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Abstract

Controllable devices such as Magneto-Rheological Fluid Dampers, Electro-Rheological

Dampers, and controllable friction devices have been studied extensively with lim-

ited implementation in real structures. Such devices have shown great potential in

reducing seismic demands, either as smart base isolation systems, or as smart devices

for multistory structures. Although variable stiffness devices can be used for seismic

control of structures, the vast majority of research effort has been given to the control

of damping.

The primary focus of this dissertation is to evaluate the seismic control of structures

using semi-active and passive variable stiffness characteristics. Smart base isolation

systems employing variable stiffness devices have been studied, and two semi-active

control strategies are proposed. The control algorithms were designed to reduce the

superstructure and base accelerations of seismically isolated structures subject to

near-fault and far-field ground motions. Computational simulations of the proposed

control algorithms on the benchmark structure have shown that excessive base dis-

placements associated with the near-fault ground motions may be better mitigated

with the use of variable stiffness devices. However, the device properties must be

controllable to produce a wide range of stiffness changes for an effective control of the

base displacements. The potential of controllable stiffness devices in limiting the base

displacement due to near-fault excitation without compromising the performance of

conventionally isolated structures, is illustrated.

The application of passive variable stiffness devices for seismic response mitigation of
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multistory structures is also investigated. A stiffening bracing system (SBS) is pro-

posed to replace the conventional bracing systems of braced frames. An optimization

process for the SBS parameters has been developed. The main objective of the de-

sign process is to maintain a uniform inter-story drift angle over the building’s height,

which in turn would evenly distribute the seismic demand over the building. This

behavior is particularly essential so that any possible damage is not concentrated in

a single story. Furthermore, the proposed design ensures that additional damping

devices distributed over the building’s height work efficiently with their maximum

design capacity, leading to a cost efficient design. An integrated and comprehensive

design procedure that can be readily adopted by the current seismic design codes is

proposed. An equivalent lateral force distribution is developed that shows a good

agreement with the response history analyses in terms of seismic performance and

demand prediction. This lateral force pattern explicitly accounts for the higher mode

effect, the dynamic characteristics of the structure, the supplemental damping, and

the site specific seismic hazard. Therefore, the proposed design procedure is consid-

ered as a standalone method for the design of SBS equipped buildings.
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Chapter 1

Introduction

Seismic mitigation is not only essential for buildings and bridges to ensure life safety,

but also to ensure functionality. Critical facilities should remain functional during

and after severe seismic events. Seismic mitigation can be achieved by several differ-

ent methods and applications. These include, but are not limited to, permitting parts

of the structure to undergo inelastic deformation that allows for energy dissipation

through hysteretic behavior of the material. Yielding structures are usually designed

for a distinct performance level that should at least ensure life safety, but may suffer

significant yielding and permanent deformations that could be costly to repair. In

critical facilities, where immediate occupancy of the structure and the functionality

of its sensitive contents are important, this may not be a desirable solution. As an

alternative to the yielding structures, supplemental energy dissipation devices are

used to provide a desired energy dissipation mechanism so that the damage to the

main structural elements is minimized or eliminated (Soong and Spencer Jr., 2002;

Constantinou et al., 1998). Another innovative seismic mitigation procedure is seis-

mic isolation (Buckle and Mayes, 1990; Naeim and Kelly, 1999; Komodromos, 2000).

These devices are of special interest for their ability to decouple the isolated structure

from the ground shaking. This behavior is achieved through the relatively flexible

bearings that are placed mostly between the superstructure and the foundation, so
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that large amount of seismic energy is dissipated through the deformation and damp-

ing properties of the isolators. However, conventional isolation systems alone under

the effect of near-fault ground motions may exhibit large displacements at the isola-

tion level that can lead to structural instability. Despite the fact that supplemental

energy dissipation systems placed in parallel to the seismic isolation systems may

reduce the base displacement, the added damping may result in increased seismic

demand on the superstructure (Kelly, 1999; Jangid and Kelly, 2001; Mazza and Vul-

cano, 2004; Providakis, 2008). To overcome this problem, smart base isolation systems

have been introduced during the last few decades. With the capability of regulating

the mechanical properties (stiffness and/or damping) of the controllable devices, the

seismic isolation systems incorporating the so-called smart base isolation systems are

more likely to overcome the unfavorable large base displacement under the effect of

near-fault excitation, while retaining the merits of the conventional seismic isolation

systems (Ramallo et al., 2002; Narasimhan and Nagarajaiah, 2006). There are sev-

eral controllable devices that have been used and investigated for this purpose, such

as the Magneto-Rheological Fluid (MRF) based devices (Carlson and Spencer Jr.,

1996; Jolly et al., 1998; Yang et al., 2002), Magneto-Rheological Elastomer (MRE)

devices (Davis, 1999; Jung et al., 2009; Usman et al., 2009; Li et al., 2013a,b; Yang

et al., 2013; Eem et al., 2013; Behrooz et al., 2014a,b), and variable stiffness devices

(Nagarajaiah et al., 2006; Usman et al., 2009). Although variable stiffness devices are

available, the vast majority of research effort has been given to controllable damping

devices (Johnson et al., 1998; Sadek and Mohraz, 1998; Symans et al., 2000; Jansen

and Dyke, 2000; Bani-Hani and Sheban, 2006).

