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Abstract

This thesis focuses on the design and implementation of an extended potential field

controller (ePFC) which enables a quadcopter aerial robot to track a dynamic target

while simultaneously avoiding obstacles in the environment. The design of the ePFC

extends the foundational concepts of a traditional potential field controller (PFC),

which uses attractive and repulsive potential fields to navigate toward a target and

avoid obstacles. A traditional PFC is a function of only the relative positions of the

drone to the target and obstacles, respectively, and has shortcomings for aerial robots

which are much harder to control than ground robots. The proposed ePFC takes into

account the relative velocities of the drone to the target and obstacles, respectively, in

addition to the relative positions which enhances the controller’s ability and improves

performance. The proposed controller is simulated using Matlab’s Simulink tool,

and the simulation results show that the ePFC reduces the overshoot of the robot’s

location in response to a step input by 19% and the settling time by nearly 17%

when compared to a traditional PFC. The proposed controller is implemented on

an experimental platform, the ARDrone 2.0, and the obtained results show that

the drone is able to track both static and dynamic targets, moving in either set or

arbitrary patterns, all while avoiding obstacles in the test space. Compared to the

simulation, the experimental results show an overshoot 2% higher, and a settling time

only 0.5 sec slower.
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Chapter 1

Thesis Introduction, Contribution,

and Organization

1.1 Introduction

Recent advances in the field of unmanned autonomous systems (UAS) have drastically

increased the potential uses of both unmanned ground vehicles (UGV) and unmanned

aerial vehicles (UAV). UAS can be utilized in situations which may be hazardous to

human operators, such as assisting wild land fire fighters [2–6], search and rescue in

hazardous conditions or locations [7–11], and disaster remediation [12–14]. Addition-

ally, UAS can be used in repetitive or tedious work where a human operator may lose

focus such as infrastructure inspection [15–17], agricultural inspections [18, 19], and

environmental sensing [20]. By using UAS in these repetitive applications, accuracy

and precision can be maintained where a human operator might make an error.

Interest in the UAS industry has grown rapidly, but practical applications are

hindered by challenges that limit their usefulness for real world applications. For
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example, UAS rely heavily on a global positioning system (GPS) for self localization.

This works well in many situations, but severely limits their use in GPS-denied en-

vironments. Additionally, most UAS have limited sensing capabilities for real-time

obstacle detection. Aside from sensing specific challenges, UAS also require advanced

mapping, planning, and navigation algorithms to safely navigate and interact with

their surroundings.

This thesis presents an extended potential field controller (ePFC) which enables

an aerial robot to safely navigate to a target location while simultaneously avoiding

obstacles in its path as demonstrated in Fig. 1.1. This thesis presents the design,

simulation, and implementation of the novel ePFC on an ARDrone 2.0 quadcopter in

a laboratory environment with an external motion capture system [1].

1.2 Contribution

The contribution of this work is the design, simulation, and experimental implemen-

tation of an extended potential field controller (ePFC) for navigation of an aerial

robot. The extended potential field controller presented enables the robot to not

only smoothly navigate towards a target position but to also avoid both static and

dynamic obstacles in its path. The ability to safely navigate in a dynamic environ-

ment is critical for the implementation of robots in real-world scenarios as outline in

Section 1.1.

1.3 Organization

This thesis is organized as follows. Chapter 2 presents a brief introduction to un-

manned autonomous systems, sensing systems, and control methods. Chapter 3
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Figure 1.1: Using an extended potential field controller, an aerial robot can safely
navigate to a target location while avoiding obstacles in its path.

presents the development of the quadcopter system dynamics, which is used as the

experimental platform for this thesis. Chapter 4 presents the mathematical design

and development of the extended potential field controller. Chapter 5 presents simu-

lations based on the developed model, system characteristics, and controller. Chapter

6 presents experimental results and discussion. Finally, Chapter 7 discusses thoughts

on future work and concludes the thesis.
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Chapter 2

Background

2.1 Unmanned Autonomous Systems (UAS)

Unmanned autonomous systems (UAS) are robotic systems which can perform tasks

autonomously without human input. Because there are no human operators or pas-

sengers on-board, UAS can perform tasks in areas that may be dangerous (e.g., ex-

treme environmental conditions, areas affected by chemical weapons, in enemy terri-

tory, or radioactive fallout regions). In addition to uses where preservation of human

life is paramount, UAS also have great potential for tedious and repetitive tasks

during which a human operator is prone to error such as industrial, agricultural, or

infrastructure inspections. Because of their wide range of applications, and the abil-

ity to perform tasks autonomously, UAS have the potential to make a very positive

impact on our society. In the field of aerial UAS, there are two general categories of

platform: fixed wing and multirotors.



5

2.1.1 Fixed Wing

Fixed wing UAS, such as the one shown in Fig. 2.1, generally operate by employing

airfoils as the primary mechanism for lift and utilize a separate motor to propel the

aircraft forward. Because this method of flight is very efficient, fixed wing UAS are

generally well suited to missions where endurance is critical. For example, fixed wing

UAS excel in tasks such as fire monitoring, target tracking and surveillance, convoy

protection, atmospheric sampling, and general environmental monitoring - all tasks

which require extended flight times.

Figure 2.1: A fixed wing UAS produces lift by utilizing airflow over fixed airfoils, and
uses one or more engines to propel itself forward.

While efficient, fixed wing aircraft must always maintain forward movement in

order to generate lift and cannot hover in place. This is generally an acceptable

compromise for most missions where orbiting a target location at high altitude is

acceptable, but it does place limitations on the uses of fixed wing UAS. For example,

fixed wing UAS cannot operated in environments which require high levels of agility,

such as urban environments, forested areas, or indoors.
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2.1.2 Multirotors

In contrast to fixed wing UAS, multirotor UAS use multiple rotors oriented vertically

in the body frame to produce lift. Most multirotors are equipped with at least

three rotors, in which case one of the rotors must be equipped with an additional

actuator, and may have upwards of eight rotors. However, one of the more popular

configurations is the quadcopter, which utilizes four rotors as shown in Fig. 2.2 - one

pair rotating clockwise and the other rotating counter clockwise. The quadcopter is

an underactuated system, which has only four actuators and six degrees of freedom.

This leads to two of the degrees of freedom being dependent upon each other. In

order to move forward or backward, the quadcopter must change its pitch. Similarly,

in order to move left or right, the quadcopter adjusts its roll. The remaining degrees

of freedom are independent. The quadcopter can change its heading by utilizing the

moment produced by the rotating motors - increasing the angular velocity of one

pair, and decreasing the other. The altitude of the platform can be controlled by

increasing or decreasing the total thrust produced by the motors.

Figure 2.2: Multirotor UAS, such as the quadcopter shown here, produce lift by di-
rectly actuating propellers. Lateral movement is achieved through pitching or rolling
the aircraft to change the direction of the thrust vector.
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Because multirotor UAS do not depend on forward motion for lift, they are better

equipped than fixed wing UAS to handle situations which require vertical take off and

landing, high levels of agility, or the ability to hover in place. These capabilities are

very desirable in environments such as indoors, forested areas, urban environments,

or densely populated areas. However, these capabilities come at a cost - efficiency.

