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Abstract

With the ubiquitous availability of geo-tagged imagery and increased com-

putational power, geo-localization has captured a lot of attention from re-

searchers in computer vision and image retrieval communities. Significant

progress has been made in urban environments with stable man-made struc-

tures and geo-referenced street imagery of frequently visited tourist attrac-

tions. However, geo-localization of natural/mountain scenes is more chal-

lenging due to changed vegetations, lighting, seasonal changes and lack of

geo-tagged imagery. Conventional approaches for mountain/natural geo-

localization mostly rely on mountain peaks and valley information, visible

skylines and ridges etc. Skyline (boundary segmenting sky and non-sky re-

gions) has been established to be a robust natural feature for mountainous

images, which can be matched with the synthetic skylines generated from

publicly available terrain maps such as Digital Elevation Models (DEMs).

Skyline or visible horizon finds further applications in various other contexts

e.g. smooth navigation of Unmanned Aerial Vehicles (UAVs)/Micro Aerial

Vehicles (MAVs), port security, ship detection and outdoor robot/vehicle

localization.

Prominent methods for skyline/horizon detection are based on non-realistic

assumptions and rely on mere edge detection and/or linear line fitting us-

ing Hough transform. We investigate the use of supervised machine learning

for skyline detection. Specifically we propose two novel machine learning

based methods, one relying on edge detection and classification while other
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solely based on classification. Given a query image, an edge or classification

map is first built and converted into a multi-stage graph problem. Dynamic

programming is then used to find a shortest path which conforms to the

detected skyline in the given image. For the first method, we provide a

detailed quantitative analysis for various texture features (Scale Invariant

Feature Transform (SIFT), Local Binary Patterns (LBP), Histogram of Ori-

ented Gradients (HOG) and their combinations) used to train a Support

Vector Machine (SVM) classifier and different choices (binary edges, classi-

fied edge score, gradient score and their combinations) for the nodal costs

for Dynamic Programming (DP). For the second method, we investigate the

use of dense classification maps for horizon line detection. We use Support

Vector Machines (SVMs) and Convolutional Neural Networks (CNNs) as our

classifier choices and use normalized intensity patches as features. Both pro-

posed formulations are compared with a prominent edge based method on

two different data sets.

We propose a fusion strategy which boosts the performance of the edge-

less approach using edge information. The fusion approach, which has been

tested on an additional challenging data set, outperforms each of the two

methods alone. Further, we demonstrate the capability of our formulations

to detect absence of horizon boundary and detection of partial horizon lines.

This could be of great value in applications where a confidence measure

of the detection is necessary e.g. localization of planetary rovers/robots.

In an extended work, we compare our edge-less skyline detection approach

against deep learning networks recently proposed for semantic segmentation

on an additional data set. Specifically, we compare our proposed fusion
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formulation with Fully Convolutional Network (FCN), SegNet and another

classical supervised learning based method.

We further propose a visual geo-localization pipeline based on evolution-

ary computing; where Particle Swarm Optimization (PSO) is adopted to

find/refine an orientation estimate by minimizing the cost function based on

horizon-ness probability of pixels. The dense classification score image result-

ing from our edge-less/fusion approach is used as a fitness measure to guide

the particles toward best solution where the rendered horizon from DEM

perfectly aligns with the actual horizon from the image without even requir-

ing its explicit detection. The effectiveness of the proposed geo-localization

pipeline is evaluated on a decent sized data set.
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Chapter 1

Introduction

1.1 Skyline Detection and Geo-Localization

In computer vision community, problem of segmenting an image into sky

and non-sky regions is termed as horizon line detection or skyline extraction.

Earlier methods for horizon line detection either rely on edge detection as

preprocessing step [3, 21, 28, 29] or address the problem using supervised

(classification) [5, 6, 7, 9, 19] or unsupervised (clustering) [4] machine learn-

ing techniques. Edge based methods suffer due to edge ambiguities and result

into gaps due to clouds thus making part(s) of horizon occluded and edge

detector may miss it. On the other hand, non-horizon edges might be in-

cluded into solution horizon due to bias induced towards specific solutions

[3]. Machine learning based attempts mostly model sky and non-sky regions

and are based on the faulty assumption that horizon is a linear boundary

[6, 19]. Moreover, the non-sky regions can vary a lot and it is very hard

for machine learning algorithms to generalize across all these variations in
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the test sets [4, 8]. For example, a non-sky region could be comprised of

water, mountains, plains or mixture of all i.e. significant color and texture

variations.

In addition of being useful for applications such as port security and ship

detection[19, 20, 60, 61], augmented reality [31], UAV/MAV stability and

navigation [4, 5, 6, 7, 8, 9, 54, 55, 56], and planetary and outdoor robot lo-

calization [10, 11, 12, 57, 58, 59]; horizon/skyline has proven to be useful for

visual geo-localization of mountainous imagery[17, 36, 28, 29]. The geoloca-

tion of natural scenes is more challenging compared to urban environments

due to lack of stable man-made structures and geo-referenced street imagery.

The urban visual geo-localization of frequently visited tourist attractions has

been the true focus of research due to easy availability of geo-tagged imagery.

Recently, some attempts have been made towards geo-localization of natu-

ral/mountain scenes. In addition to the lack of geo-tagged data, natural

visual geo-localization also suffers from changed vegetation, lighting and sea-

sonal changes. Typical approaches for mountain/natural geo-localization rely

on mountain peaks and valley information, visible skylines, ridges or combi-

nations of all three [17, 28, 29, 31, 32, 33]. Skyline has been established to

be a robust natural feature for mountainous images which can be matched

with the synthetic skylines generated from publicly available terrain maps

e.g. Digital Elevation Models (DEMs). Hence, the very first step in the ge-

olocation pipeline for mountainous regions is to find the skyline in the given

query image. Most of the solutions for mountainous geo-localization rely on

user-in-the-loop methods for skyline extraction where a user is required to

mark/correct portion of the skyline [17, 29, 32, 33].
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1.2 Contributions

In this work, we have proposed two novel machine learning based horizon line

detection approaches. Instead of modeling sky and non-sky regions we model

horizon and non-horizon regions. It is important to note that horizon bound-

ary is more consistent as compared to non-sky regions, therefore methods

trained on horizon are better as compared to others trained on sky, non-sky

regions. Moreover, earlier methods are based on faulty assumptions e.g. hori-

zon being a linear boundary [6, 19] or horizon being present in the upper half

of the image [3] which is generally not the case. Our first proposed method

relies on edge detection and classification whereas the second addresses the

problem in a pure classification framework. Both approaches formulate the

resultant edge/classification map as a multi-stage graph problem and find

a shortest path using Dynamic Programming (DP) which conforms to the

detected horizon in the given query image.

For the first approach, given a query image; Canny edge detector is ap-

plied first with a range of thresholds to keep only those edges which survive

over a wide range. The surviving edges are termed as Maximally Stable Ex-

tremal Edges (MSEEs). The number of edges is further reduced significantly

by classifying the MSEEs into horizon and non-horizon edges using a trained

classifier. Dynamic programming is then applied on horizon classified edges

using any of the available nodal costs. We investigate the suitability of various

local texture features and their combinations as feature choices for the trained

horizon classifier. Specifically, we explore SIFT [14], LBP[13], HOG[15] and

their combinations SIFT-LBP, SIFT-HOG, LBP-HOG and SIFT-LBP-HOG
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as features to train an SVM [26] classifier. We evaluate various nodal costs

for dynamic programming e.g. binary edge scores, normalized classification

scores for horizon classified edges, gradient information and their combina-

tion.

In the second proposed approach, we use machine learning and Dynamic

Programming to extract the horizon line from a classification map instead

of an edge map. The key idea is assigning a classification score to each

pixel, which can be interpreted as the likelihood of the pixel belonging to

the horizon line, and representing the classification map as a multi-stage

graph. Using DP, the horizon line can be extracted by finding the path that

maximizes the sum of classification scores. In contrast to conventionally

used edge maps which are typically binary (edge vs no-edge) and contain

gaps, classification maps are continuous and contain no gaps which yields

significantly better solutions. We use normalized intensity patches as feature

choice for this method and train SVM [26] and CNN [27] classifiers.

Both of our formulations allow us to remove certain assumptions which are

common to earlier methods such as the horizon is close to the top of the image

or that the horizon forms a straight line. The purpose of these assumptions

is to either bias the DP solution or simplify the underlying segmentation

problem but they fail to produce good results when not valid. The proposed

formulations are compared with an earlier prominent approach which relies

only on edge information and is based on faulty assumption of horizon being

present in the upper half of the image [3]. The results are reported for two

challenging data sets (125 images in total) i.e. Baslat Hills data set (45

images) and Web data set (80 images) comprised of mountainous images
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captured during an outdoor robot exploration and randomly chosen from

the web with considerable viewpoint, scenic and weather changes. For both

approaches although our training set is comprised of a very small number of

images from the same location, yet our results illustrate that our methods

generalize well to images acquired under different conditions and geographical

locations and outperform the traditional method based only on edges.

Using the same data sets, we evaluate the performance of each of our

proposed approaches and identify specific cases where one outperforms the

other. Next, we propose a straight forward fusion strategy which boosts the

performance of the edge-less approach using edge information. The fusion

approach, which has been tested on an additional data set [17] – CH1 data

set; outperforms each of the two proposed methods alone.

Our proposed framework allows verification of a found horizon solution

and is capable to detect absence of horizon boundary and detection of par-

tial horizon lines. In many applications where the horizon line is used for

rover/robot localization and navigation, it is important not only to detect

the horizon line but also to report a confidence measure of the detection.

This is useful in many cases, for example, when the horizon line in not visi-

ble in the image. A by-product of the proposed edge-less/fusion approaches

is a confidence measure corresponding to the normalized sum of classifica-

tion scores along the path found by DP. Using a Bayesian approach, we can

determine whether the path found corresponds to the horizon line or some

other irrelevant path. This could also be used as a validation step where the

method misses the actual horizon line and finds another solution instead. The

statistical measure along the found path can be used to reject such faulty
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detections. Moreover, we demonstrate how the proposed approach can be

adapted to handle partially visible horizon lines. This is quite useful since

localization is still feasible, at least from a theoretical point of view, using

partially visible horizon lines. We demonstrate both capabilities of our pro-

posed formulation on additional images which are (i) either missing a skyline

completely or (ii) have partial skylines.

Next, we provide the comparison of our edge-less horizon detection ap-

proach with three other recently proposed methods; one focused on visual

geo-localization but relying on accurate skyline segmentation [33] and other

two methods proposed for general semantic segmentation – Fully Convolu-

tional Networks (FCN) [42] and SegNet[43]. Each of the classical machine

learning based methods is trained on a common training set [17] (CH1) which

comprises of 203 images whereas models for the deep learning methods are

fine tuned for sky segmentation problem through transfer learning using the

same data set. Each of these four methods is tested on an extensive test set

(about 3K images) covering various challenging geographical, weather, illu-

mination and seasonal conditions from Alps. We report mean dice coefficient

and average absolute pixel error for each of the presented formulation.

Using our edge-less/fusion framework, we propose a mountainous visual

geo-localization pipeline which relies on evolutionary computing specifically

Particle Swarm Optimization (PSO). Given previous rough estimates of the

camera orientation and known Global Positioning System (GPS) and camera

intrinsics, PSO tries to find the orientation estimates that perfectly align the

rendered horizon from a 3D Digital Elevation Model with the one viewed

in the 2D imagery. We use the dense classification score image resulting
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from our horizon classifier as the fitness measure for PSO. For a given PSO

particle (orientation estimate), the synthetic horizon is rendered from DEM

and overlaid on the classification score image. The horizon-ness score of all

the pixels belonging to rendered horizon is average out which serves as the

fitness of the current solution (orientation estimate). This idea stems from

the observation that pixels belonging to the vicinity of true horizon have more

classifications scores. Hence the particles would drive towards this narrow

search space around true horizon where a best solution is eventually found

that aligns well with the true horizon.

Our final contribution is the evaluation metrics being used to measure the

performance of horizon line detector. It should be noted that all performance

comparisons reported in this thesis are based on the absolute average error

between the solution found and ground truth. Previously, detection results

were reported in the form of a percentage (e.g., what percentage of the hori-

zon line was detected) which does not provide a true quantitative evaluation

of horizon line detection methods. To the best of our knowledge, the only ex-

ception is the work of Hung et al. [2] who also reported the absolute average

error.

1.3 Thesis Organization

Following this chapter, we provide a brief literature review (chapter 2) of

earlier horizon detection methods and visual geo-localization approaches and

list the details of a prominent horizon line detection method by Lie et al.[3]

which relies solely on edge detection. In chapter 3 we outline the details
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of our proposed edge-less and edge-based horizon line detection methods.

Chapter 4 provides the experimental details and results for different data

sets for both proposed methods and their comparisons against Lie et al. [3]

formulation. Additionally, this chapter details the proposed fusion approach

which is evaluated on an additional data set. In chapter 5, we demonstrate

the capability of proposed framework to detect the absence of horizon and

partial horizon detection. Chapter 6 presents the comparison of our edge-less

approach against three other methods on an extensive data set. In chapter

7, we describe our proposed geo-localization pipeline and detail some results.