To avoid yielding of the structural elements (beams, columns), supplemental

damping devices can be used within the structure itself as well. These devices pro-

vide mechanism to dissipate seismic energy through the relative velocity between the
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floors that they are attached to, as in the case of velocity dependent devices (viscous

dampers), or through the relative displacement as in the cases of displacement de-

pendent devices such as Added Damping and Stiffness (ADAS) devices (Tsai et al.,

1993; Hanson et al., 1992). However, for a better performance of structures equipped

with such devices, uniform distribution of the inter-story drift, and hence the inter-

story velocity, becomes an important factor. For this reason, structures with poorly

distributed strength and stiffness may not gain the best benefits from the supplemen-

tal energy dissipation devices distributed in the building (Mohammadi et al., 2004).

Therefore, structural design methods that would lead to a proper distribution of stiff-

ness throughout the building’s height to achieve uniform inter-story drift result in

a better performance and more cost effective structures. This is especially true for

structures equipped with supplemental energy dissipation devices.

1.1 Research Objectives

Conventional seismic isolation systems, as described in the previous section, may not

be efficient for near-fault sites. With the technological advances in manufacturing

smart controllable devices, it has been proved that smart base isolation systems are

more likely to be implementable. Although variable stiffness devices and variable

stiffness isolation bearings may be suitable for near-fault seismic isolation, the vast

majority of studies have focused on controllable damping devices. Therefore, it is

essential to investigate the efficiency of variable stiffness strategies for structures that

may be subjected to far-field and near-fault motions. Near-fault motions may result in

a permanent deformation in the isolation system. This can be mitigated by a semi-

active control law that minimizes the residual displacement of smart base isolated

systems. The second objective is to find a proper stiffness distribution method that

would result in more favorable uniform inter-story drift for multistory structures. This
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is particularly beneficial for avoiding concentrated damage in one floor (soft story

mechanism). In addition, uniform inter-story drift throughout the building’s height

minimizes bending moments in the columns. While adhering to an acceptable level

of inter-story drift also reduces the second order effect, such as the P −∆. Another

important aspect of the uniform inter-story drift is that the structure gets the most

benefits from passive energy dissipation devices (if any). In other words, structures

equipped with energy dissipation devices together with proper stiffness distribution,

allow all the energy dissipation devices to work with their highest efficiency. To

achieve this objective, the variable stiffness behavior is again employed as a stiffening

bracing system (SBS) for multistory structures. A design methodology for the stiffness

distribution throughout the building’s height is developed for a specified performance

objective.

1.2 Dissertation Overview

This dissertation focuses on the seismic control of structures using semi-active and

passive variable stiffness characteristics. Chapter 2 covers some of the relevant re-

search studies on base isolation systems, smart base isolation systems, and semi-active

devices, algorithms, and their implementation. In addition, the chapter covers stud-

ies related to the optimal stiffness and/or damping distribution, and the equivalent

lateral force procedure.

In Chapter 3, a Magneto-Rheological Elastomer (MRE) base isolation device is

considered. Two semi-active control algorithms are developed to control such a device

in real-time. Both far-field and near-fault ground motions are applied to a benchmark

structure equipped and controlled with the proposed system.

Chapter 4 proposes a new stiffening bracing system (SBS) for multistory struc-

tures. The proposed bracing system is a passive system where the measurement of the
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structural response quantities is not required for the control decision. Instead, perfor-

mance based design is developed and a procedure for the optimal stiffness distribution

and controlling parameters is illustrated. Then the adequacy of the proposed SBS

in seismic control of structures is demonstrated by considering benchmark structures

with different heights.

Chapters 5 investigates the efficiency of the proposed system for seismic control

of tall buildings. In Chapter 6, an integrated design procedure is proposed for the

design of structures incorporating the SBS. The performance of structures designed

according to the proposed procedure is investigated under a wide variety of earth-

quake excitations, and for a number of different height structures. The dissertation

conclusion and suggested future work is given in Chapter 7.

1.3 Contribution of this Dissertation

The contribution to the state-of-the-art of this dissertation can be summarized in two

parts. In the first part, two semi-active control algorithms have been developed for

variable stiffness smart base isolation system, employing a variable stiffness device

such as Magneto-Rheological Elastomer (MRE) isolator. The two control algorithms

have shown significant improvement to the structural performance of seismically iso-

lated structures compared to the conventional Lead Rubber Bearings (LRB) isolation

system. However, the minimal acceleration control (MAC) algorithm has shown ten-

dency to leave residual displacement in the isolation level. This shortcoming has

been resolved with the proposed acceleration gain control (AGC), which resulted in

desirable response under both far-field and near-fault ground motions. In addition,

the AGC has shown that the unfavorable large base displacement associated with

near-fault excitations can be significantly reduced without altering the superstruc-

ture response achieved by conventional base isolation strategies.



6

In the second part, a new stiffening bracing system (SBS) is proposed to replace

the conventional bracing systems of multistory structures. The parameters of the

proposed system are optimized through a simple optimization process that achieves

the target performance of uniform inter-story drift distribution over the building’s

height. The performance of structures incorporating the proposed system is investi-

gated through nonlinear time history analyses on benchmark structures with different

heights under the effect of a wide variety of far-field and near-fault ground motions.