Multirotor UAS are not capable of the flight times that fixed wings UAS are.

2.2 UAS Sensing

While UAS have many real-world applications, current technology relies heavily upon

GPS for self-localization. This poses a problem for UAS operating in GPS-denied

environments such as in buildings, canyons, forested areas, and many urban environ-

ments. In addition to self-localization challenges, UAS also face challenges locating

potential obstacles in their surrounding environment. Because of the lack of robust

sensing schemes, much of the research in the UAS field has focused on improving

sensing and obstacle avoidance capabilities.

2.2.1 Light Detection and Ranging

One of the several promising fields of on-board sensing methods is light detection and

ranging (LIDAR). Most commercial LIDAR products provide a 2D planar sweep of

distance data with a very wide field of view (e.g., 270°) as shown in Fig. 2.3.

LIDAR is effective at sensing objects that lie within the sensing plane, but is

otherwise blind. Because of this limitation, alternate strategies must be employed to

get a full 3D view of the environment. For example, the robot can perform an ascent

while keeping its lateral position constant and stitch together horizontal sweeps to get

a full 3D representation of the environment in its field of view, as shown in Fig. 2.4.
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Figure 2.3: LIDAR provides a 2D planar sweep of distance data with a very wide
field of view. However, objects above or below the plane cannot be sensed.

There are several commercially available LIDAR units, which are quite accurate

(±50)mm and can provide range measurements up to 30m [21]. Independent studies

have found that these LIDAR units often perform better than their specifications

for most surface properties, but that shiny surfaces can produce poor results. One

such study found that maximal errors were approximately 140mm for shiny surfaces,

30mm for matte surfaces, and 32mm for gray surfaces [22]. These results indicate

that LIDAR would be a very useful sensor for robot navigation. However, sensing

obstacles with shiny surfaces at incidence angles greater than ±10° often results in

bad readings from the sensor, requiring the robot to be closer to the obstacle before

sensing it reliably, thus reducing the effective range of the sensor.

Despite this limitation, several groups have successfully investigated the use of

LIDAR as a means of localization. One group employed a reflexive algorithm in

combination with a LIDAR sensor for simulating navigation through an unknown

environment [23]. Another group developed a multilevel simultaneous localization and

mapping (SLAM) algorithm which utilized LIDAR as its primary sensing method [24].

Other groups have used LIDAR on autonomous vehicles for control and multi-floor

navigation [25,26].
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Figure 2.4: By holding lateral position constant while performing an ascent, multiple
LIDAR scans can be combined with altitude information to form a 3D representation
of an environment. In this figure, a point cloud of the environment shown in Fig. 2.3
was created using the technique described.

2.2.2 Computer Vision

Another major area of research for localization in GPS-denied environments is com-

puter vision, which utilizes cameras images and complex algorithms to gather data

about the environment. Many unmanned systems are already equipped with cameras

which are used for information gathering purposes, and as a means of manually fly-

ing without visual line of sight from a first person view (FPV). Since they are often

already equipped, cameras present a unique opportunity to minimize system weight

if they can be used for localization as well.

In the field of computer vision, there are a variety of techniques that can be used
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to gather position and attitude information. One group used a single camera, looking

at an object of known size to determined its location [27]. In this application, blob

detection using an open source computer vision library, OpenCV, was implemented

on an on-board Raspberry Pi computer. The position of the blob on the vertical axis

gives the error in altitude, while the position on the horizontal axis gives the error

in heading. To determine the range of the object, the authors develop a relationship

between the square of the pixels (area) and the range. Naturally, a smaller area

indicates a farther range and vice versa. Both a low pass filter and a Kalman filter

are implemented to mitigate noisy raw measurements.

Another group utilized a combination of LIDAR and a Microsoft Kinect sensor to

explore an unknown environment [28]. The Microsoft Kinect sensor is a very useful

sensor for robotic exploration because it utilizes image-based 3D reconstruction to

provide depth measurements. It does this by emitting a known pattern of infrared

dots as shown in Fig.2.5b, and then uses images of the environment to calculate

depths. Using depth information provided by both the LIDAR and Kinect sensor,

this group was able to map and explore an unknown environment.

(a) Microsoft Kinect sensor (b) Kinect sensor infrared dot pattern

Figure 2.5: (a) The Microsoft Kinect is a very useful tool for localization because it
provides depth information by emitting a (b) grid of infrared dots and then taking
an image in order to reconstruct the environment.

Several other groups have also successfully used computer vision as a means of
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localization [29, 30] and it is proving to be a very promising method of operating in

GPS-denied environments.

2.2.3 Summary of Sensing Solutions

While only two potential methods of UAS sensing are presented here, many others

exist or are being developed by research groups across the world. However, despite

the efforts of the research community, sensing challenges have not been completely

solved. This thesis does not attempt to solve the sensing challenges facing UAS, but

instead focuses on navigational challenges.

2.3 UAS Navigation

Navigation methods can generally be broken down into deliberative (e.g., preplanned

trajectory) and reactive (e.g., real-time control) subcategories. For example, a de-

liberative map based navigation algorithm may consider the given data and decide

upon an optimal route to take. These types of navigation systems are generally quite

computationally expensive and therefore may take a significant amount of time if

performed on board a platform with limited processing power or if the map is fairly

complex. Additionally, if the map data changes, such as the introduction of a new

obstacle, the algorithm must re-plan the entire route. Therefore, these methods are

ideal for highly predictable environments. In contrast, most reactive methods sim-

ply make the best decision they can in the moment with whatever information they

have. This generally leads to faster decision making and makes them better suited

to changing environments. However, this comes at the cost of optimization. Routes

taken by reactive navigation methods are generally not as efficient as a deliberative

method.
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2.3.1 Deliberative Algorithms

Dijkstra’s algorithm, published in 1959 by Edsger Dijkstra, is considered a foundation

of deliberative, map based navigation methods. This algorithm works by utilizing a

map which represents the environment as a graph of nodes with weighted edges such

as that shown in Fig. 2.6. The weight can be determined by distance, or any other

metric which a user would like to optimize. To begin, the starting node is given

a weight of zero, and all other nodes are assigned weights of infinity as shown in

step one in Table 2.1. Next, starting at the initial node, we evaluate any directly

reachable node by using the weights of connecting edges. If the weight of the edge

plus the weight of the current node (zero for the initial node) is less than the current

value, then the weight is updated. The algorithm then moves on to a new node which

must be unvisited, and is chosen by its weight. So, for example, moving from step 3

to step 4 of the algorithm shown in Table 2.1 only nodes B, D, and E are unvisited

and have weights 3, 5, and ∞ respectively. Therefore, the algorithm would move

onto node B and mark it as visited. This cycle of weight evaluation, updating, and

movement is repeated until all nodes have been visited. Once finished, the algorithm

can determine the optimal (e.g., shortest distance) route between any of the nodes in

the graph [31].