Thesis is concluded in chapter 8 with concluding remarks about the presented

methods and listings of the future work which can be further explored in

follow up studies.
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Chapter 2

Literature Review

2.1 Skyline Detection

Horizon/Sky line detection or sky segmentation is the problem of finding

a boundary between sky and non-sky regions (ground, water or mountains)

given a gray scale or color image. Previous attempts to horizon line detection

can be categroized into two major groups; methods modeling sky and non-

sky regions either by some machine learning algorithms – both supervised

and unsupervised approaches [4, 5, 6, 7, 9, 19] or methods relying on edge

detection as the essential pre-processing step [3, 21, 28, 29]. Recently some

attempts [1, 2] have been made to combine these two ideas to refine the edges

by training classifiers but broadly these attempts also fall under the second

category as they are not possible without edges being detected. Most of the

earlier methods to horizon detection suffer from the assumption of horizon

boundary being linear and hence are limited.

In [6], Ettinger et al. proposed the use of horizon line for flight stabil-
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ity and control of MAVs. Their horizon detection approach is based on the

assumptions that the horizon is linear and it segments the image into two

regions of significantly different appearance (sky and non-sky). Using RGB

color information, the sky and ground regions are modeled using Gaussian

distributions. Since it was assumed that the sky and ground regions fol-

low a Gaussian distribution, which is not always valid, Todorovic et al. [9]

proposed a general statistical image modeling framework to build prior mod-

els for sky and ground. Unlike the work in [6], they found both color and

texture to be critical for building priors. They used color (Hue, Intensity)

and texture (Complex Wavelet Transform (CWT), magnitude only) to train

a Hidden Markov Tree (HMT) model using the expectation maximization

(EM) algorithm. The posterior likelihoods for two classes at different scales

are fused together and Bayesian segmentation is performed to separate the

sky and non-sky regions. McGee et al. [7] used sky segmentation as an ob-

stacle detection tool for small scale UAVs. They trained an SVM classifier

based on YCbCr color information to classify pixels into sky and non-sky

regions. Morphological erosion and dilation operators were applied on the

resultant binary image to rectify misclassifications. Next, they used Hough

Transform on the border pixels to cast votes for candidate linear horizon

boundaries. The approach of Fefilatyev et al. [19] is also based on the hori-

zon boundary being linear; it uses color and texture features such as mean

intensity, entropy, smoothness, uniformity etc. to train an SVM, a J48 and

a naive Bayes classifier. Their experiments are limited to two sets of ten

images each and their method fails to detect good linear horizons for two out

of ten images due to reflection of water and presence of fog. In [36], Liu et al.
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have proposed a sensor fusion approach to estimate the horizon line using a

textured Digital Elevation Map (DEM), an airport model, GPS, AHRS and

vision sensors. Their objective was to estimate an accurate linear horizon

boundary from an aircraft in low visibility conditions; their approach does

not generalize to non-linear horizons.

Croon et al. [5] extended the features used in[19, 6, 9, 7] by includ-

ing corner-ness, grayness and Fisher Discriminant features to train shallow

decision trees. Their approach was tested in the context of MAVs for ob-

stacle avoidance and is able to detect non-linear horizon boundaries. The

fusion-based approach of Yazdanpanah et al.[22, 62] combines the output of

a Neural Network (NN) with K-means clustering and is based on the same

texture features such as in [5, 19]. Their system is based on various heuris-

tics and parameters setting that might not generalize well to different data

sets. In [4], Boroujeni et al. also rely on clustering for horizon line detec-

tion. Their method is based on the assumption that a dominant light field

exists between sky and non-sky regions right above the horizon. They have

investigated K-means and intensity based clustering to find this light field

in various images. In general, the assumption about the presence of a light

field is not always valid under different seasonal conditions or geographical

locations and the data set being used in [4] is not general enough to justify

such a strong assumption. Thurrowgood et al. [8] used horizon detection

for UAV attitude estimation. In their approach, a projection onto a single

line in the RGB color space is found by minimizing the overlap of the sky

and non-sky classes. This is somewhat similar to the Fisher Discriminant

used by Ettinger et al. in [6] but it is computationally less expensive. In
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[35], Neto et al. proposed a robust horizon line detection algorithm using

Otsu segmentation and Hough transform for real-time autonomous naviga-

tion. Braun and Singhof [41] proposed a seed growing algorithm where the

top row of the image is assumed to be part of the sky. This sky region is

then grown based on the assumption that the distance of the current pixel’s

brightness from a local brightness mean is smaller than a fixed percentage

of the global standard deviation. This method is heavily dependent on the

percentage factor. Moreover, the results reported are based on a very small

image set (18 images) from the Switzerland data set [17] and no quantitative

comparison with the ground truth is provided.

Dusha et al. [39] used horizon line information with optical flow for at-

titude estimation of fixed-wing aircrafts. In their approach, edge detection

is performed separately in each smoothed color channel. The detected edges

from each channel were combined in a single map and the horizon line was

found using Hough voting. Shen et al. [38] proposed an edge-based hierar-

chical approach for horizon line detection where coarse-level detection was

performed first followed by fine-level adjustments. They successively per-

formed Canny edge detection and Hough voting on a low pass filtered image

to find the strongest lines. Using the five highest peaks in the Hough space,

the best line was chosen based on average edge strength. The straight line

chosen is refined, essentially becoming non-linear, using edge position and

strength information. The results reported are based on synthetic images

generated from Google maps which do not reflect if the idea generalizes to

real images. Gershikov [40] provides a comparison between gray scale and

color based horizon detection methods which rely on edge detection and
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Hough transform. In [37], Shen and Wang proposed a simple gradient mag-

nitude based sky segmentation approach. By redefining the energy function

proposed by Ettinger et al. [6], their approach is applicable to general curves

instead of a linear boundary.

The most prominent method belonging to the edge detection based ap-

proaches is that of Lie et al. [3] where horizon line detection is formulated as

a graph search problem. Their approach relies on edge detection and assumes

a consistent edge boundary between sky and non-sky regions. The detected

edge map is represented as a multi-stage graph where each column of the

image becomes a stage in the graph and each edge pixel becomes a vertex.

The shortest path, extending from the left-most column to the right-most

column, is then found using DP. It should be mentioned that the assumption

that the horizon boundary is a consistent edge boundary is rarely true in

practice due to environmental conditions (e.g., clouds, fog, mist) and edge

gaps. To address the issue of gaps, Lie et al. [3] have proposed a gap-filling

step which highly depends on the choice of certain parameters. Moreover,

they assume that the edges in the upper half of the image belong to the

horizon boundary and hence introduce a bias to find the horizon solution in

that region. However, the edges in this region may very well be due to the

presence of clouds.

2.1.1 Lie et al. [3]

This section briefly details the approach used by [3]. Since, we also formu-

late our approaches as a multi-stage graph problem, it seems necessary to
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provide the details of original approach by [3] so that we can point out the

problems with underlying assumptions by [3] and identify various similarities

and differences of our proposed approaches.

Lie et al. [3] formulated the problem of horizon detection as a multi-stage

graph search problem. Given an image, edge detection is applied first. The

detected edges are then used to form a multi-stage graph and DP is applied

to extract the horizon line by finding the shortest path. This approach is

based on the assumption that the horizon is present in the upper half of

the image. Specifically, given an image of size M × N , edge detection is

performed to compute a binary edge map E where 1 implies the presence of

an edge pixel and 0 a non-edge pixel.

E(i, j) =


1, if (i, j) is an edge pixel.

0, otherwise.

(2.1)

The edge map is used to build an M×N multi-stage graph G(V,E,Ψ,Φ)

where each pixel in the edge map corresponds to a graph vertex; a low cost

l is associated with edge pixels while a very high cost (i.e., ∞) is associated

with non-edge pixels as shown below:

Ψ(i, j) =


l, if E(i, j) = 1.

∞, otherwise.

(2.2)

Ψ(i, j) is the cost associated with vertex i in stage j (i.e., vij). The graph can

be visualized as an N (columns) stage graph where each stage contains M

nodes (rows). To deal with edge gaps, a gap filling approach was proposed.
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Given a node i in stage j, its neighborhood in the next stage j + 1 is defined

by a δ parameter, that is, the number of nodes to which i could be connected

in stage j + 1. The edges from i to its neighbors are associated with costs

equal to the vertical absolute distance from it as shown in the equation below.

Φ(i, k, j) =


|i− k|, if E(i, j) = E(k, j + 1) = 1

and |i− k| ≤ δ

∞, otherwise.

(2.3)

If a node i in stage j cannot be connected to any node in stage j + 1 within

δ neighborhood, a search window is defined using δ and tolerance-of-gap

(tog). Once an edge node k is found in the search window, the gap filling is

performed by introducing dummy nodes between node i in stage j and node

k. A high cost is associated with the dummy nodes introduced by the gap

filling step.

Once the gaps have been filled with high cost dummy nodes, the cost of

the nodes in stages 1 and N is increased based on the vertical position of the

nodes as shown by the equation below:

Ψ(i, j) =


(i+ 1)2, if j = 1 or j = N

Ψ(i, j), otherwise.

(2.4)

This enforces the assumption that the horizon line is present in the upper

half of the image and hence biasing the DP solution towards a shortest path

present in the upper half. Next, a source s and a sink t are added to the

left of the left most stage (i.e., stage 1) and to the right of the right most



16

Figure 2.1: Illustration of the horizon detection steps using the method of
Lie et al. [3]

stage (i.e., stage N) respectively. A zero cost is associated with each one

of them. The s node is connected with all the nodes in stage 1 and all the

nodes in stage N are connected to node t. The horizon boundary is detected

by finding the shortest path extending from node s to t using DP.

Figure 2.1 illustrates the steps of Lie et al. [3] for a sample image. An

edge map is shown in Figure 2.1-(a) where black and white circles represent

edge and non-edge pixels respectively. A search window (highlighted by blue

circles) is shown in Figure 2.1-(b) for the edge node in stage j = 5 using

δ = 1 and tog = 4. Within the search window j+tog, two edge nodes are
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discovered which are then connected to node j by introducing dummy nodes

as shown in Figure 2.1-(c,d) (highlighted in green). So, there exist two equal

cost paths 2.1-(e,f) in the resultant image, highlighted in magenta. However,

the nodes in stage 1 and N are set to a higher cost associated with their

vertical positions; this is reflected by an increasing intensity in Figure 2.1-

(g). Two nodes s and t (cyan) are then introduced, as described above, and

DP is applied on this graph. As shown in figure 2.1-(e,f) the two paths have

the same cost, however the bias introduced in 2.1-(g) would make the upper

path of lower cost and DP will select this path due to the assumption of the

horizon line being present in the upper half. However, it might be possible

that the true horizon line is actually the lower one and that the upper edge

segment was only due to some clouds.

We would show various specific examples in another chapter where this

method failed to detect a portion of horizon due to this bias associated with

the location of horizon.

2.2 Visual Geo-Localization

With the massive availability of geo-tagged imagery and increased computa-

tional power, geo-localization or geolocation has captured a lot of attention

from researchers in computer vision and image retrieval communities. Signif-

icant progress has been made in urban environments with stable man-made

structures and geo-referenced street imagery of frequently visited tourist at-

tractions [44, 45, 46]. Recently some attempts have been made towards

geo-localization of natural/mountain scenes which is more challenging due
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to changed vegetations, lighting and seasonal changes and lack of geo-tagged

imagery. Typical approaches for mountain/natural geo-localization rely on

mountain peaks and valley information, visible skylines, ridges or combina-

tions of all three [63, 64, 28, 17, 29, 31, 66, 32, 65, 33]. Skyline has been

established to be a robust natural feature for mountainous images which can

be matched with the synthetic skylines generated from publicly available ter-

rain maps e.g. Digital Elevation Models (DEMs). Hence, the very first step in

the geolocation pipeline for mountainous regions is to find the skyline in the

given query image. Most of the solutions for mountainous geo-localization

rely on user-in-the-loop methods for skyline extraction where a user is re-

quired to mark/correct portion of the skyline [17, 29, 32, 33]. Making a truly

autonomous horizon/skyline detector would definitely advance this research

dimension.

Using silhouette edge matching, Baboud et al. [28] estimate the pose of

camera relative to geometric terrain model assuming known viewpoint and

FOV estimates. Effectively, a rotation g ∈ SO(3) is searched which maps

the camera frame to the terrain frame. They developed a robust silhouette

matching metric to cope with inevitable noise affecting detected edges (com-

pass edge detector is used). Since, a direct extensive search on SO(3) is based

on their devised metric is quite expensive, therefore they also proposed a pre-

processing search space reduction step based on spherical cross-correlation of

2D edge orientation vectors. They reported that 86% of 28 images were cor-

rectly aligned belonging to two distinct mountain regions with matching error

below 0.2◦. Baatz et al. [17] proposed a visual geo-localization pipeline based

on bag-of-curvelets; where shape information is aggregated across the whole
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skyline of a query image and a similar configuration of shapes is searched in

a large scale database of panoramic skylines (extracted offline from DEMs).

