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Abstract 

In the research area of high energy density plasmas an ever increasing goal is 

searching for higher efficient radiators, particularly in z-pinch plasmas, and their 

applications.  This goal is a major focus of this dissertation and implements both 

theoretical and experimental tools in the process.  The theoretical tools involve the Wire 

Ablation Dynamics Model (WADM) to infer z-pinch implosion characteristics and 

various non-local thermodynamic equilibrium (LTE) kinetic models to understand the 

radiative properties of plasmas, including a new model for L-shell Ag.  The experimental 

tools includes an advanced set of diagnostics, in particular a newly developed time-gated 

hard x-ray spectrometer to gain an understanding as to how these plasmas radiate in time, 

particularly in the 0.7 – 4.4 Å range.  The experiments predominately took place on the 

1.7 MA Zebra generator at the Nevada Terawatt Facility (NTF) at the University of 

Nevada, Reno (UNR).  Traditional nested cylindrical wire arrays with mixed materials 

(brass and Al, Mo and Al) were tested to understand how the inner and outer arrays 

implode and radiate.  Novel planar wire arrays, which have been shown to be very 

powerful radiation sources, arranged in single, double, and triple wire array 

configurations were tested with Mo and Ag materials, which have both been shown to be 

powerful radiators, and also mixed with Al to understand opacity effects and how a 

mixture of two different plasmas radiate.  Radiation from the extreme ultraviolet (EUV) 

range has also been of recent interest due the substantial contribution into total radiation 

yields.  Therefore EUV radiation of M-shell Cu was modeled and benchmarked with 

spheromak and laser-produced plasma data.  Lastly, lasing gain from L-shell Ag is 

calculated as an application of the aforementioned model to evaluate whether lasing 

might be occurring in wire array z-pinches.  In connection to creating a uniform plasma 

column to measure lasing lines, the split double planar wire array is introduced and 

preliminary results discussed. 
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Chapter 1  

Introduction and Motivation of Research 

For the better part of the last century major research has gone into creating a 

controllable and sustainable fusion power device.  In order to overcome the Coulomb 

repulsion between positively charged nuclei, the fuel must be compressed and heated to 

thermonuclear temperatures, a process called inertial confinement fusion (ICF). The fuel 

used will more than likely be a mixture of deuterium (one proton and one neutron) and 

tritium (one proton and two neutrons).  Some of the leading candidates for such a device 

include the use of lasers, tokamaks, and z-pinches.  This dissertation will largely focus on 

z-pinch experiments at the university scale (1.0 MA) and further focuses on the study of 

the radiation from the plasma produced from such experiments.  The main goal of 

performing experiments on university scale machines is not to attain fusion, but to 

maximize  energy efficiency and power in considering load types and materials in a cost 

effective manner so that when larger machines are built in the future most of the 

knowledge of what “works” and what does not “work” is already known.  A second goal 

for university scale machines, and of equal importance, is to teach new students 

experimental and theoretical physics. 

The first experiments involving the use of z-pinches for ICF purposes took place in 

the 1950’s, however magnetohydrodynamic instabilities within the pinch (Anderson et al. 

1958) proved to be too great and interest quickly turned to other avenues. Though the 

idea of using z-pinches for ICF faded during this period, z-pinches continued to be 



2 
 

studied and in the 1960’s single wire experiments were carried out, where very intense x-

rays were observed.  In order to achieve more hot and dense plasmas, single wires were 

replaced by cylindrical wire arrays (CWA) (Liberman et al. 1999), which, as the name 

describes, is an array of wires oriented in a cylindrical manner equidistant from the center 

of the anode-cathode gap.  The idea is that as current is flowing through the wires a 

magnetic field is created around the wires and a resulting J x B Lorentz force pulls the 

wires together towards the central z-axis (hence the name z-pinch).  In a CWA, the wires 

pick up a tremendous amount of kinetic energy (ablation velocity measured to be up to 70 

cm/μs in Jones et al. 2011), which helps in ionizing the plasma and increasing efficiency.  

With these advances, z-pinches produce plasmas with very high temperatures and 

densities and have been shown to be one the most efficient x-ray producers of any type of 

experiment (Spielman et al. 1998) and are currently thought to be a viable option for 

future possible ICF machines (Vesey et al. 2007).  In 2005, the planar wire array (PWA) 

was introduced (Kantsyrev et al. 2006) and was shown to be a very powerful radiation 

source, producing much greater total radiation than CWAs, and a possible candidate to 

use on future ICF machines (Jones et al. 2010). 

In this dissertation, PWAs are discussed in detail, as well as nested cylindrical wire 

arrays (NCWAs).  This dissertation focuses on radiation from wire materials of mid-Z 

elements molybdenum (Mo), silver (Ag), copper (Cu), and zinc (Zn), and low-Z elements 

aluminum (Al) and magnesium (Mg). 

One of the best ways to attain knowledge of the plasma parameters in z-pinch and 

other experiments is through plasma spectroscopy.  In plasmas free electrons, ions, and 

photons interact with each other resulting in radiation that spans a large photon energy 



3 
 

spectrum.  Spectrometers can be used to separate the radiation into spectral lines 

depending on the photon energy, which can be used as “fingerprints”, as each individual 

photon emitted depends on quantum mechanical probabilities, which can depend on 

various plasma parameters, such as electron temperature and density.  With sufficient 

understanding of the probabilities and various rates involved, a theoretical model can be 

created to produce a synthetic spectrum to try and match the experimental spectrum.  The 

first of these models (Gabriel 1972) involved K-shell plasmas, or plasmas involving 

transitions to the n = 1 shell of He-like and the surrounding ions.  Advances in these 

models have added the inclusion of line shapes (Mancini et al. 1988) and effects of 

opacity (Apruzese et al. 1998).  L-shell and M-shell models developed later as computer 

processors caught up to the complexity of Ne-like ion plasma environments and beyond.  

For instance, the first full collisional radiative models used to diagnose electron 

temperatures and densities that radiated in L-shell included selenium (Se) (Peyrusse et al. 

1989), Mo, and Ag (Young et al. 1989).  Each element presents different energy levels 

and a set of rates for similar K-shell, L-shell, or M-shell transitions. 

Therefore, to help study this radiation many theoretical tools have been developed 

and utilized, which include non-local thermodynamic equilibrium (LTE) kinetic models, 

the wire ablation dynamic model (WADM), and the radiation-hydrodynamics model 

HELIOS-CR.  Specifically, a new non-LTE kinetic model for L-shell Ag has been 

developed.  The majority of the experimental data used comes from the Zebra generator 

at the University of Nevada, Reno (UNR).  Other data comes from facilities that include 

the Z-pinch Cobra Generator at Cornell University, the Compact Laser Plasma Facility 

“Sparky” at UNR, and the Sustained Spheromak Physics Experiment (SSPX) at 
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Lawrence Livermore National Laboratory.  The focus of Chapter 2 is the description of 

these theoretical and experimental tools. 

A common theme throughout this dissertation is the constant search for more efficient 

radiators.  In this search Mo triple planar wire arrays (TPWAs) are explored in Chapter 3 

and are shown to be a very efficient radiator at > 25 kJ on the Zebra generator, and 

radiates at very high electron temperatures (> 1.4 keV) in the L-shell.  The alloy Al 5056 

(95% Al, 5% Mg) has been used in these experiments in two fashions; one as a tracer 

wire, the other to study how different plasmas mix (L-shell Mo and K-shell Al, for 

instance). 

 Brass (70% Cu, 30% Zn) and Al and Mo and Al nested cylindrical wire arrays 

(NCWAs) are investigated in Chapter 4 to understand how the inner and outer arrays 

radiate in this configuration, which had not been fully investigated to this point.  It will be 

shown that the outer array radiates more greatly than the inner array.  The thermalized 

kinetic energy of this implosion is estimated to be significantly less than the measured 

total energy, indicating there must be other mechanisms responsible for the radiation 

yields. 

 In certain plasma experiments, impurities can play a significant role.  To more 

understand this, an investigation of Cu impurities on the Sustained Spheromak Physics 

Experiment (SSPX) facility was performed and is the focus of Chapter 5.  To help in this, 

an EUV spectrometer was utilized to capture EUV Cu spectra, in which an M-shell Cu 

non-LTE model was used to diagnose the impurity plasma conditions.  

 Ag is explored in the continuation of the search for efficient radiators in Chapter 

6.  Ag was discovered to radiate at > 30 kJ on the Zebra generator, which currently is 
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near the record energy output recorded. A Ag non-LTE kinetic model was developed to 

help diagnose L-shell Ag plasma conditions.  To help in understanding how L-shell Ag 

plasmas radiate in time, a time-gated hard x-ray spectrometer (TGHXR) was built and 

implemented. This spectrometer captured both hotter plasma L-shell Ag lines and cooler 

plasma characteristic Lα and Lβ lines.  Low aspect ratio DPWAs of uniform Ag and 

mixed with Al were tested attain a better diagnostic view with shadowgraphy to 

understand more how each plane in a DPWA implodes. 

Furthermore, as an application, the potential for lasing  in these L-shell Ag plasmas is 

discussed in Chapter 7, with a new load type considered with the goal of generating a 

uniform plasma column for a lasing medium, the split double planar wire array 

(SDPWA). 

Lastly, Chapter 8 concludes and summarizes the dissertation with additional closing 

remarks. 
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Chapter 2  

Theoretical and Experimental Tools 

2.1  Non-LTE Kinetic Modeling of High Energy Density Plasmas 

The majority of the plasmas studied in this dissertation are in the non-local 

thermodynamic equilibrium (non-LTE) state, which means that the plasma particles 

(ions, electrons, and photons) are not in equilibrium: the rate of each process does not 

equal the rate of the inverse process.  LTE plasmas are generally created in high electron 

density regimes (> 10
23

 cm
-3

), where collisional effects dominate radiative ones, which is 

too high for the z-pinch plasmas predominately studied here, which have plasma electron 

densities 10
18

 – 10
21

 cm
-3

.  This makes any attempt to model radiation emitting from such 

plasmas complicated, as one has to consider a series of rate equations to account for all 

processes that populate and depopulate energy levels.  These processes and their inverses 

include: collisional excitation and collisional de-excitation, collisional ionization and 

three-body recombination, dielectronic capture and Auger decay, radiative decay and 

resonant photo-absorption, and photoionization and radiative recombination.  Figure 2.1 

details these processes and the associated reactions.  In this figure, XZ,η refers to an ion of 

charge Z and a set of quantum numbers symbolized by η. A single asterisk is used to 

denote a singly-excited state, while two asterisks indicate a doubly-excited state.  The end 

goal of solving these rate equations is to attain level populations and create synthetic 

spectra to match and model experimental spectra to attain approximate plasma 

conditions, such as electron temperature and density. 
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Figure 2.1.  Energy level diagram of ground, singly, and doubly excited levels of 

adjacent ions.  Collisional and radiative processes that transfer population between the 

levels are indicated by arrows and are color coordinated by the described processes. 

 

There are many atomic models and codes in the scientific community that solve for 

these atomic rates with the goal of producing synthetic spectra to compare to 

experimental spectra.  In this dissertation two such models are utilized; the first uses the 

Flexible Atomic Code (FAC) (Gu 2008) to calculate energy levels and various atomic 

rates, which are fed into the Spectroscopic Collisional-Radiative Atomic Model 

(SCRAM) (developed by Hansen 2003 and modified by Ouart 2010a) which calculates 

the rest of the rates and ultimately produces synthetic spectra as functions of various 

plasma parameters.  Section 2.1.1 will discuss this process more and a new non-LTE 

kinetic model of L-shell Ag will be presented, while Section 2.1.2 will discuss other non-

LTE models utilized in this dissertation that have already been developed.  The second 

model, discussed in Section 2.1.3, is the Atomic Data ATBASE from PRISM 
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(MacFarlane et al. 2007) which calculates atomic rates and energy levels which get input 

into the PRISM code SPECT3D to generate synthetic spectra. 

2.1.1  Non-LTE Kinetic Model of L-shell Ag 

This section will discuss the new non-LTE kinetic model used for L-shell Ag 

plasmas.  First, however, will be a brief description of how the models work.  To begin 

with, the radiative decay and Auger decay rates are calculated using FAC.  After these 

rates are attained, the data is sent to SCRAM to generate synthetic spectra.  In order to 

calculate the collisional processes with free electrons, the cross-sections σ(ε) are 

integrated over the electron distribution function ℱ(𝜀): 

 

  〈  〉    ∫ (𝜀) (𝜀)ℱ(𝜀) 𝜀       (   )                                           

 

In Equation 2.1, ε is the incident electron energy, v is the incident electron velocity 

(  √ 𝜀   ), ne is the electron density, and the electron distribution function must be 

normalized to unity (∫ℱ(𝜀)    ).  For three-body recombination, which involves two 

free electrons, Equation 2.1 simply would be integrated twice over the electron 

distribution function. 

Ultimately, SCRAM calculates all the competing rates that populate and depopulate 

the population for each state, which can be written as: 

 

   
  

 ∑     
      ∑   
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In Equation 2.2, i and k are energy level indices and    
    is the total rate from level i to 

level k.  The solution, once set to unity (∑    ), becomes fractional energy level 

populations.  From here, the average charge state (Equation 2.3) and ion density 

(Equation 2.4) can be found: 

 

〈 〉  ∑                                                                       
 

 

 

     
  
〈 〉

                               (    )                           

 

Next, the electron distribution must be assumed to calculate collisional rates.  Given the 

assumption that electron velocities are non-relativistic, have sufficient time to thermalize, 

and exchange effects are not important, the electron distribution can be described by the 

Maxwellian distribution: 

 

ℱ (𝜀   )  
 

√   
√
𝜀

  
                    (    )                                         

 

In Equation 2.5, Te is the electron temperature.  This distribution is satisfied if there is 

enough time for the electrons to thermalize.  The thermalization time is given by the 

electron self-collision time (Spitzer 1962): 

 

       (        ⁄ )  ⁄ (             ⁄ ) (  )                               
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where ln   is the Coulomb logarithm which varies with the temperature and density and 

is generally between five and fifteen.  Using this equation for plasma conditions Te = 400 

eV and ne = 10
20

 cm
-3

, the thermalization time is on the order of a few picoseconds.  With 

this estimation, it is reasonable to assume that this Maxwellian distribution works for 

most of the electrons in the plasma, aside from areas of electric fields in the plasma, 

which occur in z-pinches due to acceleration of electrons near Rayleigh-Taylor 

instabilities and can form “hot” electrons.  To take this into account, the beam of 

electrons is approximated by a Gaussian centered at  o with variance  2
 at the tail of the 

Maxwellian distribution. The parameter 𝛼 controls the fraction of hot electrons in 

Equation 2.7: 

 

 

ℱ       (𝜀 𝛼    𝜀   )  (  𝛼)ℱ (𝜀   )  𝛼ℱ (𝜀   )                        

 

ℱ (𝜀 𝜀   )  
 

√   
   (

 (𝜀  𝜀 )
 

   
)                                               

 

Finally, line broadening of the spectra needs to be taken into consideration.  In 

SCRAM, line broadening in taken into account in three ways (assuming optical thin 

conditions): temperature, natural, and instrumental broadening.  SCRAM uses Voigt line 

profiles in order to take effects into account.  For more information on SCRAM and more 

exact details of these calculations, see (Hansen 2003). 
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The atomic data for the new non-LTE Ag kinetic model was calculated by utilizing 

FAC, as described earlier in this section.  The atomic data include the ground states from 

the bare to neutral atoms and the details from H-like to Al-like ions including singly and 

doubly excited states. The singly excited states are included up to n = 6 for H-like ions, 

where there are 30 total levels, n = 5 for He-ions, where there are 90 total levels, n = 5 for 

Li-like ions, where there are 101 total levels, n = 4 for Be-like ions, where there are 128 

total levels, n = 4 for B-like ions, where there are 169 total levels, n = 4 for C-like ions, 

where there are 401 total levels, n = 4 for N-like, where there are 486 total levels, n = 4 

for O-like, where there are 421 total levels, n = 4 for F-like, where there are 268 total 

levels, n = 5 for Ne-like, where there are 141 total levels, n = 5 for Na-like ions, where 

there are a total of 1029 levels, n = 4 for Mg-like, where there are  1273 total levels, and 

n = 4 for Al-like, where there are 385 total levels.  The doubly excited states include up to 

n = 3 for He-, Li-, Na-, Mg-, and Al-like ions, and with n = 2 for Be-like ions. Total, 

4957 energy levels are considered.  This atomic data is input into the SCRAM code to 

generate synthetic spectra. This new Ag model can generate K- and L-shell synthetic 

spectra for a wide range of electron temperatures and densities, however has primarily 

been used for L-shell Ag studies (Chapter 6), as well as calculating lasing gain (described 

in Chapter 7).   

Table 2.1 lists the ionization stages, line identification names, transitions, 

wavelengths, and spontaneous radiative decay rates of diagnostically useful L-shell Ag 

lines.  The spontaneous radiative decay rate, Ar, is related to oscillator strength, fki, by the 

formula:  
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In Equation 2.8, C is equal to α
3
Ry/ħ = 8.033 x 10

9
 s

-1
 (for electric multipole transitions), 

gi and gk are statistical weights of the upper and lower levels, respectively, and Ry is the 

Rydberg constant (Ry = e
4
me/2ħ

2
 = 13.605 692 eV).  This formula will be useful when 

calculating lasing gain, in Chapter 6. 

 

Ion Line Transition λ(Å) Ar(s
-1

) 

Ne 4C 1s
2
2s

2
2p

5
4d 

1
P1→ 1s

2
2s

2
2p

6
 
1
S0 2.7693 8.21E+13 

Ne 4D 1s
2
2s

2
2p

5
4d 

3
D1→ 1s

2
2s

2
2p

6
 
1
S0 2.8803 1.37E+14 

Ne 3A 1s
2
2s2p

6
3p 

1
P1→ 1s

2
2s

2
2p

6
 
1
S0 3.3992 5.99E+13 

Ne 3B 1s
2
2s2p

6
3p 

3
P1→ 1s

2
2s

2
2p

6
 
1
S0 3.4452 2.18E+13 

Ne 3C 1s
2
2s

2
2p

5
3d 

1
P1→ 1s

2
2s

2
2p

6
 
1
S0 3.5485 2.74E+14 

Ne 3D 1s
2
2s

2
2p

5
3d 

3
D1→ 1s

2
2s

2
2p

6
 
1
S0 3.7197 3.29E+14 

Ne 3F 1s
2
2s

2
2p

5
3s 

1
P1→ 1s

2
2s

2
2p

6
 
1
S0 3.8026 1.60E+13 

Ne 3G 1s
2
2s

2
2p

5
3s 

3
P1→ 1s

2
2s

2
2p

6
 
1
S0 4.0214 1.82E+13 

F F1 1s
2
2s

2
2p

4
3d 

2
F5/2→ 1s

2
2s

2
2p

5
 
2
P3/2 3.4591 2.48E+14 

Na Na1 1s
2
2s

2
2p

5
3s3d 

2
F5/2→ 1s

2
2s

2
2p

6
3s 

2
S1/2 3.7435 2.62E+14 

Na Na2 1s
2
2s

2
2p

5
3s3d 

2
P1/2→ 1s

2
2s

2
2p

6
3s 

2
S1/2 3.5711 2.69E+14 

Mg Mg1 1s
2
2s

2
2p

5
3s

2
3d 

1
P1→ 1s

2
2s

2
2p

6
3s

2
 
1
S0 3.7595 2.56E+14 

Mg Mg2 1s
2
2s

2
2p

5
3s

2
3d 

3
P1→ 1s

2
2s

2
2p

6
3s

2
 
1
S0 3.5853 1.56E+14 

Table 2.1.  Ionization stages, line identification names, transitions, wavelengths, and 

spontaneous radiative decay rates of diagnostically useful L-shell Ag lines. 

 

Understanding how the resulting spectra change as a function of various plasma 

parameters, such as Te and ne, as the next several figures will illustrate.  
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To understand how the new non-LTE kinetic model is dependent on electron 

temperature, the model was run keeping electron density (ne = 10
20

 cm
-3

) and all other 

parameters constant, while changing only Te, which ranged from 900 eV to 3000 eV.  

This range was chosen because the majority of the L-shell Ag plasmas in this research 

radiated in this range of electron temperatures, as will be discussed in Chapter 6.  The 

most dominate features are of Ne-like Ag, and have a labeling scheme of Ne 3A, Ne 3C, 

Ne 3D, and so on, which follows the same labeling scheme as in Beiersdorfer et al. 1988 

(see also Table 2.1).   

 
Figure 2.2.  Synthetic L-shell Ag spectra demonstrating the electron temperature 

dependence at Te = 900 eV, 1300 eV, 1800 eV, 2400 eV, and 3000 eV.  The electron 

density was kept constant at ne = 10
20

 cm
-3

.  The average ion charge, <Z>, is also labeled 

to the left. 
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Figure 2.2 demonstrates the electron temperature dependency of the model.  As seen 

in the average ion charge, <Z>, in Figure 2.2, increasing electron temperature in the 

model leads to a significant increase in changing the ion charge state, which means 

higher electron temperatures indicates on average more electrons stripped from the 

individual ion.  At 900 eV the spectra is dominated by Mg- (31.5%), Al- (18.3%), and 

Na-like (19.9%), while Ne-like (2.7%) contributes less.  However, by 1800 eV the 

spectra is dominated now by Na- (38.3%), Ne-(35.4%), and F-like (13.4%), and has 

burned through most of Mg-like (8%).  At 3000 eV, it’s estimated that Ne-like (6.6%) has 

been burned mostly through and the plasma is now dominated by the higher ionization 

states of C- (16.5%), N- (26.2%), O- (24.4%), and F-like (15.4%).  Due to this 

understanding of how electron temperature affects the ionization charge state, a useful 

diagnostic tool for estimating Te among radiated L-shell Ag plasmas can be ratios 

between lines of different ionization stages, such as Mg1/Na1. 
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Figure 2.3.  Synthetic L-shell Ag spectra demonstrating the electron density dependence 

at ne = 10
18

 cm
-3

, 10
19

 cm
-3

, 10
20

 cm
-3

, 10
21

 cm
-3

, and 10
22

 cm
-3

.  The electron temperature 

was kept constant at Te = 1800 eV.  The average ion charge, <Z>, is also labeled to the 

left. 

 

Figure 2.3 demonstrates the electron density dependency of the spectra.  One very 

instant noticeable effect of changing electron density in the model is how little the <Z> 

changes, going from <Z> = 36.53 at ne = 10
18

 cm
-3

 to <Z> = 36.93 to ne = 10
22

 cm
-3

, 

which is a relatively small increase of <Z> with an increase of ne by four orders of 

magnitude.  However, electron density plays a large role in affecting individual ion 

stages.  For example in Figure 2.3, Ne 3G decreases with increasing electron density, 

while Ne 3A increases with increasing electron density.  From this knowledge, a useful 
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diagnostic for estimating ne in L-shell Ag plasmas is the ratio of (Ne 3A+ Ne 3B)/(Ne 3F 

+ Ne 3G).  

Figure 2.4 demonstrates the effect that fraction of hot electrons have in the model.  In 

this figure, the electron temperature and density were kept constant at Te = 1800 eV and 

ne = 10
20

 cm
-3

, respectively.  The hot electron temperature was kept constant at ε = 30 

keV with 100 eV full width at half maximum (FWHM).  Increasing the fraction of hot 

electrons is similar to increasing Te, as it increases <Z> substantially.  Increasing the 

fraction of hot electrons also increases the spread of the ionization balance.  For example, 

at 15% of hot electrons, the model predicts ionization stages ranging from Li- to Na-like, 

where at 0% the model predicts a spread ranging from N- to Mg-like. 

 

 

 



17 
 

 
Figure 2.4.  Synthetic L-shell Ag spectra demonstrating the effect of fraction of hot 

electron dependence at 0%, 5%, 10%, and 15%.  The electron temperature and density 

were kept constant at Te = 1800 eV and ne = 10
20

 cm
-3

, respectively.  The hot electron 

temperature was kept constant at ε = 30 keV with 100 eV FWHM. The average ion 

charge, <Z>, is also labeled to the left. 

 

 

To help better understand the individual ion contributions to the model of L-shell Ag, 

Figure 2.5 shows the ion contributions of N- through Mg-like for Te = 1800 eV and ne = 

10
20

 cm
-3

.  In this figure, each ionization stage was run to normalize the synthetic spectra 

to 1, to get a better picture of the contribution to each ionization stage.  This allows an 

easy way to understand which individual lines come from what ionization stage, which 

helps in line identifications. 
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Figure 2.5.  Synthetic L-shell Ag spectra demonstrating the contributions of different 

ionization stages.  The electron temperature and density were kept constant at Te = 1800 

eV and ne = 10
20

 cm
-3

, respectively, while the fraction of hot electrons was 0%. 

 

2.1.2  Non-LTE Kinetic Models of L-shell Mo, Cu, Zn, and K-shell Al and Mg 

Throughout this dissertation many non-LTE kinetic models will be utilized to derive 

plasma parameters from different materials.  These models are similar to the non-LTE 

kinetic model of L-shell Ag described in Section 2.1.1 and include L-shell Mo (Hansen 

2003), Cu, and Zn (Ouart 2010a) and K-shell Al and Mg (Yilmaz 2009).  It will be 

beneficial to briefly detail these models along with some diagnostically important lines 

that will be useful for electron temperature and density estimations in later chapters. 
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Figure 2.6.  Synthetic L-shell Mo spectra (left) with diagnostically important transitions 

(right).  The synthetic spectra has Te = 1000 eV and ne = 10
20

 cm
-3

. 