Table 2.1: Dijkstra’s Algorithm Progression

Step A B C D E

1 0 ∞ ∞ ∞ ∞
2 0 4 2 ∞ ∞
3 0 3 2 5 ∞
4 0 3 2 4 5

5 0 3 2 4 5

6 0 3 2 4 5

This algorithm is naturally very useful for navigation, but like most deliberative
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Figure 2.6: In Dijkstra’s algorithm, the environment is represented as a graph of
nodes connected by weighted edges. The weight can represent any cost, but is most
typically associated with distance. In this particular case, the shortest path from
node A to node E is highlighted in red.

approaches it is best used in predictable environments. Even so, it has been ap-

plied successfully in applications such as routing emergency vehicles and autonomous

cars [32, 33], as well as airline network planning [34].

Improving upon the ideas presented by Dijkstra’s algorithm, the A* algorithm

was developed in 1967 by Peter Hart. The A* algorithm works much like Dijkstra’s,

but incorporates the estimated distance from any node to the desired finish node in

the decision making process for which node to explore. We can see then, that this

algorithm relies on information from the problem domain to calculate this estimate

for each node in the graph. The algorithm functions much like Dijkstra’s in the

sense that it calculates a weight for each connected node, and moves to the nearest

(if weight is determined by distance) unvisited node. It differs in that the weight

is a summation of the Dijkstra weight and the previously calculated estimate. In

this way, the algorithm can search for the optimal path much faster than Dijkstra’s

algorithm can [35]. The applications for the A* algorithm are very similar to those

which utilized Dijkstra’s algorithm, such as route finding on roads [36], so the two

are often compared.

While these deliberative algorithms are quite good for applications such as cars on
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roads, where the roads are not likely to change, a more reactive approach is generally

required for more agile robots who are exploring unknown or changing environments.

2.3.2 Reactive Algorithms

Reactive algorithms closely couple sensors and actuators, with minimal deliberation.

For example, a very simple reactive controller on a ground robot equipped with touch

sensors on either side might react to a touch on the right by turning left. This example

is so simple in fact that there is no need for any decision making at all and the behavior

could be achieved by simple circuitry. An early example of such a system is William

Grey Walter’s tortoise robot, developed in 1949, which is a simple collection of light

and touch sensors coupled with clever circuitry to the robots actuators [37,38].

Because of their simplicity, reactive controllers do not generally achieve an optimal

route, and may even fail in finding a route at all. However, an element of early reactive

controllers are incorporated in many modern control systems.

2.3.3 Modern UAS Control

Most modern controllers are some form of hybrid between deliberative and reactive

methods. In this way, they are able to both react quickly if necessary, but can also

perform some form of optimization when choosing their trajectory. For example, one

group has very successfully implemented a trajectory generation technique based on

minimizing

∫ ( s

‖s‖

)2

(2.1)

where s is the snap, or the second derivative of the robot’s acceleration [39, 40].
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Given keyframes consisting of a position in space coupled with a yaw angle this

method is able to generate very smooth and optimal trajectories.

Other groups have successfully applied methods utilizing Voronoi diagrams [27,41]

receding horizons in relatively unrestricted environments [42], high order parametric

curves [43], and 3D interpolation [44].

What most of these methods have in common is that they require a fair amount of

computation. For example, minimizing the integral of the square of the norm of the

snap as described in the first example can require multiple iterations, and in addition

requires keyframes in order to generate an appropriate trajectory. Given a powerful

enough processor, these calculations can be made in time to react appropriately in the

environment. For example, they demonstrate their quadcopter generating a trajectory

and flying through a hoop which is tossed into the air.

However, many platforms are not equipped with a very powerful processor and

solving complex algorithms cannot practically be performed by an offboard computer.

Due to the shortcomings of reactive and deliberative methods, this thesis focuses on

a navigation algorithm which is computationally inexpensive and can react quickly

to the environment with the intent that it could be deployed onboard any platform

with the ability to sense obstacles and its own location in the environment.

2.3.4 Summary of UAS Navigation

When considering the options for a navigation system for an agile flying platform, it

is clear that a hybrid solution must be used. The importance of reacting quickly to

a dynamic environment in which new data is constantly acquired must be matched

with finding a collision free path like a deliberative method would yield. While the

methods presented here have been used with some success, their heavy computing

costs and in some cases reliance upon specific sensors make them less than ideal for
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applications on small systems which have payload limitations and limited onboard

processing power.

2.4 Summary

This chapter presented a background on unmanned autonomous systems including

their importance and applications, discussed the contrast between fixed wing and

multirotor platforms, and presented examples of sensing and navigation methods used

in UAS systems today. The following chapter presents the model for a quadcopter,

as well as the characterization of the ARDrone 2.0 used during experimentation.
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Chapter 3

System Model

This section presents the set of differential equations represent the quadcopter system

dynamics. Developing a mathematical model of a system is a fundamental step in any

controller design and develops a deeper understanding of the system in question. Once

the mathematical system and initial controller design are complete, the combined

system can be simulated and tested in an experimental setting. A brief background

on Newtonian reference frames is provided, as well as the method used to transform

between various reference frames and describe the motion of a rigid body. Finally,

the equations of motion are derived using the Newton-Euler method.

3.1 Reference Frames

To begin, it is important to introduce a set of reference frames which allow us to rep-

resent the position and orientation of a rigid body in space. These reference frames

are defined by a linearly independent set of vectors which span the dimensions of

the frame. The position and orientation of the rigid body at any instant in time is

represented by a particle at its center of mass and is described relative to a Cartesian
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reference frame in Euclidean space, E ∈ R3, which is fixed on earth at a known loca-

tion as shown in Fig. 3.1. It is assumed that this reference frame is non-accelerating,

and is therefore inertial. Additionally, the curvature of the earth is considered neg-

ligible for the scope of this work. The axes of E ∈ R3 are described by the set of

orthogonal unit vectors (êx, êy, êz) ∈ R3, where êx points north, êy points east, and

êz points toward the center of the earth.

Figure 3.1: An inertial reference frame, E, is fixed on earth, and an accelerating
body reference frame, B, is fixed at the rigid bodie’s center of mass. The position
and velocity of the rigid body are designated as

⇀
p and

⇀
v respectively. Euler rotation

matrices may be used to transform between frames E and B for a given orientation.

To simplify the derivation of the equations of motion, an additional reference

frame, B ∈ R3, is defined which is attached to the particle at the center of mass of the

rigid body. This reference frame is referred to as the body frame and is represented
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by the set of orthogonal unit vectors (b̂x, b̂y, b̂z) ∈ R3 where b̂x points forward, b̂y

points right, and b̂z points downward, perpendicular to the body. To describe the

orientation of the body, we name rotation about the b̂x to be roll,
⇀

φ, rotation about

b̂y to be pitch,
⇀

θ, and rotation about b̂z to be yaw,
⇀

ψ. It is important to note that

the body frame is non-inertial and does experience acceleration.

3.2 Euler Transformations

In order to represent a vector in either reference frame, a transformation must be

established between the two frames. Various methods exist for performing a trans-

formation between frames, including Euler rotation matrices, quaternion transfor-

mations, and angle-axis representation. For the scope of this work, Euler rotation

matrices are used, but their limitations are noted.