In addition to encoded contourlets, the viewing direction for each descriptor

is also saved which is used for on-the-fly geometric verification in an inverted

file search framework. Since, they are comparing 10◦ − 70◦ views with 360◦

panoramas, they redefine the weighted L1-norm to implement “contains”-

semantics instead of conventional “equal”-semantics used for visual words

(curvelets) matching. The most promising coarse estimation for the view-

ing azimuth direction is used to initialize Iterative Closest point (ICP) while

keeping other two angles at zero which determines a full 3D rotation. The

average alignment error between two visible horizons is used to re-rank the

candidates in ICP framework. They reported an 88% recognition rate on

their challenging data set comprised of more than 200 images where deter-

mined position was within one kilometer radius of the ground truth. It should

be noted that about half of their images required manual interaction at

the sky segmentation stage.

Similar to Baatz et al. pipeline [17], Tzeng et al. [29] also proposed a

localization approach which they used specifically for desert imagery. How-

ever, instead of curvelet features, concavity-based features across query and

synthetic skylines are used for matching without any use of meta-data such

as GPS, FOV and focal length. In contrast to [17] where overlapping curvelet

descriptors are generated for pre-defined angular width, they generate con-

cavity descriptors around detected points of extreme curvature. Furthermore,

a similarity transformation is applied on features to achieve scale and in-plane

rotation invariance. The endpoint matching and features shape matching is
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accomplished through geometric hashing and k-d trees respectively. Ranked

database skylines from both matchers (endpoint and shape) are further re-

fined using alignment error based on sampling of overlapping regions between

query and database skylines. It is interesting to note that in their method,

skyline in the query image is first roughly marked by a user and further

refined by edge detection and Dynamic Programming framework as detailed

in Lie et al. [3].

Porzi et al. [31] also addressed the same image-to-world registration prob-

lem, however, in the context of an Augmented Reality based smart phone

application. They first computed rough estimates for position and orien-

tation from phone’s on-board GPS and inertial sensors. These estimates

are then refined by matching the skylines extracted from images taken by

phone’s camera and rendered from DEMs generated on a server. In princi-

ple, their approach is closer to that of [28] since they also assume roughly

known position and orientation. However, they rely on a learning based edge

filtering approach which results in an improved accuracy and computational

cost desirable for a smart phone application. Based on the orientation es-

timation from device’s inertial sensors, skyline detected from the phone’s

camera image and rendered profiles received from the server define a search

space around the rough estimate which is explored by Particle Swarm Opti-

mization (PSO) for refined orientation estimation [31]. This is accomplished

by maximizing the objective function based on the matching between the

skyline contour and contours projected (pin-hole camera projection model)

from profiles received from the server. Porzi et al. extended their work in

[69], where they explored various formulations of the original approach [31]
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along with different edge detectors and objective functions.

Like Porzi et al. [31], the work of [67] is also focused on an augmented

reality application; where extracted skyline is matched with renderred sky-

line in order to provide the local geo-spatial information to the mobile user.

Inspired from [68], Nicolle et al. [67] also generate classification score map

for the query skyline, however they rely on only pixel differences in RGB

color space due to real-time requirement of their application. To align the

renderred skyline from DEM with the classification score map, first a search

space is defined based on camera FOV and then a 3D search is conducted in

an iterative fashion. They encode the renderred skyline as set of 2D vectors

and use the weighted classification score map as their energy function. To

explore the full search space, at each iteration more vectorized DEM points

are added and transformations resulting in lower scores based on energy func-

tion are definitively removed from search space. This two step exploration

continues until the vectorized skyline is tested at full resolution. Nicolle et

al. [67] reported an average vertical distance of 3 pixels between the ground

truth and DEM based aligned skylines for their test set of 20 images.



22

Chapter 3

Proposed Skyline Detection

Methods

This chapter outlines the technical details of our two proposed skyline detec-

tion methods. In section 3.1, we briefely describe the steps involved in the

training process for the first method i.e. the edge-based method. Section 3.2

provides the details of detecting a skyline in a query image using this method.

Section 3.3 lists the details of different nodal costs which we have explored

for our first proposed method. Sections 3.4 and 3.5 respectively provide the

details of training and testing phase of our second proposed method.

3.1 Edge-based Method

In the first approach, we propose a machine learning based framework where

number of edges are reduced considerably first by Maximally Stable Ex-

tremal Edges (MSEEs) and then by using a trained SVM classifier. Different
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components of this method are presented next.

3.1.1 Maximally Stable Extremal Edges (MSEEs)

The idea of extracting MSEEs is inspired from extracting Maximally Stable

Extremal Regions (MSER) [25]. Given a gray scale image, we compute the

edge image using the Canny edge detector [30] with sigma (σ) parameter

being fixed value while varying the low and high thresholds. This results in

the generation of N binary images assuming N combinations of parameter

values have been used. The resultant binary images are named as E1 to EN .

An edge at pixel location (x, y) is considered stable if it is detected as an edge

pixel for k consecutive threshold values. The image comprised of these stable

edges is referred as MSEE image and is denoted by Em. Mathematically,

Em(i, j) =


1, if

∑N
n=1E(i, j)n > k.

0, otherwise.

(3.1)

where, En is a binary edge image corresponding to nth combination of

Canny parameters. In our experiments, we varied the high threshold of the

Canny edge detector, Th, between 0.05 and 0.95 with a step of 0.05; the lower

threshold T l was set to be 0.4× Th. It was found through experimentation

that σ = 2 and k = 3 were optimal choices. The computation of MSEE

Image reduces the number of edges considerably while keeping the important

horizon edges. Figure 3.1 shows a sample image, the output of the Canny

edge detector and the MSEEs. It can be observed that the number of edges

have remarkably been reduced in MSEE image while the edges belonging to
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the horizon line are maintained.

Figure 3.1: Effect of MSEE: (row1) input image, (row2) output of the Canny
edge detector, (row3) discarded edges by MSEE and (row4) survived edges
i.e. MSEE image.
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3.1.2 Key Points Selection

To train the SVM classifier, we manually label the horizon line pixels in the

training images using the corresponding MSEE images. A careful manual

labeling of horizon pixels is required because : (i) some portion of the true

horizon line might not be detected as edges and/or (ii) the edge detector’s

output might not match the true horizon line perfectly and/or (iii) there may

be edges which are not horizon pixels but strong enough to survive different

parameter choices. In our experiments, these manually labeled horizon pixel

indices are used for comparing the detected horizons with the ground truths

in our experiments. Figure 3.2 shows few images from Web data set with

ground horizons marked as red.

Figure 3.2: Ground truth horizon lines; highlighted in red.

The positive and negative key points for all the images in the training set

are chosen uniformly and randomly from the ground truth horizon location

and MSEE non-horizon edge locations respectively. Figure 3.3 shows the

locations of positive and negative key points for one of the training image

from Basalt Hills data set.
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Figure 3.3: Positive (red) and negative (blue) key point locations for one of
the training image.

3.1.3 Features and Classifier Training

To train an SVM classifier, we take a 16 × 16 window around each positive

and negative key point and compute the chosen descriptor. We have investi-

gated three texture descriptors as feature choices to train the SVM classifier

namely Scale Invariant Feature Transform (SIFT) [14], Local Binary Pat-

terns (LBP)[13] and Histogram of Oriented Gradients (HOG)[15]. We also

explore their combinations with each other and then all of them combined

as feature choices for our classifier.

We use the implementation of these descriptor available from vlfeat tool-

box [16] which provides 128, 58 and 31 dimensional vectors for SIFT, LBP

and HOG respectively. For each descriptor, an SVM classifier is trained

using the positive and negative instances from the training set. The combi-

nations of the descriptors are formed by mere concatenation of the feature

vectors for each training and testing instance. The feature sizes for each of

the combinations : SIFT-LBP, SIFT-HOG, LBP-HOG and SIFT-LBP-HOG

are 186, 159, 89 and 217 respectively. We have found SIFT-HOG combina-
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tion as the best choice when compared with individual descriptors and other

combinations as described in the next chapter.

Figure 3.4 shows a flow diagram for the training phase of our edge-based

skyline detection approach.

Figure 3.4: Flow diagram for the training phase of the proposed edge-based
approach.

3.2 Skyline Detection

This section describes various steps involved for the detection of horizon line

in a given query image. Figure 3.5 shows various steps of the test phase of

our edge-based approach.

3.2.1 Filtering MSEE Pixels

In the test pipeline, MSEE image Em is generated for a given query image

according to equation 3.1 . Each of the edge pixels in MSEE image is treated
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Figure 3.5: Flow diagram for the testing phase of the edge-based approach.

as a key point. The chosen descriptor is computed around the key point and

then classified as horizon or non-horizon using the trained classifier. The

resultant edge image comprises of only horizon classified edges is named E+.

If the classifier is assumed to be a binary function assigning 1/0 labels to the

input edge pixel as described in eq. 3.2,

C(i, j) =


1, if (i, j) pixel is classified as horizon.

0, otherwise.

(3.2)

then mathematically E+ can be written as,

E+(i, j) =


1, if Em(i, j) = 1 and C(i, j) = 1.

0, otherwise.

(3.3)

In addition to the reduction caused by MSEE as demonstrated in figure

3.1; horizon pixel classification further significantly reduces the number of

horizon candidate edges. Figure 3.6 shows an example to highlight the sig-
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nificant reduction in number of horizon candidate edges for a query image.

Figure 3.6: Effect of the classifier: (row1) A sample image, (row2) corre-
sponding MSEE and (row3) MSEE+ images. Note the reduction in number
of edges due to the classifier.

3.2.2 Graph Formulation for Dynamic Programming

Instead of applying the Dynamic Programming directly on the output of the

edge detector, we use the horizon classified edge image E+ to formulate the

multi-stage graph G(V,E,Ψ,Φ). So, the equations 2.2 and 2.3 are modified
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accordingly.

Ψ(i, j) =


l, if E+(i, j) = 1.

∞, otherwise.

(3.4)

Φ(i, k, j) =


|i− k|, if E+(i, j) = E+(k, j + 1) = 1

and |i− k| ≤ δ

∞, otherwise.

(3.5)

Since, the number of candidate horizon edges are reduced considerably

due to the use of MSEE and the trained classifier therefore we do not enforce

the bias towards horizon solutions in the upper half. So the equivalent to

equation 2.4 is not required in our formulation. However, any kind of gaps

are still filled following the conventional gap-filling procedure as explained

in Chapter 2. Next the source and sink nodes are added. Then the links

between the source node and each node in stages 1 are established with zero

costs. Similarly, nodes in stage N are connected to sink node with zero costs

as well. Dynamic Programming is then employed to find the shortest path

(horizon line) in this resultant graph.

3.3 Proposed Nodal Costs

Lie et al. [3] proposed the use of edges where they use binary costs to encode

the information in the multi-stage graph about a node being an edge pixel

or not. For gap filling, they initialized the dummy nodes with high costs.

Although, we reduced the number of horizon candidate edges considerably by
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the use of MSEE and trained classifiers yet using only the information about

pixels being edge or non-edge is not enough to initialize the nodal costs. It

is possible for DP to choose falsely classified horizon edges as part of the

solution. To address this, we propose the use of various nodal costs that

provide further evidence about the positively classified edges for being true

horizon edges. Specifically, we have investigated the following nodal costs.

3.3.1 Gradient Information

As our first proposed nodal cost, we use the information due to gradient

magnitudes and difference of gradient magnitudes. Unlike Lie et al.[3] and

others who formulated the multi-stage graph based only on edges, we propose

dense multi-stage graphs where each pixel would be a node of the graph and

connected to it neighbors in the next stage. However, the nodes are initialized

according to the gradient information. As gradient magnitudes are used as

an intermediate part of edge detection, the DP should find a solution where

the sum of the gradient magnitude is maximized. However, maximizing

gradient magnitude does not gaurantee a continuous solution. To enforce

continuity, we propose a second constraint that the difference between the

gradient magnitudes of two adjacent neighbors should be minimized. The

two constraints when imposed together result in the detection of the strogest

continuous curve.

It is worth noting that the gradient based approach does not involve any

kind of training and is presented here to establish the fact that using just the

constant low and high costs for edge and non-edge pixels (horizon classified
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edges in case of [1] and [2]) are not enough to find the accurate horizons.

In gradient based approach; given a query image I, the gradient magnitude

for each pixel I(i, j) of the image is computed which can be mathematically

expressed by eq. 3.6

∇(i, j) = Γ[I(i, j)] (3.6)

Where, Γ is the function which takes a gray scale image as an input and

returns the corresponding gradient magnitude image ∇. Next, the difference

of the gradient magnitude image is computed. Since, a node i in stage

j can be connected to as many nodes as defined by the δ neighborhood;

one should generate as many gradient difference images where the difference

should be taken with the node in next stage to which the current node is

being connected. The equation 3.7 below shows the making of difference of

gradient mask for connections at the same level.

d∇(i, j) = |∇(i, j)−∇(i, j + 1)| (3.7)

Since, we want to maximize the gradient magnitude while minimizing the

difference of gradient magnitude, we normalize the magnitude and difference

images between 0 and 1. The nodal costs Ψ(i, j) of the graph are then set as

a weighted combination of these two images depending upon the connection

of the current node in the next stage.