 

The L-shell Mo non-LTE kinetic model uses the Hebrew University Lawrence 

Livermore Atomic Code (HULLAC) (Bar-Shalom et al. 1988) to calculate energy levels, 

spontaneous and collisional rates, collisional excitation, collisional ionization, and 

photoionization cross sections.  Extra energy levels and spontaneous rates Ne-, Na-, and 

Mg-like Mo were calculated by Ulyana Safronova using a relativistic many-body 

perturbation theory (RMBPT) code.  Singly excited states of O-like to Mg-like Mo ions 

up to n = 7 and singly and doubly excited states of Na-like and Mg–like up to n = 5 are 

included.  The atomic data is input into SCRAM to generate synthetic spectra.  Figure 2.6 

illustrates a sample of L-shell Mo synthetic spectra calculated at Te = 1000 eV and ne = 

10
20

 cm
-3

 with a list of diagnostically important Ne-like Mo lines.  This model is 

predominately used in Chapter 3.  For more information for this model see Hansen 2003. 

The L-shell Cu and Zn non-LTE kinetic models use FAC to calculate the set of 

atomic data.  The atomic data include the ground states from the bare to neutral atoms 

and the details from Al-like down to H-like ions including singly and doubly excited 

states. The doubly excited states include up to n = 3 for He-, Li-, Na-, Mg-, and Al-like 
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ions, and with n = 2 for Be-like ions.  The singly excited states are included up to n = 6 

for H-like ions, n = 5 for He- to Li-like ions, Ne- and Na-like ions, and n = 4 for Be- to F-

like ions, and Mg- and Al-like ions. In Chapter 4, brass wire alloys are utilized, which is 

comprised of 70% Cu and 30% Zn.  In order to correctly model the experimental L-shell 

Cu and Zn spectra produced from this alloy, the two non-LTE kinetic models are utilized 

using the same plasma parameters.  Once the synthetic spectra are produced, the Cu 

spectrum is weighted 70% and the Zn spectrum is weighted 30%, after which the spectra 

is added together.  Figure 2.7 gives an example of the end result with synthetic spectra 

calculated at Te = 350 eV and ne = 5 x 10
19

 cm
-3

, along with diagnostically important 

lines. For more information for these models see Ouart 2010a. 

 

 

 

Figure 2.7.  Synthetic L-shell Cu and Zn spectra (left) with diagnostically important 

transitions (right).  The synthetic spectra has Te = 350 eV and ne = 5 x 10
19

 cm
-3

.  The 

synthetic spectra is weighted 70% Cu and 30% Zn, the same as the brass alloy. 
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The K-shell Al and Mg non-LTE kinetic models use FAC to calculate the set of 

atomic data.  The atomic data include singly excited states of H-like up to n = 6, He-like 

up to n = 5, Li like up to n = 4 were included.  Al wires have recently been used as tracer 

wires to provide additional information for x-ray diagnostics (Safronova et al. 2008a), 

and specifically Al 5056 alloy (95% Al, 5% Mg) wires have been used due to the K-shell 

Mg lines being much less influenced by opacity because of their relatively low 

concentration and therefore are helpful in diagnosis of optically thick K-shell plasmas.  

Figure 2.8 demonstrates a sample of K-shell Al and Mg synthetic spectra calculated at Te 

= 1000 eV and ne = 10
20

 cm
-3

, with Al weighted at 95% and Mg weighted at 5%, along 

with diagnostically important lines.  For more information of these models see Yilmaz 

2009. 

 

 

Figure 2.8.  Synthetic K-shell Al and Mg spectra (left) with diagnostically important 

transitions (right).  The synthetic spectra has Te = 350 eV and ne = 10
20

 cm
-3

.  The 

synthetic spectra is weighted 95% Al and 5% Zn, the same as the Al 5056 alloy. 
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2.1.3  Non-LTE Kinetic Model using Prism Atomic Data ATBASE and SPECT3D 

Prism Computational Sciences, Inc. has developed a new atomic data code named 

ATBASE.  ATBASE has many applications, but most importantly for this dissertation 

has applications in studying non-LTE generated plasmas by generating a set of atomic 

data for all low- to mid-z elements, which include atomic data for all ionization stages.  

This atomic data includes: atomic energy levels and oscillator strengths, photoionization 

cross-sections, electron collisional excitation and ionization cross-sections, autoionization 

rates, and dielectronic recombination rate coefficients.  ATBASE also generates equation 

of state and multigroup opacity data that goes into the PRism OPACity and Equation Of 

State (PROPACEOS) code.  ATBASE makes it very easy to pick and choose different 

ionization stages to study, and from there pick and choose different energy levels. 

 
Figure 2.9.  A comparison of L-shell Cu between two models: the blue is FAC run 

through SCRAM and the red is ATBASE run through SPECT3D.  The calculations were 

run at Te = 300 eV and ne = 5 x 10
19

 cm
-3

. 
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Figure 2.10.  Synthetic L-shell Kr spectra calculated through SPECT3D utilizing the 

atomic code ATBASE.  a) L-shell Kr as a function of electron temperature with electron 

density constant at 10
21

 cm
-3

.  b)  L-shell Kr as a function of electron density with 

electron temperature constant at 400 eV. 

 

To help in creating synthetic spectra based off of the ATBASE atomic code, 

SPECT3D (MacFarlane et al. 2007) is used.  In SPECT3D, plasma conditions can be set, 

such as electron temperature and plasma density, then as an input the atomic code one 

wishes to run is set, along with the spectral range one wishes to view.  The results are 

synthetic spectra similar to what SCRAM produces.  There are two major advantages to 

using these codes: first, it offers the ability to compare results from other atomic codes, 

such as FAC run through SCRAM as discussed in the previous section.  For example, 

Figure 2.9 gives a comparison of L-shell Cu (Ouart 2010a) from SCRAM and SPECT3D, 



24 
 

secondly, it’s very user friendly to set up and choose what atomic data one wishes to 

calculate, such as, M-shell Cu (see Chapter 5) or L-shell Kr (see Figure 2.10). 

SPECT3D can also be used as a post-processing tool for other PRISM codes, such as 

HELIOS-CR (discussed in Section 2.2), where it can be used to calculate spectra and 

ionization distributions for various geometries, including 1D, 2D, and 3D Cartesian, and 

includes many useful graphical interfaces, such as 2D grids for Te and ne. 

2.2  HELIOS-CR Radiation-Hydrodynamics Code 

The Prism code HELIOS is a 1-D radiation-hydrodynamics code that can be used to 

simulate dynamics of laser produced plasmas, z-pinches, radiatively-heated plasmas, and 

shock propagation in materials.  Because HELIOS is a 1-D model, it’s very limited in its 

applications, however when upgraded to HELIOS-CR (MacFarlane et al. 2006), it 

includes the option to simulate non-LTE plasmas using an inline collisional-radiative 

(CR) model and utilizes ATBASE to calculate atomic level and transition energies, 

photoionization cross-sections, oscillator strengths, and  dielectronic recombination, 

autoionization, and electron capture rates The simulations can be calculated using planar, 

cylindrical, and spherical geometries. 

Using HELIOS-CR, it’s possible to set up a z-pinch simulation of a single wire using 

the cylindrical geometry and setting up a discharge current with the appropriate 

conditions, such as 1.0 MA maximum with a 100 ns rise time.  Single wire z-pinch 

experiments of Ag have recently been accomplished and they were shown to have similar 

radiative properties of L-shell Ag as Ag planar wire arrays (discussed in Chapter 6), as 

Figure 2.11 indicates, so it will be beneficial to look into some of the results from single 

wire Ag simulations. 
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Figure 2.11.  A comparison of L-shell Ag radiation from a Single Planar Wire Array 

(top) and a Single Wire (bottom). 

 

Before each simulation, HELIOS-CR offers a series of input options.  The Geometry 

input option is first and the cylindrical geometry was used for these simulations.  The 

next series of inputs is the Spatial Grid tab.  Here the region thickness can be changed 

and in these series of simulations the thickness was changed from 5 μm to 50 μm in 

diameter.  The next important input is in the Magnetic tab.  Here magnetohydrodynamics 

(MHD) effects can be included and there is an option to “supply discharge current”.  

With this option a current discharge can be manually set up. A basic current setup is to go 

from 0.0 MA to 1.0 MA in 100 ns of time with a sinusoidal dependence.  The next 

several figures show the results of these simulations of Ag single wires. 
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Figure 2.12.  Results from HELIOS-CR for a 30 μm Ag single wire at 1.0 MA.  a) 

Current pulse shape and zone radius as function of time, b) the electron temperature as a 

function of time and radius, c) electron density as a function of time and radius, and d) 

electron internal energy, kinetic energy, and magnetic energy as a function of time. 

 

Figure 2.12 demonstrates the first results from HELIOS-CR for a 30 μm Ag single 

wire at 1.0 MA with 100 ns rise time.  Figure 2.12(a) depicts the current pulse shape 

along with the zone radius as a function of time.  In the simulation, fifty individual zones 

were chosen.  Fifty zones were chosen to be an optimal number, as too little zones the 

resolution of the implosion is lost, and too many zones the simulation becomes too 

computationally expensive.  Going back to the results, the 30 μm Ag wire is shown to 

expand to 0.1 cm within several ns of time with a single implosion just after 100 ns, after 

which the material expands as current drops.  In Figure 2.12(b), the electron temperature 

plot shows just over 180 eV, which initially appears to be too low of an estimate, as 
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experiments for single wire implosions give L-shell Ag up to Te = 1800 eV.  A possible 

explanation for this low estimation of Te will be shown in Figure 2.13.  Where Te appears 

to be underestimated, Figure 2.12(c) gives electron density dependence with an estimate 

> 10
22

 cm
-3

 at stagnation, which may be an overestimation, however at all other times ne 

< 10
21

 cm
-3

, which is more realistic and gives assuredness in the simulation.  Figure 

2.12(d) gives energy dependencies of electron internal energy, kinetic energy, and 

magnetic energy in J/cm.  Interestingly the electron internal energy shows a possible 

radiation pre-pulse at roughly 80 ns in time. 

To understand more of the electron temperature question, Figure 2.13 shows results 

of the same simulations with different initial wire thickness, specifically 50 μm, 20 μm, 

10 μm, and 5 μm.  The results show that with decreasing wire thickness the maximum 

electron temperature increases.  Figure 2.13(a) suggests that at 50 μm thickness, the wire 

is too thick and there is no “pinch”, just a wire expansion to approximately 0.1 cm, with a 

maximum Te > 50 eV.  Figure 2.13(b) shows that at 20 μm there are multiple “pinches”, a 

slightly smaller wire expansion to 0.07 cm, and a maximum Te > 250 eV, higher than for 

the 30 μm wire.  Figure 2.13(c) gives a maximum Te > 600 eV with a 10 μm diameter, 

and finally Figure 2.13(d) gives a maximum Te > 1800 eV with a 5 μm diameter.  An 

explanation to this behavior in the code is that with smaller diameter thicknesses, the 

results more and more approach “bright” or “hot” spot conditions seen in z-pinch 

plasmas, and as shown in the previous sections, L-shell Ag only radiates at > 1800 eV 

electron temperatures in these “bright” spot formations. 
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Figure 2.13.  Results from HELIOS-CR for a) 50 μm, b) 20 μm, c) 10 μm, and d) 5 μm 

Ag single wire at 1.0 MA.  For each simulation, the electron temperature is given as 

dependent on time and radius. 

 

2.3  Wire Ablation Dynamics Model 

For z-pinch experiments of wire arrays, it’s important to have a theoretical 

understanding of how well certain wire array types perform compared to others, how the 

implosion dynamics of the wire array work, at what point in time the wire array 

implodes, and at what energies, velocities, densities, and other plasma properties in which 

the wire array can be expected to have.  Having such information is critical in not only 

choosing the best load types to perform experiments on, but also to understand, for 

instance, how thick the wires need to be, how many wires to include, and to understand 
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where to “position” the time-gated diagnostics to attain as much information as possible.  

For these reasons, the Wire Ablation Dynamics Model (WADM) (Esaulov et al. 2009) 

was created, which is an ablation modified version of the Wire Dynamics Model (WDM) 

(Esaulov et al. 2006). 

 

Figure 2.14.  Example of a WADM simulation of an Al DPWA.  The parameters were 

10 wires in each plane, 6.0 mm interplanar gap, 1.0 interwire gap, and 12.5 μm diameter 

wires. 

 

The WADM is used throughout this dissertation.  The model works by inputting the 

desired parameters, which include the intrinsic properties of the pulsed power generator 

(such as the Zebra generator in Section 2.4), and exact wire array specifications.  The 

wire array specifications include the wire array type (cylindrical, single planar, double 

planar, etc.), wire array spacing (interplanar gap, interwire gap, etc.), total wire mass, and 

ablation rate coefficient.  The ablation rate coefficient is dependent on the properties of 

the wire material (Esaulov et al. 2009).  Some wire materials have faster ablation rates 

(Al), while others have slower ablation rates (Mo and Ag).  Once the proper 
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specifications are met, the WADM self-consistently calculates the inductive current 

distribution between the wires and the magnetic field contribution for each wire for each 

time step (every ns, generally up to 150 ns for Zebra simulations).  The wires are then 

split apart into individual current filaments at rates proportional to the ablation 

coefficient.  From this, the WADM simulates ablated coronal plasma with kinetic energy 

and acceleration for each filament depending on the net magnetic field, which contributes 

to the evolution of the simulated plasma.  Figure 2.14 depicts an example of a WADM 

simulation of an Al DPWA.  In this example there were ten 12.5 μm diameter wires in 

each plane for a total of twenty wires, a 6.0 mm interplanar gap, and a 1.0 mm interwire 

gap.  The predicted implosion time is 92 ns. 

The WADM is also capable of simulating mixed wire load types.  Outside of 

providing implosion times, the WADM provides information on change in thermalization 

energy, energy in precursor region, kinetic energy, energy per length, and contour 

information for mass density, current density, and plasma velocities for each time step. 

2.4  The Zebra Generator 

The Zebra generator is a pulsed power machine located at the Nevada Terawatt 

Facility (NTF) (Bauer et al. 1997, and see Kantsyrev et al. 2009 for experimental setup), 

which is a branch of the Physics Department at the University of Nevada, Reno.  The 

Zebra generator is capable of delivering up to 1.0 MA of current in 100 ns of time (or 

alternatively, 0.6 MA in 200 ns), or up to 1.5 TW of power.  This is accomplished by 

charging thirty two 1.3 μF Marx capacitors in parallel up to 85 kV with a stored energy of 

150 kJ.  For clarification of the layout of the Zebra generator, see Figure 2.15.  The vast 
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majority of the experimental results in this dissertation were produced on the Zebra 

generator. 

Figure 2.16 shows the diagnostic layout for a general Zebra experiment.  Individual 

diagnostics can change from campaign to campaign depending on the need for the 

experiments. 

For a more detailed look into the various diagnostics that are fielded on the Zebra 

generator, see (Osborne 2012 and Williamson 2011).  Recently, the Zebra generator was 

upgraded to achieve currents up to 1.7 MA with the use of the Load Current Multiplier 

(LCM) (Chuvatin et al. 2010).  Figure 2.17 shows how the LCM is implemented in the 

Zebra chamber.  Increasing the current gives excellent opportunity to compare 

experimental results from two different current regimes (~1.0 MA and ~1.7), which 

provides much needed current scaling. A few side effects of the LCM is that the anode to 

cathode gap is lowered from 2.0 cm to 1.0 cm, and also, due to the added eight return 

current posts, a few diagnostic ports are blocked from line of site to the plasma.   
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Figure 2.15. The Zebra generator schematic, courtesy of University of Nevada, Reno 

(http://www.unr.edu/ntf/facility/zebra). 

 

 

 

 

Figure 2.16. The Zebra generator diagnostic layout for a general experiment.  

 

http://www.unr.edu/ntf/facility/zebra
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Figure 2.17. The schematic of the Load Current Multiplier on the Zebra generator.  

 

The next two sections will cover two specific diagnostic systems that are pertinent to 

this dissertation: the Zebra shadowgraphy and optical system and a description of a new 

time-gated hard x-ray spectrometer fielded on Zebra. 

2.4.1  The Zebra Optical System 

As part of the experimental side of the research, approximately two Zebra campaigns 

were accomplished every year.  Each individual for each campaign is generally 

responsible for a set number of tasks for each experiment, including setting up the suite 

of diagnostics beforehand.  One very complicated set of diagnostics, which I became 

responsible for during experiments, is the Zebra optical system, which includes a laser 

shadowgraphy setup and an intensified charge‐coupled device (ICCD) camera. 

The shadowgraphy system works by firing a second harmonic 150 ps pulse from a 

Nd:YAG laser named EKSPLA (λ = 532 nm) during the z-pinch experiment.  The laser 

refracts from density gradients in the plasma up to a critical electron density (for 532 nm, 

the critical electron density is 3.9 x 10
21

 cm
-3

), in which the refraction becomes too 

intense and the light is no longer able to be collected by the CCD cameras, or essentially 
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the light penetrates up to the critical density creating a “shadow”.  It’s advantageous to 

have a temporal understanding of the wire ablation process, and to achieve this goal the 

laser is polarized and then split into two paths, one called Channel 1 (Ch1) and the other 

Channel 2 (Ch2), separated by 22.5°.  To see orientations and to have a better 

understanding of where the laser is polarized and split, see Figure 2.18.  Ch1 and Ch2 

have an intrinsic ~3 ns between them, while the delay adds an extra ~6 ns, giving four 

frames of knowledge of the plasma separated by 3 ns each.  It’s important to note the 

LCM configuration has return current posts that usually block Ch2, so only Ch1 is 

available for LCM configuration experiments.  Also, for safety purposes, due to the 

wavelength and brightness of the laser, proper laser safety googles are required during 

any usage of the EKSPLA laser. 

 
Figure 2.18. Optics schematic for the shadowgraphy system on the Zebra generator. 
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The other separate optical path on the Zebra generator heads north out of the chamber 

and eventually to the ICCD camera, as illustrated in Figure 2.19.  The ICCD camera has 

two main components; a focusing system and an MCP used to intensify and capture the 

image.  The settings of the ICCD camera are usually set to 3 ns duration with an MCP 

gain of 70, though these settings can be changed if desired.  Figure 2.20 shows examples 

of both a shadowgraphy image and an ICCD image. 

 

 

 

 

 
 

Figure 2.19. Optics schematic for the ICCD system on the Zebra generator. 
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Figure 2.20. a) Example of a shadowgraphy image. b) Example of an ICCD image. 

 

2.4.2 New Time-Gated Hard X-Ray Spectrometer on Zebra 

Over the years there has grown an increasing demand to understand how L-shell and 

K-shell plasmas radiate in time, such as L-shell Mo and Ag and K-shell Mo and Cu.  Not 

only this, but for such a mid-Z element as Cu, where a z-pinch experiment can ionize 

easily into both L- and K-shell, it has become important to understand how both 

simultaneously radiate in time.  One way to understand these plasmas is through 

spectroscopy, which utilizes Bragg’s Law to diffract x-ray spectra: 

 

                                                                                                                                                   

 

where d is the atomic spacing in the crystal lattice, Ɵ is the angle of incidence, m is the 

order of diffraction, and λ is the diffracted wavelength.  In this dissertation, convex 

crystals, such as potassium hydrogen phthalate (KAP, 2d = 26.634 Å), α-quartz (2d = 
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6.687), and LiF (2d = 4.028), are used in both time-integrated and time-gated 

spectrometers.  Because of the direct relationship, the lower the crystal 2d spacing, the 

lower the wavelength range, Ʌ, one can attain. Ʌ is defined as: 

 

   
 (         )

(         )
                                                           

                                                            

See Figure 2.21 for clarity.  The spectral resolution, R, is defined by: 

 

  
 

  
                                                                               

 

 

 

 

 
Figure 2.21.  Diagram of a convex crystal spectrometer, with λmax and λmax shown along 

with the angle of incidence, Ɵ, and the radius of curvature of the crystal, r. 
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R is essentially a ratio of λ to the minimum difference between simultaneously resolved 

features and is generally a result of source size and imperfections in the diffraction 

crystal. 

In previous years, two main spectrometers have been fitted simultaneously for 

experiments on the Zebra generator, one a time-integrated spatially resolved (TISP) 

spectrometer and the other a time-gated spatially integrated spectrometer (TGSP).  Both 

traditionally use a KAP crystal.  The TISP spectrometer utilizes a horizontal slit (0.5 mm) 

to attain spatial resolution along the length of the pinch (from anode to cathode, though 

the slit can be moved to a vertical position to have radial resolution) and has a 

wavelength range of approximately 1 – 15 Å (when using the KAP crystal), however 

lacks time-resolution.  Bio-max MS Kodak x-ray film is used and is put alongside the 

inner wall of the spectrometer which allows for such a wide spectral range to be 

measured.  The TGSP is very similar to the TISP, except for a few differences: it has a 

microchannel plate (MCP) attached to the main body of the spectrometer, allowing for 

time-resolved images.  Briefly, an MCP has six gold strips and a pulsed bias to obtain 

time-resolved images, with each gold strip acting as a photocathode, where incident 

photons are converted to electrons via the photoelectric effect and are accelerated through 

plate capillaries. This causes a cascading emission of secondary electrons that impact a 

phosphor screen, which in turn is exposed to visible wavelength film.  The timings of the 

gates on the MCP are spaced depending on the cable length differences, generally 5 ns, 

and each gate is gated to last between 1 – 6 ns, generally 3 ns.  The TGSP also doesn’t 

have a slit to add for spatial resolution, partially due to the limited exposure time on the 

film, so a slit is not put in place in order to capture as many photons as possible.  Lastly, 
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due to the small size of the MCP (< 2 inches) the Ʌ is reduced from that of the TISP, 

from 1 – 15 Å to 6.5 – 10 Å (using KAP crystal).  This reduced Ʌ is out of range of many 

important transitions, including L-shell Mo (4 – 5.5 Å) and L-shell Ag (3 – 4.5 Å).  The 

Ʌ can be adjusted on the TGSP by a few ways.  For one, the crystal can either be changed 

to a new crystal, or the crystal angle can be adjusted inside the spectrometer (see Figure 

2.21).  Secondly, the wedge, which attaches to the body of the spectrometer and where 

the MCP mounts, can be replaced with a different wedge angle which allows for a 

different Ʌ.  Each process takes time and requires the spectrometer to be open, which is 

problematic because the MCP requires high vacuum (~ 10
5
 Torr) at all times to function 

properly.  Each time the MCP is exposed to air it needs to be pumped at high vacuum for 

24 hours to remove atmospheric particles.  The other solution, of course, is to have a 

second TGSP capable of attaining the proper Ʌ one needs.  This was the motivation for 

building and piecing together a new TGSP, with the goal of attaining time-resolved 

images of “harder” x-rays.  This would also allow for simultaneous measurements of two 

different Ʌ regimes. 

 

 
Figure 2.22.  Picture of a time-gated spectrometer body along with attached wedge. 
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Figure 2.22 shows the body of the new time-gated hard x-ray (TGHXR) spectrometer, 

along with a wedge where the MCP attaches, the crystal, and where filters are placed.  

There are two locations where filters, used to block unwanted light, are located, one in 

front of the crystal and the second in front of the MCP.  Table 2.2 lists different Ʌ as a 

function of crystal, crystal angle, and wedge angle.  The wedge angles 76° and 32° are 

actually the same wedge just rotated 180° to create two different angles.  The wedge 

angle 45° is a brand new wedge specially designed to capture the Ʌ of 1.1 – 1.85 Ʌ.  This 

new TGHXR spectrometer has recently been used to measure L-shell Ag lines (see 

Chapter 6) using the α-quartz crystal (crystal angle = 35°, wedge angle = 76°) and K-shell 

Cu (Heα ~ 1.5 Å) and Mo (Heα ~ 0.7 Å) using LiF crystal (crystal angle = 15°, wedge 

angle = 32°). 

 

Crystal (Crystal Angle) Wedge 76° Wedge 45° Wedge 32° 

α-quartz (35°) 3.8 - 4.4 Å - - 

α-quartz (25°) - 2.0 - 3.1 Å - 

α-quartz (15°) - - 1.2 - 2.3 Å 

LiF (30°) 2.1 - 2.7 Å - - 

LiF (20°) - 1.1 - 1.85 Å - 

LiF (15°) - - 0.7 - 1.5 Å 

KAP (35°) 14 - 18 Å - - 

KAP (20°) - 8.0 - 12.5 Å - 

KAP (15°) - - 6.5 - 10 Å 

Table 2.2.  Wavelength ranges for the time-gated hard x-ray spectrometer as a function 

of crystal, crystal angle, and wedge angle. 
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2.5  The Cobra Generator 

A few experiments in this dissertation were accomplished on the Cobra generator, 

which is a generator similar to the Zebra generator and is located at Cornell University.  

Cobra utilizes thirty two 1.3 μF Marx capacitors that charge up to 70 kV with a stored 

energy of 100 kJ and delivers up to 1.0 MA of current.  A main difference from the Zebra 

generator is that the Marx capacitor bank is stored from two banks that travel through 

four laser-triggered transmission lines (see Figure 2.23) which allow for current rise 

times from 85 – 250 ns (Greenly et al. 2008).  Another difference is that Cobra is 

sensitive to load inductance and was designed primarily for low-inductance cylindrical 

wire arrays (see Chapter 4) and x-pinches.  Figure 2.24 shows the schematic of the 

diagnostics used on Cobra. 