Three matrices fully describe the transformation between the body frame and the

inertial frame: rotation about the b̂z axis, rotation about the b̂x axis, and rotation

about the b̂y axis. Rotation about the b̂z axis (yaw) is a familiar example, common

in two dimensional transformations, and can be described by

Rψ =


cos(ψ) −sin(ψ) 0

sin(ψ) sin(ψ) 0

0 0 1

 . (3.1)

Similarly, rotation about the b̂x axis (roll) is described by

Rφ =


1 0 0

0 cos(φ) −sin(φ)

0 sin(φ) cos(φ)

 . (3.2)
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Finally, rotation about the b̂y axis (pitch) is described by

Rθ =


cos(θ) 0 sin(θ)

0 1

−sin(θ) 0 cos(θ)

 . (3.3)

While these three matrices fully described the transformation between the two

coordinate frames, it is often more convenient to combine them into a single matrix

for performing calculations. This final matrix is given by the product of (3.1), (3.2),

and (3.3) which yields

Rφ,θ,ψ =


CψCθ CψSφSθ − SψCφ CψCφSθ + SψSφ

SψCθ SψSφSθ + CψCφ SψCφSθ − CψSφ

−Sθ SφCθ CφCθ

 . (3.4)

where Sx = sin(x) and Cx = cos(x). A useful property of this rotation matrix

is that R−1
φ,θ,ψ = RT

φ,θ,ψ which can be used for transforming from the inertial frame

to the body frame if needed. However, it should be noted that if cos(θ) = 0, a

singularity occurs in Rφ,θ,ψ in which case one degree of freedom is lost. To address

this shortcoming, other methods such as quaternion representations are often used

when describing aerial robots. However, for the scope of this work, it is assumed that

the quadcopter will not see large angles and therefore will not experience gimbal lock.

3.3 Newton-Euler Equations

A classic method of deriving the equations of motion in robotics is the use of the

Newton-Euler equations. Combined, these equations fully describe both the transla-

tional and rotational dynamics of a rigid body.
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Consider the reference frame B which is attached to the particle at the robot’s

center of mass as discussed in Section 3.1. The velocity of B in E is defined as

⇀
v =

d
⇀
p

dt
, (3.5)

where
⇀
p is the position vector from the origin of E to the origin of B at the robot’s

center of mass. The translational momentum of B is given by

⇀

L = m
⇀
v, (3.6)

where m is the mass of the robot. Newton’s second law states that the sum of the

external forces acting upon an object equals the time rate of change of its translational

momentum. Therefore, the translational dynamics of the robot can be described by

∑ ⇀

F =
d

dt
(
⇀

L),

=
d

dt
(m

⇀
v).

(3.7)

For the scope of this thesis, it is assumed that mass is time-invariant. Taking the

derivative in the earth frame yields

∑ ⇀

FE = m
d
⇀
v

dtE
,

= m
⇀
aE,

(3.8)

where
⇀
aE is linear acceleration in the earth frame. The derivative can also be taken

in B in order to represent the dynamics in the body frame which yields

∑ ⇀

FB = m

(
d
⇀
v

dtB
+

⇀
ωB ×

⇀
vB

)
,

= m(
⇀
aB +

⇀
ωB ×

⇀
vB).

(3.9)
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Because B is located at the center of mass of the body,
⇀
ωB is zero and (3.9)

simplifies to be

∑ ⇀

FB = m
⇀
aB. (3.10)

While (3.10) accurately describes the translational dynamics of the robot, the

angular dynamics must still be addressed. The angular momentum of B is defined as

⇀

H = Icm
⇀
ω, (3.11)

where Icm is the moment of inertia about the robot’s center of mass. Euler’s second

law states that the sum of the torques acting upon an object equals the time rate of

change its angular momentum. Therefore, we describe the rotational dynamics using

∑
⇀
τ =

d

dt
(

⇀

H),

=
d

dt
(Icm

⇀
ω).

(3.12)

Similar to mass, we assume that Icm is time-invariant. Therefore, the time deriva-

tive of
⇀

H, taking into account a rotating frame, is found as

∑
⇀
τB = Icm

d
⇀
ω

dt B
+

⇀
ωB × Icm

⇀
ωB,

= Icm
⇀
αB +

⇀
ωB × Icm

⇀
ωB,

(3.13)

where
⇀
α is angular acceleration.

It is common to combine (3.10) and (3.13) into matrix form for a more compact

representation, given by

∑ ⇀

FB∑⇀
τB

 =

mI3 0

0 Icm


⇀
aB

⇀
αB

+

 0

⇀
ωB × Icm

⇀
ωB

 , (3.14)
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where I3 is a 3x3 identity matrix. This is the classic form of the Newton-Euler

equations for a system with B oriented at the system’s center of mass, and will be

the basis for determining the equations of motion specific to the quadcopter platform.

3.4 Quadcopter Dynamics

The quadcopter platform shown in Fig 3.2 is assumed to be symmetric about the b̂x

and b̂y axis. Thus the inertia matrix in the body frame is given by

Icm =


Ixx 0 0

0 Iyy 0

0 0 Izz

 , (3.15)

where Ixx and Iyy are equal due to symmetry.

Figure 3.2: A quadcopter is symmetric about both the b̂x and b̂y axis. Each motor

produces a force,
⇀

Ti and moment,
⇀

Mi, which are functions of the motor’s angular
velocity, Ωi.

Each of the four motors on the quadcopter has an associated force associated with

it, given by
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⇀

Ti = −kTΩ2
i b̂z, (3.16)

where
⇀

Ti is the force (or thrust) provided by the ith motor, Ωi is the angular velocity

of the motor, and kT is a constant which is a function of the specific motor and

propeller used. For the scope of this thesis, it is assumed that the density of air

remains constant and that roll and pitch are small angles. Using this, sum of the

forces is found to be

∑ ⇀

F =


0 0 0

0 0 0

0 0 mg − kT
4∑
i=1

Ω2
i



b̂x

b̂y

b̂z

 . (3.17)

Similar to thrust, each motor also has an associated moment, given by

⇀

Mi = −kMΩ2
i b̂z, (3.18)

where
⇀

Mi is the moment generated by the ith motor, and kM is a constant which is

again a function of the specific motor and propeller used. In addition to the moments

generated by the motors themselves, there are torque contributions from the moment

arms produced by the motor’s forces. The sum of the torques is found to be

∑
⇀
τ =


kT (Ω2

3 − Ω2
4)l 0 0

0 kT (Ω2
1 − Ω2

2)l 0

0 0 −kM(Ω2
1 + Ω2

2 − Ω2
3 − Ω2

4)



b̂x

b̂y

b̂z

 , (3.19)

where l is the length of the quadcopter’s arms.

From (3.17) and (3.19), we can see that linear translational dynamics are closely
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coupled with the rotational dynamics. This is expected because a quadcopter is an

underactuated system, having only four actuators and six degrees of freedom.

