasional scarps are formed along young 

alluvial fans. It has been estimated the fans can be no older than 

10,000 years. Displacement in the fans are dip-slip with scarps up to 

3 meters in height.

The Coso Hot Springs and Haiwee segments of the Airport Lake fault 

have abundant offset stream channels and ridges. The overall pattern is 

left-stepping en echelon with normal-si ip displacement on the en echelon 

segments up to 3 meters. The north end of the fault dissipates in lava
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flows and is not seen as a continuous, mappable fault until it reaches 

the far northern end of the Coso Range.

The faulting on the east side of Airport Lake is left-stepping, 

en echelon faults with dip-slip displacement on each en echelon segment 

reaching 3 meters. The fault crosses recent fan development (thought to 

be less than a hundred years old), and displaces it by 0.5 meter. The 

overall, mapped length is 24 kilometers; however, evidence suggests that 

it could be much longer in a southerly direction.

The Airport Lake trench (Trench A) was located on a young, alluvial 

fan. The displacement in the trench was seen as 3 meters of dip-slip 

offset of two cinder-rich, obsidian-rare layers. The age of these layers, 

based on volcaniclastic chronology, is between 88,000 and 90,000 years.

A 2-centimeter soil layer forming the surface is thought to be no more 

than 10,000 years old. There was no evidence in the trench of multiple 

events.

A trench located on faults along the east side of Airport Lake 

(Trench B) exposed a graben with a minimum of 3.4 meters of dip-slip 

displacement. There was no evidence of multiple events in this trench. 

Based on the soil stratigraphy, the faulting is thought to have occurred 

in the last few thousand years.

The trench located on the Little Lake fault, although incompletely 

studied, exposed a 4-meter wide, crushed zone. The fault plane dips to 

the southwest. Abundant liquefaction features, probably mud volcanoes, 

were identified along one stratigraphic horizon. This horizon is dated 

at about 2500 years and records a massive earthquake since that time.
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Based on fault-scarp-profile data, the Coso Hot Springs segment of 

the Airport Lake fault has undergone displacement as recent as a hundred 

years ago. The highest scarp reaches 7.1 meters.

The method of Wallace leads to the conclusion that the southern seg­

ment of the Airport Lake fault has undergone displacement as recently as 

40 years ago; however, this is certainly an anomalous result because the 

last likely event that could have displaced faults in the Coso Range was 

the 1872 Owens Valley earthquake; and indeed Profile 2 suggests movement 

of about that age. Profile data on the east side of Airport Lake suggest 

displacement about a hundred years ago. These data suggest the possibil­

ity that displacement occurred on these faults during the 1872 Owens Val­

ley earthquake.

Regional and local seismicity has caused damage in China Lake and 

Ridgecrest. The largest earthquake in California history occurred within 

100 kilometers of the study area. Microseismicity occurs every day and 

deomnstrates a very high rate of tectonism in the Coso Range. The poten­

tial for large magnitude earthquakes near Indian Wells Valley is probably 

as high as anywhere in California.

The alignment of epicenters and focal mechanism plots both agree with 

the geologically-obtained data on the local tectonic mechanism.

Austin (1971), Koenig (1972), and one of Duffield's earlier papers 

(1975) have interpreted the arcuate features of faulting in the Coso 

Mountains in terms of recent subsidence within a caldera-like structure. 

Thus, under these interpretations, volcanism controls the structural 

features of the region.
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In this paper, it has been shown that the sense of faulting is consis­

tent with the predominant, principal stress directions of the Basin and 

Range (i.e., east-west extension and northeast-southwest compression).

The volcanic and fumerolic activity are clearly associated with features 

that relate to these stresses, and thus are manifestations of them rather 

than indicators of the dominant tectonic mechanism of the area. Also, it 

follows then, the overall assessment of the geothermal potential may be 

reduced by these factors.

The pattern developed in this paper of regional stress is consistent 

with that expected in the southwest Basin and Range province; graben struc­

tures and normal faulting running north-south. This paper documents a sig­

nificant component of right-lateral, strike-slip motion that is consistent 

with San Andreas-Garlock tectonism to the west and south. Therefore, the 

area fits Wright's (1976) classification of Basin and Range province "Defor- 

mational Field II" as he predicted it would: The Coso Range area is a re­

gion of transition between San Andreas-Garlock and Basin and Range provinces, 

with recent folding and faulting showing characteristics of each of these 

provinces, and some peculiar to itself.

The zone between the Sierra Nevada and Walker Lane has long been 

noticed as structurally different than that of the Basin and Range pro­

vince proper. Wright (1975) provided evidence that most of the structures 

in his Deformational Field I (Basin and Range proper) are north-northeast 

trending and dominated by normal-slip faulting. This report presents 

evidence that Wright's Deformational Field II (zone between the Sierra 

Nevada and Walker Lane) contains abundant northwest, right-slip faults and 

north-south trending, normal-slip faults and that the Walker Lane provides
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a discontinuity between the two structural styles. A plausible hypothesis 

to explain the regional structure is a clockwise rotation about the north­

ern tip of the Sierra Nevada Block.
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