 

Figure 2.23.  Schematic of the Cobra generator (Greenly et al. 2008). 
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Figure 2.24.  Schematic of the diagnostics used on the Cobra generator. 

 

2.6  The Compact Laser Plasma Facility “Sparky” at UNR 

In order to test and calibrate diagnostics the compact laser plasma facility “Sparky” 

was developed at the University of Nevada, Reno (Kantsyrev et al. 2008a).  The facility 

was also partially developed to study extreme ultraviolet radiation from different 

materials (which is a focus of Chapter 5).  The facility utilizes a neodymium-doped 

yttrium aluminum garnet (Nd:YAG) solid state laser (λ = 1.06 μm, 0.4 J, 3 ns, 10 Hz) that 

focuses and strikes solid flat targets multiple times (see Figure 2.25).  To avoid cratering 

of the target, the target is manually moved via a control scheme.  An EUV grazing 

spectrometer (Shevelko et al. 1998) is used to collect EUV radiation to study and 

calibrate complicated EUV lines (capable between 40 – 300 Å), such as M-shell Cu and 

Mo. 
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Figure 2.25.  a) The “Sparky” facility. “1” is the laser location, “2” is the vacuum 

chamber where the flat target is located, and “3” is where an EUV grazing spectrometer 

is located. b)  An example of a flat target used. 

 

2.7 Sustained Spheromak Physics Experiment 

The Sustained Spheromak Physics Experiment (SSPX) at the Lawrence Livermore 

National Laboratory (LLNL) was a facility to explore innovative confinement concepts to 

explore energy confinement and current drive in spheromaks (Wood et al. 2005a). The 

term spheromak refers to an arrangement of plasma formed into a toroidal shape.  SSPX 

plasma currents achieved up to 1 MA, creating around 4 ms of plasma, with electron 

densities around 10
14

 cm
-3

 and electron temperatures exceeding 500 eV (Hudson et al. 

2008).  Figure 2.26 shows the schematic of the SSPX.  For this dissertation (Chapter 5), 

the interest stems from impurities, such as O or Cu from the inner chamber, which could 

dilute the plasma.  For the purpose of studying these impurities, the Silver Flat Field 

Spectrometer (SFFS) (Clementson et al. 2008) was developed (Figure 2.27).  The 

spectral range is 25 – 400 Å with a 200 Å bandwidth and resolution up to 0.3 Å FWHM. 
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Figure 2.26.  Schematic of the Sustained Spheromak Physics Experiment (from Wood et 

al. 2005a). 

 

 

Figure 2.27.  Schematic of the Silver Flat Field Spectrometer on the SSPX (from 

Clementson et al. 2008). 
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Chapter 3  

Radiative Properties of Uniform Mo and Mixed with Al Triple 

Planar Wire Arrays 

3.1  Introduction to Uniform Mo and Mixed with Al Triple Planar Wire Arrays 

Planar wire arrays (single and multi-planar) have previously shown to be very 

efficient x-ray radiators (Kantsyrev et al. 2006, Kantsyrev et al. 2008b) on university 

scale z-pinch generators, such as the 1.7 MA Zebra generator at UNR.  In particular, 

single and double planar wire arrays of Mo were studied (Yilmaz et al. 2008) and it was 

shown that Mo SPWAs produced very high Te at > 1300 eV for heavier loads (150 μg) 

and moderately high electron density (ne at > 10
21 

cm
-3

)
 
for lighter loads (90 μg) with total 

radiated energies > 18 kJ. Mo double planar wire arrays (DPWAs), however, produced 

lower electron temperature (Te at > 1100 eV) but with higher total radiated energies > 21 

kJ. This chapter will largely focus on the radiative and implosion characteristics of Mo 

and mixed Mo and Al triple planar wire arrays (TPWAs), in particular how geometry and 

inter-planar gaps play a role in efficiency of energy conversion to x-rays, and also how 

placement and mass concentration of different Mo and Al wires influence overall 

radiation of, for example, K-shell Al and L-shell Mo, and how this affects opacity of the 

plasmas. 

Section 3.2 will cover results and analysis of Mo and mixed Mo and Al TPWAs with 

an inter-planar gap of 3.0 mm, while Section 3.3 will highlight results and analysis of 

these Al TPWAs with a smaller inter-planar gap of 1.5 mm, and Section 3.4 concludes. 
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3.2  Uniform Mo and Mixed with Al Triple Planar Wire Arrays with a 3.0 Inter-

Planar Gap 

Implosion dynamics of three different triple planar wire arrays that were performed 

on Zebra generator will be compared in this section: the first consisting of uniform Mo 

(Mo/Mo/Mo), the second consisting of 68% Mo and 32 % Al (5056, 95% Al, 5% Mg) 

(Mo/Al/Mo), with Mo planes on the outside, and the third consisting of 35% Mo and 

65% Al (5052) (Al/Mo/Al), with Al planes on the outside. In particular, experimental 

results for x-ray time-integrated, spatially-resolved spectra and pinhole images, x-ray 

time-gated pinhole and spectra images, PCD and XRD signals, and total radiated energy 

will be fully compared and analyzed. Table 3.1 lists the load characteristics of the shots 

considered in this section.  The anode-cathode gap for all loads considered was 20 mm.  

Each plane consisted of six wires, and the Mo and Al wires had diameters such that each 

plane would have approximately the same mass of around 90 μg/cm, which, according to 

Wire Ablation Dynamics Model (WADM) calculations, would have implosion times 

estimated to be around 100 ns, or the maximum of the current, which allows maximum 

efficiency of x-ray radiation and total energy output.  The total radiated energy for the 

Mo/Mo/Mo and Mo/Al/Mo loads were comparable at 16.2 and 16.9 kJ, respectively.  The 

total radiated energy for Al/Mo/Al load, however, was less at 13.1 kJ.  This is to be 

expected as Al is a less efficient radiator as Mo, and these results also suggest that the 

outer planes carry a higher distribution of current (as suggested in Safronova et al. 2014 

for mixed Cu and Al TPWAs) and contribute more to the total radiation than the inner 

plane, perhaps due to increased kinetic energy the outer planes have relative to the inner 

plane.  These energies are still less than for the Mo DPWAs (> 21 kJ) previously studied. 
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Shot # Material 

# Wires 

Diameter (μm) 

Gap (mm) 

Linear Mass 

(μg/cm) 

Al (%) Total Energy 

(kJ) 

1261 Mo/Mo/Mo 

6/6/6 

7.9/7.9/7.9 

3.0 

90 - 16.2 

1262 Mo/Al/Mo 

6/6/6 

7.9/15.0/7.9 

3.0 

89 32 16.9 

1263 Al/Mo/Al 

6/6/6 

15.0/7.9/15.0 

3.0 

87 65 13.1 

Table 3.1.  List of considered shots and parameters for Mo and mixed Mo and Al 

TPWAs.  The diameter is the diameter of the wires and the gap is the inter-planar gap. 

 

3.2.1  Implosion Characteristics and Temporal Radiation 

This section will analyze the implosion characteristics of the TPWA loads considered.  

Figure 3.1 shows signals and time-gated pinhole (TGPH) images of Mo/Mo/Mo, 

Mo/Al/Mo, and Al/Mo/Al.  Briefly, the TGPH utilized a microchannel plate (MCP) 

consisting of six gates with 6 ns spacing between gates and 3 ns frame duration, allowing 

two images of energies > 1.0 keV and > 3.0 keV.  The signals include a 5 µm Kimfoil 

filtered x-ray diode (XRD, > 0.2 keV) and an 8 µm Be filtered PCD (> 0.8 keV).  

Looking at Figure 3.1(a) and 3.1(b), the implosion times of Mo/Mo/Mo and Mo/Al/Mo 

are roughly the same at 101 and 99 ns, respectively.  The XRD signals indicate a sharp 

rise just before the implosion, followed by a series of bursts after the main pinch lasting 

for approximately 40 ns.  The PCD signals show interesting results where, similar to the 

XRD signals, there are a series of bursts; however the most intense bursts come later in 

time, at ~120 ns.  Now looking to Figure 3.1(c), the implosion time of Al/Mo/Al is 97 ns, 

which is slightly earlier than the other two configurations, but within experimental jitter.  

The XRD and PCD signals, however, are different than the other two loads.  The XRD 
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signal is characterized by a sharp peak, followed by only a few, much smaller bursts 

lasting for approximately 40 ns.  The PCD signal is characterized by a sharp rise around 

implosion time, in contrast to the Mo/Mo/Mo and Mo/Al/Mo loads, followed by a few 

bursts.  The TGPH images indicate many random bright spot formations for both > 1.0 

and > 3.0 keV images for Mo/Mo/Mo and Mo/Al/Mo, and for the > 3.0 keV for 

Al/Mo/Al.  K-shell Al approximately radiates > 1.0 keV and the random bright spot 

formations for Mo/Al/Mo in the > 1.0 keV TGPH image indicate that K-shell Al is not 

radiating completely in a column-like manner, however the > 1.0 keV TGPH image for 

Al/Mo/Al shows a very intense column-like structure around implosion time, on frame 

“b” on the film, which indicates K-shell Al is radiating in a column-like structure.   Later 

in Section 3.2.2 this structure will be compared to the time-integrated spatially resolved 

results. 

To understand how the wires in this TPWA configuration implode, the Wire Ablation 

Dynamics Model was applied to shot 1262 for Mo/Al/Mo, and the results are shown in 

Figure 3.2.  The simulation shows results from a top down perspective of how the 

individual wires implode in time.  By 43 ns the Mo wires on the outside are well into the 

ablation process towards the central axis, while the Al wires on the inside have started to 

ablate as well.  By 82 ns the outside Mo wires have fully ablated away from their initial 

positions, while the innermost four Al wires are still ablating.  Finally by 98 ns the 

WADM predicts the load will fully implode, which agrees with experiment well.  
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Figure 3.1.  PCD and XRD signals, along with current and time-gated pinhole images of 

> 3.0 keV and > 1.0 keV, of Mo/Mo/Mo TPWA (a), Mo/Al/Mo TPWA (b), and 

Al/Mo/Al TPWA (c).  The labels “a – f” denote the timings of the time-gated pinhole 

images. 
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Figure 3.2.  Wire Ablation Dynamics Model implosion simulation of shot 1262, 

Mo/Al/Mo TPWA.  The blue dots indicate initial starting positions of Mo wires, while 

the green dots indicate starting positions of Al wires.  Light blue dots indicate ablating 

material from Mo wires and yellow dots indicate ablating material from Al wires. 

 

To understand how K-shell Al radiates in time, a time-gated spectrometer (TGSP) 

was fielded for Al/Mo/Al.  The TGSP utilized a KAP crystal (2d = 26.63 Å) which 

allowed for viewing of wavelengths between 6.2 and 11 Å, wide enough to cover most of 

K-shell Al  and Mg spectra.  Bio-max MS Kodak x-ray film was implemented in this 

work.  The spacing between gates was 5 ns, while the MCP was gated to last for 3 ns.  

Figure 3.3 shows the results of the K-shell Al and Mg spectra along with XRD and PCD 

signals.  The spectra were collected starting at 110 ns after current rise, or 13 ns after the 

main implosion.  Frame 1 in Figure 3.3(b) indicates very strong emissions from K-shell 

Al and the emergence of K-shell Mg, which is in general an indicator of high opacity in 
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the K-shell Al plasma, as Mg in the Al 5056 alloy is only 5%.  Due to such high opacity 

in K-shell Al, a non-LTE kinetic model of Mg is used to derive Te from the K-shell Mg 

spectra (Yilmaz 2009). Frame 1, which corresponds to a peak in the PCD signal, shows a 

K-shell Mg Te = 360 eV.  The ratio of Mg2/Mg1 is used to estimate Te.  Usually, the 

electron density is estimated by the ratio of Mg1 and inter-combination line Mg1’, 

however the intensity of the Mg1’ here is too low and an estimate of 10
20 

cm
-3

 is used, 

which is an appropriate electron density for PWA plasmas.  Frame 2, 5 ns later, which 

corresponds to a “valley” in the PCD signal, shows a K-shell Mg Te of 300 eV, and stays 

constant in Frame 3 at 300 eV, again corresponding to the “valley” in the PCD signal.  

Frame 4 corresponds to another peak in the PCD signal, and the K-shell Mg modeling 

shows an increase in Te to 340 eV from the previous two time frames.  By Frame 5 the 

PCD signal has dissipated and the K-shell Al is reduced and the K-shell Mg has 

disappeared.  By Frame 6 there is no spectra and corresponds to a PCD signal that is 

nearly zero.  This shows excellent correlation between K-shell Mg electron temperature 

and PCD signal where generally the greater the PCD signal the higher the K-shell Mg 

electron temperature is.  These results are in agreement with previous results of 

correlation of PCD signals with electron temperature, see, for example (Weller et al. 

2012a), where PCD signals correlated not only for K-shell Al and Mg, but also L-shell 

Cu and Zn.  It would be interesting to have time-gated results of L-shell Mo, however, as 

discussed in Chapter 2, the time-gated spectrometer used in these experiments didn’t 

have the proper spectral range to attain L-shell Mo lines. 
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Figure 3.3.  (a) PCD and XRD signals from Al/Mo/Al along with current, timings from 

the time-gated spectrometer (labeled “1 – 6”), and K-shell Mg electron temperatures. (b) 

Spectra from time-gated spectrometer and (c) lineouts taken from spectra in (b) along 

with synthetic spectra.   

 

3.2.2  Radiative Characteristics 

The radiative characteristics of the Mo TPWA experiments are explored in detail in 

this section.  Figure 3.4 shows the results of time-integrated spatially resolved pinhole 

(TIPH) and spectra (TISP) from Mo/Mo/Mo, Mo/Al/Mo, and Al/Mo/Al.  The spectra 

were taken with a KAP convex crystal spectrometer while the pinhole images were 

filtered to study L-shell Mo emissions > 3.0 keV.  Both diagnostics are axially resolved 
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to study variations along the length of the pinch from anode “a” to cathode “c”.  

Diagnostically important L-shell Mo lines, along with K-shell Al and K-shell Mg lines 

are indicated.  It’s important to note that in these experiments, the TIPH and TISP 

diagnostics were located on opposite beam lines, a full 180° from each other.  This is 

important when analyzing bright spot formations and the corresponding spectra.  For 

Mo/Mo/Mo, L-shell Mo radiates from 4-5 bright spots, and is most prevalent near the 

cathode.  For Mo/Al/Mo, L-shell Mo radiates again from bright spots, this time 

approximately 3, and K-shell Al appears to radiate mostly where L-shell Mo is seen, 

except for near the anode.  It’s interesting for Mo/Al/Mo near the middle a bright spot is 

shown to radiate to the left in the TIPH image, and this can be seen in the spectra, which 

gives evidence of radiation from two sources.  Moving to Al/Mo/Al, L-shell Mo again 

appears to radiate from bright spots, roughly 3-4, however K-shell Al and Mg appear to 

radiate in a column-like manner.  This likely has two explanations: one, the initial mass 

of Al constitutes 65% of the total mass, where in the previous Mo/Al/Mo load Al 

constituted 32% of the total mass, and two, the Al is located on the outer planes, which 

likely contribute more to radiation than the inner plane.  Interestingly, a similar bright 

spot seen in Mo/Al/Mo is produced in Al/Mo/Al in the TGPH image, and can be seen in 

the spectra, indicating two sources.  More experiments need to be accomplished to 

understand if this is purely coincidence or if it reproducible. 
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Figure 3.4.  (a) Time-integrated spatially resolved pinhole (left) and spectra (right) of 

Mo/Mo/Mo.  (b) Time-integrated spatially resolved pinhole (left) and spectra (right) of 

Mo/Al/Mo.  (c) Time-integrated spatially resolved pinhole (left) and spectra (right) of 

Al/Mo/Al. 

 

 Lineouts were taken from the spectra in Figure 3.4 and non-LTE kinetic modeling 

was applied for both L-shell Mo and K-shell Al/Mg.  Figure 3.5 shows three lineouts 

taken from Mo/Mo/Mo.  The spectra show an increase in intensity of 3A, 3B, 3F, and 3G 

lines the closer to the cathode.  The lineout taken near the anode was successfully 

modeled with Te = 1050 eV and ne = 10
20

 cm
-3

.  The ratio (3A+3B)/(3F+3G) has been 
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shown to be a good indicator of ne, while the ratios of Mg1/Na1 and F1/Mg1 can be used 

as an Te diagnostic.   

Figure 3.6 shows five lineouts taken from Mo/Al/Mo.  L-shell Mo again shows very 

high intensities of 3A, 3B, 3F, and 3G closer to the anode.  In particular the lineout taken 

closest to the anode indicates relatively high optically thick L-shell Mo plasma due to the 

thickness of the line shapes.  K-shell Al, however, is produced relatively optically thin 

(K-shell Mg is not apparent), and modeling of plasma parameters of K-shell Al was 

accomplished.  K-shell Al Te ranged from 330 to 420 eV, with higher Te corresponding to 

intense L-shell Mo spectra, and lower Te with less intense to no L-shell Mo spectra.  A 

possible explanation is that K-shell Al Te may possibly being affected by the presence of 

the L-shell Mo through radiative cooling from the Mo ions.  K-shell Al ne was nearly 

constant ranging from 2 x 10
20

 cm
-3

 to 3 x 10
20

 cm
-3

. 

 
Figure 3.5.  Lineouts of L-shell Mo taken from Figure 3.4, Mo/Mo/Mo.  The blue is 

experimental spectra, while the red is synthetic spectra.  The distances from anode for 

each lineout are located to the right. 
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Figure 3.6.  Lineouts of L-shell Mo taken from Figure 3.4, Mo/Al/Mo.  The blue is 

experimental spectra, while the red is synthetic spectra.  The distances from anode for 

each lineout are located to the right. 

 

Figure 3.7 shows four lineouts from Al/Mo/Al.  L-shell Mo is less intense as before 

while K-shell Al is much more intense and broad (in particular Al1) and K-shell Mg 

appears which indicates K-shell Al is optically thick.  The lineout near the cathode for L-

shell Mo was modeled and produced Te = 1020 eV and ne = 5 x 10
19

 cm
-3

.  K-shell Mg 

was modeled for all lineouts.  K-shell Mg Te ranged from 320 to 340 eV, with higher Te 
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corresponding to intense L-shell Mo spectra, and lower Te with less intense to no L-shell 

Mo spectra, though the difference in Te is smaller than observed for Mo/Al/Mo.  It’s also 

important to note that K-shell Al/Mg and L-shell Mo plasmas radiate at much different 

Te, as the results suggest here and as concluded in Safronova et al. 2007.  K-shell Al ne 

was nearly constant ranging from 2 x 10
20

 cm
-3

 to 3 x 10
20

 cm
-3

. 

 

 
Figure 3.7.  Lineouts of L-shell Mo taken from Figure 3.4, Al/Mo/Al.  The blue is 

experimental spectra, while the red is synthetic spectra.  The distances from anode for 

each lineout are located to the right. 
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3.3  Uniform Mo and Mixed with Al Triple Planar Wire Arrays with a Reduced 

Inter-Planar Gap of 1.5 mm 

Results from early TPWA experiments with an inter-planar gap of 3.0 mm yielded 

powers and energies that were 20-30% lower than double planar wire array (DPWA) 

(Kantsyrev et al. 2009).  It is important to note, though, that because of the open magnetic 

configuration of the TPWA and DPWA, the placement of the outer wires can 

significantly change the dynamics and efficiency of the implosion.  Comparing to 

DPWAs with inter-row gaps of 6.0 mm and not 3.0 mm, the TPWAs had a 20% increase 

in energy output.  The logical step then was to field TPWAs with a reduced inter-row gap 

of 1.5 mm, thus making the outer-row gap 3.0 mm, comparable to the highest yielding 

DPWAs.   

All shots considered in this section are uniform Mo and mixed with Al TPWAs.  The 

mixed loads consisted of either two Mo planes on the outside with Al in the center or two 

Al planes on the outside with Mo in the center.  Different wire diameters of Mo and Al 

were used to keep the planes approximately the same mass, with a total mass of ~115 

µg/cm.  The change of inter-row gap is investigated: decreasing the inter-row gap from 

3.0 mm to 1.5 mm led to a higher yield of 25 kJ (a 40-50% increase), close to the highest 

yield from Mo DPWAs. Table 3.2 lists the load characteristics of the shots considered in 

this section.  All experiments were performed on the Zebra generator at UNR at 1.0 MA.  

 

 

 

 



59 
 

Shot # Material 

# Wires 

Diameter (μm) 

Gap (mm) 

Linear Mass 

(μg/cm) 

Al (%) Total Energy 

(kJ) 

1969 Mo/Mo/Mo 

6/6/6 

8.9/8.9/8.9 

1.5 

114 - 25.5 

1932 Mo/Mo/Mo 

6/6/6 

8.9/8.9/8.9 

1.5 

114 - 24.5 

1968 Mo/Al/Mo 

6/6/6 

8.9/17.8/8.9 

1.5 

116 35 22.2 

1933 Mo/Al/Mo 

6/6/6 

8.9/17.8/8.9 

1.5 

116 35 22.5 

1953 Al/Mo/Al 

6/6/6 

17.8/8.9/17.8 

1.5 

116 68 23.1 

2166 Al/Mo/Al 

6/6/6 

17.8/8.9/17.8 

1.5 

116 68 24.0 

2167 Al/Mo/Al 

6/6/6 

17.8/8.9/17.8 

1.5 

116 68 21.1 

Table 3.2.  List of considered shots and parameters for Mo and mixed Mo and Al 

TPWAs with reduced inter-planar gap. 

 

3.3.1  Implosion Characteristics and Temporal Radiation of Triple Planar Wire 

Arrays with a Reduced Inter-Planar Gap of 1.5 mm 

This section will analyze the implosion characteristics of the TPWA loads considered.  

Figure 3.8 shows signals and time-gated pinhole (TGPH) images of Mo/Mo/Mo, 

Mo/Al/Mo, and Al/Mo/Al.  The signals include a 5 µm Kimfoil filtered x-ray diode 

(XRD, > 0.2 keV), an 8 µm Be filtered PCD (> 0.8 keV), and a 0.2 μm Al filtered Si 

diode to capture extreme ultraviolet radiation (EUV, > 17 eV).    The EUV diode was 

added due to a significant amount of radiation emitting from the EUV region (M-shell 

Mo, for example), which has previously gone relatively unexplored. Looking at Figure 

3.8(a-c), the implosion times of Mo/Mo/Mo, Mo/Al/Mo, and Al/Mo/Al are 95, 103, and 

95 ns respectively. 
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Similar to the signals from Mo and mixed Mo and Al TPWAs with a 3.0 mm inter-

planar gap, the XRD signals indicate a sharp rise just before the implosion, followed by a 

series of bursts after the main pinch lasting for approximately 40 ns.  The PCD signals 

show interesting results where, similar to the XRD signals, there are a series of bursts; 

however the most intense bursts come later in time, between 100 – 120 ns.  The TGPH 

images indicate many random bright spot formations for both > 1.0 and > 3.0 keV images 

for Mo/Mo/Mo and Mo/Al/Mo, and for the > 3.0 keV for Al/Mo/Al. K-shell Al 

approximately radiates > 1.0 keV and the random bright spot formations for Mo/Al/Mo 

in the > 1.0 keV TGPH image indicate that K-shell Al is not radiating completely in a 

column-like manner, however the > 1.0 keV TGPH image for Al/Mo/Al shows a very 

intense column-like structure around implosion time, on image b) on the film, which 

indicates K-shell Al is radiating in a column-like structure, again, similar to the 3.0 mm 

inter-planar counterparts.  The EUV signals for all shots indicate > 17 eV radiation 

starting as early as 20 ns into the current rise and continuing to well after the XRD and 

PCD signals have dissipated and continuing past 200 ns.  It’s clear that a great deal of 

interesting physics is occurring in this region and is the subject of current studies 

(Safronova et al. 2011). 
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Figure 3.8.  PCD and XRD signals, along with current and time-gated pinhole images of 

> 3.0 keV and > 1.0 keV, of Mo/Mo/Mo TPWA (a), Mo/Al/Mo TPWA (b), and 

Al/Mo/Al TPWA (c) with an inter-planar gap of 1.5 mm.  The labels “a – f” denote the 

timings of the time-gated pinhole images. 
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To understand how K-shell Al radiates in time, a time-gated spectrometer (TGSP) 

was fielded for Mo/Al/Mo and Al/Mo/Al.  The TGSP utilized a potassium hydrogen 

phthalate (KAP) crystal (2d = 26.63 Å) which allowed for viewing of wavelengths 

between 6.2 and 11 Å, wide enough to cover most of K-shell Al spectra.  Bio-max MS 

Kodak x-ray film was implemented in this work.  The spacing between gates was 5 ns, 

while the MCP was gated to last for 3 ns.  Figure 3.9 shows the results of the K-shell Al 

spectra along with signals of Mo/Al/Mo.  The spectra were collected starting at 73 ns 

after current rise, or 22 ns before the main implosion.  Frame 2 in Figure 3.9(b) indicates 

the presence of background, perhaps bremsstrahlung radiation or recombination, however 

very weak K-shell Al radiation, and corresponds to a spike in PCD signal.  This may 

indicate that L-shell Mo, from the outer planes, is radiating just slightly before K-shell 

Al, from the inner plane, however without time resolution of L-shell Mo itself this is 

purely speculation and points to the importance of understanding time evolution of L-

shell Mo. Frame 3, which corresponds to a “valley” in the PCD signal and little 

background, shows definitive appearance of K-shell Al, with an estimated Te of 425 eV.  