Subsequently, an integrated design procedure has been developed for structures em-

ploying the proposed SBS. The design process has shown that the predicted equivalent

lateral force distribution as well as the overall seismic performance of the structure are

in good agreement to that obtained through the nonlinear time history analyses. This

fact has been proven for a wide range of building heights under the effect of different

levels of recorded seismic events, which implies that the proposed design methodology

is robust and could be easily implemented in the seismic design provisions.
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Chapter 2

Literature Review

2.1 Seismic Isolation Systems

Seismic isolation is one of the most effective mitigation strategies for structural and

nonstructural components (Buckle and Mayes, 1990; Naeim and Kelly, 1999; Komod-

romos, 2000). In general, seismic isolation systems depend on shifting the fundamen-

tal period of the isolated structure away from the range of predominant excitation

periods, which results in reduced acceleration demand on the isolated structure. As a

result of the lengthened period, the base displacement of the isolated system becomes

larger, and in some cases may lead to loss of stability of the isolation system. For this

reason, many of the isolation systems provide some damping capacity to overcome

the unacceptably large isolation deformations (Buckle, 1985). This damping capacity

may be provided by the isolator directly or by means of supplemental damping de-

vices. However, increasing the damping capacity of the isolated structures by means

of supplementary dampers leads to an increase in the superstructure’s accelerations

and inter-story drifts (Kelly, 1999).

Researchers put in a great effort in the area of seismic isolation of relatively light-

weight structural and nonstructural components. For instance, an experimental study

carried out by Cui et al. (2010) to investigate the behavior of bidirectional spring unit
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used in isolated floor systems. The test results showed that the spring behavior was

stable and not sensitive to the motion velocity. An unconventional hysteretic behavior

of the spring unit was observed. A physical model was then developed to simulate

the experimentally observed behavior. Tsai (2012) developed an experimental and

theoretical study on advanced isolation systems for protecting light-weight structures

from earthquake damage. The systems considered consist of rolling and sliding type

bearings. Two types of isolation systems were investigated; the ball pendulum and

the directional-optimized friction pendulum. The ball pendulum system is composed

of sliding ball enveloped by a natural rubber to improve the damping capacity of

the isolator by the deformation of the coating rubber. The directional-optimized

friction pendulum system consists of a concave trench on one plate and a spherically

concave surface on the other plate of the bearing. The two concave surfaces can be

of different radii, and an articulated slider is located in between them. Both systems

were experimentally evaluated with light-weight equipment and they outperformed

the fixed base unit.

Through the last few decades, investigation and implementation of the smart ma-

terials in the field of civil engineering and structures, particularly in seismic isolation

strategies have been increasing. Among these materials is the Shape Memory Al-

loy (SMA), which is capable of recovering large strains through a heating process

(Otsuka and Wayman, 1998). The most interesting superelastic property of this ma-

terial improves the re-centering and damping capacity when used in buildings or other

structural systems. Numerous studies have investigated seismic isolation systems uti-

lizing SMAs. For instance, Jalali et al. (2010) developed a smart restorable base

isolation system employing flat sliding bearing and superelastic shape memory alloy

wires. The role of the SMA was to provide horizontal stiffness and restoring capabil-

ity. Residual displacement of the proposed isolator can be restored by temperature
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treatment. Dolce and Marnetto (2000) proposed a seismic isolation device composed

of different groups of SMAs placed in a configuration such that energy dissipation as

well as re-centering effects could be achieved. Their analysis showed that the struc-

ture equipped with the SMA bearing outperformed the one isolated with conventional

rubber bearing. Wilde et al. (2000) proposed a laminated rubber bearing combined

with SMA bars as a base isolation system for elevated bridges. The SMA bars plays

a role in providing additional damping to the system, as well as displacement control.

2.2 Smart Base Isolation and Structural Control

In many circumstances, conventional base isolation systems, such as rubber bearings

and friction pendulum, may not be the best alternative for seismic mitigation of

structures and non-structural components (equipment). This issue arises in case of

near-fault ground motions, which are dominated by long velocity pulses. For the case

of long period structures, e.g. base isolated, the velocity pulse tends to develop large

displacements (Hall et al., 1995). The pulse displacement is usually associated to the

fault-normal direction, where high spectral acceleration components are observed in

the long period range (Jangid and Kelly, 2001). This long period spectral acceleration

components tend to resonate with conventionally isolated structures, leading to an

excessive base displacement that may destabilize the structure. On the other hand,

base isolation systems that utilize rubber-based technologies present limitations in

case of light-weight equipment with relatively stiff and highly damped systems, and

hence hinder of significant isolation.

Hybrid systems, where the conventional isolation system is combined with active

controllable device (Kelly et al., 1987; Inaudi and Kelly, 1993; Nagarajaiah et al.,

1993), may be used to overcome the shortcomings of the conventional base isolation

systems. Barbat et al. (1995) designed a feedback control law to determine the
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required active forces to be applied at the base level of seismically isolated structures.

The goal of this hybrid system is to reduce the large base displacements encountered

with the purely passive base isolated system. The drawback of this method is the

slight increase in the superstructure’s inter-story drifts and absolute accelerations.

However, with advances in smart materials, smart base isolation systems employing

stiffness and/or damping controllable devices are becoming more attractive for seismic

mitigation purposes. Devices such as Magneto-Rheological Damper (MR Damper)

and Magneto-Rheological Elastomers (MRE) have been recently investigated and

implemented in seismic isolation systems. The mechanical properties of these devices

can be regulated in real-time to achieve more favorable performance of the isolated

structure.

The Electro-Rheological Fluid (ERF) that was discovered by Willis Winslow in

1947, has the ability of changing the viscosity from liquid to semi-solid state in-

stantly upon the application of an electric field; this is due to its composition of

non-conducting tiny particles of the size of a few microns suspended in an electrically

insulating fluid (Winslow, 1947, 1949). Because of the controllable viscosity, the ERF

is being used in manufacturing controllable damping devices and vibration isolators

(Morishita and Ura, 1993).