Using the result of (3.17) and (3.19) in the Newton-Euler equations, we find that

the dynamics of the system in the body frame, B, and assuming small roll and pitch

angles are described by



⇀
ax

⇀
ay

⇀
az

⇀
αx

⇀
αy

⇀
αz


=



1
m

0 0 0 0 0

0 1
m

0 0 0 0

0 0 1
m

0 0 0

0 0 0 1
Ixx

0 0

0 0 0 0 1
Iyy

0

0 0 0 0 0 1
Izz







0

0

mg − kT
4∑
i=1

Ω2
i

kT (Ω2
3 − Ω2

4)l

kT (Ω2
1 − Ω2

2)l

−kM(Ω2
1 + Ω2

2 − Ω2
3 − Ω2

4)


−



0

0

0

θ̇ψ̇(Izz − Iyy)

φ̇ψ̇(Ixx − Izz)

θ̇φ̇(Iyy − Ixx)





=



0

0

g − kT
m

4∑
i=1

Ω2
i

1
Ixx

(
kT (Ω2

3 − Ω2
4)l − θ̇ψ̇(Izz − Iyy)

)
1
Iyy

(
kT (Ω2

1 − Ω2
2)l − φ̇ψ̇(Ixx − Izz)

)
1
Izz

(
−kM(Ω2

1 + Ω2
2 − Ω2

3 − Ω2
4)− θ̇φ̇(Iyy − Ixx)

)


.

(3.20)

These equations fully describe the motion of the quadcopter platform in the body

coordinates, and can be used for simulating the dynamics of the platform to evaluate

controller performance.
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3.5 Summary

This chapter presented a background on the concepts of reference frames used, a

review of the methods of transforming between the two reference frames, as well as a

background on the derivation of the Newton-Euler equations. Finally, the differential

equations of motion for the quadcopter platform were derived, which can be used in

for simulating the response of the system to the controller designed in Chapter 4.
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Chapter 4

Design of an ePFC

This chapter presents the development of an extended potential field controller which

builds upon the concepts used by traditional potential field controllers. Therefore, a

background on traditional potential field controllers is presented in Section 4.1, after

which the extended portion of the controller is developed in Section 4.2. Finally, the

stability of the controller is analyzed in Section 4.3.

4.1 Traditional Potential Field Controller

Because of their simplicity and elegance, potential field methods are often used for

navigation of ground robots [45–47]. Potential fields are aptly named, because they

use attractive and repulsive potential equations to draw the drone toward a goal

(attractive potential) or push it away from an obstacle (repulsive potential). For

example, imagine a stretched spring which connects a drone and a target. Naturally,

the spring draws the drone to the target location.

Conveniently, potential fields for both attractive and repulsive forces can be summed

together, to produce a field such as the one shown in Fig. 4.1. This figure illustrates
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how a robot can navigate toward a target location while simultaneously avoiding

obstacles in its path.

Figure 4.1: An example of a traditional potential field which can be used for navigat-
ing toward a target while avoiding multiple obstacles.

Let us denote
⇀
pd = [xd, yd, zd]

T and
⇀
pt = [xt, yt, zt]

T as the position vector of drone

and target, respectively. The relative distance vector between the drone and the

target is then

⇀
pdt = [xdt, ydt, zdt]

T ,

= [xd, yd, zd]
T − [xt, yt, zt]

T .

(4.1)

Traditionally, potential forces work in the x, y, and z spatial dimensions, and are

defined by a quadratic function given by
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Uatt1(
⇀
pd,

⇀
pt) =

1

2
λ1‖

⇀
pdt‖2, (4.2)

where λ1 is positive scale factor, and ‖⇀pdt‖ is the magnitude of the relative distance

between the drone and the target, which is given by

‖⇀pdt‖ =
√

(xdt)2 + (ydt)2 + (zdt)2. (4.3)

As shown in Fig. 4.1, the target location is always a minimum, or basin, of the

overall potential field. Therefore, in order to achieve the target location, the UAS

should always move “downhill.” The direction and magnitude of the desired move-

ment can be computed by finding the negative gradient of the potential field, given

by

⇀
vatt

1

d (
⇀
pd,

⇀
pt) = −∇Uatt1(

⇀
pd,

⇀
pt),

= −∂Uatt
1

∂x
− ∂Uatt1

∂y
− ∂Uatt1

∂z
,

= −∇
(1

2
λ1‖

⇀
pdt‖2

)
,

= −1

2
λ1∇‖

⇀
pdt‖2,

= −1

2
λ1∇(x2

dt + y2
dt + z2

dt),

= −λ1(xdt + ydt + zdt),

= −λ1(
⇀
pd −

⇀
pt),

(4.4)

where
⇀
vatt

1

d is the desired velocity due to the attractive position potential.

This is the classic form of a simple attractive potential field controller. However,

this does not yet take into account obstacles or other sources of repulsive potential.

The repulsive potential is proportional to the inverse square of the distance between

the drone and the obstacle and is given by
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Urep1(
⇀
pd,

⇀
po) =

1

2
η1

1

‖⇀pdo‖2
, (4.5)

where η1 is positive scale factor, and ‖⇀pdo‖ is the magnitude of the relative distance

between the drone and the obstacle.

To find the desired velocity, we again take the gradient of the potential field which

yields

⇀
vrep

1

d (
⇀
pd,

⇀
po) = −∇Urep1(

⇀
pd,

⇀
po),

= −
∂Urep1

∂x
−
∂Urep1

∂y
−
∂Urep1

∂z
,

= −∇
(1

2
η1

1

‖⇀pdo‖2

)
,

= −1

2
η1∇

1

‖⇀pdo‖2
,

= −1

2
η1∇

1

x2
do + y2

do + z2
do

,

= η1

⇀
pd −

⇀
po

(xdo + ydo + zdo)2
,

= η1

⇀
pd −

⇀
po

‖⇀pdo‖3
,

(4.6)

where
⇀
vrep

1

d is the desired velocity due to the repulsive position potential.

It is important to note that the repulsive potential is designed to have no effect

when the drone is more than a set distance away from the obstacle, P ∗, as shown in

Fig. 4.2.

Therefore, the velocity due to repulsive potentials becomes

⇀
vrep

1

d (
⇀
pd,

⇀
po) =


η1

⇀
pd−

⇀
po

‖⇀pdo‖3
, ‖⇀pdo‖ ≤ P ∗

0, ‖⇀pdo‖ > P ∗.

(4.7)

A complete traditional potential field controller is the sum of (4.4) and (4.7) which
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Figure 4.2: The repulsive force due to an obstacle should be zero when the drone
is sufficiently far from it. In this case, the limit is P ∗. While outside of this limit,
the drone is unaffected by the obstacle’s repulsive potential. However, as soon as the
relative distance becomes less than P ∗, the drone takes avoidance action.

yields

⇀
vPFCd (

⇀
pd,

⇀
pt,

⇀
po) =


−λ1(

⇀
pt −

⇀
pd) +

∑n
i=0 η1

⇀
pd−

⇀
pio

‖⇀pido‖3
, ‖⇀pido‖ ≤ P ∗

−λ1(
⇀
pt −

⇀
pd), ‖⇀pido‖ > P ∗.

(4.8)

where n is the number of obstacles present in the environment.

This controller enables a ground robot to track stationary or dynamic targets,

while avoiding any obstacles in its path. However, when applied to an agile, aerial

system such as a quadcopter, the controller’s performance is quite poor as shown in

simulations presented in Chapter 5.
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4.2 Extended Potential Field Controller

Because the potential field methods presented above are developed for ground robots,

they do not address many of the factors that must be accounted for when designing

a controller for aerial systems. For example, drones move very quickly and are in-

herently unstable which means they cannot simply move to a particular location and

stop moving. They are consistently making fine adjustments to their position and

velocity.