The ratio of Al2/Al1 is used to estimate Te.  Usually, the electron density is estimated by 

the ratio of Al1 and inter-combination line Al1’, however here the intensity of the Al1’ is 

too low and the electron density 10
20

 cm
-3

 is used. Frame 4, 5 ns later, which corresponds 

just before the main implosion and re-emergence of background, shows a K-shell Al Te of 

430 eV.  Frame 5, which corresponds to just after the main implosion, shows very intense 

background and a maximum of K-shell Al Te of 450 eV.  The final frame 6 corresponds 

to another “valley” in the PCD signal and significant reduction of background, along with 

reduction of K-shell Al Te with an estimation of 350 eV.  This shows excellent 
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correlation between K-shell Al electron temperature and PCD signal, and it’s also 

important to note that K-shell Al radiated relatively optically thin, with no presence of K-

shell Mg.  This is likely do to the Al wires being in the inner plane and also starting out 

with a low percentage of initial mass (35%), and shows an advantage of having mixed 

materials. 

 

 

Figure 3.9.  (a) PCD, XRD, and EUV signals from Mo/Al/Mo along with current, 

timings from the time-gated spectrometer (labeled “1 – 6”), and K-shell Al electron 

temperatures. (b) Spectra from time-gated spectrometer and (c) lineouts taken from 

spectra in (b) along with synthetic spectra. 
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Figure 3.10.  (a) PCD, XRD, and EUV signals from Al/Mo/Al along with current, 

timings from the time-gated spectrometer (labeled “1 – 6”), and K-shell Al electron 

temperatures. (b) Spectra from time-gated spectrometer and (c) lineouts taken from 

spectra in (b) along with synthetic spectra. 

 

Figure 3.10 shows the results of the K-shell Al and Mg spectra along with signals 

from the Al/Mo/Al configuration.  Similar to the previous Mo/Al/Mo case, the first frame 

1 is taken before any PCD signal and no K-shell Al or Mg was measured.  By frame 2, 

however, K-shell Al is measured, with very weak evidence of K-shell Mg and very little 

background on the film.  The corresponding lineout indicated that K-shell Al lines Al 1 

and Al 2 are optically thick.  Frame 3 corresponds to a rapid rise in PCD signal, strong 

background on the film, and strong K-shell Al and Mg lines.  Due to the high opacity of 
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K-shell Al, K-shell Mg was modeled and had an estimated Te of 300 eV.  Frames 4-6 

proceed to follow the PCD signal to just before to just after the main implosion, 

characterized by strong K-shell Al and Mg emissions, strong background, and modeled 

K-shell Mg Te of 325, 350, and 310 eV, respectively.  As previously for Mo/Al/Mo, the 

modeled Te follows the PCD signal well. 

3.3.2  Radiative Characteristics of Triple Planar Wire Arrays with a Reduced 

Inter-Planar Gap of 1.5 mm 

Figure 3.11 shows the results of time-integrated spatially resolved pinhole (TIPH) and 

spectra (TISP) from Mo/Mo/Mo, Mo/Al/Mo, and Al/Mo/Al.  The spectra were taken with 

a KAP convex crystal spectrometer while the pinhole images were filtered to study L-

shell Mo emissions > 3.0 keV and K-shell Al and Mg emission (along with L-shell Mo) > 

1.0 keV.  Both diagnostics are axially resolved to study variations along the length of the 

pinch from anode “a” to cathode “c”.  Diagnostically important L-shell Mo lines, along 

with K-shell Al and K-shell Mg lines are indicated.  The pure Mo/Mo/Mo load shows 

increased hard x-ray formation and less bright spot formation than the mixed loads.  The 

mixed Mo/Al/Mo load produces optically thin K-shell Al radiation with no presence of 

K-shell Mg lines and radiates not in a column-like manner, but follows L-shell Mo 

radiation, which correlate with “bright” spot formations.  The Al/Mo/Al load produces 

optically thick K-shell Al and has a strong presence of K-shell Mg and radiates more in a 

column-like manner than for the Mo/Al/Mo load, though there still appears to be an 

influence in K-shell Al and Mg electron temperatures (as discussed below) wherever L-
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shell Mo along with “bright” spots in the film appear.  For all cases, L-shell Mo radiates 

from many bright spots (7 – 10). 

 

 

 

Figure 3.11.  (a) Time-integrated spatially resolved pinholes (left) and spectra (right) of 

Mo/Mo/Mo.  (b) Time-integrated spatially resolved pinholes (left) and spectra (right) of 

Mo/Al/Mo.  (c) Time-integrated spatially resolved pinholes (left) and spectra (right) of 

Al/Mo/Al. 
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Figure 3.12.  Lineouts taken near the cathode from time-integrated spatially resolved 

spectra from Figure 3.11 of (a) Mo/Mo/Mo, (b) Mo/Al/Mo, and (c) Al/Mo/Al. 

 

Figure 3.12 shows the example of experimental lineouts (taken near the cathode in all 

cases) of the TISP spectra.  This is to very clearly show how different mass 

concentrations and wire placement can effect radiation output and that despite the fact 

that the mass of Al increased by twice and of Mo decreased by twice for Al/Mo/Al, the 

ratio of K-shell Al/L-shell Mo radiated energy went from 1 to 12, indicating again that 

the outer planes are likely contributing more to the total radiation then the inner plane.  

To compare to similar loads of Mo/Al/Mo and Al/Mo/Al at 3.0 inter-planar gap discussed 

in Section 3.2, the ratio of K-shell Al/L-shell Mo radiated energy went from 

approximately 3 to 26, which indicates the loads with a smaller inter-planar gap radiated 

L-shell Mo more efficiently than for the larger inter-planar gaps, which is evident by the 

increased total radiated energies.  The next three figures, Figure 3.13-15, show more 

detailed lineouts, along with non-LTE kinetic modeling, of the spectra shown in Figure 

3.11.  Despite substantially different mass and plane position of Mo for each shot, the 
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electron temperatures and densities did not significantly change for L-shell Mo: electron 

temperatures were estimated to be between 950 and 1200 eV while electron densities 

were estimated to be between 10
19

 and 10
20

 cm
-3

. On opposite, substantial gradients occur 

for K-shell Al plasmas:  electron temperatures were estimated to be between 370 and 500 

eV while electron densities were estimated to be between 6 × 10
19

 and 5 × 10
20

 cm
-3

 for 

Mo/Al/Mo (Figure 3.14), indicating a very non-uniform implosion.  For Al/Mo/Al 

(Figure 3.15), Mg plasma temperatures were estimated to be between 300 and 360 eV 

while electron densities were estimated to be between 9 × 10
19

 and 2 × 10
20

 cm
-3

, 

indicating a much more uniform implosion, yet cooler, than for Mo/Al/Mo.   

 

Figure 3.13.  Lineouts of L-shell Mo taken from Figure 3.11, Mo/Mo/Mo.  The blue is 

experimental spectra, while the red is synthetic spectra.  The distances from anode for 

each lineout are located to the right. 
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Figure 3.14.  Lineouts of L-shell Mo taken from Figure 3.11, Mo/Al/Mo.  The blue is 

experimental spectra, while the red is synthetic spectra.  The “a” and “c” represent anode 

and cathode, respectively. The distances from anode for each lineout are located to the 

right. 
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Figure 3.15.  Lineouts of L-shell Mo taken from Figure 3.11, Al/Mo/Al.  The blue is 

experimental spectra, while the red is synthetic spectra.  The “a” and “c” represent anode 

and cathode, respectively.  The distances from anode for each lineout are located to the 

right. 

Figure 3.16 gives a clear summary of electron temperature and density of L-shell Mo 

and K-shell Al/Mg as function of distance from anode.  Again, L-shell Mo radiates at 

clearly much higher electron temperatures than for K-shell Al and Mg. 
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Figure 3.16.  Electron temperature and density graphed as function of distance from 

anode.  a) Te of L-shell Mo and K-shell Al from Mo/Al/Mo. b) ne of L-shell Mo and K-

shell Al from Mo/Al/Mo. c) Te of L-shell Mo and K-shell Mg from Al/Mo/Al. d) ne of L-

shell Mo from Al/Mo/Al.  Data points taken from Figures 3.14 and 3.15.  

 

3.4  Conclusion of Uniform Mo and Mixed with Al Triple Planar Wire arrays at 

3.0 mm and 1.5 mm inter-planar gap 

Experiments and analysis of data for triple planar wire arrays of Mo and mixed Mo 

and Al at 3.0 mm inter-planar gap and reduced 1.5 mm inter-planar gap was 

accomplished for the first time.  The reduced gap size of TPWA’s (3 mm to 1.5 mm) 
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produced higher energy output (from ~ 16 kJ to ~ 25 kJ for pure Mo) for all 

configurations.  Time-gated spectrometer modeling of K-shell Al and Mg followed PCD 

and XRD signals well for the Mo/Al/Mo and Al/Mo/Al configurations.  The radiative 

properties of L-shell Mo and K-shell Al agree well with previously reports results from 

Safronova et al. 2007 with the investigation of mixed Mo and Al single planar wire 

arrays where L-shell Mo radiated from randomly generated bright spot formations 

between the anode and cathode.  For both 3.0 mm and 1.5 mm interplanar gap Mo/Al/Mo 

configurations, K-shell Al lines were optically thin and followed Mo L-shell radiation 

from bright spot pattern, likely due to initial placement inside and small initial Al 

concentration (~ 35% total mass).  For both Al/Mo/Al configurations, K-shell Al lines 

were optically thick and followed a column-like structure, likely due to initial placement 

outside and large initial Al concentration (~ 70% total mass).  The importance and 

advantage of using mixed wire material loads was shown. 
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Chapter 4 

Implosion and Radiative Properties of Mixed Material Nested 

Cylindrical Wire Arrays 

4.1  Introduction and Motivation of Mixed Nested Cylindrical Wire Arrays 

Nested Cylindrical Wire Arrays (NCWAs) have been studied extensively at Sandia 

National Laboratories on the 20 MA, 100 ns rise time Z-machine and have demonstrated 

an increase in x-ray power and reduction of pulse width (Deeney et al. 1998) as 

compared to single wire arrays, producing pulse shapes required for inertial confinement 

fusion (Cuneo et al. 2006, Cuneo et al. 2005).  An important issue for NCWAs is 

understanding how the inner and outer arrays radiate and implode. To this end, other 

experiments at lower current facilities (Deeney et al. 2004, Safronova et al. 2008b) have 

sought to study the dynamics and radiative characteristics of nested arrays.  In Deeney et 

al. 2004, tracer spectroscopy was utilized by switching Al (5056, 5% Mg) and pure Al 

(1100) between inner and outer arrays; it was shown that the outer array material reached 

the highest temperature plasma. It was shown in Safronova et al. 2008b, using mixed Al 

(5056) and SS (304, 69% Fe, 19% Cr, 9% Ni) NCWAs on the 1 MA, 100 ns rise time 

Cobra generator at Cornell University (Douglass et al. 2007), that the outer wire array 

radiates more intensely than the inner wire array.  This was explained as the outer array 

having more kinetic energy than the inner array (due to its larger radius), though the 

complexity of nested arrays due to current switching and varying levels of inner-

penetration of the outer array to the inner array makes this difficult to estimate (Terry et 
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al. 1999, Sanford et al. 2007).  In this chapter, we present an extension of the work 

presented in Safronova et al. 2008b by comparing K-shell Al and other L-shell mid-Z’s, 

specifically fielding mixed brass (70% Cu, 30 % Zn) and Al (5056) NCWAs on the 1.0 

MA, 100 ns rise time Zebra generator at UNR (Kantsyrev et al. 2009), which will be 

presented in Section 4.2, and also fielding mixed Mo and Al NCWAs on both the Zebra 

and Cobra (Glidden et al. 2003) generators, which will be presented in Section 4.3.  The 

advantage of studying NCWAs from both mixed brass and Al and mixed Mo and Al 

experiments is that L-shell Cu/Zn and K-shell Al/Mg radiate at approximately the same 

Te (300 – 500 eV), while L-shell Mo and K-shell Al/Mg radiate at very different Te (900 

– 1400 eV for L-shell Mo), which can provide valuable extra information in how the 

inner and outer arrays radiate. Section 4.4 will conclude the chapter.  The majority of the 

results showed in this chapter were published in High Energy Density Physics (Weller et 

al. 2012a). 

4.2  Mixed Al and Brass Nested Cylindrical Wire Arrays on the Zebra Generator 

The dynamics of mixed nested cylindrical wire arrays were studied at the UNR Zebra 

generator with existing theoretical and experimental tools to better understand the 

contributions of each array to the emitted radiation. In particular in this section, 

experimental results of mixed brass (70% Cu, 30% Zn) and Al (5056, 5% Mg) nested 

cylindrical wire arrays are analyzed and compared.  The loads used brass in the inner 

array and Al in the outer array, or alternately, Al in the inner array and brass in the outer 

array, with a mass ratio of 1:1 (outer to inner).  Consequently, radiative properties of K-

shell Al and Mg ions and L-shell Cu and Zn ions are compared as functions of the 

placements of the brass and Al wires on the inner and outer arrays. Results show that the 
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placement of brass and Al, whether on the inner or outer array, dramatically affects the 

intensity of the x-ray emission.  Specifically, the ratio of Cu L-shell to Al K-shell 

emissions changed from 4 when Al is in the outer array to 40 when brass is in the outer 

array, and the total radiated yield was highest when the brass was on the outer array (18 

kJ, versus 15 kJ when brass is on the inner array).  Each load was fielded twice to vary 

the timing of the time-gated imaging and spectral diagnostics.  This provides a more 

complete understanding of the evolution of the plasma parameters over the x-ray pulse 

and highlights the importance of the time-gated diagnostics.   

The outer and inner arrays were kept uniform with 8 wires of either brass (7.62 μm 

dia.) or Al (12.7 μm dia.) in the outer and inner arrays;  the mass was the same (~ 30 

μg/cm) for all the arrays.  The 1:1 mass ratio (outer to inner) is different than many of the 

load configurations in previous nested array studies, where the ratio ranged from 2:1 to 

4:1 (outer to inner) (see, for instance, Coverdale et al. 2008 and Jones et al. 2008).  The 

radius of the outer array was 13 mm, while the radius of the inner array was 6 mm, with 

interwire gaps of 5.1 and 2.4 mm, respectively.  These gaps are relatively large compared 

to other work, but result from the desired mass loading of the arrays for optimal coupling 

to the Zebra generator and limitations on available wire sizes. For each experiment, the 

outer array was kept aligned with the inner array.  Each load was fielded twice to vary the 

timing of the time-gated pinhole and x-ray spectrometers and obtain a more complete 

understanding of the evolution of the plasma parameters.  K-shell Al and Mg emissions 

and L-shell Cu and Zn emissions were studied extensively via spectroscopy to evaluate 

the emissions as a function of time and original placement of the materials in the array.  

An extensive diagnostic suite, which included more than ten different beam-lines, was 
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fielded with the emphasis to study emissions from K-shell Al/Mg and L-shell Cu/Zn.  

These diagnostics are described throughout the text in the upcoming sections. 

4.2.1  Time-integrated L-shell Cu and Zn and K-shell Al and Mg 

Table 4.1 lists the mixed NCWAs of brass and Al discussed in this section.  Shots 

1790 and 1791 were performed with brass in the inner array and Al in the outer array and 

will be referred to as the Al-on-brass array.  Shots 1792 and 1793 were the opposite 

configuration, with Al in the inner array and brass in the outer array and will be referred 

to as the brass-on-Al array (see Figure 4.1 for clarity).  In all cases, the linear mass of the 

Al and brass alloys were kept approximately the same with 27 μg/cm for Al and 31 

μg/cm for brass.  The pinch length was 20 mm for all cases.  A bare nickel bolometer was 

used to measure the total radiated energy, while a photoconducting diode (PCD) is used 

to derive energy > 0.8 keV.  The PCD was filtered using an 8 μm Be filter (>0.8 keV, 0.5 

ns resolution), measuring only the hottest part of plasmas in the experiments, which is 

approximately the region in which K-shell Al and Mg and L-shell Cu and Zn radiate.  It 

is interesting to note that when brass is in the outer array, the total energy, Etot, measured 

is higher than when brass is on the inner array, that is, Etot(brass-on-Al) ≈ 18 kJ and 

Etot(Al-on-brass) ≈ 15 kJ. PCD energy, EPCD, is also listed, with EPCD(brass-on-Al) ≈ 0.39 

kJ and EPCD(Al-on-brass) ≈ 0.36 kJ.  It has been shown (Ouart et al. 2009) that for similar 

configurations the brass wire arrays radiate more total energy than Al wire arrays, which 

suggests in this case that the outer array contributes more to the total radiation than the 

inner array.  Implosion times are also listed and are all between 110 and 120 ns.  Zero 

time refers to the start of the current rise.  In general, load parameters, such as wire 

diameter, are chosen to give an estimated implosion time of around peak current (100 ns).  
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Figure 4.2 shows time-integrated spatially resolved (TISR) spectra and pinhole 

(TIPH) images of shots 1790 (Al-on-brass) and 1793 (brass-on-Al).  The spectra were 

taken with a KAP (2d = 26.63 Å) convex crystal spectrometer while the pinhole images 

were filtered to study emissions >1.0 keV.  Both diagnostics are axially resolved to study 

variations along the length of the pinch from anode to cathode.  The spectra obtained on 

the other identical shots provided similar results to those shown here.  Diagnostically 

important K-shell Al and Mg and L-shell Cu and Zn lines are indicated in Figure 4.2 (see 

Safronova et al. 2007 and Ouart et al. 2010b for more information). 

 

Shot # Material 

outer-on-inner 

Diameter (μm) 

outer-on-inner 

Total energy 

(kJ) 

PCD energy 

(kJ) (> 0.8 keV) 

Implosion 

time (ns) 

1790 Al-on-brass 12.7-on-7.6 15.0 0.34 110 

1791 Al-on-brass 12.7-on-7.6 14.5 0.37 112 

1792 brass-on-Al 7.6-on-12.7 17.5 0.38 111 

1793 brass-on-Al 7.6-on-12.7 17.5 0.39 118 

Table 4.1.  List of considered shots and parameters for NCWAs.  In Zebra shots 1790 

and 1791 have brass on the inner array and Al in the outer array, while Zebra shots 1792 

and 1793 have Al on the inner array and brass on the outer array. 

 

 

Figure 4.1.  Illustrations for Al-on-brass (a) and brass-on-Al (b). Picture of a nested 

cylindrical wire array (c).   
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The Al-on-brass array produces optically thick K-shell Al and relatively optically thin 

L-shell Zn and Cu, with well-defined column like structures for both.  This is 

strengthened by the corresponding pinhole image that shows only a few bright spots 

along the axis.  Conversely, the brass-on-Al array produces almost optically thin K-shell 

Al and more optically thicker L-shell Zn and Cu, with radiation that is more defined by 

the respective bright spot formations seen from the pinhole image.  In general, the optical 

thickness, or opacity effects, will be seen first in lines with higher radiative decay rates 

(Al1 and Al2 for K-shell Al and Cu 3C for L-shell Cu, for example), provided that a large 

enough ion density or plasma thickness exists.  Therefore, when the material is on the 

outer array, the respective lines have higher opacity, which is an indicator of more intense 

radiation in those lines.  These results agree with previous observations of mixed NCWA 

loads which indicate that the outer array contributes more to the radiated energy than in 

the inner array; this is discussed further in the final paragraph of this section.  

Figure 4.3 shows example lineouts of the TISR spectra overlaid with the non-LTE 

kinetic models of Cu, Zn, Al, and Mg (Safronova et al. 2006a) used to derive electron 

temperatures and densities (Te and ne).  The Cu and Zn models are used for L-shell 

radiation while the Al and Mg models are used for K-shell radiation.  Generally speaking, 

the Al model is used to model lines that originate from high Rydberg states when the 

plasma is optically thin, in which case the 5% Mg in the alloy shows virtually no trace of 

lines.  When Mg lines do appear in the spectra, Al is presumed optically thick, and thus 

the Mg model is used to estimate Te and ne.  The models average over a uniform plasma 

slab that is used to obtain an escape factor for each transition. 
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Figure 4.2.  X-ray time-integrated spatially resolved spectra (right) and pinhole images 

(left) of NCWAs for configurations of Al-on-brass (a) and brass-on-Al (b).  The “a” and 

“c” refer to anode and cathode, respectively. 

 

 

 

Figure 4.3.  Examples of K-shell Al/Mg and L-shell Cu/Zn experimental (blue) and 

synthetic (red) spectra of NCWAs for configurations of Al-on-brass (a) and brass-on-Al 

(b) taken from Figure 4.2, near anode. 
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For the Al-on-brass load, the modeling shows that the L-shell Cu and Zn and K-shell 

Mg had similar electron temperatures, ranging from 320 to 370 eV.  Electron density 

shows a different trend, however.  The density for K-shell Mg remains relatively constant 

at 5 × 10
19

 cm
-3

 while L-shell Cu and Zn ranges from 5 × 10
19

 cm
-3

 near the anode to 5 × 

10
18

 cm
-3

 near the cathode, a significant drop in density.  For the brass-on-Al array, the 

electron temperatures for the L-shell Cu and Zn and K-shell Al are again similar, ranging 

from 310 eV to 380 eV, which is a slightly broader variation than observed for the Al-on-

brass array.  This variation is also evidenced in the respective pinhole images, which 

show non-uniformities in emissions for this same photon energy range.  The electron 

densities for the brass-on-Al array range from 1.8 × 10
20

 cm
-3

 to 2 × 10
20

 cm
-3

 for K-shell 

Al while L-shell Cu and Zn varies from 1 × 10
19

 cm
-3

  near the anode to 5 × 10
18

 cm
-3

 

near the cathode.  As before, the Cu and Zn density is lower than the Al and Mg density, 

and decreases along the length of the pinch.  For both configurations, the density from L-

shell Cu and Zn is similar; however the K-shell Al and Mg density increases by a 

significant factor when the Al alloy is on the inner array compared to the outer array.  

Since the K-shell Al and Mg and L-shell Cu and Zn radiate at very similar electron 

temperatures, it is difficult to spot a clear trend on how Te changes as a function of initial 

placement of the alloys.  This will be discussed further in section 4.6. 

 While there is no obvious trend in Te with initial alloy placement, it is clear that the 

intensity of the radiation is dramatically affected by the initial position of the wires.  

Analysis of the intensity of spectral lines shows that the ratio of the L-shell Cu/Zn to K-

shell Al/Mg increases from 4 to 40 when the configuration changes from Al-on-brass to 

brass-on-Al, while at the same time the energy derived from the PCD signal, EPCD, gives 
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comparable values.  This ratio was estimated by integrating the intensity of the K-shell 

Al/Mg and L-shell Cu/Zn taken from various lineouts of the spectra and averaged. This 

result is another indicator of the importance of the material on the outer array in 

determining the overall emissions from the plasma.   

4.2.2  Time-gated Spectra of L-shell Cu and Zn and K-shell Al and Mg 

One of the goals in fielding each load twice was to attain a more complete picture of 

the time evolution of the plasma as well as assess overall reproducibility of the pulse 

shape and radiated output.  To accomplish this, the timing of the time-gated spatially 

integrated spectrometer (TGSP) was varied for the shots, ranging from a start 

immediately before the main pulse peak to immediately after the main pulse peak.  

Figures 4.4 and 4.5 illustrate how the plasma evolves by plotting electron temperature of 

L-shell Cu/Zn and K-shell Al/Mg alongside a PCD signal with timing beginning from the 

start of the current rise.  The electron temperatures shown in Figures 4.3 and 4.4 were 

inferred from the spectroscopic modeling. 

For the Al-on-brass array (Figure 4.4), the L-shell Cu and Zn emissions have slightly 

higher Te than the K-shell Al and Mg emissions, by an average of about 30 eV through 

the duration of both shots.  The L-shell Cu and Zn show 350 eV 15 ns before the PCD 

peak, climbing to 390 eV near the PCD peak, dropping off to 340 eV 10 ns after the PCD 

peak.  For identical timings, the K-shell Al and Mg emissions have Te of 300, 350, and 

310 eV.  Electron densities were estimated to be approximately 5 × 10
19

 cm
-3

 for L-shell 

Cu and Zn and 1 × 10
20

 cm
-3

 for K-shell Al and Mg.  This is different from the time-

integrated results of Section 4.3, which showed nearly identical Te, which suggests the 

evolution of the plasma is different for the brass and Al alloys. 
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For the brass-on-Al array (Figure 4.5), the results were slightly different; the K-shell 

Al emissions have a slightly higher electron temperature than the L-shell Cu and Zn 

emissions.  The K-shell Al was estimated to be 380, 370, and 350 eV, while L-shell Cu 

and Zn were estimated to be 360, 350, and 320 eV for the same timings.  Again, the 

temperatures follow the PCD signal.  These measurements were obtained at times well 

after the main implosion, however, as opposed to during the main implosion as for the 

Al-on-brass array.  This could explain the differences in plasma parameters observed, and 

highlights the need for more information on the evolution of these plasmas.  Detailed 

measurements well before, during, and after the main implosion phase are needed to 

garner a more complete understanding of how these plasmas develop and radiate. 