Magneto-Rheological Fluid (MRF) is quite similar to the ERF but the viscosity

of the fluid is changed by the application of a magnetic field, as it is composed of

tiny magnetic particles suspended in a carrier fluid. Upon the application of the

magnetic field, the magnetic particles align consistent with the magnetic field flux.

This alignment results in restricting the fluid movement and hence increasing the

apparent viscosity of the fluid. This material was discovered by Jacob Rabinow in

1948 (Jolly et al., 1998). The viscosity of the MRFs is found to be linearly pro-

portional to the applied magnetic field intensity (Roszkowski et al., 2008). Due to
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the high load carrying capacity of the MRFs, they are considered more versatile in

construction of controllable dampers than the ERFs, especially for civil structures,

where high load capacity is often favorable. The controllability of the MRFs and

the Magneto-Rheological Elastomers (MREs) encouraged the researchers to develop

smart controllable devices, particularly to help protecting structures and nonstruc-

tural components from seismic hazard.

In the area of seismic isolation, Makris (1997) presented a comprehensive ana-

lytical study to show that Electro-Rheological Dampers (ER-Damper) can be used

with base isolated structures to provide rigidity to the flexible base isolated structures

subjected to near-fault ground motions. This rigidity, which is introduced through

friction-type forces, reduces the accelerations. The friction mechanism, however, leads

to permanent displacements. Therefore, it was proposed to use controllable ER-

Dampers to eliminate the residual displacement by removing the friction-type force

at the end of the pulse excitation. Symans et al. (2000) analytically and experimen-

tally investigated an adaptive seismic isolation system composed of sliding bearings

and a controllable damper. The damping force of the controllable damper is adjusted

in real-time based on a sliding mode semi-active control algorithm. It was shown

that the adaptive base isolation system reduces the response of substructure and

superstructure for a variety of earthquake characteristics. Madden et al. (2003) ana-

lytically studied a smart base isolation system with an adaptive fluid damper. It was

found that the near-fault ground motions result in large displacements in base isolated

structures if no supplementary damping is incorporated. However, with the use of an

adaptive fluid damper, the damping capacity could be adjusted in real-time so that

base displacement is controlled and the superstructure accelerations are minimized. Li

and Ou (2006) carried out a design approach for semi-active control of MR-Dampers.

They showed that the semi-active control forces generate most of the required control
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forces of an active control. Furthermore, they concluded that passive systems can be

designed to perform like actively controlled systems. Usman et al. (2009) proposed

and evaluated a controllable stiffness Magneto-Rheological Elastomer (MRE) base

isolation system. The numerical simulation carried out in their work showed that the

controlled MREs outperformed conventional isolation systems.

Implementation of active and semi-active control strategies requires structural re-

sponse measurements. The acceleration measurement is considered more reliable and

inexpensive compared to the measurement of displacements or velocities. Dyke et al.

(1994, 1996a) addressed the need of acceleration feedback control strategies to re-

place the full-state based control algorithms. The H2/LQG control design strategy

was used to develop different control algorithms with different performance objec-

tives for a three-story active tendon experiment. In addition, the interaction between

the actuator dynamics and the controlled structure was taken into account. The

experimental results showed that controllers based on acceleration feedback are ef-

fective and robust. Further extension of the acceleration feedback control strategy

was carried out experimentally on semi-actively controlled structure by Dyke et al.

(1996b). The MR-Damper is implemented in a three-story model building for uniax-

ial shake table test. Clipped-optimal control was proposed by Dyke et al. (1996c) and

employed for the control design. This approach depends on designing a linear opti-

mal controller that determines the desired control force based on structural response

and force measurements. The MR-Damper is then provided with the maximum or

minimum voltage to provide the desired control force as closely as possible. The ex-

perimental study proved the efficacy of the clipped-optimal control strategy based on

acceleration feedback in semi-actively controlled structures with an MR damper. The

H∞ control was employed by Jabbari et al. (1995) to control the floor accelerations

as well as the inter-story drifts. In addition, the capability of using the absolute ac-
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celeration measurements as the output feedback was addressed. This control relies on

weighting desired floor accelerations or inter-story drifts that need to be minimized.

A numerical simulation on six-story building showed the effectiveness of the presented

control method. In addition, it was shown that the control algorithm can give almost

the same effect as full state feedback control. Schmitendorf et al. (1994) showed the

robustness of the control method and its practical implementation on full-scale struc-

tures. The study showed that the control can rely on a limited number of observations

and yet recover the full state feedback control. Additionally, the actuator dynamics

was incorporated into the control method to account for the time-delay that may be

associated with the servo-hydraulic to develop the desired force, which for large scale

actuators may lead to structural instability.

Yoshioka et al. (2002) conducted an experimental study to test the efficacy of smart

base isolation system employing MR Damper. It is well known that conventional

isolation systems are designed for a particular seismic hazard. Smart dampers can

widen the range of the seismic hazard under which the isolated structure behaves

favorably. In their study, linear behavior is considered to take place for both the

structure and the isolation bearings. The time lag between the control command and

the development of the damper force was taken into account by considering a first

order differential equation between the controllable voltage and a parameter α, which

is involved in calculating the MR damper force. The clipped optimal control proposed

by Dyke et al. (1996c) employing the H2/LQG strategy was used to regulate the

damping force of the MR damper. The Kalman filter was used to estimate the state

variables and hence the optimal damper force. A significant acceleration reduction

for both structure and base was observed.