In order to account for factors unique to aerial platforms, this thesis presents an

extended potential field controller (ePFC) which utilizes the same concepts found

in a traditional PFC, but applied to relative velocities rather than positions. If we

consider that we are tracking a dynamic target, then the desired velocity will be that

of the target. In this case, the attractive potential will be defined as the quadratic

function given by

Uatt2(
⇀
vd,

⇀
vt) =

1

2
λ2‖

⇀
vdt‖2, (4.9)

where λ2 is positive scale factor, and ‖vdt‖ is the magnitude of the relative velocity

between the drone velocity, vd, and the target velocity, vt, which is given by

‖⇀vdt‖ =
√

(ẋdt)2 + (ẏdt)2 + (żdt)2. (4.10)

As in the traditional potential field controller, we wish to minimize the relative

velocity potential thus resulting in a matched velocity between the drone and the

target. Similar to the traditional controller, we find the desired velocity of the drone

by calculating the negative gradient, which we find to be
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⇀
vatt

2

d (
⇀
vd,

⇀
vt) = −∇Uatt2(

⇀
vd,

⇀
vt),

= −∂Uatt
2

∂ẋ
− ∂Uatt2

∂ẏ
− ∂Uatt2

∂ż
,

= −∇
(1

2
λ2‖

⇀
vdt‖2)

)
,

= −1

2
λ2∇‖

⇀
vdt‖2,

= −1

2
λ2∇(ẋ2

dt + ẏ2
dt + ż2

dt),

= −λ2(ẋdt + ẏdt + żdt),

= −λ2(
⇀
vd −

⇀
vt).

(4.11)

If we consider that the drone and an obstacle should not maintain the same

velocity, then we can design the repulsive velocity potential between the drone and

an obstacle to be an inverse quadratic as in (4.5), given by

Urep2(
⇀
vd,

⇀
vo) =

1

2
η2

1

‖⇀vdo‖2
, (4.12)

where η2 is positive scale factor, and ‖⇀vdo‖2 is the magnitude of the relative velocity

between the drone velocity,
⇀
vd, and the obstacle velocity,

⇀
vo. The corresponding

velocity for this potential function is found by
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⇀
vrep

2

d (
⇀
vd,

⇀
vo) = ∇Urep2(

⇀
vd,

⇀
vo),

=
∂Urep2

∂ẋ
+
∂Urep2

∂ẏ
+
∂Urep2

∂ż
,

= −∇
(1

2
η2

1

‖⇀vdo‖2

)
,

= −1

2
η2∇

1

‖⇀vdo‖2
,

= −1

2
η2∇

1

ẋ2
do + ẏ2

do + ż2
do

,

= η2

⇀
vd −

⇀
vo

(ẋ2
do + ẏ2

do + ż2
do)

2
,

= η2

⇀
vd −

⇀
vo

‖⇀vdo‖3
.

(4.13)

It should be noted that if the obstacle is stationary, then its velocity will be zero.

In this special case, the repulsive field in (4.12) is designed to have no effect on the

drone’s motion. Therefore, the velocity found in (4.13) becomes

⇀
vrep

2

d (
⇀
vd,

⇀
vo) =


η2

⇀
vd−

⇀
vo

‖⇀vdo‖3
, ‖⇀vo‖ 6= 0

0, ‖⇀vo‖ = 0.

(4.14)

Finally, the relative distance between the drone and obstacle,
⇀
pdo, is revisited.

In the traditional potential field controller presented in Section 4.1,
⇀
pdo was used as

the basis for a repulsive potential. However, no thought is given to the time rate

of change of the magnitude of
⇀
pdo. If we consider a situation in which the drone is

moving away from the obstacle, then ˙‖pdo‖ ≥ 0 in which case no avoidance action

needs to be taken, even if the drone is within the avoidance range. As illustrated in

Fig. 4.3, the controller is able to ignore the effect of the obstacle sooner, and therefore

can take a more direct route, thus saving time.

Furthermore, we consider that the drone should take evasive action if ˙‖pdo‖ < 0.

Therefore, a final control effort is designed as
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Figure 4.3: By taking into account the time rate of change of ‖⇀pdo‖, the controller is
able to ignore repulsive effects from the obstacle if the drone is moving away from the
obstacle ( ˙‖pdo‖ ≥ 0). This results in a more direct route to the target, thus saving
time.

⇀
vrep

3

d (
⇀
pd,

⇀
po) =


−η3

˙‖pdo‖
⇀
pdo
‖⇀pdo‖

, ˙‖pdo‖ < 0

0, ˙‖pdo‖ ≥ 0,

(4.15)

where η3 is positive scale factor.

Summing the velocities in (4.11), (4.14), and (4.15) with the traditional controller

(4.8) yields the full form of the extended potential field controller (ePFC), which is

⇀
vePFCd =

⇀
vPFCd − λ2(

⇀
vd −

⇀
vt) +

n∑
i=0

η2

⇀
vd −

⇀
vio

‖⇀vido‖3
−

n∑
i=0

η3
˙‖pido‖

⇀
pido
‖⇀pido‖

, (4.16)

where n is the number of obstacles present, ‖vio‖ 6= 0, ˙‖pido‖ < 0, and the same
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conditions discussed in Section 4.1 apply to vPFCd .

Finally, the velocity found in (4.16) must be transformed into the body coordinate

system of the drone and is found to be

⇀
vePFCd,body =

⇀
vePFCd ∗


cos(ψ) −sin(ψ) 0

sin(ψ) sin(ψ) 0

0 0 1

 , (4.17)

where ψ is the yaw angle of the drone around the body z axis.

This controller will seek out a moving target, and will also avoid obstacles that

are in close proximity.

4.3 Stability Analysis

To analyze the convergence of the proposed velocity controller (4.16) for the drone,

we use the Lyapunov theory. We can choose the Lyapunov function as follows:

L = Uatt =
1

2
λ1‖pdt‖2 +

1

2
λ2‖vdt‖2. (4.18)

This function represents the attractive potentials of the controller. The repulsive

potentials are designed to be unstable and are not considered for stability analysis.

We see that (4.18) is positive definite, and its lie derivative is given by

L∗ =
∂L

∂pdt
vdt +

∂L

∂vdt
adt,

= λ1‖pdt‖vdt + λ2‖vdt‖adt,
(4.19)

where adt is the relative acceleration between the drone acceleration and the target

acceleration.

Note that the relative velocity between the drone and the target is designed fol-
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lowing the direction of the negative gradient of Uatt(pdt) with respect to pdt as in (4.4).

From (4.11), we can obtain

adt = v̇dt =
d

dt

(
−1

2
λ2∇(ẋ2

dt + ẏ2
dt + ż2

dt)

)
,

=
d

dt
(−λ2‖vdt‖) ,

= −λ2‖
vdt(t)− vdt(t− 1)

∆t

‖,

(4.20)

where ∆t is a time step. Hence, substituting vdt given by (4.4) and adt given by (4.20)

into (4.19), we obtain

L∗ = −
[
λ2

1‖pdt‖2 + λ2
2‖vdt‖‖

vdt(t)− vdt(t− 1)

∆t

‖
]
, (4.21)

We can easily see that L∗ < 0 since ‖pdt‖, ‖vdt‖, and ‖vdt(t)−vdt(t−1)
∆t

‖ are positive.