 

 

 
Figure 4.4.  PCD signals with estimated electron temperatures (top) attained from TGSP 

(bottom) for Al-on-brass.  The timings of the TGSP were changed from shot 1790 (a) to 

1791 (b) to attain spectra from before, near, and after the main PCD peak. 
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Figure 4.5.  PCD signals with estimated electron temperatures (top) attained from time-

gated spectra (bottom) for brass-on-Al for shot 1793. 

 

It is also important to note the change in the PCD signal when changing 

configurations from Al-on-brass to brass-on-Al.  For the Al-on-brass array, the signal for 

both shots has one primary pulse followed by one or two small secondary pulses, 

producing a narrow x-ray pulse.  Looking back to Figure 4.2, this narrow x-ray pulse 

corresponds to a pinhole image which shows few bright spots and a relatively tight pinch. 

For the brass-on-Al array, however, the signal is more random, producing many pulses 

after the main pulse and is not as narrow as for the brass-on-Al array.  Again, going back 

to Figure 4.2, formation of this many pulses corresponds to a pinhole image that shows 

many bright spots and not as tight of a pinch.  For the Al-on-brass array, the average 

power was ~ 20 GW, while for the brass-on-Al array the average power was ~ 21 GW.  
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Even though the total energy radiated for the Al-on-brass array was significantly less than 

that of the brass-on-Al array, the narrower x-ray pulse for the Al-on-brass array resulted 

in a similar radiated power. 

4.2.3  Wire Ablation Dynamics Modeling for Mixed NCWAs of L-shell Cu and Zn 

and K-shell Al and Mg 

Figures 4.6 and 4.7 show the Wire Ablation Dynamics Model (Esaulov et al. 2009) 

(WADM) results for the Al-on-brass and brass-on-Al arrays.  For the complicated case of 

NCWAs, the model is able to describe the uneven current distribution through the array 

wires and the inductive current transfer that changes the current distribution as the array 

implodes.  In the nested wire array configuration there are two main competing factors 

when calculating the wire mass ablation rate described as follows in Equation 4.1: 

 

   

  
      

                                                                        

 

where    is the ablated mass per unit length of the n
th

 wire,    is the electric current 

carried by the n
th

 wire,    is the ablation rate coefficient (Lebedev et al. 2001, Lebedev et 

al. 2002).  The model of inductive current partition implemented in the WADM predicts 

uneven current distribution between the outer (larger current fraction) and inner (smaller 

current fraction) arrays. Thus, in a single wire material nested array load the outer array 

always implodes first. The scenario, however, may be different for mixed wire material 

nested arrays. For example, the ablation rate coefficient for Al is larger than for most 

other materials, including brass (see Esaulov et al. 2009), which can affect the overall 
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initiation and implosion of the different materials in the array.  In the case of a NCWA, it 

was shown that on COBRA generator the inner Al array implodes first, contrary to a 

conventional implosion scenario for NCWA, when the outer array is built of SS wires of 

the matching mass (Williamson et al. 2009).  Since our arrays also used Al, we have 

examined this effect with the WADM here as well. 

Figures 4.6 and 4.7, the TGSP spectra (also shown in Figures 4.4 and 4.5), time-gated 

pinhole (TGPH) and shadowgraphy images are shown correlated with the measured 

current, PCD (mentioned in Sections 4.2.1 and 4.2.2), x-ray diode (XRD), and extreme 

ultraviolet (EUV) signals.  The XRD was filtered using a 5 μm Kimfoil filter (E > 0.18 

keV, 0.5 ns resolution).  The EUV was filtered using a 0.2 μm Al filter (E > 17 eV, 0.5 ns 

resolution).  The two rows of images produced with the TGPH camera had different 

filters with cutoff energies of 1 keV (bottom) and 3 keV (top).  The WADM produced the 

thermalized kinetic energy, WTh, and the inner and outer array position as a function of 

time.  

For both cases considered, the outer array is estimated to implode before the inner 

array.  Also, the thermalized kinetic energy for both cases is less than 8 kJ, which is 

significantly less than the total energy measured by the bare Ni bolometer, indicating 

there is another mechanism in addition to thermalized kinetic energy that is responsible 

for the total radiation yields, perhaps Ohmic heating (Safronova et al. 2011). 
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Figure 4.6.  Comparison of data for mixed NCWA for shot 1790 with brass the inner 

array and Al the outer array (Al-on-brass). Shadowgraphy, time-gated spectra and 

pinhole images, as well as XRD, PCD, and EUV signals are shown with WADM 

calculations, where WTh is the simulated thermalized kinetic energy. 
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Figure 4.7.  Comparison of data for mixed NCWA for shot 1793 with Al the inner array 

and brass the outer array (brass-on-Al). Shadowgraphy, time-gated spectra and pinhole 

images, as well as XRD, PCD, and EUV signals are shown with WADM calculations, 

where WTh is the simulated thermalized kinetic energy. 
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The XRD signal for the Al-on-brass array shows similar structure as the PCD signal 

discussed in Section 4.2.2, with a narrow main pulse width and one small secondary 

pulse after.  The EUV signal is interesting to discuss.  The EUV radiation is noticeable 

virtually from the start of the current rise and continues well after the both the PCD and 

XRD signals have dissipated. The narrow pulse width of the PCD and XRD signal is not 

seen due to continued strong EUV radiation after the main pulse.  For the brass-on-Al 

array, the XRD signal again yielded similar results than that of the corresponding PCD 

signal, producing many pulses after the main pulse and is not as narrow as for the Al-on-

brass array.  The EUV signal for this configuration again shows very early signal and 

continuation well after the PCD and XRD signals have dissipated, which is not 

unexpected due to the EUV diode capturing softer x-rays. For more information of about 

EUV signals in Z-pinch plasmas see Whitney et al. 2004 and Velikovich et al. 1998. 

The shadowgraphy is taken early in the implosion and show four frames of timing.  

The EKSPLA laser was used, which operates at 532 nm with a 0.15 ns pulse.  The 1, 2, 

1d, and 2d labeling refer to where and when the laser passed through during the 

experiment.  Two channels are used, channel 1 and channel 2 and are angled 22.5 degrees 

from one another.  The “d” in 1d and 2d refer to a 6 ns delay from the non-delay 

counterparts.  Channel 2 also has an intrinsic 3 ns delay from channel 1. Here, 

shadowgraphy is a useful diagnostic for seeing the evolution of the ablation process.  For 

the Al-on-brass array, frame 1 is taken about 75 ns after current start (35 ns before 

implosion peak) and shows that the outer Al array has already begun the implosion.  The 

WADM for this load predicts that the outer Al array will begin to implode about 60 ns 

after current start, in agreement with the shadowgraphy observations.  For the brass-on-
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Al array, the frame 1 is taken about 98 ns after current start (20 ns before implosion peak) 

and shows the outer brass array well into the implosion. The WADM for this load 

predicts that the outer brass array will begin to implode about 75 ns after current rise, 

again, in agreement.  The difficulty in shadowgraphy images with NCWAs, however, is 

that it is very difficult to distinguish between the outer and the inner array when looking 

within the diameter of the inner array (in this case, 6 mm).  In turn, this makes it difficult 

to see the ablation process of the inner array compared to the outer array. 

For the TGPH images, different timings were captured for the two loads.  The six 

frames of the TGPH had 6 ns of delay from the previous frame, with each frame 

capturing between 3 and 5 ns.  For the Al-on-brass array, the TGPH camera captured 

frames during the middle of the implosion.  For > 1 keV, the first two frames (-15 ns and 

-9 ns relative to implosion peak) show no evidence of radiation.  The third, fourth, and 

fifth frames (-3 ns, +3 ns, and +9 ns relative to implosion peak) show strong radiation 

with a nice column-like structure, similar to the one seen in the in the TIPH image from 

Figure 4.2 with the same cutoff energy.  The sixth frame (+15 ns relative to implosion 

peak) again shows no evidence of radiation for > 1 keV.  For the brass-on-Al array, the 

TGPH camera captured frames late in the implosion, starting from +24 ns relative to 

implosion peak.  For such late timings, the > 1 keV frames show very unstable and non-

uniform structures. Unfortunately, due to the different timings, the TGPH images for the 

two loads cannot be directly compared. 
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4.3 Mixed Mo and Al Nested Cylindrical Wire Arrays on the Zebra and Cobra 

Generators 

Results of experiments with nested cylindrical wire arrays of Mo and Al that were 

performed on the 1.0 MA, 100 ns Zebra generator and the 1.0 MA, 100 ns Cobra 

generator are presented.  The loads on both the Zebra and Cobra generators utilized Al 

tracer wires with different concentrations (~30% Al for Zebra and ~15% Al for Cobra), 

which were in either the inner or outer array. Data are fully compared and analyzed from 

a set of diagnostics, which included fast, filtered x-ray diodes; a Ni bolometer; laser 

shadowgraphy and streak setups; time-gated and time-integrated x-ray pinhole cameras; 

and spatially resolved, time-integrated and spatially-integrated, time resolved x-ray 

spectrometers.  Implosion dynamics are analyzed with the Wire Ablation Dynamics 

Model. Non-LTE kinetic modeling of L-shell Mo and K-shell Al and Mg was utilized to 

derive plasma electron temperature and density and to estimate opacity effects. 

 

Shot # 

Generator 

Material 

# Wires 

Diameter 

(μm) 

Linear Mass 

(μg/cm) 

Al (%) Total Energy 

(kJ) 

1043 

Cobra 

Al/Mo-on-Mo 

2/6-on-8 

16.8/8.9-on-8.9 

 

101 15 5.8 

1044 

Cobra 

Mo-on-Al/Mo 

8-on-2/6 

8.9-on-16.8/8.9 

 

101 15 7.0 

1794 

Zebra 

Mo-on-Al/Mo 

8-on-4/4 

8.9-on-17.8/8.9 

 

103 30 19.4 

1795 

Zebra 

Al/Mo-on-Mo 

4/4-on-8 

17.8/8.9-on-8.9 

 

103 30 18.5 

Table 4.2.  List of considered shots and parameters for NCWAs of mixed Mo and Al on 

the Cobra and Zebra generators. 
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Figure 4.8.  Illustrations for  (a) Mo-on-Mo/Al (1043), (b) Mo/Al-on-Mo (1044), (c) Mo-

on-Mo/Al (1795), and (d) Mo/Al-on-Mo (1794). 

 

Table 4.2 lists the mixed NCWAs of Mo and Al discussed in this section.  Shots 1043 

and 1044 were performed on the 1.0 MA Cobra generator with shot 1043 having two Al 

tracer wires in the inner array and shot 1044 having two Al tracer wires in the outer array.  

Shots 1794 and 1795 were performed on the 1.0 MA Zebra generator with shot 1794 

having four Al tracer wires in the outer array and shot 1795 having four Al tracer wires in 

the inner array. The NCWAs with Al tracer wires in the outer array will be referred to as 

Mo/Al-on-Mo and with Al tracer wires in the inner array will be referred to as Mo-on-

Mo/Al (see Figure 4.8 for clarification).  In all cases, the linear mass of the loads were 
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kept approximately the same at ~100 μg/cm.  The pinch length was 20 mm for all cases 

and the inner array had a 6.0 mm diameter while the outer array had a 13 mm diameter.   

A bare nickel bolometer was used to measure the total radiated energy, while a 

photoconducting diode (PCD) is used to derive energy > 0.8 keV.  Two PCD’s were 

fielded for the Cobra experiments, one was filtered using a 2 μm Kimfoil filter (>0.2 

keV) to capture soft x-ray radiation, the other was filtered using a 12 μm Be filter (>0.9 

keV) measuring only the hottest part of plasmas in the experiments, which is 

approximately the region in which K-shell Al and L-shell Mo radiate.  An XRD and PCD 

were fielded for the Zebra experiments, the XRD using a 5 μm Kimfoil filter (>0.2 keV) 

to capture soft x-ray radiation, the PCD was filtered using an 8 μm Be filter (>0.8 keV) 

measuring only the hottest part of plasmas in the experiments, which is approximately the 

region in which K-shell Al and L-shell Mo radiate. 

4.3.1  Implosion Characteristics of Mo and Al NCWAs on Zebra 

This section will explore results of the implosion characteristics of the experiments 

from Mo and Al NCWAs performed on the Zebra generator.  Figure 4.9 shows results 

from Zebra shot 1795 Mo-on-Mo/Al of signals, which include PCD and XRD signals and 

current, shadowgraphy images, time-gated spatially resolved pinhole and spatially 

integrated spectra images, and a lineout along with synthetic spectra from the spectra.  

The signals in Figure 4.9(a) show an implosion time of 122 ns on the XRD, however the 

PCD signal doesn’t appear until 140 ns with a sharp rise and fall, similar to the Cobra 

shot 1043 seen in Figure 4.9(b), except with similar events occurring roughly 20 ns 

earlier in time.  The XRD shows a very faint increase around the 60 ns mark; however 

it’s too small to be compared to the pre-pulse shapes seen in the Cobra experiments.  The 
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TGPH images at > 3.0 keV are relatively weak, except for a column-like structure which 

corresponds to the narrow PCD pulse at 140 ns.  The TGSP in Figure 4.9(c) begins 

timing at 140 ns, and the first image corresponds to the PCD pulse, and produced K-shell 

Al with Te = 510 eV, which is quite hot.  After this only faint K-shell Al lines are seen 

after stagnation. 

 

 

 
Figure 4.9.  Signals, current, and time-gated pinhole images (a), shadowgraphy images 

(b), time-gated spatially integrated spectra (c), and in (d) a lineout taken from frame 6 (c) 

with experimental (blue) and synthetic spectra (red) of Mo-on-Mo/Al, Zebra shot 1795.  

The synthetic spectra is modeled K-shell Al at Te = 510 eV.  

 



94 
 

 
 

Figure 4.10.  Signals, current, and time-gated pinhole images (a), shadowgraphy images 

(b) of Mo/Al-on-Mo, Zebra shot 1794. 

 

Figure 4.10 shows results from Zebra shot 1794 Mo/Al-on-Mo of signals, which 

include PCD and XRD signals and current and shadowgraphy images.  The PCD and 

XRD signals appear similar to the signal from shot 1795, which had the four Al tracer 

wires on the inside, with an implosion time of 128 ns and a few PCD signal bursts at 144 

and 153 ns.  The biggest difference from shot 1795 is in the TGPH images at > 1.0 keV, 

which is in the similar energy range of K-shell Al radiation.  The first four frames in 

Figure 4.10(a) show very intense and column-like radiation, as opposed to in Figure 

4.9(a), where the TGPH image > 1.0 keV shows relatively weaker and less column-like 

structure. 

4.3.2  Radiative Characteristics of Mo and Al NCWAs on Zebra 

This section focuses on the radiative characteristics of the Mo and Al NCWAs on the 

Zebra generator.  Figure 4.11 shows TISP spectra and pinhole TIPH images of Zebra shot 

1795 (Mo-on-Mo/Al).  These experiments contained twice the number of Al tracer wires 

than the Cobra experiments, and the results are seen here.  K-shell Al and L-shell Mo 
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radiation are both measured, most prevalent near the cathode, on the TISP spectra image 

and lineouts were taken and modeling was accomplished.  L-shell Mo was modeled to 

have plasma parameters of Te = 1075 eV and ne = 9 x 10
19

 cm
-3

 while K-shell Al was 

modeled to have plasma parameters of Te = 535 eV and ne = 9 x 10
18

 cm
-3

.  L-shell Mo is 

seen to radiate from two bright spots, while K-shell Al can be seen from possibly three, 

though both are very faint. 

 

 
Figure 4.11.  Time-integrated spatially resolved spectra (top-left) and pinhole (top-right) 

images of Mo-on-Mo/Al, Zebra shot 1795.  Below is a lineout taken from the 

experimental spectra from above in blue and in red is modeled synthetic spectra of K-

shell Al below that of L-shell Mo. 
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Contrast these results to Figure 4.12, where TISP spectra and pinhole TIPH images of 

Zebra shot 1794 (Mo/Al-on-Mo) are shown.  In this experiment the Al tracer wires are 

located on the outside rather than on the inside.  The results show K-shell Al radiating in 

a column-like structure with little to no L-shell Mo measured.  With the absence of L-

shell Mo, K-shell Al, though more prevalent, radiated at less electron temperature than 

for shot 1795.  Lineouts were taken from the anode to cathode with results shown in 

Figure 4.12.  The K-shell plasma parameters, from anode to cathode, are as follows: Te = 

410 eV and ne = 4 x 10
19

 cm
-3

, Te = 375 eV and ne = 1 x 10
19

 cm
-3

, Te = 360 eV and ne = 3 

x 10
18

 cm
-3

, Te = 375 eV and ne = 1 x 10
19

 cm
-3

. 

 
Figure 4.12.  Time-integrated spatially resolved spectra (top-left) and pinhole (top-right) 

images of Mo/Al-on-Mo, Zebra shot 1794.  Below are lineouts taken from the 

experimental spectra from above in blue and in red are modeled synthetic spectra of K-

shell Al.  The distances from anode for each lineout are located to the right. 
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4.3.3  Implosion Characteristics of Mo and Al NCWAs on Cobra 

This section focuses on the implosion characteristics of the Mo and Al NCWAs on 

the Cobra generator. Figure 4.13 shows results from Cobra shot 1043 Mo-on-Mo/Al of an 

optical streak image, signals, which include two PCD signals of different energy regimes 

(>0.2 keV and >0.9 keV) and current, WADM showing how the inner and outer wires 

radiate, EUV images, and shadowgraphy images.  First, the optical streak image in Figure 

4.13(a), which is taken with a radially resolved optical streak camera with 4 ns resolution 

and 200 ns duration, shows how and when the inner and outer arrays implode.  What’s 

very interesting here is that the two inner Al wires appear to implode before the outer Mo 

wires, which was originally unexpected.  Modeling was accomplished with the WADM 

(Figure 4.13(b)) and showed results are in good agreement in with the optical streak 

results of the inner two Al wires imploding before the outer and inner Mo wires.  This 

could be explained by the faster ablation rate of Al compared to Mo.  Looking at the two 

PCD signals, the > 0.2 keV signal shows a strong pre-pulse shape at around 75 ns into the 

current rise which is possibly early Al wire radiation, followed by a main implosion 

around 150 ns, and two to three pulses following lasting for another 60 ns of time.  A 

main implosion at 150 ns indicates poor correlation with the current maximum at 100 ns 

and could explain the weak L-shell Mo radiation seen in Figure 4.9.  The > 0.9 keV 

signal showed no signal until 175 ns into current rise and is very narrow, which again 

could explain the weak L-shell Mo radiation.  EUV and shadowgraphy images shown in 

Figure 4.13 (c-d) show results around the 100 ns current rise time and show a well-

defined pre-curser column in the middle with original wires still ablating, which 

correlates well with the PCD signals.  Figure 4.14 shows similar data as Figure 4.13, but 
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from Cobra shot 1044 Mo/Al-on-Mo.  The optical streak image in Figure 4.14(a) shows 

the two outer Al wires clearly imploding before the outer and inner Mo wires, which is 

again predicted well by the WADM in Figure 4.14(b).  The two PCD signals showed 

similar results as before, with a well-defined pre-pulse shape near 75 ns into the current 

rise, again, possible Al early radiation, and a main implosion around 175 ns, instead of 

150 ns.  Instead there appears to be a pulse-foot shape at 150 ns where the main 

implosion was before for Mo-on-Mo/Al.  The EUV and shadowgraphy images in Figure 

4.14(c-d) show images taken later in time than the previous experiment and shows 

destruction of the wires at around 125 ns in time. 



99 
 

 
 

Figure 4.13.  Optical streak image (a), signals, current, and wire ablation dynamics 

modeling (b), EUV images (c), and shadowgraphy images (d) of Mo-on-Mo/Al, Cobra 

shot 1043.  PCD_1 is filtered at > 0.2 keV and PCD_3 is filtered at > 0.9 keV. 
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Figure 4.14.  Optical streak image (a), signals, current, and wire ablation dynamics 

modeling (b), EUV images (c), and shadowgraphy images (d) of Mo/Al-on-Mo, Cobra 

shot 1044.  PCD_1 is filtered at > 0.2 keV and PCD_3 is filtered at > 0.9 keV. 
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4.3.4  Radiative Characteristics of Mo and Al NCWAs on Cobra 

This section focuses on the radiative characteristics of the Mo and Al NCWAs on the 

Cobra generator.  Figure 4.15 shows time-integrated spatially resolved spectra (TGSP) 

and pinhole (TIPH) images of Cobra shot 1043 (Mo-on-Mo/Al).  The spectra was taken 

with a potassium hydrogen phthalate (KAP) (2d = 26.63 Å) convex crystal spectrometer 

while the pinhole image was filtered to study emissions >1.0 keV.  Both diagnostics are 

axially resolved to study variations along the length of the pinch from anode to cathode.  

Diagnostically important L-shell Mo lines are indicated.  Despite multiple bright spots 

measured, only one bright spot seen on the TIPH image located in the middle of the pinch 

produced any noticeable L-shell Mo radiation.  From this, no K-shell Al radiation is 

measured on the film, likely due to the two wires located on the inner array and 

contributing only 15% of the total mass.  In the same figure, a lineout was taken of the L-

shell Mo radiation and a non-LTE kinetic L-shell Mo model was used to derive plasma 

parameters of Te = 1140 eV and ne = 3 x 10
19

 cm
-3

.   
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Figure 4.15.  Time-integrated spatially resolved spectra (top-left) and pinhole (top-right) 

images of Mo-on-Mo/Al, Cobra shot 1043.  Below is a lineout taken from the 

experimental spectra from above in blue and in red is modeled synthetic spectra of L-

shell Mo with plasma parameters of Te = 1140 eV and ne = 3 x 10
19

 cm
-3

. 

 

Figure 4.16 shows TISP and TIPH images of Cobra shot 1044 (Mo/Al-on-Mo).  With 

the Al tracer wires on the outer array for this shot compared to the previous shot, K-shell 

Al is measured from three locations along the pinch, and L-shell Mo is produced from 

two of those locations, near the middle to cathode area.  It’s clear that where L-shell Mo 

radiates the Al2 line (Lyα) appears, indicating hotter electron temperatures for K-shell Al 

than where K-shell Al radiates without significant L-shell Mo radiation, near the anode.  

In the same figure, lineouts were taken from the TISR spectra and successful modeling 
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was accomplished for L-shell Mo for the lineout taken near the middle with plasma 

parameters Te = 1130 eV and ne = 9 x 10
18

 cm
-3

, which suggest a relatively hot but low 

dense plasma, compared to other L-shell Mo plasmas studied in chapter 3. 

 

 
Figure 4.16.  Time-integrated spatially resolved spectra (top-left) and pinhole (top-right) 

images of Mo/Al-on-Mo, Cobra shot 1044.  Below are two lineouts taken, marked “1” 

and “2”, from the experimental spectra from above in blue and in red is modeled 

synthetic spectra of L-shell Mo with plasma parameters of Te = 1130 eV and ne = 9 x 10
18

 

cm
-3

. 

 

4.4  Discussion and Conclusions of Mixed Material Nested Cylindrical Wire 

Arrays 

In this chapter, experiments and analysis of data for mixed Al and brass nested 

cylindrical wire arrays were accomplished for the first time.  The Al and brass wires were 

switched between experiments to compare how the inner and outer arrays radiate and see 
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how each contributes to the stagnated plasma. In addition, time-gated spectroscopy was 

utilized to provide a more complete understanding of the evolution of the plasma by 

changing the timing between identical shots.  Results show that, in agreement with 

previous observations, the outer array contributes more to the emissions than the inner 

array.  This is evidenced by analysis of time-integrated spectroscopy of the L-shell Cu 

and Zn and K-shell Al and Mg radiation, where it was observed that the L-shell Cu/Zn to 

K-shell Al/Mg ratio increased by a factor of 10 when switching from the Al-on-brass to 

the brass-on-Al configuration.  The opacity of the emission lines was also affected by the 

initial wire array position, with the outer array wires producing significantly more 

optically thick lines as compared to the inner array wires, most easily seen in the K-shell 

Al radiation.  The pulse shapes from the signals, such as the PCD signal, also seem to be 

affected by the initial wire array position (easily seen in Figures 4.6 and 4.7).  When 

comparing the brass-on-Al and Al-on-brass arrays, the brass-on-Al array gives higher 

total energy (18 kJ to 15 kJ) in a wider pinch diameter with a broader, multiple pulse 

PCD signal than the Al-on-brass array (see Figures 4.4 and 4.5). 

One of the key questions in this study is how does changing wire array position from 

the outer to inner array affect plasma parameters, such as electron temperature and 

density.  The theoretical modeling of the measured spectra plays an important role in this 

analysis.  For example, time-integrated spectral analysis in Deeney et al. 2004 showed 

that the highest temperature plasma is produced by the material on the outer array.  In 

Safronova et al. 2008b the spectral analysis indicated that the plasma from the outer array 

of a mixed NCWA can be cooler than the inner array by having unequal masses between 

the inner and outer arrays (about 2:1 mass ratio, outer to inner).  Here, the results aren’t 
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quite as clear.  This is due to the fact that L-shell Cu and Zn and K-shell Al and Mg 

radiate at nearly identical electron temperatures for the time-integrated spectral results.  