Gr(i, j) = w1 ∗ d∇(i, j) + (1− w1) ∗ (1−∇(i, j)) (3.8)
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where w1 is the weight parameter which is set to be w1 = 0.5 in our

experiments. Note that since DP solves a minimization problem, we have

used the difference (1 − ∇(i, j)) in the equation 3.8. The weighted average

Gr was used as the nodal cost:

Ψ(i, j) = Gr(i, j) (3.9)

The link costs may be initialized using equation 2.3.

3.3.2 Classified Binary Edges

The second nodal cost that we investigate is fairly similar to Lie et al. [3]

and others [2] i.e. we use the binary edge information as the nodal cost.

The only difference is that, we apply the DP on the graph formulated by

reduced number of edges due to MSEE and trained classifier. So, equations

3.3 through 3.5 are used to initialize the graph and to set the node/link

costs. We use SIFT-HOG classified edges as we would show in the results

that SIFT-HOG concatenation outperforms all other feature choices.

3.3.3 Classified Edge Score

As described earlier, using a fixed low cost for edge pixels provides only

partial information with no confidence to compare two positively classified

nodes where one might be misclassified. To enforce this knowledge in our

dynamic programming formulation, we propose a two fold use of the classifier.

First, we use classifier to distinguish between horizon and non-horizon edges

as realized by equation 3.2. Secondly, classifier is used to provide a confidence
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about an edge pixel being part of the horizon. We normalize the raw scores

provided by the classifier between 0 and 1 without using any thresholding.

The node costs are then initialized by the actual classification scores instead

of initializing all positively classified edges to fixed low cost. The equation

3.4 would be altered to reflect this information. Since, we want to find a

shortest path through DP, we assume that the values have been reversed so

a smaller value reflects an edge pixel is more probable to be a horizon pixel.

Ψ(i, j) =


S(i, j), if E+(i, j) = 1.

∞, otherwise.

(3.10)

3.3.4 Classified Edge Score with Gradient Information

In this formulation, we combine the classification information with the gradi-

ent information. By fusing equations 3.8 and 3.10, we get a new initialization

for the nodal costs;

Ψ(i, j) = w2 ∗ S(i, j) + (1− w2) ∗Gr(i, j), (3.11)

where, w2 is a scalar and we use 0.5 value to weight both the scores

equally. Figure 3.7 shows a visual representation of some of the proposed

nodal costs.

3.4 Edge-less Method

Our second proposed approach applies DP on a classification map that asso-

ciates with each pixel a classification score which can be interpreted as the
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Figure 3.7: Visualization of various types of nodal costs: (a) original im-
age,(b) gradient magnitude image,(c) difference of gradient magnitude image,
(d) weighted average Gr, (e) classification score image and (f) classification
score image + weighted average Gr.

confidence of the pixel being part of the horizon line. Most importantly, it

does not rely on edge detection, therefore, it does not require gap filling or

requirement to add dummy nodes as was essential in method proposed by

Lie et al. [3] and in our first proposed method as well. Moreover, like our

edge-based approach, we do not force the nodes in stages 1 and N to be

associated with their vertical positions since the assumption of the horizon

line being present in the upper half of the image could be violated (e.g., due

to the rover moving on a peak and looking towards the horizon).

Using the trained classifier, a Dense Classification Score Image (DCSI)

is generated which is equal to the size of an input image and used as an

M×N multi-stage graph that does not require any node initialization. Once

we have introduced the source/destination nodes s/t and decided on the

value of δ, any shortest path finding algorithm can be used to find the path

that maximizes the sum of classification scores. We will later show that the

number of nodes per stage can be significantly reduced by only considering

the pixels with the m highest classification scores where m is a parameter; we
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Figure 3.8: Main steps of the training/testing phases of the edge-less ap-
proach.

refer to this reduced map as mDCSI map. Using fewer nodes per stage does

not affect accuracy while it speeds up computations considerably. Figure 3.8

illustrates the main steps of our edge-less skyline detection approach.

3.4.1 Pixel Classification

For classification, we have experimented with two classifiers: SVM [26] and

CNN [27]. Each classifier is trained using horizon and non-horizon image

patches from a set of training images where the horizon line has been ex-

tracted manually (ground truth) as detailed in section 3.1. Specifically, for

each training image, we select N points uniformly from the ground truth;

an equal number of points is randomly selected from non-horizon locations

as shown in figure 3.3. We take a 16 × 16 normalized image patch around
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each sampled point and the resulted 256-D vector is used for training the

classifiers. It is worth mentioning that we are using pixel intensities as fea-

tures here as compared to texture features that have been used for first

method. The decision is partially biased due to the fact that we are training

a CNN classifier [27] which is expected to find features itself instead of hand

crafted features. For a fair comparison between SVM and CNN classifiers,

normalized pixel intensities are used as features for both. We normalize pixel

intensities between -1 and 1.

For the CNN classifier, we use an architecture comprising of 2 Convolution(C)-

Sub-sample(S) layers. The first C-S layer is comprised of 4 levels with a

convolution(C) mask of 5 × 5 and a sub-sampling(S) mask of 2 × 2. The

second C-S layer is comprised of 8 levels with a C mask of 3 × 3 and an

S mask of 2 × 2. For the SVM classifier, we use a linear kernel as it was

found to be equally good as the Radial Basis Function (RBF) and polyno-

mial kernels. We have only used 9 images for training the classifiers with 343

positive (horizon) and 343 negative (non-horizon) examples extracted from

each image. Figure 3.3 shows an example of horizon (red) and non-horizon

(blue) training samples. It is important to note that for both approaches,

same number of training images and same key points are used, the difference

being the feature and classifier choices.

3.5 Detection Steps

This section describes the steps involved for skyline detection through our

edge-less method. Figure 3.8 presents a visual overview of these steps.
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Figure 3.9: Edge-less skyline detection: (row1) sample test images, (row2)
respective DCSIs , (row3) mDCSIs, and (row4) detected horizon lines (high-
lighted in red).

3.5.1 Dense Classifier Score Image (DCSI)

Once the classifiers have been trained, the DCSI can be generated for a given

test image. For each pixel location in the test image, a 16×16 patch of pixel

intensities around the pixel is extracted. The normalized intensities are then

used to form a 256-D vector, which is fed to the classifier. The classification

score is then associated with that pixel location. Classification scores are

normalized in the interval [0, 1]; the resultant scores form the DCSI which is

denoted as S(i, j). In essence, S(i, j) can be interpreted as a probability map

which reflects the likelihood of a pixel belonging to the horizon line. Since,

no edge are involved; S(i, j) can directly be used to initialize nodal costs as

shown in equation 3.12. Figure 3.9 shows the DCSIs for some sample images.

Ψ(i, j) = S(i, j) (3.12)
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3.5.2 Reduced Dense Classifier Score Image (mDCSI)

Although the full DCSI can be used for horizon line detection, we have found

that keeping only the m highest classification scores in each column does not

compromise the accuracy while reducing computations. This is because the

highest classification scores are typically concentrated within a small band

around the horizon line. We refer to the reduced DCSI as mDCSI. The

multi-stage graph corresponding to the mDCSI contains fewer vertices; as

a result, fewer paths need to be considered when searching for the shortest

path which results in considerable speedups. In our experiments, we have

found that by keeping the highest 50−100 classification scores yields accurate

horizon line detections. Mathematically the mDCSI is computed as follows:

S+(i, j) =


S(i, j), if among m highest scores in col. j

c, otherwise

(3.13)

where, S+ and S correspond to mDCSI and DCSI respectively. If the i-th

pixel (node) in column (stage) j is among the m highest classification scores

for column j, the classification score from S(i, j) is used; otherwise, the score

is set to a very low score c. Figure 3.9 shows examples of the respective

mDCSIs.

3.5.3 Nodal and Link Costs

In earlier approaches [2, 3], the edge map (or classified edge map) was used

to form the multi-stage graph which requires gap filling to be an essential
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step in extracting the horizon line. Since, this approach does not rely on

edge maps, so gap filling is not required. In this approach, the mDCSI is

used to create an M × N graph G(V,E,Ψ,Φ) with node costs initialized

to mD(x,y). So, equation 2.2 can directly be transformed into 3.12 or 3.14

depending upon whether DCSI or mDCSI is used for initialization.

Ψ(i, j) = S+(i, j) (3.14)

Since the resulted graph is a dense graph, each node i in stage(column)

j is connected to three nodes i, i− 1 and i+ 1 in stage (column) j + 1 (i.e.,

δ = 1). These connections are considered as edges with zero costs similar to

first approach. However, this is in contrast to conventional approaches ([3])

where the absolute difference between the positions of nodes in two stages is

used as an edge cost.

Φ(i, k, j) =


|i− k|, if |i− k| ≤ δ

∞, otherwise.

(3.15)

Since, the horizon line might not always appear in the upper half of the

image, we do not set the nodes in stages 1 and N proportional to their vertical

position. As per [3], two dummy nodes, s and t, are introduced to the left

of stage 1 and to the right of stage N respectively. The edge weights from s

to every node in stage 1 and from every node in stage N to node t are set

to be zero – same as in our edge-based approach. The shortest path in the

resultant graph then can be found using DP.
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Chapter 4

Experimental Analysis and

Fusion

In this chapter, we list the experimental details of our work and highlight how

the two proposed methods can be combined into a fusion approach which is

more effective. In section 4.1, we outline the details of the data sets being

used and the quantitative measure that we have adopted for our experiments.

Sections 4.2 and 4.3 provide the results for edge-based and edge-less methods

respectively. We identify the failure examples for both Lie et al. and our

methods in section 4.4. The strengths and weaknesses of each of our proposed

method are discussed in section 4.5. In section 4.5, we further describe the

details of proposed fusion method and also compare this fusion strategy with

the two proposed methods described in chapter 3.
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4.1 Data Sets and Quantitative Evaluation

To evaluate the performance of our proposed approaches, we have experi-

mented with three different data sets: the Basalt Hills data set, Web data

set and Switzerland (CH1) data set [17]. The Basalt Hills data set is a

subset of a bigger data set which was generated by placing cameras on an

autonomous robot navigating through Basalt Hills [23]. We have chosen 45

images from this data set with considerable viewpoint and scene changes.

The Web data set is a collection of 80 mountainous images that have been

randomly collected from the web. This data set includes various viewpoints,

geographical and seasonal variations. The Switzerland – CH1 data set is

comprised of 203 images from the Alps, made publicly available by the au-

thors [17] along with the ground truth annotations. We use CH1 as a test

set for our proposed fusion approach.

Our training set for both approaches consists of only 9 images from Basalt

Hills data set. The resolution of all images in our data sets is 519× 1388. In

both proposed approaches, same number of positive and negative key points

are chosen from each training image. Specifically, we select 343 positive and

343 negative key points from each image in the training set. The positive

key points are chosen uniformly from the ground truth skylines whereas the

negative key points are chosen randomly from the non-horizon edge locations

belonging to both sky (edges due to clouds) or non-sky regions.

To quantitatively evaluate the performance of the proposed approaches,

we have manually extracted the horizon line (ground truth) in all the im-

ages for both Basalt and Web data sets while ground truths for CH1 data
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set have been made available by the authors [17]. To evaluate the proposed

approaches, the detected and true horizon lines are compared by calculating

a pixel-wise absolute distance between them. For each column, the abso-

lute distance between the detected and ground truth pixels is computed and

summed over the entire number of columns in the image. The resultant dis-

tance is normalized by the number of columns in the image, yielding the

average absolute error of the detected horizon line from ground truth. Since

nodes in a particular stage are not allowed to be connected to nodes in the

same stage, so the true and detected horizon lines are bound to have the same

number of columns/stages in the image/graph. Hence, there is a one-to-one

correspondence between the pixel locations in the true and detected horizon

pixel locations. Mathematically, the pixel-wise absolute distance S between

true and detected horizon lines can be described as,

S =
1

N

N∑
j=1

|Pd(j) − Pg(j)| (4.1)

where Pd(j) and Pg(j) are the positions (rows) of the detected and true

horizon pixels in column j respectively and N is the number of columns

in the given image. We have evaluated our two proposed methods on the

Basalt Hills and Web data sets. Both methods are also compared against

the traditional edge based approach of Lie et al. [3]
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4.2 Results for Edge-based Method

4.2.1 Effect of MSEE

As a first step to our edge-based proposed approach, we compute MSEE

images for all the images in our data sets. We compare the number of edges

survived after MSEE with the number of edges found by Canny edge detector

[30] of Matlab. We see a considerable reduction in the number of candidate

horizon edges which are further reduced by the classifier. Table 4.1 shows

the average percentage reduction in number of edges for both Basalt Hills

and Web data sets.

Table 4.1: Importance of MSEE
Data Set Average % Reduction

Basalt Hills 66.37
Web 43.45

4.2.2 Effect of Texture Descriptors

For our first approach, we have investigated various texture descriptors and

their combinations as the feature choices to train SVM classifiers. To compare

these feature descriptors for skyline detection problem, we have performed a

5-fold cross validation on the Basalt Hills data set. For each fold, we divided

the data set into non-overlapping train (9 images) and test sets (36 images).