This means that the proposed controller is stable, and the drone is able to track a

moving target.

4.4 Summary

This section presented a background on traditional potential field controllers, and

discussed the design and development of a new extended potential field controller for

use on aerial robots. Additionally, it was shown using Lyapunov stability criteria

that this controller will always converge on the target location. The following sec-

tion presents the methodology and results of simulating the ARDrone 2.0 using the

proposed controller.
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Chapter 5

Simulation

5.1 MATLAB Environment

In order to validate the developed controller, the system was simulated using a Matlab

Simulink model. The state space representation of the ARDrone’s platform dynamics

are take from the ARDrone Simulink Development Kit [48]. The complete Simulink

model shown in Fig. 5.1 demonstrates how the ePFC controller uses feedback infor-

mation from the ARDrone simulation and position estimator blocks. The output of

the ARDrone simulation block is simply the velocity of the drone, and the position

estimator uses an integrator with zero initial conditions to calculate position.

The desired path that the drone is to take is outlined in Table 5.1. A virtual

obstacle is placed at (1, 1) which places it immediately in the path of the drone

between waypoints 2 and 3. The drone is allowed two seconds at each waypoint in

an attempt to let it settle before moving on to the next waypoint.
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Figure 5.1: The Simulink model used includes a state space representation from the
ARDrone Simulink Development Kit, as well as custom blocks for the ePFC controller
described in this work.

Table 5.1: Simulation Waypoints

Waypoint X Coordinate [m] Y Coordinate [m]

1 2.5 -1

2 2.5 1

3 -2.5 1

4 -2.5 -1

5.2 Simulation results

First, a traditional potential field controller was simulated, and the resulting path is

shown in Fig. 5.2. The performance of the traditional PFC was poor as expected,

because aerial drones have very different dynamics than their ground counterparts.

Using the traditional PFC, the drone overshoots the desired waypoint, and while it

does avoid the obstacle at (1, 1) it is not by much. The drone completed a full loop

in approximately 35 seconds.



40

Figure 5.2: A traditional PFC is simulated on the ARDrone, with poor results. Be-
cause drones cannot stop instantaneously like ground robots, the drone often over-
shoots the desired waypoint. For reference, the drone takes approximately 35 seconds
to complete a full loop of the course.

Figure 5.3: Using the extended potential field controller (ePFC), the drone is able
to complete the course without overshooting the target waypoints, and avoids the
obstacle by a larger margin than the traditional controller. Because the drone does
not overshoot the target, it is able to complete the course in a shorter amount of time
compared to the traditional controller.
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Next, the ePFC is tested using the same path and obstacle position. The results

shown in Fig. 5.3 demonstrate the effectiveness of the new controller. The drone does

not overshoot the desired waypoints and avoids the obstacle by a larger margin, while

completing the course in a shorter amount of time than the traditional controller.

Table 5.2: Simulation Controller Evaluation
Controller Overshoot [%] Settling Time [sec]

Traditional PFC >19% 6

ePFC 0% 5

As outlined in Table 5.2, the ePFC controller has zero overshoot, and has a settling

time of approximately five seconds. This is a large improvement over the traditional

controller which overshoots by up to 19% and takes nearly six seconds to settle. It is

clear that the proposed controller is more appropriate for use on an aerial drone than

the traditional PFC.

Figure 5.4: A more complex simulation was performed with multiple obstacles placed
throughout the environment. The drone is able to successfully navigate between
waypoints without colliding with a single obstacle, thus demonstrating its effectiveness
in multi-obstacle scenarios.
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In addition to the comparison between the tradition PFC and the ePFC, a more

complex simulation was performed which included several obstacles placed at random

throughout the environment. The results shown in Fig. 5.4 demonstrate the that

the ePFC is very effective in multi-obstacle scenarios, and it successfully navigates

between waypoints without colliding with a single obstacle.

5.3 Summary

This chapter presented the Matlab Simulink model that was used to simulate the

drone’s response to the proposed controller. In addition, both a traditional PFC

and the proposed ePFC were simulated and a comparison was made. This compar-

ison shows that the ePFC performs much better than the traditional PFC, cutting

overshoot down from 19% to 0%, and reducing settling time by approximately 17%.
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Chapter 6

Experimental Setup, Results, and

Discussion

This chapter presents the experimental setup used to implement the proposed con-

troller. In addition, the results from implementation are presented and the perfor-

mance of the proposed controller is discussed.

6.1 Experimental Setup

The experimental platform chosen to implement the ePFC is the ARDrone 2.0 quadro-

tor shown in Fig. 6.1. This platform was chosen for its ease of communication - over

a wifi connection - as well as the safety provided by the foam hull. Additionally, the

ARDrone requires little to no setup and spare parts are readily available in case of

crashes. The ARDrone 2.0 can be equipped with a 1500 mAh battery which yields

flight times up to 18 min. Large batteries and long flight times are very advanta-

geous in a testing environment because it allows for more uninterrupted tests and less
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Figure 6.1: A low cost, commercially available quadrotor drone is used as the ex-
perimental platform for testing and demonstrating the effectiveness of the proposed
control method.

downtime recharging batteries. The ARDrone 2.0 is also equipped with a 1 GHz 32

bit ARM Cortex A8 processor, 1 GB DDR2 RAM, and runs Linux. This means that

the developed controller can be implemented onboard the drone in future work.

Sixteen Motion Analysis Kestrel cameras located throughout the testing space

provide the position and orientation of the drone, target (if not virtual), and any

obstacles present. The Cortex software suite provides a visual representation of the

environment as shown in Fig. 6.2 as well as sending data over a network connection

for use by external programs.

In order to control the drone and display its location along with the target and

any obstacles present, the Matlab GUI shown in Fig. 6.3 was created. It allows the

user to determine when the drone takes off, lands, or tracks the target. This GUI is

critical in efficient testing of the drone. Additionally, for the safety of the drone, if

the controller does not behave as expected the user can request that the drone simply

hover in place to avoid fly-aways.
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Figure 6.2: The Motion Analysis Cortex software gives the user a real-time, visual 3D
representation of the environment including camera locations and any objects sensed
by the system [1].

Drone
Target

Figure 6.3: A Matlab GUI was created to show the positions of the drone, target,
and any obstacles present. It also allows the user to control when the drone takes off,
lands, tracks the target, or simply hovers in place.
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The overview of the experimental setup shown in Fig. 6.4 demonstrates the feed-

back loop implemented. The Motion Analysis external tracking system is used for

localization of the drone and obstacles in real time. The position information is used

by the same Simulink model shown in Chapter 5 which controls the ARDrone over a

wireless connection.

Figure 6.4: The experimental setup for this work includes a Motion Analysis exter-
nal tracking system with 16 cameras which provides the position of the drone and
obstacles in the environment. The same Simulink model used in Chapter 5 provides
control commands to the ARDrone over a wireless connection.