The time-gated spectral results, however, show a possible different pattern.  When the Al 

array is the outer array, the Te for the K-shell Al and Mg is less (300 – 350 eV) than when 

the alloy is the inner array (350 – 380 eV).  When the brass array is the outer array, the Te 

for the L-shell Cu and Zn is less (320 – 360 eV) than when the alloy is the inner (340 – 

390 eV).  For electron density, L-shell Cu and Zn doesn’t change much moving from the 

inner array to the outer array, however there is a significant change for K-shell Al and 

Mg, which is a topic for further study. This provides a more complete understanding of 

the evolution of the plasma parameters over the x-ray pulse, though much more 

information can be attained since the timings of the gates were different relative to the 

implosion time of the shot (see Figure 4.4), indicating the importance of time-gated 

diagnostics for future studies.  A final conclusion that can be made is that the evolutions 

of the plasmas for the brass and Al arrays are different, depending on whether they are 

the inner or the outer arrays, and have different influences on the final implosion; for 

instance the Al-on-brass configuration produced a narrow pulse shape that could be 

beneficial for ICF studies, whereas the brass-on-Al configuration produced higher total 

energy.  Future work will focus on a broader range of time-gated spectra from well before 

and well after the main burst with the goal of achieving specific pulse features and 

improved radiative performance optimized for ICF loads on multimegaampere machines 

(Velikovich et al. 1998). 

In addition, a comparison of nested cylindrical wire arrays of Mo and Al from both 

the Cobra and Zebra generators was accomplished for the first time. These experiments 



106 
 

provided valuable information due to L-shell Mo and K-shell Al/Mg radiating at much 

different electron temperatures, unlike the brass and Al NCWAs. For the Cobra 

experiments, it was shown that the two Al tracer wires implode before Mo wires 

regardless of the placement of Al wires, and resulted in a pre-curser formation on the 

PCD signal > 0.2 keV which could be radiation from the Al wires.  For the Zebra 

experiments with four Al tracer wires, the Al K-shell radiation follows Mo L-shell bright 

spot radiation pattern when inside, however when Al wires are outside, it follows a 

column-like pattern.  Modeling of Al K-shell radiation was shown to have less Te when 

the Al wires were outside when compared to inside.  K-shell Al lines are optically thin in 

all experiments regardless its percentage in the total mass, which is a very important 

feature for plasma diagnostics. 
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Chapter 5  

EUV Spectroscopy and Modeling of Cu on the SSPX 

Spheromak and Laser Plasma “Sparky” 

5.1  Introduction 

In Chapter 4, L-shell Cu plasmas were studied (among L-shell Zn and Mo); however 

a significant contribution to radiation comes from M-shell Cu transitions, which radiate 

predominately in the EUV spectrum.  This EUV radiation has recently become of great 

interest in z-pinches (Safronova et al. 2011) due to this major contribution to yield.  

Because of this, non-LTE kinetic M-shell models have been developed to help study this 

radiation.  This chapter explores first results from a non-LTE kinetic model of M-shell 

Cu from Spect3D (see Section 2.2).   

Radiation from two different experiments was used to help benchmark the new 

model: the first being from the Sustained Spheromak Physics Experiment (SSPX) (see 

Section 2.7) at Lawrence Livermore National Laboratory (LLNL), which, among other 

research, studied M-shell Cu impurities.  Details from these experiments will be explored 

in Section 5.2 and results presented in Section 5.3.  A second set of experiments were 

carried out on the compact laser-plasma x-ray/EUV facility “Sparky” at UNR, with Cu 

flat targets used.  The EUV spectra were recorded between 40-300 Å and compared with 

results from SSPX.  Results from these experiments will be presented in Section 5.4.  

Section 5.5 concludes the chapter. 

 



108 
 

5.2  Impurity Research on the Sustained Spheromak Physics Experiment 

The SSPX at LLNL was a facility to explore innovative confinement concepts to 

explore energy confinement and current drive in spheromaks (Wood et al. 2005a).  SSPX 

plasma currents achieved up to 1 MA, creating around 4 ms of plasma, with electron 

densities around 10
14

 cm
-3

 and electron temperatures exceeding 500 eV (Hudson et al. 

2008).  A critical component of the spheromak is the flux conserver, which is used to 

confine the plasma, and was made of Cu and coated with W to avoid sputtering of the 

wall material (Wood et al. 2005b).  Impurities can play a beneficial role in plasmas, 

acting like a tracer, providing key information on plasma conditions through 

spectroscopical analysis (Stratton et al. 2008).  However, impurities with high enough 

concentrations can cause issues, effectively cooling and diluting the plasma, posing 

problems for ignition and magnetic stability (Wesson 1997)).  In Clementson et al. 2008, 

EUV plasma spectroscopy was utilized to study impurities on SSPX.  The diagnostic 

included an EUV grazing-incident spectrometer, known as the Silver Flat Field 

Spectrometer (SFFS), which was developed at the LLNL EBIT facility (Graf et al. 2008).  

The SFFS has a spherical 1200 lines/mm grating with a resolution of 0.3 Å full width at 

half maximum over the spectral range of 25 – 450 Å.  Imaging is accomplished with a 

back-illuminated Photometrics CCD camera, giving a wavelength range of around 200 Å 

per image.  In Clementson et al. 2008, impurities of B, C, N, O, Ti, Cu, and W were 

identified.  One campaign was described in which the SSPX flux conserver was extended 

by inserting uncoated copper rods between the upper and lower sections. This led to a 

high influx of Cu into the plasmas and Cu spectra dominated the EUV emission in many 



109 
 

discharges. Work remained on diagnosing the M-shell Cu transitions in these spectra, 

notably Cu X – Cu XIII transitions, which is addressed in the next section. 

5.3  Analysis of SSPX Impurity Spectra Dominated by M-shell Cu Emission 

During the experimental campaign on the SSPX spheromak in which the flux 

conserver was altered by inserting uncoated Cu rods, images were taken by the SFFS 

with a wavelength range between 115 – 315 Å.  The field of view was through the 

magnetic axis at the midplane of the plasma torus.  The images are time- and spatially 

integrated.  Figure 5.1 shows spectra from three SSPX shots, 20675, 20780, and 20801, 

of varying levels of contributions of M-shell Cu.  Oxygen is also abundantly present in 

the spectra, as well as a few W lines.  From analysis it is found that the most abundant 

transition is Cu X (3p
5
3d

3
 

3
F3 3p

6
3d

2
 

3
F3) at 138.75 Å, followed by Cu XI (3p

5
3d

2
 

2
D5/2 3p

6
3d 

2
D5/2) at 135.23 Å.  Other notable transitions include Cu X (3p

5
3d

3
 
3
D3 

3p
6
3d

2
 
3
F4) at 132.32 Å, Cu X (3p

5
3d

3
 
3
G5 3p

6
3d

2
 
3
F4) at 153.67 Å, and Cu XIII (3p

4
3d 

2
D5/2 3p

5
 

2
P3/2) at 143.27 Å (compare to Ryabtsev et al. 2009, Shirai et al. 1991).  

Wavelengths were estimated both from Cowan’s code (Cowan 1981) and with the atomic 

code ATBASE run through Spect3D (see Table 5.1) and compared with recommended 

NIST (http://physics.nist.gov/asd3) data.  Figure 5.2 displays theoretical calculations for 

shot 20801 on SSPX.  EUV Cu spectra were calculated with Spect3D, while those of O 

(Wilcox et al. 2008) were calculated from SCRAM, with an atomic model based on FAC
 

calculations.  The plasma parameters needed for best agreement with the observed Cu 

spectra were found to be an electron temperature Te = 40 eV and an electron density ne = 

10
14 

cm
-3

.  For the O spectrum Te was found to be somewhat lower, of about 15 eV, with 

the same ne = 10
14

 cm
-3

.  Similar simulations were run for the other two shots.  For shot 
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20675, the Cu spectrum was modeled to have Te = 35 eV, while the O spectrum was 

modeled to have Te = 15 eV and for shot 20780, the Cu spectrum gave Te = 35 eV while 

the O spectrum gave Te = 13 eV: all calculated at the electron density were of ne = 10
14

 

cm
-3

.  A possible explanation for cooler O plasma compared to Cu is that the O emission 

is from the outer cooler plasma whereas the Cu emission is from the inner hotter region. 

 

 

Figure 5.1.  Experimental results from the SSPX spheromak.  EUV image shown along 

with respected lineouts for shots 20675, 20780, and 20801. 
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Ion Transition Spect3D λ (Å)  COWAN λ (Å) 

Cu X 3p
5

3d
3

 
3

D
3
 3p

6

3d
2

 
3

F
4
 132.71 132.32 

Cu X 3p
5

3d
3

 
3

F
3
 3p

6

3d
2

 
3

F
3
 139.85 138.75 

Cu X 3p
5

3d
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1

H
5
 3p
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3d
2

 
1

G
4
 150.59 153.96 

Cu X 3p
5

3d
3

 
3

G
5
 3p

6

3d
2

 
3

F
4
 153.80 152.67 

Cu XI 3p
5

3d
2

 
2

D
5/2
 3p

6

3d
1

 
2

D
5/2

 135.41 135.23 

Cu XI 3p
5

3d
2

 
2

F
7/2
 3p

6

3d
1

 
2

D
5/2

 148.48 147.18 

Cu XI 3p
5

3d
2

 
2

P
3/2
 3p

6

3d
1

 
2

D
5/2

 136.09 137.14 

Cu XII 3p
5

3d
1

 
1

P
1
 3p

6

 
1

S
0
 139.18 139.27 

Cu XIII 3p
4

3d
1

 
2

D
5/2
 3p

5

 
2

P
3/2

 143.16 143.27 

Table 5.1.  Diagnostically important transitions of Cu X – Cu XIII ions and theoretical 

wavelengths estimated with Spect3D and COWAN Code. 

 

Figure 5.2.  Experimental spectrum of shot 20801 from SSPX at the top. Synthetic 

spectra calculated at ne = 10
14

 cm
-3

 for Cu at Te = 40 eV (in the middle) and for O at Te = 

15 eV (at the bottom). 
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5.4  Analysis of Laser Produced M-shell Cu Emission from “Sparky” 

The second set of experiments was performed on the compact laser-plasma x-

ray/EUV facility “Sparky” at UNR.  The EUV/soft x-ray laser plasma source operates 

with a 0.4 J, 3 ns, 10 Hz solid state laser.  An EUV grazing incidence spectrometer was 

implemented to study the EUV spectra. The resolution of this spectrometer was λ/Δλ = 

100 (Shevelko et al. 1998).  A Cu slab was used as the target and shot multiple times 

(ranging from a few hundred to a few thousand) at different laser intensities.  Figure 5.3 

displays the results of a Cu slab shot approximately 220 times at maximum laser 

intensity.  As with Kantsyrev et al. 2008a, the EUV spectra indicate a non-uniform, likely 

two-temperature, plasma.  A possible explanation is that the laser produces plasma with a 

hot inner core and with a relatively cooler outer shell.   Moreover, the spectrum is not 

only integrated in space but also in time, so it collects the EUV radiation from different 

plasma conditions throughout time.  Modeling from Spect3D indicates two plasma 

conditions, one at lower Te = 25 eV, and one at higher Te = 90 eV, with ne = 10
19

 cm
-3

. 

 

Figure 5.3.  Experimental spectrum of Cu EUV produced on “Sparky” with two 

synthetic spectra calculated Te = 25 eV and 90 eV and ne = 10
19

 cm
-3

. 
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5.5  Conclusions 

EUV Cu spectra have been studied from two different sets of experiments in the 

range between 40-300 Å.  The first set of experiments on the SSPX spheromak studied 

Cu impurities from rods inserted to extend the flux conserver.  Results included a detailed 

analysis of Cu X – XIII transitions with an electron temperature up to 40 eV and electron 

density on the order of 10
14 

cm
-3

, while O was modeled to be cooler at 15 eV.  The 

second set of experiments on the laser-plasma facility “Sparky” studied EUV Cu at much 

different plasma conditions than that from SSPX.  Such conditions indicate a non-

uniform, two-temperature plasma, one with lower electron temperature of 25 eV emitting 

from the cooler outer shell, and another with a higher electron temperature of 90 eV 

emitting from the hotter inner core, and density of the order of 10
19 

cm
-3

.  The majority of 

the results from this chapter were published in Weller et al. 2012b. 
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Chapter 6  

Ag Planar Wire Arrays as Powerful Radiators 

6.1  Introduction and Motivation of Ag and Mixed Ag and Al Planar Arrays 

Silver (Ag) wire arrays were recently introduced as efficient x-ray radiators and have 

been shown to create L-shell plasmas that have the highest electron temperature (> 1.8 

keV) observed on the Zebra generator so far and upwards of 30 kJ of energy output 

(Safronova et al. 2011). In this chapter, results of single planar wire arrays (SPWAs) and 

double planar wire arrays (DPWAs) of Ag and mixed Ag and Al that were tested on the 

UNR Zebra generator are presented and compared (Sections 6.2 and 6.3). To further 

understand how L-shell Ag plasma evolves in time, a time-gated x-ray spectrometer was 

designed and fielded (see Section 2.4.2), which has a spectral range of approximately 3.5 

– 5.0 Å.  With this, L-shell Ag as well as cold Lα and Lβ Ag lines were captured and 

analyzed along with PCD signals (> 0.8 keV).  Along with PCD signals, other signals, 

such as filtered XRD (> 0.2 keV) and Si-diodes (SiD) (> 9 keV), are analyzed covering a 

broad range of energies from a few eV to greater than 53 keV. The observation and 

analysis of cold Lα and Lβ lines show possible correlations with electron beams and SiD 

signals.  Section 6.4 will discuss and conclude the chapter. 

6.2  Comparison and Analysis of Ag SPWAs and Mixed Ag and Al DPWA 

Planar wire array (PWA) configurations in z-pinch experiments have been shown to 

be very efficient radiators (Kantsyrev et al. 2006).  As part of this research, different wire 

materials have been tested in search for more efficient radiation sources.  With this in 
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mind, a series of Z-pinch experiments were performed at the UNR Zebra generator that 

focused on radiation from Ag planar wire arrays.  This section presents some of the major 

results of these experiments.  It was also shown that Ag radiated from many “bright” 

spots along the pinch, with “cold” Lα and Lβ lines observed in more “column-like” 

features along the pinch, between the bright spot formations.  Many of the early Ag 

experiments were performed on the Zebra generator in what is now referred to as the 

“standard” 1.0 MA configuration with a 100 ns rise time.  The new LCM (see Section 

4.2) allows for experiments to be performed at currents as high as 1.7 MA
 
which provides 

many useful comparisons, such as energy scaling with current, efficiency of radiating into 

L-shell Ag, and analyzing different plasma parameters, such as electron temperature and 

density.  Experiments in this section include both standard current and enhanced current 

LCM results.  The majority of the results from this section have recently been published 

(Weller et al. 2014). 

 

Shot 

# 

Configuration 

- Wire 

Material 

Wire # Diameter 

of Wire 

(µm) 

Array 

Mass 

(µg/cm) 

Total Energy 

(kJ) 

PCD 

Energy 

(J) 

Maximum 

Current 

(MA) 

2585 SPWA - Ag 8 17.8 209 30.6 314 0.84 

2587 SPWA - Ag 8 17.8 209 30.4 317 0.89 

2480 SPWA - Ag 10 25 515 16.5 405 1.60 (LCM) 

1928 DPWA - 

Ag/Al 

8/8 10/19 131 21.0 224 0.98 

Table 6.1: List of considered shots for pure Ag and mixed Ag and Al PWAs with load 

characteristics, total radiated energy output, PCD energy, and maximum current. 
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Table 6.1 lists the pure Ag and mixed Ag and Al PWA experiments that are discussed 

in this section. “Shot #” refers to the Zebra shot number. The configuration refers to 

either single planar wire arrays or double planar wire array, followed by the wire 

material. All aluminum wires listed were Al 5056 alloy, which is 95% Al and 5% Mg.  

The number of wires refers to the number of total wires in the SPWAs and number of 

wires in each plane for the DPWA.  For the mixed Ag and Al DPWA, one plane is Ag 

while the other plane is Al.  The diameter of the wires refers to the thickness, which is 

then followed by the array mass, in mass per unit length.  The array mass is listed this 

way due to the different anode to cathode gap length between the standard (2.0 cm) and 

LCM (1.0 cm) configurations.  The total radiated energy is also listed and was measured 

with a bare nickel bolometer.  The photoconducting diode (PCD, filtered with 8 µm Be, > 

0.8 keV, 0.5 ns resolution) signal has been calibrated and provides energies for the given 

cutoff range, which are also listed in the table. The maximum current refers to the current 

peak, measured with calibrated B-dots. 

6.2.1 Implosion Characteristics of Ag SPWA and Mixed Ag and Al DPWA 

SPWAs of Ag and a DPWA of mixed Ag and Al were tested on the UNR Zebra 

generator. Table 6.1 lists the load configurations for the shots considered in this section.  

Shot 2585 and 2587 were identical SPWAs that had eight 17.8 µm diameter Ag wires 

spaced 0.7 mm apart and had a current maximum of 0.84 MA and 0.89 MA, respectively.  

Shot 2480 was a SPWA that had ten 25.0 µm diameter Ag wires spaced 0.7 mm apart and 

had a current maximum of 1.60 MA (LCM).  Lastly, shot 1928 was a mixed Ag and Al 

DPWA with one plane consisting of eight 10 μm diameter Ag wires (66 μg/cm) and the 

other plane consisting of eight 19 μm diameter Al (5056) wires (61 μg/cm).  The 
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thickness of the wires was chosen to keep each plane approximately the same mass.  The 

interplanar gap was 3.0 mm with wires spaced 0.7 mm apart.  Total array mass needs to 

be considered to allow for maximum x-ray signals, which coincide with implosion times 

listed, to be around 100 ns, or maximum of current as well as for maximum efficiency of 

x-ray radiation and total energy output.  Because of this the array mass per length for the 

enhanced current configuration is more than twice that at standard configuration.  The 

total radiated energy per length for the SPWAs at standard and enhanced current was 

comparable, with 15.3 kJ/cm (30.6 kJ total) for shot 2585, 15.2 kJ/cm (30.4 kJ total), and 

16.5 kJ/cm for shot 2480.  One explanation for this comparable radiated energy per 

length for two different current regimes is likely due to the anisotropy of SPWA Ag loads 

as reported in Kantsyrev et al. 2013, where bolometer detectors were systematically 

shown to measure more radiated energy when the bolometer was pointed perpendicular to 

the plane as opposed to parallel to the plane, by a factor of 1.2 or greater.  In this data, 

shots 2585 and 2587 at standard current were oriented perpendicular to the bolometer 

while shot 2480 at enhanced current was oriented parallel to the bolometer.  The total 

radiated energy per length for the mixed DPWA was 10.5 kJ/cm (21.0 kJ total), less than 

the pure Ag SPWA configurations. The PCD energies are also listed and were filtered to 

include L-shell Ag and K-shell Al radiation.  The PCD energies for shots 2585 and 2587 

were 315 J and 317 J, respectively, while the PCD energy for shot 2480, was 405 J.  This 

may indicate that, though the total overall energies are comparable, the enhanced current 

shot 2480 was more efficient at radiating in L-shell Ag than the standard current shots.  

The PCD energy for shot 1928 was 224 J, again, less than the pure Ag SPWA 

configurations.  One possible explanation that the total radiated energy is less for the 
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mixed Ag and Al DPWA is the inclusion of the Al plane itself; given that Al traditionally 

is a less efficient radiator than other materials, especially compared to Ag. 

In the interest of studying implosion characteristics, signals and time-gated pinholes 

(TGPH) of all shots considered are shown in Figure 6.1.  The TGPH provided two 

images of energies > 1.0 keV and > 3.0 keV.  The signals include an XRD (> 0.2 keV), a 

PCD (> 0.8 keV), a SiD, > 53 keV, and a 25 µm Cu filtered Faraday Cup (> 93 keV 

electron cutoff energy).  The Faraday Cup was utilized to measure electron beams and 

was oriented directly above the pinch.  Looking at Figures 6.1(a) and 6.1(b) of shots 2585 

and 2587, the Ag SPWAs have main implosions that occur between 96 and 99 ns, 

followed by a series of bursts after the main pinch lasting for approximately 60 ns.  This 

corresponds with TGPH images which show very many random bright spot formations, 

which indicate a non-uniform implosion.  Figure 6.1(c) provides the implosion 

characteristics of shot 2480, the Ag SPWA at enhanced current.  The implosion time was 

90 ns, followed by a series of bursts after the main pinch lasting for approximately 50 ns, 

which have very similar implosion characteristics of the SPWAs at standard current.  The 

TGPH images again show random bright spot formations, though perhaps indicating a 

more uniform pinch in frame “c” than the standard current SPWA counterparts.  Finally, 

Figure 6.1(d) shows the implosion characteristics of shot 1928, the mixed Ag and Al 

DPWA.  Here, the advantage of the mixed Ag and Al DPWA configuration becomes 

evident, with a main implosion at 100 ns that consists of a clear main pulse, followed by 

only a few smaller secondary pulses, producing much narrower XRD, SiD, and PCD 

signals.  This corresponds with TGPH images in the last three frames which indicate a 

much more uniform pinch.   
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Figure 6.1. Signals and time-gated pinhole images for shots (a) 2585 – Ag SPWA at 

standard current, (b) 2587 – Ag SPWA at standard current, (c) 2480 – Ag SPWA at 

enhanced current, and (d) 1928 – Ag and Al DPWA at standard current.  The pinhole 

timings are shown with gray boxes and are listed “a-f” and are filtered at > 1.0 keV 

(bottom) and > 3.0 keV (top). 

 

To further understand the implosion characteristics of L-shell Ag, a time-gated hard 

x-ray (TGHXR) spatially integrated spectrometer was fielded for the first time for shots 

2585 and 2587. The TGHXR used a convex α-quartz crystal (2d = 6.687 Å) with a 4” 

diameter, which allowed for viewing of wavelengths between 3.8 and 4.5 Å.  The spacing 

between gates was 5 ns, while the MCP was gated to last for 3 ns.  The first analysis of 

the time-gated L-shell Ag, shown in Figure 6.2, yields interesting results;  for shot 2585, 

Figure 6.2(a-c), the first two frames show what appear to be Lα and Lβ lines, with no 
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evidence of L-shell radiation from hot plasmas.  The third frame, however, shows very 

strong background, the disappearance of the Lα and Lβ lines, and the appearance of Ne-

like 3G and Na-like Ag lines.  The background may possibly be continuum caused by 

either bremsstrahlung radiation or recombination. By the fourth frame the background 

has dissipated along with the Ne- and Na-like lines, and the reappearance of the Lα and Lβ 

occurs.  The Lα and Lβ lines are likely caused by excitation of low ionization stages of Ag 

ions by electron beams, which have been shown to have correlation with SiD signals
 

(Ouart et al. 2011), which is the case here.  The spectra were captured during the middle 

of the x-ray burst signals and indicate just how drastically plasma conditions can change 

in the ns time scale.  Careful observation shows that the background along with the L-

shell lines corresponds well with a sharp spike in XRD and PCD signals, which in 

general has correlated with hotter plasma conditions
 
(Weller et al. 2012a, Safronova et al. 

2008b).  Due to the nature of these results, an identical experiment was performed (shot 

2587) which is presented in Figure 2(d-e).  In this particular experiment, all four frames 

yielded strong background, along with the L-shell Ne- and Na-like lines, consistent with 

previous results.  More research needs to be completed on the nature of this background 

to further understand if this is continuum emission or some other mechanism, such as an 

instrumental artifact.  No Lα and Lβ lines were measured, likely due to the timing of the 

gates being earlier than shot 2585 and coinciding with very weak SiD and Faraday cup 

signals. 
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Figure 6.2. (a) Signals and timings for the TGHXR spectrometer for shot 2585 – Ag 

SPWA at standard current.  In (b), images of spectra from the TGHXR spectrometer for 

shot 2585.  The frames are listed as “1-4” and correspond with timings in (a).  In (c), the 

third frame from (b) has enhanced contrast for clarity. (d) Signals and timings for the 

TGHXR spectrometer for shot 2587 – AG SPWA at standard current.  In (e), images of 

spectra from the TGHXR spectrometer for shot 2587 and all frames have enhanced 

contrast for clarity the same as in (c).  The frames are listed as “5-8” and correspond with 

timings in (d). 