The MR damper was also implemented by Sahasrabudhe and Nagarajaiah (2005b)

in an experimental study on sliding base isolated bridge. A Lyapunov control algo-
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rithm was used to control the MR damper. It was shown that the MR damper

can successfully reduce the bearing displacements of the isolated bridges subjected

to near-fault ground motions, compared to the passive low and high damping cases,

without increasing the forces at the isolation level.

Semi-active friction dampers have two phases during their motion; the sticking

phase and the slipping phase. The sticking phase results when the relative velocity

across the damper is zero or when the driving force is less than the frictional resistance

of the damper. The slipping phase takes place when there is a relative velocity

across the damper and the two plates are in motion relative to each other. The

slipping phase however, is the one responsible for the energy dissipation, while the

sticking phase is responsible for possible acceleration spikes. Therefore, for a better

performance, it is desirable to maintain the semi-active damping device in the slipping

phase as much as possible. To achieve this, He et al. (2003) introduced a linear

boundary layer semi-active friction (LBLSAF) controller, which varies the controllable

friction force linearly around the domain of zero relative velocity. The simulation

results for five-story smart isolated building indicated that the proposed algorithm

successfully eliminates the acceleration spikes and gives a smooth hysteresis. However,

under the effect of near-fault ground motions, the semi-active friction device with the

proposed control law fails to limit the base displacement and must be accompanied

by a passive viscous damper. It should be noted that increasing the friction capacity

of the semi-active friction damper may lead to unfavorable behavior during less severe

earthquakes. Consistent with this observation, Yang and Agrawal (2002) showed that

the conventional passive seismic isolation strategies alone are not suitable for near-

fault earthquakes with long period, high velocity pulse. The study suggests different

hybrid systems in which the passive bi-linear seismic isolation systems are combined

with passive or semi-active energy dissipation devices, such as the semi-active friction
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damper, to limit the deformation of the isolation system to an acceptable safe range.

Control theory can be used to design passive devices to replace the active or semi-

active control devices used for seismic mitigation of structures and equipment. In

most cases when the passive device is designed to mimic the behavior of the active or

semi-active device, the performance of the passively controlled system may be similar

to the actively or semi-actively controlled one.

Agrawal and Yang (1999) proposed a methodology for the design of passive viscous

damper devices based on the constrained static output linear quadratic regulator

(LQR), where the control force vector can be expressed by amplifying the output

state vector Y(t) by the output feedback gain Gy. Note that the output vector here

includes the relative displacements and relative velocities at the damper locations.

By defining the output feedback gain, the damper parameters can be evaluated by

Gy = [Kd , Cd] (2.1)

where Kd and Cd are diagonal matrices with the ith diagonal elements correspond

to the desired equivalent stiffness and damping coefficient for the ith damper, re-

spectively. However, the structure of the static output LQR gain is not the same as

assumed for the gain matrix given by Equation 2.1. An iterative optimization process

based on the constrained static LQR method takes place to converge to the desired

output feedback gain matrix. This optimization process involves extensive and time

consuming iterative solutions of highly nonlinear equations. Thus, another approach

based on suboptimal LQR method is used. In this method, the full state feedback

system is derived first, then the desired damper matrix Gy is designed to minimize

the error between the full state feedback system and the corresponding system with

the assumed properties.

Li et al. (2008) found that the active and semi-active control of cables in a cable-
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stayed bridge result in a negative stiffness behavior for the relationship between the

control force and the displacement. The characteristics and effect of this negative

stiffness was quantified by means of three indices. Then pseudo-viscoelastic (P-VE)

damper is suggested to replace the active device as it can provide similar force-

deformation characteristics. The force developed in the equivalent P-VE damper

can be expressed as

Fed = −kdv(xd)− cdv̇(xd) (2.2)

in which kd and cd are the stiffness and damping coefficient of the equivalent P-VE

damper, respectively, and v(xd) and v̇(xd) are the relative displacement and velocity

at point xd where the damper is attached. In order to find the appropriate parameters

(kd and cd) of the equivalent P-VE damper, the force developed by the damper must

be equal to the control force u(t) developed by employing the LQR method. The

numerical results showed that the P-VE damper designed according to the proposed

equivalent method, can achieve the behavior of the active and semi-active control

devices when the system vibrates in one dominant mode.

2.3 Variable Stiffness Devices

Various types of semi-active stiffness and damping devices have been recently studied

for seismic control of civil structures. The semi-active stiffness damper (Figure 2.1)

consists of a hydraulic damper equipped with a controllable valve on the bypass tube

connecting the two sides of the piston. The device is intended to be attached to

bracing members, so that when the valve is closed the hydraulic damper provide

stiffness to the system determined by the bulk modulus of the oil. When the valve is

open, it provides damping to the system without increase in the stiffness. Yang and

Agrawal (1999) presented two control laws for resetting the energy stored in the fluid
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Figure 2.1: Schematic diagram of the semi-active stiffness damper (Agrawal et al.,
2003)

by pulse opening and closing the valve. In addition, a switching control law for active

variable stiffness (AVS) was derived. The two resetting control logics were based on

the classical Lyapunov function consisting of the potential and kinetic energies of

the system. To ensure that the system energy reduces with time, the derivative of

the Lyapunov function must be a semi-definite real negative value. This led to the

following control logic

xsi(t) = xi(t)


if ẋi = 0

or ẋixi = 0

(2.3)

where xsi(t) is the piston position of the ith semi-active stiffness damper (SASD),

and xi(t) is the relative displacement across the damper rod. Note that xsi(t) = xi(t)

means that no force (stiffness) is participating in the system. The first control logic in