47

6.2 Experimental Results and Discussion

Having validated the controller using the Simulink simulation, it was then imple-

mented on the actual ARDrone. Several experiments were formed, in the order out-

lined in Table 6.1.

Table 6.1: Experimental Tests

Test Number Target Obstacle(s)

1 1 - Static 0 - N/A

2 1 - Static 1 - Static

3 1 - Dynamic Square 0 - N/A

4 4 - Static Waypoints 1 - Static

5 1 - Dynamic No Pattern 0 - N/A

Because the simulation showed a clear improvement in performance between the

tradition PFC and the developed ePFC, the traditional controller was not tested on

the experimental platform. Instead, the ePFC was immediately implemented in the

experiments.

In the first test, the drone was placed approximately 4.2m from the target’s lo-

cation. Because the target wand is often held by a human, the drone was requested

to fly to 1m away from the target location to avoid collision with someone holding

the wand. The drone’s response shown in Fig. 6.5 demonstrates the capability of the

drone to achieve a goal position effectively. Starting at approximately 7.75sec, the

drone enters an autonomous mode, and achieves stable hover 1m away from the tar-

get in approximately 5sec. It is important to note that while the drone did overshoot

it’s goal location, it did not overshoot enough to get close to hitting the target. The

closest that the drone got to the target was just under 0.75m.

In the second experiment, the drone was placed approximately 5.2m away from the

target wand, and an obstacle was located in the path lying directly between the drone

and the target. Similar to the first test, the drone’s mission was to fly to within 1m of
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Figure 6.5: The results of tracking a static target with no obstacles are very good.
With an initial condition of approximately 3.2m, the drone achieves position in under
5sec.

the target, this time while avoiding the obstacle and still achieving the task. As the

drone begins moving towards the target, it also moves towards the obstacle. Because

of the repulsive forces generated by the relative position and velocity with respect to

the obstacle, the drone is elegantly pushed around the obstacle and still makes it to

the target location. Figure 6.6 shows the results of this test, demonstrating that the

drone maintains a safe distance from the obstacle (1m minimum) and also achieves

the goal.

In the third test, the drone was instructed to follow the target wand as it moved in

an approximate rectangle around the lab. The results shown in Fig. 6.7 illustrate the

path of the drone as it follows the target through the pattern. As shown, the drone

does in fact track the rectangle as instructed. Because the path of the target was

moved manually by a person holding the wand, the target trajectory is not a perfect

rectangle. Therefore, the next experiment establishes a perfect rectangle using virtual

waypoints.
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Figure 6.6: The results of tracking a static target with an obstacle in the way demon-
strates the controllers effectiveness at avoiding collisions. As expected, the drone’s
position relative to the obstacle decreases, but the drone takes avoidance action and
never gets closer than one meter away from the obstacle.

Figure 6.7: In the third experiment, the drone tracks a target which moves in an
approximate rectangle. As shown, the drone does track, but because the desired
trajectory is human-controlled the reference is not perfect. Test number four addresses
this imperfection by using set virtual waypoints.
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In test number four, virtual waypoints like those used in simulation are used to

demonstrate the ability of the drone to navigate a course and avoid obstacles. The

waypoints used for this test are outlined in Table 6.2.

Table 6.2: Experimental Waypoints

Waypoint X Coordinate [m] Y Coordinate [m]

1 1.5 -0.5

2 1.5 0.5

3 -1.5 0.5

4 -1.5 -0.5

The results from the fourth experiment shown in Fig. 6.8 and Fig. 6.9 demonstrate

that the drone successfully reaches each waypoint, and also avoids the obstacle in its

path between waypoints two and three.

Figure 6.8: To test the ePFC experimentally, the drone follows waypoints similar to
those in the simulation. The drone successfully reaches each waypoint and avoids the
obstacle in its path between waypoints two and three.
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Figure 6.9: Stills from a video demonstrate the drone taking avoidance action while
tracking moving waypoints.

To quantify the controller performance, the error in response to a waypoint change,

or step input, is shown in Fig. 6.10. The X axis error is chosen as the worst case

scenario in the experiment, having a step input of over 2.5m versus only 1m on the

Y axis.

The controller’s performance is quite good to step inputs, with an approximate

settling time of 5.5sec, and a percent overshoot of only 1.8%. A comparison between

the simulated and experimental results is outlined in Table 6.3. While the experi-

mental results do have a slightly longer settling time, and more overshoot, this is not

surprising. In a real world application, the controller is subject to disturbances such

as ground effects from propeller wash, since the drone is operating close to the ground

and desks.

As the drone approaches the obstacle, the repulsive potential pushes the drone

around it as expected. In this experiment, the drone avoids the obstacle by a margin
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Figure 6.10: The error in response to a waypoint change, or a step input, results in
a settling time of approximately 5.5sec and a percent overshoot of only 1.8%. The
X axis was chosen because the step input for this direction was the largest, at over
2.5m, whereas the Y input is only 1m.

Table 6.3: Simulation vs Experimental Evaluation

Experiment Overshoot [%] Settling Time [sec]

Simulated ePFC 0% 5

Experimental ePFC 1.8% 5.5

of approximately 0.5m. Thus, this demonstrates that the drone can successfully avoid

obstacles.

In addition to tracking static targets and virtual waypoints, a final test is per-

formed in which the ARDrone is commanded to follow the target as it moves about

the lab environment in an arbitrary pattern. During this experiment, the drone must

maintain a safe distance at all times and should always face the target. This task

was performed several times to evaluate the performance. In each of the tests the

drone successfully completes the task. Even under extreme circumstances (e.g., very
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fast maneuvers) the drone is able to recover and maintain the desired behavior. Fig-

ure 6.11 shows frames from a video [49] taken of the drone performing this task. In

the video it can clearly be seen that the drone follows the target around while always

maintaining the proper heading to face the target.

Frame: 1 Frame: 2

Frame: 3 Frame: 4

Frame: 5 Frame: 6

Figure 6.11: The third experiment demonstrates the drone tracking a dynamic target,
while maintaining the proper heading to always face the target.
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6.3 Summary

This chapter presented the experimental setup used to implement the proposed con-

troller as well as experimental results obtained. The results demonstrate that the

drone is able to successfully track both static and dynamic targets, as well as avoid

obstacles in its path.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

This thesis presented an extended potential field controller (ePFC) which augments

the traditional PFC with the capability to use relative velocities between a drone and a

target or obstacles as feedback for control. Next, the stability of the ePFC was proven

using Lyapunov methods. Additionally, the presented controller was simulated and

its performance relative to a tradition PFC was evaluated. The evaluation shows that

the ePFC performs significantly better than a traditional PFC by reducing overshoot

and settling time when navigating between waypoints. Finally, experimental results

were presented which showed the actual performance of the proposed controller.

7.2 Future Work

Future work may include using an experimental system with completely onboard

sensing capabilities. Potentially, the front facing camera on the ARDrone 2.0 could
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be used for localization using computer vision algorithms. Additionally, the controller

may be implemented onboard the drone itself. Because the ePFC presented is not

computationally intensive, it can be implemented on nearly any drone on the market

today.
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