 

6.2.2 Radiative Characteristics of Ag SPWA and Mixed Ag and Al DPWA 

The radiative characteristics of the experiments described in the earlier sections are 

explored in detail in this section.  Figure 6.3 shows time-integrated spatially resolved 

(TISP) spectra and pinhole (TIPH) images of shots 2585 and 2480.  The spectra were 

taken with a potassium hydrogen phthalate (KAP) (2d = 26.63 Å) convex crystal 
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spectrometer while both pinhole images were filtered to study L-shell Ag emissions > 3.0 

keV.  Both diagnostics are axially resolved to study variations along the length of the 

pinch from anode “a” to cathode “c”.  Bio-max MS Kodak x-ray film was implemented 

in this work. Diagnostically important L-shell Ag lines, along with characteristic lines Lα 

and Lβ, are indicated in Figure 6.4, which are F- through Mg-like Ag, with Ne-like Ag 

being the predominate features (for more information on L-shell line identification, see 

Safronova et al. 2007 and Ouart et al. 2010b).  Both shots produce very many “bright” 

spots, roughly 4-5 per cm, as seen on the TIPH images and correlate well with the TISP 

spectra, however there are a few striking differences.  The first is that the enhanced 

current shot (2480) had substantially increased intensity of the Ag L-shell radiation, 

which is seen up to fourth order reflection on the film.  This result is in agreement with 

the fact that shot 2480 also had increased PCD energy output, as opposed to the standard 

current shots, indicating again that the enhanced current was more efficient at radiating in 

L-shell Ag.  Also from this shot higher Rydberg state transitions of Ne-like 4C and 4D 

can be seen between 2.8 and 3.0 Å.  A second difference is that the standard current shot 

(2585) produced very well defined “cold” Lα and Lβ features along the length of the 

pinch, indicating strong electron beam presence (for more information on electron beams 

see Shrestha et al. 2010), as seen from Figure 6.4, while the enhanced current shot had 

relatively weaker Lα and Lβ lines.  The presence of strong F-like features indicate electron 

temperature on the order of 1.4 – 1.8 keV in this plasma
 
(Safronova et al. 2011).  A main 

similarity of the standard and enhanced current shots, however, is that L-shell Ag is being 

produced optically thick. 
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Figure 6.3. (a) Shot 2585 – Ag SPWA at standard current and (b) shot 2480 – Ag SPWA 

at enhanced current of x-ray time-integrated spatially resolved spectra (right) and pinhole 

images (left). The pinhole images are filtered at > 3.0 keV. 

 

 

Figure 6.4. (a) L-shell Ag spectra produced on Zebra in shot 2585 – Ag SPWA at 

standard current and (b) in shot 2480 – Ag SPWA at enhanced current. Lineouts taken 

from spectra in Figure 6.3. 
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Analysis of the time-integrated results for shot 1928 is presented in Figure 6.5.  The 

TISP spectra demonstrate that, while Al radiates mostly along the column of the pinch 

(K-shell Al lines are labeled Al1, Al2, etc., for more information on K-shell Al line 

identification, see Section 2.1.1), Ag only radiates from 3-4 main bright spots.  It’s likely 

that L-shell Ag is radiating only from relatively hotter portions of the plasma, compared 

to what K-shell Al can radiate from.  It’s also very important to point out that the mixture 

of Al and Ag wires produced not only optically thin K-shell Al (no K-shell Mg lines), but 

almost optically thin L-shell Ag, which is in contrast to the pure Ag SPWA loads, which 

produced optically thick L-shell Ag plasma. The TIPH images agree with the results of 

the TISP spectra.  The pinhole image of > 1.0 keV includes both radiation from K-shell 

Al and L-shell Ag and appears to be more column-like, though with noticeable bright 

spots.  The pinhole image of > 3.0 keV includes radiation mostly from L-shell Ag, and 

correlates well with the L-shell spectra.  As mentioned earlier, Biomax-MS film is used 

to capture the experimental spectra and the intensity (normalized to 1) is calculated by the 

method reported in Knauer et al. 2006 with measurement errors within 20% as reported 

in Chandler et al. 2005 (within the accuracy of the atomic data, see Safronova et al. 

2008a).  Non-LTE kinetic modeling was performed for the K-shell Al spectra and the 

synthetic spectra results are overlaid in dashed black on top of the experimental spectra in 

gray in Figure 6.5(b).  In Figure 6.5(c), electron temperatures (Te) of K-shell Al are 

plotted as function of distance from cathode in mm. The Te ranges from Te = 360 eV to 

580 eV.  Higher K-shell Al Te seems to correlate with the L-shell Ag radiation, indicating 

that the presence of the hotter L-shell Ag plasma may be affecting the K-shell Al plasma.  

The Al2 (Lyα) to Al1 (Heα) ratio is used to estimate K-shell Al Te with an estimated 
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uncertainty of ± 10%.  It’s important to take note, that although 5% Mg was present in 

the Al alloy, no Mg K-shell spectra were recorded, and that Al K-shell spectra were 

optically thin, even with very high Te.  In Figure 6.5(d), the K-shell Al electron densities 

(ne) are plotted and range from ne = 7 x 10
18 

cm
-3

 to 7 x 10
20 

cm
-3

, with the higher ne being 

near the cathode.  The ratio of the inter-combination transition (1s2p 
3
P1 → 1s

2
 
1
S0) to the 

resonate line Al1 (Heα) is used to estimate K-shell Al ne with an estimated uncertainty 

within an order of magnitude.  Also in Figure 6.5(d) are ne estimates of L-shell Ag from 

two bright spot formations (indicated by arrows “1” and “2”).  The estimations are ne = 1 

x 10
20 

cm
-3 

and ne = 7 x 10
20 

cm
-3

, roughly an order of magnitude higher than the K-shell 

Al ne from the same bright spot region.  The ratio of Ne-like lines (3A+3B)/(3F+3G) is 

used to estimate L-shell Ag ne (for an example of this ratio being used, see Ref (Hansen et 

al. 2005)).  The estimations were also made possible due to L-shell Ag being optically 

thin, an advantage that this mixed Ag and Al DPWA load had over the pure Ag SPWA 

loads.  The lines connecting the points in Figures 6.5(c) and 6.5(d) are for visual 

representations only and are not designed to represent trends in between the points. 
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Figure 6.5. Shot 1928 – Ag and Al DPWA at standard current.   (a) X-ray time-

integrated spatially resolved spectra of K-shell Al and L-shell Ag and pinhole images. (b) 

Lineouts of the spectra in blue along with synthetic spectra in red for K-shell Al are 

shown in (b).  In (c) K-shell Al Te is plotted as a function of distance from cathode.  In 

(d) K-shell Al and L-shell Ag ne are plotted as functions of distance from cathode.  

Arrows numbered “1-3” correlate spectra with lineouts, as well as indicating bright spots 

that generate L-shell Ag radiation.   

 

 



127 
 

6.3 Low-Aspect Ratio Ag DPWAs and their Signatures at Enhanced Current  

The DPWA of mixed Ag and Al discussed in the previous sections had a 3.0 mm 

interplanar gap, which proved to be too small of a gap to allow shadowgraphy images to 

view in between the planes, which provides useful information as to how the planes are 

imploding.  Because of this limitation, DPWAs of Ag and mixed Ag and Al with a 6.0 

mm interplanar gap were designed and implemented on the Zebra generator at 1.7 MA.  

The pure Ag loads contained five wires of 25 µm diameter Ag in each plane, for a total of 

ten wires, with a 0.7 mm interwire gap.  The mixed Ag and Al loads contained five wires 

of 25 µm diameter Ag in one plane and five wires of 49.8 μm diameter Al in the other 

plane.  The diameters of the Ag and Al wires were chosen to keep both planes 

approximately the same mass.  For both configurations, each plane was approximately 

2.8 mm wide, creating an aspect ratio of ϕ = 0.47.  The aspect ratio (ϕ)
 
(Williamson et al. 

2010) in DPWAs is the width (w) of the planes divided by the interplanar gap (g).  Low 

aspect ratios loads are defined as ϕ < 0.7, and allow for the global field to magnetically 

isolate each plane until the final implosion with only off-axis mass accumulation, or in 

other words, each plane individually implodes as if it was initially a SPWA.  Table 6.2 

lists the load characteristics, as well as the implosion time and total radiated energy.  The 

total radiated energy of the three pure Ag loads averaged 9.7 kJ/cm, while the total 

radiated energy of the three mixed Ag and Al loads averaged 8.7 kJ/cm, both of which 

have total radiated energy less than shot 1928 that had a mixed Ag and Al DPWA at 

standard current, which radiated 10.5 (see Table 6.1).  This is likely due to the increased 

gap from 3.0 mm to 6.0 mm, as concluded in chapter 3 studying Mo/Al TPWAs, which 

suggests doing so decreases load efficiency.   
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Shot # 

 

Material 

# Wires 

Diameter (μm) 

Gap (mm) 

Linear Mass 

(μg/cm) 

Implosion 

Time (ns) 

Radiated Energy 

(kJ/cm) 

2984 

DPWA 

Ag/Ag 

5/5 

25.5/25.5 

0.7/6.0 

515 105 9.9 

2985 

DPWA 

Ag/Ag 

5/5 

25.5/25.5 

0.7/6.0 

515 99 9.5 

2986 

DPWA 

Ag/Ag 

5/5 

25.5/25.5 

0.7/6.0 

515 97 9.6 

2987 

DPWA 

Ag/Al 

5/5 

25.5/49.8 

0.7/6.0 

521 

258/263 

112 8.1 

2988 

DPWA 

Ag/Al 

5/5 

25.5/49.8 

0.7/6.0 

521 

258/263 

120 8.9 

2989 

DPWA 

Ag/Al 

5/5 

25.5/49.8 

0.7/6.0 

521 

258/263 

111 9.2 

Table 6.2. List of considered shots for pure Ag and mixed Ag and Al DPWAs with an 

increased gap of 6.0 mm; load characteristics, radiated energy output per length, PCD 

energy, implosion time, and maximum current. 

 

Figure 6.6 shows the signals, TGHRX spectra, TIPH images, and shadowgraphy 

images of shot 2986.  Looking at signals first, there is a main x-ray burst at 

approximately 96 ns into the current rise, followed by an almost equal burst 6-7 ns later, 

followed by a smaller burst in radiation in the XRD signal only around 35 ns later.  This 

suggests that after each plane independently implodes (within 10 ns of each other), the 

two planes then ablate together towards the central z-axis and a secondary and smaller 

implosion occurs.  Shadowgraphy images, taken at 63 and 69 ns, are shown to the right.  

The EKSPLA laser was used, which operates at 532 nm with a 0.2 ns pulse.  The laser is 

polarized before reaching the Zebra chamber, where one half of the polarization is taken 

on a 6 ns delay path.  Images were then taken with a CCD camera.  The images were 

taken parallel to the planes, providing a view in between the two planes.  A few features 
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are observed; first, the planes appear to be independently imploding, just as expected 

with the low aspect ratio loads.  Second, there are cone-like structures seen on the anode 

and cathode, but predominately near the anode.  This is likely due to electron beam 

interaction with the anode and cathode plate material, which is made of stainless steel.  

The TIPH images, taken 45° from the shadowgraphy images, also show evidence of two 

independently imploding planes, especially in the > 3.0 keV image.  The > 1.0 keV image 

shows evidence that after the planes imploded separately, the plasma imploded again on 

axis.  In both TIPH images there is a cone-like structure of no radiation > 1.0 keV, which 

correlates well with the cone-like structure in the shadowgraphy images, and also 

indicates that the cone-like structure is cooler plasma, again, caused by electron beams. 

Also in the TIPH images, it’s clear in > 1.0 keV the plasma connects in the central z-axis, 

where in > 3.0 keV there is very little radiation in the center.  The TGHXR images show 

evidence of Lα and Lβ lines, which appear only in the presence of harder x-ray signals.  

For more information about the correlation of electron beams and hard x-ray signals, see 

Shrestha et al. 2010. 
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Figure 6.6.  Signals from PCD, XRD, and SiD, along with measured current (a) for 

Zebra shot 2986 (Ag DPWA with 6 mm gap).  Time-gated spectra is shown in (b) with 

timings correlated with black triangles in (a) and numbered “1-4”.  Shadowgraphy 

images are shown in (c) with timings correlated with grey circles in (a) and labeled “a-b”.  

Time-integrated spatially resolved pinhole images are shown in (d) at two different cutoff 

energies. 

 

Figure 6.7 shows the signals, TGHRX spectra, TIPH images, and shadowgraphy 

images of shot 2985, which is similar data from the identical shot 2986 shown in Figure 

6.6, but with later the timings of the gates of the TGHXR spectrometer after the main SiD 

and PCD burst.  Consequently, no Lα and Lβ lines were measured on the TGHXR 

spectrometer, which confirm more the findings and conclusions taken from shot 2985, 

where Lα and Lβ lines were measured during the same time harder x-ray signals of PCD 

and SiD were measured.  Looking into shadowgraphy, the cone-like structures were again 

reproduced. 
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Figure 6.7.  Signals from PCD, XRD, and SiD, along with measured current (a) for 

Zebra shot 2985 (Ag DPWA with 6 mm gap).  Time-gated spectra is shown in (b) with 

timings correlated with black triangles in (a) and numbered “1-4”.  Shadowgraphy 

images are shown in (c) with timings correlated with grey circles in (a) and labeled “a-b”.  

Time-integrated spatially resolved pinhole images are shown in (d) at two different cutoff 

energies. 
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Figure 6.8.  Shadowgraphy images of Ag DPWAs with 6.0 mm gap at enhanced current.  

Images from three different identical loads with timings changed.  Images show 

independently imploding planes along with “cone-like” structures developing in anode 

“a” and cathode “c”. 

 

For all three identical Ag DPWAs, the timings of the shadowgraphy images changed 

from each shot.  The result of this time-evolution of the wire planes is shown in Figure 

6.8.  As early 20 ns into the current rise, the cone-like structure appears to be developing.  

These images show consistency in the cone-like structure development, as well as 

consistency in which both planes independently implode.  It’s also apparent that each 

plane not only implodes independently, but do so at approximately the same time (within 

10 ns), followed by a secondary implosion in which the two planes implode towards the 

central z-axis.  Although the total radiated energy was relatively low compared to other 

Ag DPWAs and little to no L-shell Ag radiation was observed, this load configuration 

has shown interesting results in plasma generation and the evolution thereof, as well as 

possible electron beam interaction with the anode and cathode surfaces. 
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Next will be results of the mixed Ag and Al DPWAs with an increased gap of 6.0 

mm.  Traditionally, Al is a much quicker ablator than other wire materials, so the results 

of shadowgraphy looking between the two planes with an increased gap should prove 

very interesting.  Figure 6.9 shows the implosion characteristics of shot 2988 from a 

mixed Ag and Al DPWA.  First, the signals paint a different picture than for the pure Ag 

loads, showing a few step-like pre-pulse features at 90 ns and 105 ns in time, followed by 

the main implosion at 120 ns.  The two shadowgraphy images, taken at 95 and 101 ns, 

show two planes, the Ag plane on the left and the Al plane on the right, with the Al plane 

clearly ablating towards the central z-axis before the Ag plane.  This could explain why 

the signals are very different than from the pure Ag loads, where one plane has much 

different implosion characteristics than the other.  The cone-like structure again is 

apparent near both the anode and cathode.  In Figure 6.9(b), the TGHXR spectrometer 

shows very faint Lα and Lβ lines in frames “3” and “4”, which correspond to increase in 

the hard SiD signal.  The TGPH image in Figure 6.9(d) shows radiation only coming 

from > 1.0 keV and very little to none from > 3.0 keV, which is likely coming from the 

Al plane.  Finally, the TGSP in Figure 6.9(e) shows very strong spectra from K-shell Al 

and Mg.  The fact that K-shell Mg appears in the Al 5056 allow (95% Al, 5% Mg) 

suggests that K-shell Al is optically thick, so non-LTE kinetic modeling was 

accomplished for K-shell Mg and attained electron temperatures of 320 and 340 eV, 

which correspond well to the step-like pre-pulse features seen in the XRD and PCD 

signals. 
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Figure 6.9.  Signals from PCD, XRD, and SiD, along with measured current and K-shell 

Mg electron temperatures (a) for Zebra shot 2988 (Ag and Al DPWA with 6 mm gap).  

Time-gated hard x-ray spectra is shown in (b) with timings correlated with black triangles 

in (a) and numbered “1-4”.  Shadowgraphy images are shown in (c) with timings 

correlated with grey circles in (a) and labeled “a-b”.  Time-gated spectra is shown in (e) 

with timings correlated with black dots in (a) and labeled “a-f”.  Lastly, (f) shows spectra 

in blue from (e) along with synthetic modeling of K-shell Mg in red. 
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Figure 6.10.  (a) Time-integrated spatially resolved spectra for Zebra shot 2988 (Ag and 

Al DPWA with 6 mm gap). (b) Experimental spectra (blue) taken from (a) and synthetic 

spectra (red) of K-shell Mg.  (c) Time-integrated spatially resolved pinhole image (> 3.0 

keV).  (d) Electron temperature of K-shell Mg as a function of distance from anode. 

 

Figure 6.10 highlights the radiative characteristics of shot 2988 from a mixed Ag and 

Al DPWA.  Looking at the time-integrated spectra, it’s clear that K-shell Al and Mg 

radiate along a column-like manner and mostly optically thick, and no discernable L-shell 

Ag was measured in the spectra, though there are at least three bright spots which 

correlate to increased intensity of K-shell Al and Mg, and modeling of K-shell Mg 

indicates that there is also an increase in electron temperature, from approximately 300 

eV to over 375 eV.  Looking to the pinhole image (> 3.0 keV), there is evidence of Ag 

radiation where Ag’s initial position was, so it’s interesting that this doesn’t correlate 

with L-shell Ag spectra on the film.  Even still, where this Ag is radiating in the pinhole 
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image, there seems to be an effect in the K-shell Mg electron temperatures, which agrees 

with earlier results from previous sections.  

Figure 6.11 presents a clear picture the time evolution of the Ag and Al wire planes.  

By 67 ns there is a strong distinction between the Ag and Al planes, Al moving towards 

the central z-axis.  The Al plane is shown to implode towards the central axis from the 

anode and then moves this imploding process to the anode, and this appears to have some 

effect of the cone-like structure.  

 
Figure 6.11.  Shadowgraphy images of mixed Ag and Al DPWAs with 6.0 mm gap at 

enhanced current.  The Ag plane is located on the left while the Al plane is located on the 

right in all images.  Images from three different identical loads with timings changed.  

Images show independently imploding planes along with “cone-like” structures 

developing in anode “a” and cathode “c”. 
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6.4 Conclusions 

In this chapter, pure Ag and mixed with Al PWAs and potential for lasing are 

discussed in detail for the first time.  Ag wire arrays were explored due to their past and 

present performance as a very efficient radiator on the Zebra generator, producing near 

record energies of greater than 30 kJ.  For the comparison between Ag SPWAs with 

standard (1.0 MA) and enhanced (1.7 MA) configurations, it was shown that Ag SPWAs 

produce very many bright spots along the pinch, corresponding with x-ray signals with a 

main burst, followed by very many bursts, and optically thick L-shell Ag plasmas.  In 

particular, at standard configuration, the time-evolution of L-shell Ag was measured, 

resulting in what appeared to be cold Lα and Lβ lines that likely correspond to electron 

beams and SiD measurements, and Ne-like 3G and Na-like satellite Ag lines that 

correlate with strong background generated in hotter plasma.  The experiment at 

enhanced current produced very intense L-shell Ag radiation that manifested up to fourth 

order in the TISP spectra. Both configurations produced high energy output (> 15 kJ/cm 

for the standard configuration and > 16 kJ/cm for the enhanced configuration), both near 

records for the Zebra generator. For the mixed Ag and Al DPWA, it was shown that, 

while K-shell Al radiated along the length of the pinch in a column like manner, L-shell 

Ag radiated from only a few bright spots.  Both K-shell Al and L-shell Ag radiated 

optically thin.  Modeling of the K-shell Al indicated optically thin yet relatively hot Te (> 

500 eV), with the Te being possibly affected by the presence of the L-shell Ag through 

radiative cooling from the Ag ions.  This suggests that, while the K-shell Al and L-shell 

Ag may not be perfectly mixed in the plasma, they still have influence on each other in 

Te.  This may be explained by the fact that L-shell Ag requires much hotter Te to radiate 
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than K-shell Al does (roughly three times).  Modeling of the ne of both K-shell Al and L-

shell Ag indicate that L-shell Ag is an order of magnitude greater than that of K-shell Al 

and in the range of 10
20

 cm
-3

 to 7 x 10
20 

cm
-3

.
 
The pulse shape for the mixed Ag and Al 

DPWA was also different than those of the Ag SPWAs, producing one main x-ray burst, 

followed by only a few smaller bursts, indicating a much more uniform pinch. 

To better understand the implosion dynamics between planes in a double planar wire 

array, experiments were accomplished at 1.6 MA on Zebra of Ag and mixed Ag and Al 

DPWAs with an increased interplanar gap of 6.0 mm.  The results produced 

independently imploding planes (similar to having two single planar wire arrays) before 

the two planes come together to form a secondary implosion.  Again, time-gated hard x-

ray spectra measured cold Lα and Lβ lines showing correlation to harder x-ray SiD (> 9 

keV), showing a possible correlation to electron beams.  For mixed Ag and Al loads, the 

Al implodes first, however still shows evidence if imploding independently before 

moving towards the central axis. 
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Chapter 7  

Potential for Lasing in Ne-like Ag on the Zebra Generator 

7.1  Introduction 

 In the previous chapter, z-pinch produced Ag plasmas were shown to radiate at very 

high electron temperatures (Te > 1.8 keV).  Electron densities have also been shown to be 

produced as high as 10
21

 cm
-3

 for z-pinch produced plasmas, particularly from x-pinches
 

(Safronova et al. 2006b).  Under these plasma conditions, Ag radiates predominantly in 

the Ne-like ionization stage, and could be conducive to population inversions between the 

3p and 3s levels.  In these transitions, the upper levels do not decay rapidly to the Ne-like 

ground state, while the lower levels have rapid dipole allowed decays to the Ne-like 

ground state
 
(Apruzese et al. 1983), giving rise to inversion and lasing.  The lower levels 

give rise to the 3F (          
    1P1       

      
  

1
S0) and 3G (     

      
    

3
P1  

     
      

  
1
S0) lines. Under LTE conditions, the ratio of the number of electrons in each 

level can be characterized by the Boltzmann factor:        (     )   ⁄⁄ , where Xn are 

populations of the levels and E is the energy of the levels.  Looking at this equation, Xi 

never exceeds Xk no matter how high T gets, therefore to achieve population inversion, 

the system needs to be in a non-LTE state, where three-body, radiative, and dielectric 

recombination from the F-like state (one ionization stage below Ne-like) and collisional 

excitation form the ground state can drive electrons to the upper level of the inversion.  

The electron temperature component is important in maintaining the Ne-like stage, and 

also increases collisional excitation rates.  Therefore, under proper conditions in non-LTE 
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plasma with high enough Te, population inversions can occur.  So the question remains, 

does lasing occur on the Zebra generator for Ne-like L-shell Ag, and if so, at what gains?  

To help answer this question, a non-LTE kinetic model of L-shell Ag was utilized to 

calculate theoretical lasing gains (see Section 2.1.1).  Much research has been 

accomplished both theoretically
 

(Apruzese et al. 1983, Hansen et al. 2005) and 

experimentally
 
(MacGowan et al. 1987, Fields et al. 1992) concerning these Ne-like ions 

and lasing.  MacGowan et al. 1987 the Nova laser was used to create gain among Ne-like 

Mo and later Fields et al. 1992 for Ne-like Ag.  It was proposed (Davis et al. 1988) to 

develop a pulsed power-driven laboratory x-ray laser using a Kr gas puff Z-pinch; 

however the experiments proved to be too non-uniform to achieve adequate lasing, 

though the intrinsically high gains of Ne-like Ag (9.4 cm
-1

 has been experimentally 

demonstrated (Fields et al. 1992)) may allow detection of amplification even under non-

ideal conditions of significant non-uniformity.  Lastly, due to the recent advances in 

creating more uniform pinches
 
(Deeney et al. 1998 and Davis et al. 1997), and success at 

lower currents through the use of capillary discharges
 
(Rocca et al. 1995), it’s feasible 

that lasing at high gains are occurring at university scale Z-pinch devices.   

Section 7.2 calculates theoretical lasing gain for Ne-like Ag for various plasma 

conditions, while Section 7.3 explores a new load type, the split double planar wire array, 

designed for uniform plasma conditions that are suitable for lasing, and Section 7.4 

concludes the chapter. 