Since, we have the ground truth horizons at our disposal, therefore, we know

which edges belong to true horizon and which do not. Table 4.2 shows the

percentage False Positive (FP) and False Negative (FN) errors averaged over



45

the five folds of training and the respective standard deviations. Figure

4.1 shows a graphical view of the same information. Since, false negative

error is of more importance, we choose the classifier based on SIFT-HOG

combination for further evaluation, highlighted in table 4.2 .

Table 4.2: % FP and %FN errors for various features
%FN %FP

Feature µ σ µ σ

SIFT 1.0224 0.7890 17.8090 5.6089
LBP 5.0332 8.3747 10.6366 8.0770
HOG 2.3285 2.3498 11.2331 5.6616

SIFT+LBP 0.6915 1.1827 10.6065 5.8949
SIFT+HOG 0.6624 0.7436 11.0801 5.1797
LBP+HOG 3.3647 3.6415 10.0737 6.394

SIFT+LBP+HOG 7.1887 8.1177 4.8302 4.0438

Figure 4.1: Mean of % false positive and false negative errors for various
features



46

Table 4.3: Edge-based Approach: Average Absolute Errors
Basalt Hills Web

Nodal Costs µ σ µ σ

Lie et al. [3] 5.5548 9.4599 9.1500 17.9195
Gr 3.9908 6.3530 11.8641 26.8084

SIFT+HOG Edges 0.5783 1.0227 0.8698 1.0366
SIFT+HOG Scores 0.4124 0.8120 0.9704 1.5698

SIFT+HOG Scores + Gr 0.4358 0.8124 1.3016 3.9814

4.2.3 Best Nodal Cost

We compare our proposed formulations (chapter 3) with the state of the art

horizon detection method based on edges and DP i.e. the approach by Lie

et al. To compare the detected horizon lines found by each method with the

ground truth horizons, we compute an average pixelwise absolute error using

equation 4.1. Since, in all of our formulations, we do not allow nodes to be

connected within the same stage, there exists a one-to-one mapping between

the pixels of the detected (d) horizon and the ground (g) truth horizon.

For each of our formulations and Lie at al. [3]; we compute the average and

standard deviation over all images in the data sets listed in table 4.3. Clearly,

SIFT+HOG Scores outperforms all others strengthening our understanding

that using only edge information is not enough for the nodal costs.

4.3 Results for Edge-less Method

4.3.1 Quantitative Evaluation

For the second proposed method, the results have been computed for both

Basalt and Web data sets mentioned earlier and same absolute average error
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Table 4.4: Edge-less Approach: Average Absolute Errors
Approach Basalt Hills Web

µ σ µ σ

Lie et al. [3] 5.55 9.46 9.15 17.92
Gr 3.99 6.35 11.86 26.81

SVM-mDCSI 1.01 0.29 1.28 1.20
CNN-mDCSI 0.75 0.23 1.41 1.49

is computed as listed in equation 4.1. Table 6.1 shows the average absolute

error for all the images in each data set, both for the SVM and CNN classi-

fiers. For comparison purposes, we also provide results based on the method

of Lie et al. [3] and the gradient information. It is interesting to note that

although our methods were trained using a very small number of images from

the same data set, yet they generalize well to images from other data sets,

such as the Web data set which is very different from the training data set.

4.3.2 Comparing Classifiers

Comparing the two classifiers used in our experiments for edge-less approach,

the CNN classifier outperforms the SVM classifier for the Basalt Hills data

set while SVM outperforms CNN on the other data set. This indicates that

the features found by the CNN classifier might not generalize well to different

data sets. Figure 4.2 shows some representative DCSI results using the SVM

and CNN classifiers. It is worth noting that the CNN classifier provides

a crispier DCSI, having a narrower band around the true horizon line as

compared to the DCSI produced by SVM. It might be possible to further

improve our best results by combining the SVM and CNN classifiers but we
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have not experimented with this idea.

Figure 4.2: Comparison of the classifiers: (column1) Test images, (column2)
corresponding SVM-DCSIs and (column3) corresponding CNN-DCSIs.

4.4 Discussion

4.4.1 Failure of Lie et al. [3]

Our experimental results illustrate that the proposed approaches outperform

the traditional approach of [3] based on edge maps. In particular, both

average error and standard deviation of the traditional approach are much

higher than the proposed approaches based on SVM or on both SVM and

CNN classifiers in edge-less approach. To better illustrate the performance

of the traditional approach, we have identified specific examples where it fails

to detect the true horizon line or it misses parts of the horizon. The main

reason for this is due to the presence of big gaps in the edge map. This

might happen due to different reasons, for example, horizon edges might

not be strong enough or stronger edges might exist close to the horizon line

due to various environmental effects such as clouds. Although Lie et al.



49

have proposed a gap filling approach by introducing dummy nodes with high

costs. This gap filling approach also have limitations. For instance, when

gaps are long and edges from the clouds are close to the horizon line, the gap

filling approach fails to fill these gaps. In such cases, it is likely that the DP

approach might find a low cost path by taking an alternative path. Figure

4.3 (row 1) shows two examples where the method of Lie et al. has failed to

find a good solution due to edge gaps and the presence of clouds, however,

our proposed method (edge-less) was able to find the true horizon line with

high accuracy in both cases (row 2). Figure 4.4 shows zoomed sub-images of

the left column images of 4.3 (i.e., Lie et al.) for better visualization.

Figure 4.3: Examples illustrating: (row1) missing the horizon line or parts
of it due to edge gaps (Lie et al.), and (row2) detecting the true horizon line
using our edge-less method (SVM).

Another reason affecting the performance of Lie et al. is the underlying

assumption of the horizon boundary is close to the top of the image. When

clouds are present in an image, a portion of the true horizon may be missed

if the true horizon line is below the clouds due to the bias introduced towards

solutions closer to the top of the image (equation 2.4). Figure 4.5 shows some
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Figure 4.4: Zoomed sub-images of the left column images of Figure 4.3

examples where the approach of Lie et al. has found solutions consisting of

both horizon line segments as well as cloud edge segments. Our approach,

on the other hand, was able to find the correct solution for these cases as it

does not make such assumptions.

Figure 4.5: Examples illustrating: (row1) missing parts of the horizon line
due to the assumption that the horizon line is close to the top of the image
(Lie et al.), and (row 2) detecting the true horizon line using our edge-less
method (SVM).
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4.4.2 Failure of Proposed Approaches

In an Attempt to better understand why the proposed approach (edge-less)

sometimes fails to give optimal solutions is primarily because of two reasons.

First, restricting intra-stage node connectivity and allowing succeeding stage

node connectivity. In the multi-stage graph formulation of Lie et al., a node

at stage j is only allowed to be connected to nodes at stage j+1 which is

problematic when the horizon line has high slope (i.e., steep peaks). Figure

4.6 (row 1) shows an example in which a mountain with a steep peak is

shown and Lie et al., approach fails to detect the horizon correctly. This

issue can be easily rectified by allowing to make intra as well as succeeding

stage node connectivity. Figure 4.6 (row 2) shows the solution obtained by

allowing connections within the same stage. However, this improvement is

at the expense of increased computational cost as the number of paths that

needs to be explored are more.

The second main reason affecting the performance of the proposed ap-

proach is due to the use of a very small set of training images (i.e., only

9 images from the same data set). Figure 4.7 shows some examples where

the proposed method has failed to find good solutions. This issue can be ad-

dressed by increasing the size of the training set and making it more versatile.

Careful analysis of our results on the Web data set shows that the proposed

approach failed to find a good solution in 9 out of the 80 images due to using

a small training set. For our case, we have defined a good solution which has

the average absolute error below 1.5 pixel. Removing these images from the

data set improves the average error of our approach using the SVM classifier
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Figure 4.6: (row1) effect of not allowing node connections within the same
stage; (row2) solution obtained by allowing node connections within the same
stage.

from 1.2854 to 0.9227 while the variance is reduced from 1.1988 to 0.3637 i.e.

a sub-pixel accuracy is achieved for 90% of the images.

Figure 4.8 shows some representative results of our edge-less approach

using images from both data sets.
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Figure 4.7: Examples illustrating the inability of the proposed method to
find a good solution due to the lack of sufficient training data.

Figure 4.8: Sample results illustrating our edge-less skyline detection ap-
proach: Basalt Hills data set (row1) and Web data set (row 2 through 4).
Detected horizon lines are highlighted in red/green.

4.5 Fusion of Edge-less and Edge-based

4.5.1 Edge-less versus Edge-based

For comparison purposes, Table 6.2 compares the proposed edge-less ap-

proach with the edge-based approaches using edge classification. As it is

evident from Tables 6.1 and 6.2; using machine learning for horizon line de-

tection is very promising. Both machine learning approaches outperform the
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Table 4.5: Average Absolute Errors Using Edge-based (with classification)
and Edge-less Approaches

Approach Basalt Hills Web
µ σ µ σ

SIFT+HOG Edges 0.57 1.02 0.87 1.03
SIFT+HOG Scores 0.41 0.81 0.97 1.57

SIFT+HOG Scores + Gr 0.43 0.81 1.30 3.98
SVM-mDCSI 1.01 0.29 1.28 1.20
CNN-mDCSI 0.75 0.23 1.41 1.49

classical edge-based approach [3] by a high margin. A quick look of Table 6.2

reveals that our edge-based approach outperforms the edge-less approach by

a small margin. In an effort to better understand and explain these results,

we have identified several reasons which are discussed below. Moreover, to

leverage the strengths and weaknesses of each approach, we propose a fusion

strategy.

4.5.2 Ground Truth Bias and Multiple Horizons

While generating the ground truth, we used the results of edge detection to

better localize the horizon line which favors the edge-based methods when

computing the error. Moreover, sometimes there are more than one horizon

lines in an image (e.g., lower mountains sitting in front of higher and distant

mountains); while generating the ground truth in those images, we chose the

strongest edge segments. When using edge-based methods for horizon line

detection, these segments are typically part of solution; however, this might

not be the case for edge-less methods.
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Figure 4.9: Edge-less (left column) vs edge-based (right column) horizon
detection results: (a) multiple horizons, (b) smoother localization, (c) miss-
classifications.
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4.5.3 Smoother Localization

Edge-based solutions tend to be smoother while edge-less method are typi-

cally bumpy. This is because DP tries to find a path with a low cost without

imposing any smoothness constraints on the solution which favors edge-based

methods again.

4.5.4 Miss-Classifications

Edge-less methods suffer more from miss-classifications compared to edge-

based methods. This is because every pixel is classified in the case of edge-

less methods while only a much smaller number of edge pixels are classified

in the case of edge-based methods.

Figure 4.9 shows several examples where edge-based horizon detection has

outperformed edge-less horizon detection. Figure 4.10 provides more details.

4.5.5 Fusion

We discussed in the previous section several reasons favoring edge-based

methods. On the other hand, the main advantage of the edge-less approach

is that the DCSI map contains no gaps. To improve horizon line detection,

we propose fusing information from edge-based and edge-less methods.

The fusion of gradient information with pixel classification scores is a

natural extension of equation 3.11 assuming that both Gr and S are dense

maps. Fusing edge information with pixel classifications can be performed

in two steps. First, the DCSI map (i.e., S(i, j)) is generated for the query

image which provides the horizon-ness for each pixel. Second, edge detection
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Figure 4.10: Detailed segments from Figure 4.9 : (a) multiple horizons, (b)
smoother localization, (c) miss-classifications.
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Table 4.6: Average Absolute Errors Using Fusion of edge-based (No Classi-
fication) and edge-less Information

Approach Basalt Hills Web
µ σ µ σ

SIFT+HOG Edges 0.57 1.02 0.87 1.03
SVM-mDCSI 1.01 0.29 1.28 1.20

SVM-DCSI+Gr 0.60 0.29 4.86 15.98
SVM-DCSI+MSEE Edges 0.73 0.32 0.85 0.89
SVM-DCSI+Canny Edges 0.77 0.35 0.78 0.76

is performed on the query image; then, the horizon-ness of each pixel is

boosted if that pixel happens to be an edge pixel. We have considered both

Canny and MSEE edges in our experiments. Depending on whether Canny

edges (i.e., E(i, j)) or MSEE edges (i.e., Em(i, j)) are used, equation 3.12

needs to be modified as follows:

Ψ(i, j) =


S(i, j) + b, if E(i, j) = 1

S(i, j), otherwise;

(4.2)

Ψ(i, j) =


S(i, j) + b, if Em(i, j) = 1

S(i, j), otherwise;

(4.3)

where, b is a constant added to strengthen the horizon-ness of a pixel.

Once the nodal costs have been assigned, the rest of the steps (i.e., link

costs and DP) are the same as described earlier. Figure 4.11 shows various

steps of the proposed fusion strategy. The DCSI 4.11-(b) is combined with

MSEE edges 4.11-(c) to obtain the fused DCSI 4.11-(d) which is then used

for finding the shortest path (horizon) by applying DP.
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Figure 4.11: Fusion based horizon detection: (a) query image, (b) DCSI, (c)
MSEE Edges, (d) fused DCSI, (e) detected horizon (red boundary).