Equation 2.3 is consistent with the one derived by Thai et al. (1997). In the switching

control law, it is assumed that the SASD can be turned on and off at any time. The

control force vector of the SASD can be represented as

U(t) =
n∑
i=1

KdiviX(t) (2.4)

where Kdi is the effective stiffness of the ith damper, vi is the control parameter, and

X(t) is the relative displacement vector. The switching control logic is then given by
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vi(t) =


1 if ẋixi ≥ 0

0 otherwise

(2.5)

A numerical study on three and eight story structures showed that the control logics

are effective in reducing the inter-story drifts. However, the floor accelerations are

significantly increased in some cases. In addition, it was found that the performance of

the controlled structure depends on the control method and on the type of excitation.

The control law given by Equation 2.5 was also derived by Yang et al. (1996) based

on the sliding mode control theory with static output feedback (limited number of

sensors). The simulation results showed the robustness of the control method, and

also indicated that active variable stiffness (AVS) systems can significantly reduce the

inter-story drifts but may lead to increased floor accelerations.

Yang et al. (2000) developed control laws for resetting the SASD where two extra

terms were added to the classical Lyapunov function. One term was added to preserve

the properties of the energy function and the other term to account for the ground

acceleration. The simulation carried out on three and eight story buildings showed

that the resetting control law successfully reduces both inter-story drifts and floor

accelerations of the three story building. However, the accelerations of the lower

floors of the eight story building were significantly increased but were reduced for the

upper floors.

As a comparison of active, semi-active and passive control systems on a benchmark

cable-stayed bridge, Agrawal et al. (2003) tested the performance of the benchmark

bridge equipped with the semi-active stiffness damper and semi-active friction damper

compared to linear and nonlinear viscous dampers as well as to an actively controlled

bridge. Based on the simulation results, the overall performance of the passive systems

as well as the semi-active friction damper were found to be comparable to the actively
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controlled bridge. The resetting semi-active stiffness damper came last in terms of

the overall performance enhancement.

Kobori et al. (1993); Nasu et al. (2001) used active variable stiffness (AVS) device

for seismic control of structures. By placing the AVS device between the braces and

the floor beam, it can continuously provide a non-resonant state by instantaneously

altering the building’s stiffness. Only small power supply is needed to operate the

AVS. This system was installed in a trial building and it was shown through the struc-

tural monitoring and the analytical work that the AVS system provides substantial

reduction to the seismic demands. Response estimation, which relies on estimating

the structural response with different stiffness profiles, was employed for the selec-

tion of the appropriate stiffness in real-time. The response estimation method was

further improved by Nasu et al. (2001) to account for structural nonlinearities. After

more than 30 earthquakes hit the controlled building in ten years, the recorded and

analyzed data confirmed the efficiency and reliability of AVS control.

Jabbari and Bobrow (2002) studied the resetting approach for vibration suppres-

sion. The study showed that by providing high stiffness, reliability and safety are not

compromised and the resisting force is always at its maximum value. Furthermore,

the number of times energy is extracted is higher in the resetting technique than in

the variable stiffness technique, leading to faster and more effective vibration sup-

pression. Furthermore, the resetting approach maintains the natural frequency and

mode shapes of the system.

In order to overcome the limitations of conventional on/off type variable stiffness

systems, a new semi-active independently variable stiffness (SAIVS) device was de-

veloped by Nagarajaiah and Mate (1998). The SAIVS device (Figure 2.2) is capable

of changing the stiffness continuously and smoothly between minimum and maximum

stiffness. The device consists of four springs, where joints 3 and 4 slide on a guide rail.
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By changing the device angle, θ, with the electromechanical actuator connected to

joint 1, the device stiffness can be smoothly changed. It was demonstrated through

the experimental study that by switching the stiffness continuously and smoothly,

a non-resonant state can be achieved, leading to significant seismic response reduc-

tion. The effectiveness of the device was evaluated by Nagarajaiah and Sahasrabudhe

(2006) in reducing the seismic response of sliding base isolated buildings. The SAIVS

device was incorporated into the sliding isolation system of the building experimental

model. A moving average non-linear tangential stiffness control algorithm was devel-

oped to regulate the device stiffness in real-time. This algorithm however, is based

on making the spring force of the device a non-linear function of the relative base

displacement. The study showed the effectiveness of the SAIVS in reducing the base

displacement compared to the passive cases. These passive cases are corresponding

to the device being operated at its maximum or minimum stiffness. In addition to

the reduced base displacement, the base shear of the passive system with minimum

stiffness was not exceeded by the SAIVS device. Although near-fault ground motions

were considered in their study, the response enhancement was verified only for the

fault-parallel direction, and a better semi-active control algorithm is needed to reduce

the seismic response due to fault-normal direction.