7.2  Lasing Gain Calculations for Ne-like L-shell Ag 

Fourteen transitions were shown to produce population inversions and are listed in 

Table 7.1. Of the fourteen transitions, nine are 3p  3s, three are 4p  3s, and two are 
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5p  5s.  The wavelengths (Å) and gain factors are also included.  The gain factors are 

calculated using the negative of the absorption coefficient, k, of a Doppler-broadened 

transition, at line center, and is given by: 

 

 (    )              √
    (   )

    (  )
(   

  
  
  )                           

 

where f is the absorption oscillator strength, λ is the transition wavelength in Å, Mion is 

the mass of the ion, Tion is the ion temperature, Xn are the populations of the respective 

levels in cm
-3

, and gn are the statistical weights of the levels.  The absorption oscillator 

strength is calculated using Equation 2.8.  Lasing can occur when    (
  

  
)   for decay 

transition from level i to k.  The level populations are calculated using a non-LTE kinetic 

model of Ag, which utilizes the FAC atomic data.  Ne-like Ag lasing has already been 

reported (Fields et al. 1992) on the Nova laser under comparable plasma conditions to Z-

pinches.  However there is a significant difference in Tion when comparing laser produced 

plasma sources and Z-pinch plasma sources, as reported in Hansen et al. 2005 where 

potential for lasing in Ne-like Mo was discussed.  In laser plasmas, the Tion ~ Te, however 

for Z-pinch plasmas it is estimated that Tion    Te, where the Tion can be significantly 

greater than that of Te
 
(Haines et al. 2006), which in effect can broaden and detune the 

lasing transitions through Doppler effects.  Another consideration are the effects of 

refraction of lasing emission due to large radial density gradients present in the z-pinch 

plasma column, which can reduce gain by as much as 20-40%
 
(Hansen et al. 2005).  One 
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final consideration is effect of hyperfine splitting in the Ne-like lines due to the coupling 

with the dipole magnetic moment of the nucleus.  If the splitting is significant enough, 

the linewidth of the level increases, thereby lowering the gain. This effect has been 

measured previously
 
(Nilsen et al. 1993) and was a possible explanation for low laser 

emissions for Ne-like ions in odd numbered Z elements, such as Ag (Z = 47).  In Scofield 

et al. 1994 the contribution for gain lowering by hyperfine splitting as a function of ion 

temperature was assessed, and it was found that for Ag, the ion temperature would have 

to be as low as 10 eV to cause any significant drop in gain.  As mentioned earlier in this 

section, Tion is estimated to be greater than or equal to Te, and given the estimated Te is on 

the order of 1.4 – 1.8 keV for Ne-like L-shell Ag plasmas, it is highly unlikely that Tion is 

on the order of 10 eV.  Even if this were the case, this process would be offset by the fact 

that with low Tion the Doppler broadening is minimized, and gain is substantially 

increased.  Also, it was shown that the hyperfine splitting was only significant for the 

states with the 2p1/2 vacancy and not for states with the 2p3/2 vacancy due to the electron’s 

spin and orbital angular momentum contributing with opposite sign and ads together for 

the 2p1/2 case while subtracting for the 2p3/2 case.  Half of the transitions considered here 

have the 2p3/2 vacancy, and thus hyperfine splitting shouldn’t be a concern for those 

transitions.  The conclusion is that the effect of hyperfine splitting in general for Ne-like 

Ag isn’t significant enough to affect lasing gains in z-pinch produced plasmas. 
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Upper Level i Lower Level k λ (Å) Gain (a) (cm
-1

) Gain (b) (cm
-1

) 

          
       

1
D2      

      
    

3
P1 41.2 2.0 x 10

-4
 7.0 x 10

-4
 

     
      

       
3
P0      

      
    

3
P1 80.7 3.9 18.5 

     
      

       
3
P2      

      
    

3
P1 99.2 5.9 28.2 

     
      

       
1
P1      

      
    

3
P1 105.1 3.7 14.7 

     
      

       
3
D2      

      
    

3
P1 167.5 6.6 29.2 

     
      

       
3
D1      

      
    

3
P1 174.0 1.0 3.9 

          
       

1
D2           

    
1
P1 100.2 3.7 22.6 

          
       

1
S0           

    
1
P1 102.0 1.1 5.9 

          
       

3
P0           

    
1
P1 120.4 3.8 18.9 

          
       

3
P0      

      
    

3
P1 56.7 3.0 x 10

-4
 2.0 x 10

-3
 

     
      

       
3
P0      

      
    

3
P1 201.0 0.3 2.8 

          
       

3
P0           

    
1
P1 318.5 0.1 1.4 

     
      

       
3
P0      

      
    

3
P1 406.1 0.1 1.1 

          
       

3
P0           

    
1
P1 646.6 6 x 10

-2
 0.6 

Table 7.1. List of considered lasing transitions for Ne-like Ag, along with wavelengths 

and gain calculations for two plasma conditions.  Gain (a) is calculated using plasma 

conditions Te = Tion = 1.8 keV and ne = 10
21 

cm
-3

. Gain (b) is calculated using plasma 

conditions Te = Tion = 2.4 keV and ne = 10
22 

cm
-3

. 

 

Looking back to Table 7.1, gains are calculated for two different plasma conditions.  

The first is calculated using conditions that have proven to be attainable for L-shell Ag on 

the Zebra generator, which is Te = 1.8 keV and ne = 10
21 

cm
-3

.  In these calculations, it is 

assumed Tion = Te, which, from discussion above, probably underestimates Tion.  The 

     
      

       
3
D2 →      

      
    

3
P1 transition at 167.5 Å has the largest calculated 

gain at 6.6 cm
-1

, followed by the      
      

       
3
P2 →      

      
    

3
P1 transition at 

99.2 Å with a gain of 5.9 cm
-1

.  The lowest wavelength with an appreciable gain is the 

     
      

       
3
P0 →      

      
    

3
P1 transition at 80.7 Å with a gain of 3.9 cm

-1
.  
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For interest, the lowest wavelength transition that showed any positive gain at all was the 

          
       

1
D2 →      

      
    

3
P1 transition at 41.2 Å with a small gain of 2.0 x 

10
-4 

cm
-3

.  The second set of gain calculations were using conditions Te = 2.4 keV and ne 

= 10
22 

cm
-3

.  Again, the highest gain calculated is the      
      

       
3
D2 → 

     
      

    
3
P1 transition at 167.5 Å with a gain of 29.2 cm

-3
.  Beyond Te = 3.0 keV, 

the plasma is estimated to quickly burn through Ne-like, and considerably drop the level 

populations of the levels, while beyond ne ~ 10
23

 cm
-3

, the collisional processes become 

too intense and consequentially destroy the population inversions.  Figures 7.1 and 7.2 

show plots of how both Te and ne affect lasing gain for the transitions      
      

       

3
P2 →      

      
    

3
P1 at 99.2 Å and      

      
       

3
P0 →      

      
    

3
P1 at 80.7 

Å, respectively.  Gains were calculated for Te = Tion in the range of 900 – 3000 eV and ne 

in the range of 10
19

 – 10
24

 cm
-3

.  From these figures it becomes clear that, with 

reasonably high density, between 10
21 

cm
-3

   ne    10
23 

cm
-3

, Te can be anywhere 

between 1200 and 3000 eV and produce high gains between 1.0 cm
-1

 and 60 cm
-1

 for the 

     
      

       
3
P2 →      

      
    

3
P1 transition at 99.2 Å and gains between 1.0 cm

-1 

and  30 cm
-1

 for the      
      

       
3
P0 →      

      
    

3
P1 transition at 80.7 Å. As 

expected at ne = 10
24 

cm
-3

 the calculations show negative lasing gain and are plotted as 

0.0 cm
-1

 on the graph.  This wide range of plasma conditions that potentially produce 

high gain in Ne-like Ag indicates that there is a good chance that lasing is occurring, at 

least in some regions, within z-pinch plasmas. 
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Figure 7.1.  Lasing gain calculated as function of Te and ne for the Ne-like Ag transition 

of      
      

       
3
P2 →      

      
    

3
P1 at 99.2 Å.  In these calculations, Tion = Te. 
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Figure 7.2.  Lasing gain calculated as function of Te and ne for the Ne-like Ag transition 

of      
      

       
3
P0 →      

      
    

3
P1 at 80.7 Å.  In these calculations, Tion = Te. 

 

7.3 Split Double Planar Wire Array to Measure Lasing 

The first preliminary results on the creation of a more uniform plasma column for the 

purpose of measuring lasing on the Zebra generator will be discussed in this section.  The 

new wire array scheme used for these experiments is the split double planar wire array 

(SDPWA).  The configuration consists of two DPWAs split by 3.5 mm (which can be 

adjusted).  The experiments used twenty 10.16 μm diameter Mo wires (2x5/5 wires) that 

had an interplanar gap of either 3.0 mm or 6.0 mm and interwire gap of 0.7 mm.  Mo 

wires were used instead of Ag to avoid potential issues, such as hyperfine splitting, for 

initial experiments.  Future experiments include Ag wires.  These experiments were taken 
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with the implementation of the LCM at 1.7 MA.  The first results of shadowgraphy are 

shown in Figure 7.3, which display images from a SDPWA with a 3.0 mm gap.  It’s 

evident that as early as 50 ns into the current rise, a column-like plasma structure has 

formed, possibly a precursor before the main implosion.  This particular structure is of 

interest for a possible medium for lasing, and further research is required.  Figure 7.4 

shows signals and time-gated pinhole images (TGPH) from this experiment.  The signals 

include a filtered x-ray diode (XRD, > 0.2 keV), a photoconducting diode (PCD, > 0.8 

keV), and a silicon diode (SiD, > 9 keV).  Frame (b) on the TGPH image was taken at the 

maximum of the signals (~ 100 ns) and indicates a very uniform and column-like 

structure at implosion, which again, can be good conditions for lasing. 

 

 

Figure 7.3.  a) Structure of a split double planar wire array (perpendicular view) on the 

1.7 MA Zebra generator. b) A reference shadowgraphy picture before the experiment 

(perpendicular view). c) Shadowgraphy taken approximately 50 ns into the shot after the 

current rise.  The red dotted lines indicate where the wires originally began.  An early and 

relatively uniform column has formed. 

 



148 
 

 

Figure 7.4.  Signals and time-gated pinhole images from a Mo split double planar wire 

array with 3.0 mm interplanar gap on the 1.7 MA Zebra generator. The pinhole timings 

are shown with gray boxes and are listed “a-f” and are filtered at > 1.0 keV (bottom) and 

> 3.0 keV (top). 

 

The new SDPWA load was also carried out with a 6.0 mm interplanar gap to see how 

the gap changes the dynamics of the plasma flow early in the implosion.  This also 

allowed for excellent diagnostic access in between the planes, so two experiments were 

performed, one in which the laser probe had a perpendicular view as before, and the other 

in which the laser probe had a parallel view between the planes.  The results of these 

experiments are illustrated in Figure 7.5.  These experiments were carried out with the 

same Mo wires as before. Figure 7.5(a) shows the development of a column-like structure 

50 ns from the current rise, similar to the results with a 3.0 mm interplanar gap.  The 

structure appears to be forming from the anode traveling down to the cathode in a zipper-

like manner.  Figure 7.5(b) shows the evolution of this structure 6 ns later.  The structure 

has completed its formation from anode to cathode and appears to be a well-structured 
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and uniform column, perhaps again a pre-curser formation.  Figure 7.5(c) shows the 

development of this structure from a parallel view, looking in between the planes, at 

approximately 52 ns.  Again, the development forms from the anode and travels to the 

anode, suggesting this behavior is reproducible. Figure 7.5(d) shows the progression of 

the structure 6 ns later and again a relatively uniform column has developed. 

 

 
Figure 7.5.  a) Shadowgraphy from a split double planar wire array 50 ns into the shot 

after current rise, seen from a perpendicular view. b) Shadowgraphy from same shot as in 

a) 6 ns later. c) Shadowgraphy from a split double planar wire array 52 ns into the shot 

after current rise, seen from a parallel view, in between the planes. d) Shadowgraphy 

from same shot as in c) 6 ns later.  The red dotted lines indicated were the wires 

originally began. 



150 
 

 
Figure 7.6.  Signals and time-gated pinhole images from a Mo split double planar wire 

array with 6.0 mm interplanar gap on the 1.7 MA Zebra generator. The pinhole timings 

are shown with gray boxes and are listed “a-f” and are filtered at > 1.0 keV (bottom) and 

> 3.0 keV (top). 

 

Figure 7.6 shows signals and TGPH images from the SDPWA with a 6.0 mm 

interplanar gap.  The increased gap increased the implosion time from approximately 100 

ns with a 3.0 mm gap to approximately 117 ns 6.0 mm gap.  Frame (e) on the TGPH 

image was taken at maximum of the signals and indicates again a very uniform and 

column-like structure at implosion, similar to the experiments with a 3.0 mm gap. 

The above data from the recent SDPWA experiments yield promising results of 

creating and controlling a plasma flow that could be ideal conditions for lasing.  A few 

questions remain, namely the formation of the early column-like structure, which could 

be a precursor formation, and whether or not this early formation could produce plasma 

conditions that that reach the necessary Te and ne for high gains. Precursor plasmas from 

cylindrical wire arrays (CWAs) have been a continual area of study using the Zebra 
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generator.  These studies detailed the structure of the precursor column and approximated 

the precursor plasma conditions.  Mid-atomic number materials (Ni, Cu, and Zn) were 

used to study precursor plasmas.  Cu CWA precursor plasmas were shown to radiate at 

electron temperatures as high as 450 eV (Coverdale et al. 2009) using a non-LTE kinetic 

model. 

The next step and future plans for the SDPWAs is to optimize load design through 

both WADM simulations and further experiments.  Once the design, optimization, and 

implementation of the loads are finished, the experiments will be ready to move to the 

task of measuring the potential lasing lines.  For Ne-like Mo, the lasing lines of interest 

radiate between 100 – 200 Å, so the use of calibrated EUV spectrometers will be 

necessary. To give the best chance of measuring lasing, two spectrometers will be 

utilized; one which will sit above the load for an axial view, and another will sit radially 

to view in between the planes.  Figure 7.7 illustrates this idea.  An important aspect of the 

load hardware for SDPWAs is the hole in the center of the anode and cathode plates that 

offer excellent axial diagnostic access.  A picture of the hole is illustrated in figure 7.7. 

If these experiments prove successful, and lasing lines of Ne-like Mo are measured, 

the next logical step would be to move onto Ag SDPWAs for experiments. 
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Figure 7.7.  Illustrations of EUV Spectrometer locations for the split double planar wire 

array experiments.  The picture in the upper right shows the physical anode plate 

hardware with a hole in the middle for diagnostic access for an EUV spectrometer 

measure potential lasing lines radiating axially. 

 

7.4  Conclusions 

The potential for lasing on the Zebra generator using Ag wires was explored.  A total 

of fourteen transitions were included.  The advantages and disadvantages of using z-

pinch produced plasma sources for lasing were considered. It was shown that the Zebra 

generator may provide sufficient plasma conditions that yield gains as high as 6.6 cm
-1

.  

A broad range of plasma conditions were also used to calculate gain and it was shown 

that for gains > 1.0 cm
-1

 plasma conditions need to be in the range of 1200 eV   Te   

3000 eV and 10
21

 cm
-3

   ne   10
23

 cm
-3

. Further experimental research is required to 

verify these results.  It may be advantageous to point spectrometers in the proper spectral 



153 
 

range on-axis to look for these possible amplified soft x-ray lines.  An on-axis view 

would provide 1-2 cm of plasma rather than a few mm of plasma looking in the radial 

view.  A DPWA may be a good candidate for measuring gain, as it has been shown in 

this work to produce more uniform and stable pinches.  Future work will focus on 

designing experiments and diagnostics to measure these potential gains, as well as 

exploring other properties of Ag plasmas that may further enhance overall efficiency, 

which is of importance for the possibility of observing significant lasing gain on a 

university scale z-pinch machine. 

A new load, the split double planar wire array, was tested and analyzed for the first 

time.  The initial results show promise in forming relatively uniform precursors which 

could provide a much needed medium in which lasing can occur in Ne-like plasmas.  

Future plans and goals were discussed for later experiments to optimize load design and 

utilize EUV spectrometers to try and measure lasing gain.  

 

 

 

 

 

 

 

 

 



154 
 

Chapter 8  

Conclusions 

This dissertation is focused on expanding the knowledge of high energy density 

plasmas predominately generated from z-pinches using both theoretical and experimental 

tools.  In Chapter 2, the theoretical tools were discussed and comprise of various non-

LTE kinetic models including a new model for L-shell Ag, where dependencies were 

shown for electron temperature, electron density, and percentage of non-Maxwellian hot 

electrons. In addition, a new suite of codes from Prism have been implemented, including 

SPECT3D, which utilizes the atomic data from ATBASE to generate synthetic spectra to 

estimate non-LTE plasma conditions from many materials, and HELIOS-CR, which is a 

1-D radiation hydrodynamics code that was used to simulate a Ag single wire z-pinch.  A 

new experimental tool was designed, tested, and employed, the time-gated hard x-ray 

spectrometer, capable of attaining time resolution of spectra from 0.7 – 4.4 Å depending 

on various geometries and the crystal used (LiF or α-quartz).  These new tools were 

applied in a variety of methods throughout the dissertation. The brunt of the dissertation 

concentrated on experiments from complex uniform and mixed wire arrays, ranging from 

more traditional nested cylindrical wire arrays to novel single, double, and triple planar 

wire arrays, with the goal of understanding the implosion and radiative dynamics and the 

continued search for higher efficient radiators. 

With the above goals in mind, Chapter 3 looked into the results of uniform Mo and 

mixed with Al triple planar wire arrays performed Zebra with different interplanar gaps, 
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3.0 mm and 1.5 mm.  The results showed that reducing the interplanar gap from 3.0 mm 

to 1.5 mm increased the total radiated energy output from ~16 kJ to ~25 kJ for the 

uniform Mo loads, and increased this efficiency for all mixed Mo and Al loads 

considered.  For the mixed Mo and Al loads where Mo planes were on the outside and the 

Al plane was on the inside, L-shell Mo radiated from randomly generated bright spots 

while K-shell Al radiated optically thin lines and followed the Mo bright spot formations.  

For the opposite loads, where Al planes were on the outside and the Mo plane was on the 

inside, L-shell Mo again radiated from many bright spots while the most intense K-shell 

Al lines are optically thick and followed a column-like formation.  The increased opacity 

in K-shell Al is likely from the initial placement of the Al wires and the twice increased 

initial mass.  L-shell Mo spectra was modeled to radiate at electron temperatures between 

900 - 1200 eV, while K-shell Al and Mg spectra was modeled to have electron 

temperatures between 300 – 500 eV, while the electron densities were estimated to be 

between 10
19

 and 10
21

 cm
-3

.  Results from these experiments were presented at the 8
th

 

International Conference on Dense Z-Pinches and submitted as Proceedings. 

Chapter 4 discussed nested cylindrical wire arrays, in particular how the inner array 

radiates compared to how the outer array radiates.  To answer this question, mixed brass 

and Al wires were used by keeping the outer array uniform brass and the outer array 

uniform Al for one set of experiments and then switching the materials for the next set of 

experiments.  The results showed that the total radiated energy changed from ~15 kJ to 

~17.5 kJ when the Al wires went from outside to the inside.  The results also showed that 

the line intensities and opacity features changed dramatically, with higher intensities and 

opacities observed when the corresponding wires were placed on the outside compared to 
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when they were placed on the inside of the array.  The overall conclusion is that the outer 

array contributes more to the total radiation than the inner array, likely due to increased 

kinetic energy the outer array develops as opposed to the inner array.  Results from these 

experiments were presented at the Radiation from High Energy Density Plasmas 

International Conference in 2011 and published in the High Energy Density Physics 

journal (Weller et al. 2012a).  Similar experiments were carried out with Mo and Al 

nested cylindrical wire arrays on both the Zebra and Cobra generators, with Al tracer 

wires used.  The results showed similar trends as with the brass and Al NCWAs and 

produced plasmas with two different Te, as with the Mo and Al TPWAs.  An interesting 

result on the Cobra generator indicated that the Al tracer wires imploded before the Mo 

wires regardless of being placed in the inner or outer array, which may explain the early 

pre-pulse shape on the PCD at > 0.2 keV.  These results of the Al tracer wires imploding 

before the Mo wires regardless of initial placement were reproduced with the WADM. 

Chapter 5 explored EUV spectroscopy of Cu from two sets of experiments, one on 

the SSPX spheromak and the other on the laser plasma facility “Sparky”.  The goal of 

studying EUV spectra from the SSPX spheromak experiments was to understand how 

impurities play a role in plasmas, such as sputtering of material from the walls of the 

chamber, or from various atmospheric contaminates, such as oxygen.  The chamber itself 

was made of Cu, so M-shell Cu proved to be a prominent impurity.  The results identified 

several Cu X – XIII transitions and modeled the M-shell Cu lines using Spect3D (Prism) 

giving results of Te = 35 eV at ne = 10
14

 cm
-3

, while oxygen impurity lines were modeled 

to be cooler at Te ~15 eV.  The “Sparky” results indicated a two-temperature plasma of Te 

= 25 and 90 eV, likely emitting from two locations, the cooler outer shell and the hotter 
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inner core.  The results from these investigations not only gave new insight on the SSPX 

spheromak impurities and the plasma generated from “Sparky”, but also provided an 

excellent opportunity to study more challenging EUV Cu spectra compared to x-ray Cu 

spectra.  The results were presented at the 19
th

 Topical Conference on High Temperature 

Plasma Diagnostics in 2012 and published in the Review of Scientific Instruments journal 

(Weller et al. 2012b). 

Chapter 6 focused on new results and applications of radiation from Ag high energy 

density plasmas. Planar wire arrays were chosen due to previous results of being very 

efficient radiators. The results showed that Ag planar wire arrays are some of the most 

efficient radiators on the Zebra generator at > 30 kJ.  A comparison of uniform Ag single 

planar wire arrays and standard and enhanced currents and a mixed Ag and Al double 

planar wire array at standard current was accomplished. The new time-gated hard x-ray 

spectrometer was also utilized and measured cold Lα and Lβ characteristic Ag lines for the 

first time, that likely correspond to electron beams.  To further understand the implosion 

characteristics of double planar wire arrays, the interplanar gap was increased to 6 mm 

for uniform Ag and mixed with Al.  Shadowgraphy and other x-ray diagnostics 

concluded that the individual planes in these proposed and performed experiments 

independently implode first, followed by a secondary implosion.  Again, time-gated hard 

x-ray spectra measured cold Lα and Lβ lines showing correlation to the SiD at > 9 keV.  

For the mixed Ag and Al loads, the Al planes were shown to implode first, though both 

Ag and Al planes indicated independent implosions first before the main implosion. 

In Chapter 7, as an extension and application to the Ag planar wire arrays, a 

theoretical exercise was performed utilizing the new non-LTE kinetic model of Ag to 
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calculate population levels to estimate lasing gains in 3p → 3s Ne-like transitions and the 

results showed that the Zebra generator may be providing suitable conditions for gains as 

high as 6 cm
-1

.  Results from these calculations and from the Ag single planar and mixed 

with Al double planar wire array were presented at the Radiation from High Energy 

Density Plasmas International Conference in 2013 and published in the Physics of 

Plasmas journal (Weller et al. 2014).  As a first step in attaining lasing in wire array z-

pinches the experimental results of a new load type, the split double planar wire array 

was shown as a potential load candidate to attain proper uniform plasma conditions as a 

medium for lasing to occur.  Future plans will set out to optimize this load design and use 

EUV spectrometers both axially and radially to try and measure these lasing lines. 

To conclude, the results of over six years of research has yielded participation in over 

15 experimental campaigns on the Zebra generator, where I was responsible for all 

optical systems, and also played a key role in set up and take down of experimental 

diagnostics, including deep knowledge of the Load Current Multiplier and designing and 

fielding the new hard x-ray spectrometer.  During these experimental campaigns, over 30 

experiments were proposed and accomplished.  The results were showcased in over 20 

conferences scattered throughout the U.S. and abroad, which include 11 posters and 10 

oral talks.  I was the co-author in over 20 peer reviewed publications, 3 of which I was 

the first author, in addition to over 15 conference proceedings.  I also helped in write 

several proposals for grants and was the mentor of three undergraduate students in 

writing their own senior thesis projects.  I began as an experimentalist and branched out 

into the world of theoretical physics and the resulting work showcases a blend of both 

worlds. 
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Appendix 

Appendix A1: Symbols 

 

Te = electron temperature 

ne = electron density 

Ti = ion temperature 

ni = ion density 

XZ,η = ion charge state 

ε,E = energy 

σ(ε) = cross section 

ℱ(𝜀) = electron distribution 

v = velocity 

t = time 

<Z> = average charge state 

𝛼 = fraction of hot electrons 

n = energy level 

Ar = radiative decay rate 

f = oscillator strength 

gi = statistical weight 

λ = wavelength 

2d = atomic spacing 

Ʌ = wavelength range 

R = spectral resolution 

I = electric current 

Gn = ablation rate coefficient 

WTh = thermalized kinetic energy 

ϕ = aspect ratio 

 



160 
 

Appendix A2: Constants 

 

e = electron charge = 1.602176487×10
−19   

me = mass of electron = 9.10938215×10
−31

    = 0.510999    / 2 

c = speed of light in vacuum = 299792458  /  

h = Planck’s constant = 4.13566733×10
−15

   ∙  

ħ = h/2π = 6.58211899×10
−16   ∙  

π ≈ 3.14159 

Ry = Rydberg’s constant = e
4
me/2ħ

2
 = 13.605 692 eV 

 

Appendix B: Acronyms and Abbreviations 

 

ICF = inertial confinement fusion 

CWA = cylindrical wire array 

NCWA = nested cylindrical wire array 

PWA = planar wire array 

SPWA = single planar wire array 

DPWA = double planar wire array 

TPWA = triple planar wire array 

SDPWA = split double planar wire array 

LTE = local thermodynamic equilibrium 

UNR = University of Nevada, Reno 

WADM = wire ablation dynamics model 

WDM = wire dynamics model 

SSPX = Sustained Spheromak Physics Experiment 

EUV = extreme ultraviolet 

TGSP = time-gated spectrometer 

TISP = time-integrated spectrometer 

TGHXR = time-gated hard x-ray spectrometer 

TGPH = time-gated pinhole 
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TIPH = time-integrated pinhole 

FAC = Flexible Atomic Code 

SCRAM = Spectroscopic Collisional-Radiative Atomic Model 

HULLAC = Hebrew University Lawrence Livermore Atomic Code 

RMBPT = relativistic many-body perturbation theory 

PROPACEOS = PRism OPACity and Equation Of State 

NTF = Nevada Terawatt Facility 

LCM = Load Current Multiplier 

ICCD = intensified charge‐coupled device 

KAP = potassium hydrogen phthalate 

MCP = microchannel plate 

LLNL = Lawrence Livermore National Laboratory 

SFFS = Silver Flat Field Spectrometer 

FWHM = full width at half maximum 

XRD = x-ray diode 

PCD = photoconducting diode 
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