Table 6.3 provides a quantitative comparison of our fusion formulations.

For completeness, we have also included the best results of the edge-based

and edge-less approaches from Table 6.2. As Table 6.3 shows, using gradient

information tends to harm the overall accuracy which is in agreement with

our earlier results using gradient information (Table 6.1). This is because

there are edges, due to clouds, with strong magnitudes near the horizon

which become part of the DP solution. Ignoring the strength of edges (i.e.,

gradient magnitude) by simply boosting the horizon-ness of edge pixels is

more effective in excluding cloud edges from becoming part of the detected

horizon line. It is interesting to note that using Canny edges for fusion is

slightly better on the Web data set than using MSEE edges; this is because

some horizon edges might not survive during the extraction of MSEE edges.

Overall, the proposed fusion approach (SVM-DCSI+Canny Edges) has
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Figure 4.12: Percentage distribution of average absolute error across images
in Switzerland data set [17]: 45% horizons detected with sub-pixel error
while 67% solution with an average absolute error of less than 5-pixels.

outperformed all edge-based and edge-less formulations.

4.5.6 Further Evaluation of Fusion Approach

To further test the fusion approach, we have considered the Switzerland

data set [17]. This data set is comprised of more than 200 mountainous

images with considerable viewpoint, terrain and weather variations. The

ground truth has been made available by the authors of [17]. Our fusion

strategy has achieved a sub-pixel average error in 90 out of the 203 images

and less than 5 pixels error in 67% of the images. Figure 4.12 shows the

distribution of absolute average error for the Switzerland data set. It should

be emphasized that these images are very challenging, not part of the data set

used to train the classifier, and captured under different seasonal conditions
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Figure 4.13: Examples of faulty detection with average error more than five
pixels: sample images (column 1 & 3), solution found by fusion approach
(column 2 & 4).

and geographical locations. It is worth mentioning that Baatz et al. [17]

have reported that human interaction was necessary for almost half of these

images in order to extract the horizon line in their localization experiments.

Also, they did not report the average errors for the detection; so it is not

clear how good the detection was for half of the images where horizon was

detected without any human involvement. Figure 4.14 shows some examples

from the Switzerland data set, along with the ground truth and detected

horizon lines using our fusion method (SVM-mDCSI+Canny Edges) while

Figure 4.13 shows some examples of faulty detections with average absolute

error beyond five pixels.

It should be noted that in most of these cases, DP found a solution which

corresponds to discontinuity caused by another mountain sitting in front
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of a distant (less discontinuous) horizon or snowy mountains having more

confidence than the actual horizon. The fusion approach did not get any

benefit from edges because both faulty and actual horizon has edge support

where as the solution has more confidence due to classifier compared to the

actual horizon. It should be noted that our training set of nine images does

not contain a single snowy image. We expect the accuracy to increase a lot

if snowy examples are added to the training set.

4.5.7 Verification

The distribution of the nodal costs along the DP solution (i.e. detected hori-

zon) provides a metric about the good-ness of the solution. We exploit this

information to verify if a found solution is actually a good/acceptable solu-

tion (error <= 5 pixels) or a faulty one (error > 5 pixels). This verification

can be of great interest; for example in visual geo-localization or planetary

rover localization; knowing that the found horizon solution is a faulty one

would save the computations in the subsequent steps of localization pipeline

i.e. DEM rendering and horizon matching etc. Specifically, we compute the

mean and standard deviation of the nodal costs for the pixels belonging to

the detected solution by DP. The mean and/or standard deviation measure

the divergence of the nodal costs for the nodes belonging to horizon solution.

The intuition being that: for a faulty solution the nodal costs along the path

would diverge and hence result in comparatively big values for mean and

standard deviation. A simple 1d/2d Gaussian classifier can then be trained

for the verification of found solutions. The computation for mean (µd) and
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Table 4.7: Percentage verification accuracies for different 1d/2d Gaussian
classifiers for the good-ness of [17] data set.

Gaussian Classifier TP TN FP FN
1D : µ vector 92.42 50.75 49.25 7.57
1D : σ vector 93.18 82.09 17.91 6.81

2D : µ & σ vectors 89.39 82.09 17.91 10.60

standard deviation (σd) are shown in the equations below,

µd =
1

N

N∑
j=1

Ψ(Pd(j), j) (4.4)

σd =

√√√√( 1

N

N∑
j=1

[
Ψ(Pd(j), j)− µd

]2)
(4.5)

where Pd(j) is the node (row) index for jth stage (column) in the detected

path, N is the number of stages in the graph for DP and cost Ψ follows from

equation 4.2.

For verification of horizon solutions found for [17] data set, we first com-

puted the µd and σd for all the images in the Web data set and formulated 1d

Gaussian classifiers based on means, standard deviations vectors alone and

a 2d Gaussian classifier based on both mean and standard deviation vectors.

These classifiers are then used to verify if a found solution is good or faulty

based on computed mean and deviation for each solution from Switzerland

data set [17]. Table 4.7 shows the percentage false positive, false negative,

true positive and true negative rates for each of these 1d/2d classifiers used

to verify solutions from [17] data set. To the best of our knowledge this is the

first attempt towards measuring the good-ness of a found horizon solution.
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Figure 4.14: Results of the proposed fusion on sample test images from
Switzerland data set [17]: query images (columns 1 & 4), ground truth seg-
mentations (columns 2 & 5) and found horizon lines (columns 3 & 6, high-
lighted in red).



65

Chapter 5

Extensions of the Proposed

Approach

Our proposed skyline detection methods can be adopted for relevant impor-

tant problems in autonomous planetary and aerial robotic platforms. For

example, confirming the presence of skyline in a scene can be very useful for

a navigating planetary rover as available limited computational power can

be used to accomplish different tasks instead. Similarly, partial horizon can

still be used for flying and terrestrial robots’ navigation. These capabilities

of our proposed skyline detection methods are demonstrated in this chapter.

In section 5.1, we demonstrate how the absence of skyline can be detected as

a by product of DCSI. Section 5.2 describes the additional components re-

quired to make our skyline detection method capable of detecting the partial

horizons.
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5.1 Non-Horizon Line Detection

The solution verification introduced in previous chapter (section 4.5.7) can

further be extended for verifying the presence/absence of horizon. In various

applications, including rover navigation, it is important to detect the horizon

line with high confidence. In the DP formulation, however, a shortest path

solution can be found irrespective of whether the horizon is actually present

in the query image or not. To the best of our knowledge, this problem has

not been addressed before in the literature either. To determine the pres-

ence/absence of the horizon line, the mDCSI map can be used again under

the same framework identified in section 4.5.7. Specifically, a narrow band

of pixels with high horizon-ness (i.e., classification scores) is typically found

around the true horizon line; the absence of such a narrow band will indicate

that the horizon line is not visible as shown in Figure 5.1. In this case, the

shortest path found will have extortionate cost than a typical solution where

the cost is defined as the sum of classification scores along the path found. A

simple Gaussian classifier can then be used to verify if the proposed solution

reflects absence of horizon in the query image same as used to verify the

good-ness of detected solution in previous chapter.

5.1.1 Results

Using a collection of 40 mountainous images from web where horizon line

was not visible, we were able to confirm that Gaussian classifier based on

Web data set correctly classified these solutions to be faulty. Some of these

examples along with their DCSIs, mDCSIs and found solutions are shown
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Figure 5.1: Absence of horizon affecting the mDCSIs, causing them to have
high scores for shortest paths: Column 1 and 4 showing images with and
without horizons respectively. Respective SVM-DCSIs (columns 2 & 5) and
mDCSIs (column3 & 6) show no continuity for non-horizon images.

in figure 5.2. It is worth noting that how DP is trying to find a continuous

path e.g. along the mountains, pathways and roads. The DCSIs generated

are based on the original proposed edge-less approach and not that of fusion

and hence the respective nodal costs used for the Gaussian classifier.

5.2 Partial Horizon Line Detection

Previous studies have not addressed the issue of partial horizon line detection

i.e. when segment of the horizon is missing and horizon not necessarily

extends from left most column to right most. When flying and ground robots

move at various angles or steep terrains, it is often the case that only a partial

horizon line is visible. From a theoretical point of view, the presence of a

partial horizon line provides sufficient information in a number of tasks, for

example, in robot localization and visual geo-localization. The problem of

partial horizon detection boils down to the problem of determining where to

place the start and sink nodes in the DP formulation. In the general case,

it is assumed that the horizon line extends from the left most column to the

right most column of the image which might not always be true as shown in
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Figure 5.2: Examples of absence of horizon line detection: sample images
(column 1), respective DCSIs (column 2) and mDCSI (column 3) and faulty
solutions found by DP (column 4, highlighted in red) which would be iden-
tified by the Gaussian classifier as faulty detections.
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Figure 5.3: Steps towards determining the start/end point for partial hori-
zons: (a) DCSI for an image with partial horizon, (b) mDCSI, (c) average
classification scores for each column, (d) smoothed averages, (e) peak cor-
responding interest point and (f) found end point marked by vertical red
bar.

Figure 5.4 (col2). The mDCSI map can be exploited to determine the end

points of the horizon boundary. Given a query image, the mDCSI map is

computed as described earlier. Then, we compute an average classification

score for each column in the mDCSI map and apply smoothing (based on

averaging) using a 1x3 window. After smoothing, the start/end points of the

horizon line are determined by local maxima detection. Figure 5.3 shows a

sample DCSI image containing a partial horizon from the Basalt Hills data

set (a), the respective mDCSI (b), the average and smoothed classification

scores (c,d), the end point detected through local maxima detection (e), and

the found end point marked on the mDCSI (f).
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5.2.1 Results

We have experimented with 40 partial horizon images collected from web

and were able to successfully find the partial horizon in 35 of them. Some

representative results of partial horizon line detection are shown in Figure

5.4 along with the end points found by our method. It should be mentioned

that very accurate detection of the start/end points is not necessary and

that extracting a portion of the horizon line would be sufficient for various

applications. We are again demonstrating these results based on edge-less ap-

proach/nodal costs and not the fusion strategy, although that can be equally

applicable.
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Figure 5.4: Examples of partial horizon line detection: sample images (col-
umn 1), respective DCSIs (column 2) and mDCSI (column 3) with deter-
mined start/end points (marked by vertical red bars) and partial horizons
found by DP (column 4, highlighted in red).
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Chapter 6

Skyline Detection using Deep

Networks

In the last five years, Deep Learning has emerged as a new dimension in

machine learning and have been successfully applied to various problems in

computer vision and specifically object detection and recognition. The core

to these methods are massive Convolutional Neural Networks, large amounts

of training data and computational resources. The underlying training algo-

rithm i.e. back propagation have been around since 1960 and was successfully

used by LeCun for digit recognition in 1980s.

Naturally, we have adopted two of the most popular deep neural networks

for skyline detection problem and have compared these nets with our method.

This chapter provides the details of a comparison of our edge-less skyline

detection approach with three other methods – two deep networks and one

instance of classical style machine learning method. In section 6.1, we list

the technical summary for each of these methods. Section 6.2 describes
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the specific details regarding training or otherwise for each of the compared

approaches. The results and experimental details are then listed in section

6.3.

6.1 Compared Skyline Detection Methods

6.1.1 Automatic Labeling Environment (ALE)

The skyline approach by Saurer et al. [33] is also based on dynamic program-

ming however the energy function being minimized is more involved. They

try to incorporate both data and smoothness constraints in the cost func-

tion. They formulate the problem as foreground(non-sky)-background(sky)

segmentation problem where a per-column highest foreground candidate is

searched subject to minimization of data term and smoothness term in the

energy function. The data term in one column evaluates the cost of all pix-

els below the candidate to be assigned to foreground class and all pixels

above above to it are assigned to the background class. The pixel-wise like-

lihoods are computed through the classifier trained on contextual and super

pixel representation. The smoothness term is based on the assumption that

all pixels on the contour should have a gradient orthogonal to the skyline.

Their pipeline also allows the user to mark foreground/background strokes

for challenging images where all the pixels above the marked stroke are as-

signed to background and those below the stroke to the foreground. Their

training was based on 203 images from the CH1 [17] set and testing was done

using 948 images from CH2 set [33].
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6.1.2 Fully Convolutional Neural Networks (FCNs)

Long et al. [42] built fully convolutional neural network (FCN) that is able

to semantically segment image into multiple classes. The network can take

input image of arbitrary size and produce semantic labeling of correspond-

ing size i.e. end-to-end training. This model exceeded other state-of-the-art

methods for semantic segmentation. The authors adapted several structures

of neural network models that were used for classification tasks (VGG net

[48], GoogLeNet[49], AlexNet[47]) and fine-tuned them for the segmentation

task. The networks were evaluated on PASCAL VOC, NYUDv2 and SIFT

Flow datasets, where they achieved state-of-the-art results for multiclass seg-

mentation. Specifically the conventional fully connected layers towards the

right end of these networks are replaced with convolutional layers. The core

of the FCN is the skip-layer architecture which combines the deep, coarse

semantic information with shallow, fine appearance information.