Narasimhan and Nagarajaiah (2005) developed a short time Fourier transforma-

tion (STFT) to track the excitation properties in terms of energy spectrum and

frequency distribution to reduce the seismic response of base isolated buildings. The

energy of the excitation corresponding to the fundamental period of the isolated

structure is used to regulate the variable stiffness of the SAIVS. The suggested con-

trol algorithm was numerically investigated for near-fault ground motion effect on

a five story reinforced concrete building equipped with the SAIVS at the isolation

level. It was shown that the proposed algorithm successfully reduces the base dis-
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Figure 2.2: Analytical model of the SAIVS device (Narasimhan and Nagarajaiah,
2005)

placement and inter-story drifts without increasing the accelerations. Sahasrabudhe

and Nagarajaiah (2005a) implemented the semi-active independently variable stiffness

device in a experimental study on a sliding base isolated bridge for near-fault ground

motions. The moving average non-linear tangential stiffness control algorithm, dis-

cussed earlier, was used to control the stiffness of the SAIVS device. It was shown

that the proposed system is capable of reducing the bearing displacement compared

to the passively isolated cases, which implies that the SAIVS can improve the seismic

performance of sliding base isolated bridges.
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2.4 Stiffness and Equivalent Lateral Force Distri-

bution

For design purpose, it is essential to reliably determine the seismic demand on struc-

tural systems. One of the most common methods establishes equivalent lateral forces

that are assumed to apply statically for the design of members and for the prediction of

the structural performance under the effect of seismic loads. However, the equivalent

lateral force procedures adopted by most of the seismic design codes (International

Code Council, 2006; NEHRP, 2003) do not precisely take into account the nonlinear

behavior of structures. Instead, the elastic seismic demands are reduced to account

for the structural ductility, while the elastic structural deformations are magnified

for the same reason. This method does not lead to a reliable seismic performance

prediction, especially for structures experiencing high nonlinearity and those with

supplemental damping devices. Furthermore, the equivalent lateral force procedures

are mostly dependent on the first mode of vibration, but the effect of higher modes is

not explicitly considered. Researchers realize the need for more rigorous methods for

different types of structures. In this regard, Lee et al. (2004) proposed a new seismic

lateral force distribution for steel moment frames based on nonlinear dynamic anal-

yses. The seismic base shear was derived from a modified energy balance equation.

The proposed seismic base shear and lateral force distribution showed good agree-

ment with the nonlinear dynamic response analysis, and hence, it is more favorable

for the purpose of seismic design and seismic performance prediction of steel moment

frames. Chao et al. (2007); Chao and Goel (2005, 2008) investigated the adequacy of

the proposed lateral force distribution on a number of framed structures under a wide

variety of earthquake ground motions. It was shown that the proposed lateral force

pattern is more rational and gives a reliable prediction of inelastic seismic demands
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on different structures. It was also concluded that the structures designed according

to the proposed loading pattern experience maximum story shear that agrees well

with the expected values. In addition, they experience more uniform maximum inter-

story drifts compared to those design according to the code’s equivalent lateral force

procedure.

In an attempt to account for the effect of higher modes, Gupta and Kunnath

(2000) proposed an enhanced modal site-specific spectra-based pushover analysis.

The proposed procedure has shown capability of predicting the inter-story drift as

well as the failure mechanism. Most importantly, the method is suitable for structures

with irregular strength/stiffness distribution. Chopra and Goel (2001a) developed a

Modal Pushover Analysis (MPA) procedure to account for the effect of higher modes

for a better prediction of the seismic demand on inelastic structures. The response

history analysis of a selected 9-story building proved that the proposed methodology

is more accurate in estimating the drift demands and plastic hinge rotations than all

FEMA’s force distribution patterns. In order to evaluate the accuracy of the proposed

MPA, Chopra and Goel (2001b) applied the procedure to six SAC buildings to predict

the seismic demands and compare them to the nonlinear response history analyses

results. It was found that the MPA underestimates the seismic demand on most of

the considered structures, particularly for the upper floors.

In terms of optimal stiffness distribution over the building’s height, Takewaki

(2000) proposed a procedure for stiffness and damping simultaneous optimization by

minimizing the sum of mean square responses to stationary random excitations with

the maximum capacity of the stiffness and damping devices being considered. Mo-

hammadi et al. (2004) investigated the adequacy of various loading patterns, such as

rectangular, triangular, parabolic, on shear buildings. According to this investiga-

tion, it was found that the equivalent lateral force patterns specified by design codes
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do not help achieving uniform ductility demand over the building’s height. However,

the study proposed an iterative method for optimal distribution of strength, and it

was found that the lateral loading pattern strongly depends on the type of structure

as well as on the excitation. With the proposed methodology, the stiffness distribu-

tion of buildings with hysteretic dampers could lead to a uniform inter-story drift

throughout the building’s height. Park and Medina (2007); Park (2007) proposed a

lateral force distribution pattern for the conceptual seismic design of moment frames.

The loading pattern takes into account the inelastic behavior of the structure. Uni-

form story ductility ratios are expected to result with the proposed loading pattern

obtained through an iterative procedure. Ganjavi et al. (2007) investigated the effect

of the equivalent static and spectral dynamic loading patterns on the distribution of

drift, hysteretic energy and damage of reinforced concrete buildings. It was found

that buildings designed according to those patterns, when subjected to strong earth-

quakes, are more likely to experience structural damage that is concentrated in one

or two stories rather than uniformly distributed along the stories. In all of the con-

sidered models, the amount of the hysteretic energy dissipated through the top story

was negligible.
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Chapter 3

Smart Base Isolation Systems

Controllable devices incorporating smart materials, such as Magneto-Rheological

Elastomers (MREs) and Magneto-Rheological Fluids (MRFs) have attracted the re-

searchers interest for their reliability, adaptability and feasibility. Despite limitations,

they provide potentially feasible seismic mitigation alternative to active control strate-

gies. It is possible to change their mechanical properties when they are subjected to

a magnetic field, which can be developed and controlled by low external power. This

feature makes the semi-active devices especially attractive, as they overcome the high

external power needed to operate their counterpart active control devices. Further-

more, semi-active control devices do not add energy to the structure and hence they

do not destabilize the controlled system as may be the case in actively controlled

structures.