Figure 6.1 shows the VGG network [48] transformed into FCN32s. Each

of the convolutional (conv) layer is followed by an element-wise Rectified

Linear Unit (ReLU) and a dropout layer (only in conv6 and conv7); color

codings are provided to note the specific differences. For all the conv layers

the receptive field, zero-padding and stride are of 3, 1 and 1 respectively

except where explicitly noted as (F/P/S) to the left of the conv layer e.g.

conv1 1 has a padding of 100 and conv6 has a kernel of 7. Each module of

the conv layers is followed by a max pooling layer with a filter of size 2 and

stride 2. The number of output channels for each of the conv module are

noted with the number next to the arrow emerging from preceeding pooling
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layer. Conv layers conv6 and conv7 are each followed by a dropout layer with

50% ratio i.e. 50% of the neurons are dropped randomly in the respective

layers to ensure generalization [51]. The conv8 layer is the compression layer

responsible for compressing the 4096 channels to N channels where N is the

number of classes. The de-convolution layer (de-conv) performs up-sampling

while crop layer takes two inputs and crop the first according to the dimen-

sions of the second. The softmax loss function is used to guide the stochastic

gradient descent which takes the output of the crop layer and semantic label

equivalent to the size of images.

Given the input resolution of a conv layer, the resolution of the output can

be computed using Eq. 6.1 while Eq. 6.2 can be used for similar calculation

for the de-conv layer; Ir and Or are the resolutions of input and output to

a layer while F, P and S indentify the filter/kernel, zero-padding and stride

respectively.

Or =
(Ir − F + 2P )

S
+ 1 (6.1)

Or = S(Ir − 1) + F − 2P (6.2)

Transfer learning [50] is an emerging trend in deep learning research where

instead of training new network from scratch, existing networks are optimized

and fine-tuned on one’s own relevant data set. This is inspired from the fact

that training these networks is a time consuming task if done from scratch

and realization that the earlier layers in any deep network are more general.

We have tested some of the FCNs for sky segmentation that were fine-tuned

on different datasets by [42]. We compare segmentation results using different

approaches i.e. how to obtain sky segmentation from the multiclass output
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Figure 6.1: VGG[48] network transformed into FCN32s[42]

given by the networks into binary output (sky vs non-sky). Additionally, we

have fine-tuned these existing networks on CH1 dataset to see if the existing

multiclass segmentation network can be fine-tuned to perform better for the

task of binary classification.
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6.1.3 Deep Convolutional Encoder-Decoder Architec-

ture : SegNet

SegNet [43] is also motivated by the same principles as FCN and is based on

fully convolutional layers and does not involve any fully connected layer, how-

ever it further focuses on maintaining sharp boundary delineation which is

essential for pixel-wise segmentation of small/rare classes. Additionally, un-

like FCN which requires the stage-wise training where a new decoder (fusion

at multiple strides) is progressively added to the existing trained network

(FCN-32s) and the resulting network (FCN-16s) is trained again; SegNet

provides the capability of end-to-end training, thanks to its decoder net-

work. The encoder network in SegNet is exactly same as that of FCN i.e.

13 convolutional layers from VGG16 [48], however it is followed by a de-

coder containing equal number of convolutional layers as in encoder and is

the core of SegNet. Each decoder in the decoder network first upsample its

input coming from the corresponding encoder (max-pooling indices) in the

encoder network and then followed by learnable convolutional layers. The

final convolutional layer is followed by a classification layer (softmax) same

as in FCN. This decoder-decoder architecture of SegNet allows end-to-end

training and crisp boundary delineation while FCN would have to rely on

additional components/architectures e.g. CRFs and RNNs to achieve the

similar objective [52].
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6.2 Training Details for Each Compared Method

6.2.1 Our Edge-less Approach (DCSI)

For this comparison, we trained an SVM classifier based on CH1 data set.

For each of the training images (203 total), the positive (horizon) key points

are chosen along the ground truth horizon line while equal number of nega-

tive (non-horizon) key points are chosen from edge locations randomly. We

also make sure that negative key points are not in a close vicinity of the

ground truth horizon. A 16 × 16 normalized intensity patch is used as a

feature vector. The trained SVM classifier is used to generate a dense clas-

sification score map where a normalized score [0–1] for each pixel reflects

its probability of horizon-ness. The dense image is taken as a dense graph

and dynamic programming is applied to find a shortest path from left-most

column (graph stage) to right-most column (graph stage) which conforms to

a detected horizon boundary as detailed in chapter 3 Figure 6.2 shows some

of the generated dense classification images (column 3) for several images

from the extended test set being used for this comparison and the resulting

segmentations for our edge-less method (column 4).

6.2.2 ALE

ALE [53] is an energy minimization-based semantic segmentation framework

adopted for sky extraction by Saurer et al. [33]. Specifically, the energy is pre-

dicted by a pixel-wise classifier trained on contextual and superpixel feature

representations. Multiple bag-of-words representations over the random set
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Figure 6.2: Edge-less skyline detection: query images (column 1) from the
extended test set, ground truth (column 2), DCSIs (column 3) and corre-
sponding segmentations (column 4).

of 200 rectangles, and superpixels are used for contextual part and superpixel

part respectively. The segmentation is obtained by minimizing the energy

using dynamic programming (DP). We implemented the algorithm [33] into

the Automatic Labeling Environment (ALE) [53] environment. Similar to

the original paper [33], we set the number of bag-of-words clusters to 512

and train ALE using CH1 dataset [17].
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6.2.3 FCN

We used two different types of FCN models. PASCAL-context models were

trained by the authors [42] on object and scene labeling of PASCAL VOC,

in three different resolution capabilities (FCN32s, FCN16s and FCN8s with

the highest resolution). The models include both object and surface classes

(59 classes, including class “sky” and “mountain”). This type of network

predicts scores for each class at each pixel location. SIFT Flow models were

trained for joint geometric (3 classes: “sky”, “horizontal”, “vertical”) and

semantic (33 classes, including “sky” and “mountain”) class segmentation

and produces two separate scores. As all of the FCN models were trained

for multiclass segmentation, we evaluated several methods based on how to

compute binary segmentations (sky vs non-sky) from scores outputted by

the networks. For PASCAL-context networks we compared scores for class

40 (mountain) and class 50 (sky) for each pixel. If the first score was higher

the final class was set to “non-sky”, otherwise it was set to “sky”. For

SIFT Flow networks there are more options, because the network provides

two types of scores. We segmented a pixel as “sky” in case the highest

semantic score was for class 28 (“sky”), otherwise it was segmented as “non-

sky”. Similarly, for the geometric score, we segmented a pixel as “sky”

for case where the highest geometric score was for class 1 (“sky”), non-sky

was segmented otherwise. For the best performing models we fine-tuned

the weights of the pretrained networks. The network structure and training

parameters were kept the same as for the original networks. The CH1 dataset

was used to provide input images and binary labels (sky vs non-sky). For the
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PASCAL-context pretrained network we modified binary labels so that the

class indices correspond to correct classes in the network (class 40 denotes

“mountain”, class 50 denotes “sky”). For the SIFT Flow dataset, we had

to convert source binary labels into two different target labels (geometric

and semantic). Semantic label was set to class 28 (“sky”) where the original

label denoted sky, class 17 (“mountain”) was used otherwise. Likewise, the

geometric label was set to class 1 (“sky”) where the original label denoted

sky, class 3 (“vertical”) was used otherwise. We expected such fine-tuned

networks to perform better than the original pretrained networks. First

reason is that the network is fine-trained with new unseen training data.

The second is that the network is forced by the new input labels to predict

only two classes (“mountain” and “sky”), so that such a new network is

specialized for the task of sky and non-sky segmentation.

6.2.4 SegNet

Unfortunately, the publicly available models for SegNet were trained on ur-

ban images, specifically for semantic road scene segmentation. We have inves-

tigated different available models, and adopted the best performing SegNet

model (“driving webdemo”) for our sky segmentation problem. As men-

tioned earlier, SegNet is trained with urban imagery, using it directly for

mountainous sky segmentation does not make sense. So, instead of using

SegNet model directly, we first fine-tuned it with CH1 data set. Another

disadvantage of SegNet is that both input image and output segmentation

have fixed resolution (480x360), so we have to resize the input to this size
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for training and later resized the 480x360 segmentations to the original sizes

of respective images.

6.3 Experimental Details

6.3.1 Data Sets

For this comparison, our test set is comprised of 2895 mountainous images

which have been acquired from Flickr. The GPS locations and camera in-

trinsic are used to access the relevant Digital Elevation Maps (DEMs) which

are then rendered using a conventional OpenGL utility to develop the ground

truth segmentations. These ground truth segmentations are used to compute

the error metrics. For training edge-less classifier, ALE[33] and fine-tuning

FCNs[42] and SegNet[43], we use the publicly available CH1 data set [17].

It should be noted that both training and test sets contain images with var-

ious resolutions compared to our earlier experiments where they have been

converted to fix size. The deep-learning platform Caffe has been extensively

used for training all the deep architectures – FCN and SegNet.

6.3.2 Error Metrics

In addition to use the average absolute pixel error defined in equation 4.1

as performance metric, we also compute the pixel level average accuracy ob-

tained by each method. Specifically, for each of the images, we compute what

fractions of pixels have been correctly classified by an approach. Mathemat-
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Figure 6.3: Some visual results for segmentation, green – correctly classified,
red – miss-classified: (0) sample images from our data set, (1) DCSI, (2)
ALE, (3) FCN32s-Pascal, (4) FCN16s-Pascal, (5) FCN8s-Pascal, (6) FCN8s-
Pascal-CH1, (7) FCN8s-SiftFlow-geometric (8) FCN8s-SiftFlow-semantic,
(9) FCN8s-SiftFlow-semantic-CH1 and (10) SegNet-CH1.
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ically,

DC =
1

Nset

Nset∑
i=1

Nc
i

Nt
i (6.3)

where, Nset is the total number of images in the data set, Nc
i and Nt

i are the

number of correctly classified pixels and number of total pixels in the image

i. For an ideal 100% classification accuray this measure should result in a

perfect 1.

6.3.3 Results

In the first set of experiments, we report the results for all the considered

formulations without any post-processing. For DCSI and ALE; the classifiers

are trained on CH1 data sets while different flavors of FCN models are either

adopted as-it-is for sky segmentation or have been further trained through

transfer learning on CH1 data set as noted in section 6.2.3. Table 6.1 lists

both considered metrics for each of the formulations. The number after FCN

i.e. (8s,16s or 32s) identifies the resolution at which the coarse semantic

information has been fused with fine appearance information in the FCN

architecture, SiftFlow or Pascal key-word identifies which data set has been

used to train the model and an additional CH1 follows if the model has

been fine-tuned further on CH1 data set. In case of SiftFlow, it is further

distinguished between geometric (g) and semantic (s) models. Figure 6.3

shows some visual results.
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Table 6.1: Performance of different formulations on our test set (2895 im-
ages).

Approach Accuracy Pixel Distance
µ σ

FCN8s-Pascal 0.9083 29.886 50.721
FCN16s-Pascal 0.9071 30.187 50.616
FCN32s-Pascal 0.9015 31.160 50.714

FCN8s-SiftFlow-g 0.9266 37.028 56.481
FCN8s-SiftFlow-s 0.9438 37.937 67.608
Horizon-ALE-CH1 0.9428 44.669 87.430
Horizon-DCSI-CH1 0.8756 99.425 160.516

SegNet-CH1 0.8290 90.385 81.528
FCN8s-SiftFlow-s-CH1 0.9379 61.502 96.006

FCN8s-Pascal-CH1 0.9285 68.283 97.626

6.3.4 Post-Processing

Post-processing of the binary segmentation images can further improve the

segmentation quality. As seen from examples in figure 6.3, some methods

are able to find horizon accurately, but resulting segmentation images are

not physically possible in reality. One example is to have large sky area

surrounded by non-sky area (“hole in an object”), which is rare to happen in

physical world. Another example is to have non-sky area surrounded by sky

(“flying object”). Several post-processing methods that reflect physical world

properties can be designed to improve quality of the resulting segmentation

images. We adopted the following two simple post-processing approaches to

further enhance the segmentation results.

It should be noted that not all the methods would benefit from such prost

processing; specifically DCSI and ALE – as these methods employ Dynamic

Programming to find crisp boundaries between sky and non-sky regions and
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Table 6.2: Segmentation improvement due to Post-processing I
Approach Accuracy Pixel Distance

µ σ
FCN8s-Pascal 0.9108 32.161 57.510
FCN16s-Pascal 0.9086 32.888 58.193
FCN32s-Pascal 0.9011 33.534 57.588

FCN8s-SiftFlow-g 0.9296 34.975 53.334
FCN8s-SiftFlow-s 0.9446 31.399 55.052
Horizon-ALE-CH1 0.9403 43.959 86.038
Horizon-DCSI-CH1 0.8727 99.742 160.252

SegNet-CH1 0.8279 114.893 99.021
FCN8s-SiftFlow-s-CH1 0.9421 37.947 69.435

FCN8s-Pascal-CH1 0.9351 41.596 71.707

mostly do not suffer due to miss-classification holes. Nonetheless, all the

segmentations have been post-processed for consistency.

6.3.5 Post-processing I

The first post-processing method uses two basic binary image processing op-

erations. The first operation fills all holes, sky areas that are fully surrounded

by non-sky areas are replaced by non-sky area. The second operation removes

small non-sky objects, specifically all small non-sky objects that have area

below 50% of the largest non-sky object are removed, i.e. they are replaced

by sky label. The post-processing improvements are listed in table 6.2.

6.3.6 Post-processing II

Similarly, two operations are used for the second post-processing method.

The first operation removes small non-sky objects in the same way as in the

first method. The second operation is column horizon detection, which finds
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Table 6.3: Segmentation improvement due to Post-processing II
Approach Accuracy Pixel Distance

µ σ
FCN8s-Pascal 0.9551 32.161 57.510
FCN16s-Pascal 0.9539 32.888 58.193
FCN32s-Pascal 0.9520 33.534 57.588

FCN8s-SiftFlow-g 0.9491 34.975 53.334
FCN8s-SiftFlow-s 0.9563 31.399 55.052
Horizon-ALE-CH1 0.9411 43.959 86.038
Horizon-DCSI-CH1 0.8743 99.742 160.252

SegNet-CH1 0.8437 114.893 99.021
FCN8s-SiftFlow-s-CH1 0.9486 37.947 69.435

FCN8s-Pascal-CH1 0.9432 41.596 71.707

first non-sky pixel label in a column from the top and sets all pixels below

as non-sky pixel, i.e. first non-sky pixel in a column from the top defines

the horizon. Table 6.3 shows the improvements due to this post-processing

approach.

6.3.7 Discussion

While looking at the results reported in table 6.1 and considering only the

accuracy, FCNs trained on SiftFlow clearly outperform the rest of the for-

mulations. Surprisingly, the second best is the ALE approach which is a

non-deep-learning method. This could be due to the fact that ALE is a well

crafted approach for the problem of sky segmentation and may not general-

ize well to other segmentation applications unlike FCNs. The FCN8s – with

the finest resolution outperforms the others with coarser fusion (FCN16s,

FCN32) which follows the results reported by authors [42]. Interestingly,

SegNet has performed abysmally, even worse than the simple SVM based
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DCSI method. This is contradictory to the results reported by authors [43]

for semantic road scene segmentation. It must be due to the fact that Seg-

Net models made publicly available have been trained on urban street view

data sets unlike FCNs. Another drawback of SegNet being the need to have

images of fixed resolution which is not the case in FCN.

At first, the average absolute pixel error is not very consistent with the

accuracy. Based on this measure alone, the poorly performing methods (i.e.

DCSI and SegNet) can be readily identified and follow the observations made

based on accuracy. However, from table 6.1 it follows that FCN8s-Pascal per-

forms better than FCN8s-SiftFlow which is not the case considering accuracy

alone. This interesting contradiction clears out in table 6.3 when FCN mod-

els based on Pascal benefit from post-processing II and all both FCNs have

very close average pixel errors.

Post-processing has proven to be helpful for all the FCN formulations

while it does not have much effect on dynamic programming based methods

– DCSI and ALE. Although both post-processing methods impacted the

segmentation results positively, the improvement due to second method of

post-processing has been overall more effective.
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Chapter 7

Visual Geo-Localization

As mentioned in earlier chapters; most of the available visual geo-localization

techniques for mountainous imagery rely on users to correct for incorrect

horizon segments – which is not always feasible. To address this, we pro-

pose a visual geo-localization pipeline which does not require an explicit

detection of the skyline and utilizes dense classification score image resulting

from our proposed edge-less/fusion approach in an evolutionary computing

framework. Since, it has been previously established that orientation is more

important than variation in the GPS [28, 17, 29, 31]; our focus is mostly on

an accurate orientation estimate through geo-localization. Hence, in princi-

ple our approach is closer to that of [28]. In section 7.1, we discuss different

components of our visual geo-localization framework. Section 7.2 lists the

experimental details and results specific to geo-localization.
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7.1 Proposed Pipeline

Figure 7.2 shows a block diagram of our visual geo-localization pipeline which

is comprised of three main modules: 1) classifier training, 2) score map gen-

eration, and 3) particle swarm optimization and rendering. Details regarding

each of these components are provided next.

7.1.1 DCSI as Fitness Function

We have noticed in chapter 3; classifying the pixels results into narrow band

of high horizon-ness scores around the ground truth horizon. In our frame-

work, we exploit these high scores around a true horizon to guide Particle

Swarm Optimization (PSO) such that the synthetically generated horizon

aligns well with ground truth horizon in the image. First, a synthetic hori-

zon is rendered for a given orientation estimate and provided GPS location

and camera intrinsic. The resultant rendered horizon is overlaid on the clas-

sification map for the respective query image. The horizon-ness scores or

classification values for all the pixels of the rendered horizon are averaged

and this average is used as a fitness score. As more and more solutions are

explored; PSO guides itself towards the narrow band around true horizon

where the fitness score is minimized. Mathematically, the fitness score F (r)

for a rendered candidate horizon r can be defined as,

F (r) =
1

N

N∑
k=1

S(ir(k), jr(k)) (7.1)

where, S(ir(k), jr(k)) is the classification score for k-th pixel of the ren-
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dered horizon and follows from 3.12, and N is the number of pixels in the

rendered horizon.

Figure 7.1: Proposed framework: Blue – feature extraction and classifier
training performed offline, Red – module to generate classification score map
for given image using trained classifier and Green – localization module com-
prised of PSO and rendering pipeline responsible for generating new solutions
and rendering of synthetic skylines.

7.1.2 Particle Swarm Optimization (PSO)

We structure our visual geo-localization method in an evolutionary frame-

work. Specifically, we rely on PSO which is an evolutionary algorithm that

first generates random solutions to a given problem within a defined range

and then converges to one of the best solutions based on the provided fitness

function. For localization problem, since, the rough estimate of the orienta-

tion is mostly available from device sensors a neighborhood search window
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around such a rough estimate is first defined. The PSO then generates ran-

dom estimates for each of the defined parameter and guides itself to good

solutions based on the defined fitness score. We utilize our DCSI as fitness

according to 7.1 for guiding PSO towards a best alignment between synthetic

and imaged horizon without even requiring explicit detection of the imaged

horizon.

7.1.3 Rendering the Synthetic Skyline

We adopt a conventional graphics rendering pipeline to generate synthetic

skylines from the DEM. Since, the GPS co-ordinates are already known, the

search is constrained to a restricted patch of 3D model which is partially

motivated due to computational requirements to load and render a big 3D

map. The rendering pipeline can be considered as a function of three variables

– 1) 3D DEM patch P , 2) camera intrinsic matrix K and 3) orientation of

the camera expressed as a three vector X = [u, v, w], where u, v and w are

yaw, pitch and roll angles respectively. Mathematically, the rendering is a

projection from 3D profile to 2D curve,

r = Proj(P,K,X) (7.2)

where, r is the rendered horizon projected in 2D. The pixel locations

for this synthetic skyline are then used for calculating the fitness score as

described in section 7.1.1. Figure shows a rendered horizon line which is

then overlaid on corresponding DCSI image that is being used as fitness

function to guide PSO.
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Figure 7.2: Renderred synthetic horizon for a sample orientation (left), same
projected horizon overlaid on the corresponding DCSI image (right).

7.2 Experimental Details and Results

7.2.1 Data Set

We have used samples from CH1 data set as our test set for visual geo-

localization experiments, whereas selected images from CH2 data set are

being used to train SVM classifier. These images have been taken across

Switzerland and provide the required terrain and seasonal variations. In

addition of ground truth segmentations, authors [17] provide the ground

truth GPS location and estimate of the camera focal length. However, the

ground truth orientation estimates have not been provided. In a first step

towards our goal, we manually aligned the imaged horizon with synthetic

horizon rendered from the corresponding DEMs. This provides the ground

truth orientation estimate which serves two purposes: (i) to define a search

window around the known orientation estimate and (ii) to quantify how close

the PSO based orientation estimates are with the ground truths.

Figure 7.3 shows the GPS locations marked on a map where CH1 data set
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Figure 7.3: GPS locations for CH1 data set images marked on a map.

images have been taken in Switzerland. Multiple images have been taken at

the same locations but with varied orientations and hence covering different

mountains/terrains. The DEMs covering these image locations have been

shown in figure 7.4 overlaid on a map in Google Earth Pro. This is worth

mentioning that a mountain viewed in an image might not be covered by a

single DEM slice (highlighted by white rectangles in figure 7.4) and required

stitching of multiple DEM slices.

7.2.2 Quantitative Measures and Results

To quantitatively evaluate the performance of our proposed visual geo-localization

pipeline, we have adopted two measure – 1) average pixelwise absolute dis-

tance between the PSO’s best solution and ground truth skyline and 2) av-

erage error between the ground truth and estimated orientation for roll, yaw
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Figure 7.4: The DEMs surrounding the image locations overlaid in Google
Earth Pro.

and pitch angles measured in degrees. Mathematically, the average abso-

lute pixel error is the same as adopted for measuring the accuracy of skyline

detection in chapter 4.

S =
1

N

N∑
j=1

|Ps(j) − Pg(j)| (7.3)

where Ps(j) and Pg(j) are the positions (rows) of the PSO’s solution and

ground horizon pixels in column j respectively and N is the number of

columns in the given image.

Table 7.1: Absolute vertical distance between ground truth and projected
solution skylines.

Vertical Pixel Distance
Mean Std
10.27 23.91
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Table 7.2: Alignement error for orientation angles in degrees
X-angle Y-angle Z-angle

Mean Std Mean Std Mean Std
1.43 3.19 3.32 8.09 0.86 1.47

7.2.3 Discussion

As clear from table 7.1, the average absolute pixel error between ground truth

horizons and the rendered horizons is quite high. This high average is due

to the fact that for some images the rendered horizon does not align with

the pictured horizon. There could be two reasons for misalignment: 1) The

found solution is aligned such that it minimizes the fitness score but the pixels

responsible for producing best classification scores are not in the vicinity of

true horizon. In essence, this boils down to poor classification accuracy as

there are curve segments which produce lower classification scores than the

actual horizon. 2) The DEM being used is missing portion of the mountain

which has been pictured in the photograph. Instances of this problem can be

seen in figure 7.5 where segments of the found synthetic solution are way far

from the true horizon. In our error metric, as the absolute error is computed

regardless of problematic DEMs, the overall average error becomes high.
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Figure 7.5: Sample images where synthetically renderred horizon does not
align with true horizon due to incomplete DEM: (column1) query image and
(column2) respective best renderred solution.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this thesis, we have proposed two novel horizon detection approaches based

on supervised machine learning. The first approach relies on edge detection

but unlike conventional methods; it uses trained classifier to reduce the num-

ber of horizon candidate edges considerably. Further, classifier is used to pro-

vide evidence about the likelihood of an edge being horizon or non-horizon.

We have investigated various texture features and nodal costs in the frame-

work of our proposed method. Our second proposed approach does not rely

on edge detection as a pre-processing step. In the edge-less approach, the

key idea is to generate a classification score map and to apply DP on the

resultant graph to extract the horizon line.

Both of the proposed approaches do not make any assumptions about the

horizon being a straight line or being close to the top of the image which is

a common assumptions in conventional edge based methods. The proposed
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approaches use a very small number of images to train the horizon classifiers

and outperform traditional approaches based on edge maps on two data

sets. The underlying failure reasons for both approaches are investigated

and a fusion is proposed which has been evaluated on an additional data set.

The formulation of edge-less/fusion method has been shown to be useful for

solution verification and detection of absence of horizon and partial horizon

detection.

Impressed with the recent success of deep learning architectures, we adopted

recently proposed two such networks for sky segmentation problem and com-

pared them against our edge-less approach on an even larger test set. For

a fair comparison, we have also included another prominent skyline detec-

tion approach which has been recently proposed and is an instance of clas-

sical feature based classifier training. Lastly, we have proposed a visual

geo-localization pipeline which unlike previous solutions does not rely on hu-

man users and does not require an accurately detected horizon. This results

from our edge-less skyline detection formulation and based on the observa-

tion that higher horizon-ness confidence is achieved by the pixels around the

true horizon.

8.2 Potential Future Work

While we have formulated skyline detection problem as an instance of deep

learning, the networks are fine-tuned on rather small data sets. In a future

study, bigger data set can be used for training various deep networks and a

quantitative comparison can be provided. For visual geo-localization, only
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SVM classifier has been used to generate DCSI, different classifiers including

deep networks can be adopted to study their role. As, we have noted in

chapter 4, CNN tends to generate crisp boundaries compared to SVM, that

might be more helpful for guiding PSO in less iterations. Additionally, geo-

localization based on partial matching of synthetic and pictured horizon can

be explored. As described in section 7.2.3, incomplete DEM could result

in absolute average error to become higher, a more controlled metric can be

adapted where only those segments of synthetic horizon are considered which

have proper 3D model.
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