This chapter presents two semi-active control algorithms for smart base isolated

structures incorporating controllable stiffness devices, such as Magneto-Rheological

Elastomers (MREs). The performance of the smart base isolated systems is compared

to the conventionally isolated systems using Lead Rubber bearing (LRB) and to one

that implements linear quadratic regulator (LQR) control subjected to near-fault and

far-field ground motions.
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3.1 Variable Stiffness Devices

The Variable stiffness devices (VSD) are assumed to be multi-linear elastic devices

that have different stiffness branches in their force-deformation relationship. The de-

vices that possess this variable stiffness behavior can be mechanical devices (passive

devices) or controllable smart-material based variable stiffness devices. A summary of

different variable stiffness devices, such as the semi-active stiffness damper (SASD) or

the active variable stiffness (AVS) device (Kobori et al., 1993; Yang et al., 1996; Yang

and Agrawal, 1999; Yang et al., 2000; Nasu et al., 2001; Agrawal et al., 2003) and the

semi-active independently variable stiffness (SAIVS) device (Nagarajaiah and Mate,

1998; Narasimhan and Nagarajaiah, 2005; Sahasrabudhe and Nagarajaiah, 2005a;

Nagarajaiah and Sahasrabudhe, 2006) is given in Section 2.3. The controllable VSD

incorporating Magneto-Rheological Elastomer (MRE), which was numerically inves-

tigated by Usman et al. (2009) will be used as the smart base isolation system for

the illustration of the control algorithms developed in this chapter. The stiffness of

the considered device can be adjusted by controlling the magnitude of the applied

magnetic field. The proposed device was investigated for implementation as a semi-

active base isolation system. According to preliminary experimental tests conducted

on the MRE device (Usman et al., 2009), the maximum achievable stiffness adjust-

ment is about ±70% of the base material stiffness k0 (Recent experimental studies

have shown that higher stiffening ratios are achievable (Yang et al., 2013)). However,

a wider range is assumed to demonstrate potential benefits of the proposed control

algorithms, which are also applicable to any similar stiffness controllable devices.



27

3.2 Benchmark Structure

The benchmark structure proposed by Kelly et al. (1987) is considered herein for

the illustration of the performance of different control algorithms. The benchmark

structure represents a five story base isolated building, as shown in Figure 3.1a. The

proposed semi-active control devices (bearings) are assumed to replace the conven-

tional Lead Rubber Bearings (LRB) isolation system (Figure 3.1b). The benchmark

system properties are illustrated in Table 3.1. Note that the postyielding stiffness,

kb, of the isolation system was originally selected so that the fundamental period

of the structure is 2.5 sec once the lead plug yields. In the following sections, the

postyield stiffness, kb, will remain unchanged, while the bilinear properties that define

the hysteretic behavior of the LRB are defined based on average response of isolated

building under moderate and sever seismic events. Ramallo et al. (2002) performed

nonlinear response history analyses on the considered benchmark structure to define

the effect of the LRB parameters on the peak response. Different values of the charac-

teristic strength, Qy, and the postyield to preyield stiffness ratio, α, were considered.

Figure 3.2 shows the structural acceleration and the base drift peak response under

moderate and sever seismic events (Ramallo et al., 2002). It should be noted that the

legend in Figure 3.2 is used in that study, where they specified two different systems

such that LRB1, with (Qy = 0.05W ) for far-field and LRB2, with (Qy = 0.15W ) for

the near-fault motions. However, in this study, Figure 3.2 is used to define the LRB

parameters so that unified isolation system is used for both far-field and near-fault

excitations. The characteristic strength, Qy, is selected to be 10% of the building’s

weight and the postyield to preyield stiffness ratio, α, is taken as 8.5%. As can be

seen from the figure, these values provide sufficient control of the base displacement

without excessive structural accelerations for both moderate and sever seismic events.
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Figure 3.1: Benchmark five-story structure; (a) Conventionally isolated, (b) Semi-
actively isolated (c) Fixed base

Table 3.1: Properties of the benchmark structure (Kelly et al., 1987).

Floor mass Stiffness coefficients Damping coefficients
(kg) (kN/m) (kN.s/m)

mb = 6800 kb = 232 cb = 3.74
m1 = 5897 k1 = 33732 c1 = 67
m2 = 5897 k2 = 29093 c2 = 58
m3 = 5897 k3 = 28621 c3 = 57
m4 = 5897 k4 = 24954 c4 = 50
m5 = 5897 k5 = 19059 c5 = 38
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Figure 3.2: Peak response of LRB isolated building under moderate and sever
seismic events (Ramallo et al., 2002)

3.3 Equations of Motion

The equations of motion of the smart base isolated structure shown in Figure 3.3 can

be written as

Msü
t
s + Csu̇s + Ksus = 0 (3.1a)

mbü
t
b + Fd(cb, u̇b) + Fs(ub, u̇b, z)− ITs Vs = 0 (3.1b)

Equation 3.1a defines the motion of the superstructure, while Equation 3.1b defines

the base slab motion. Ms, Cs and Ks are the mass, damping and stiffness matrices for

the superstructure, respectively. mb, is the base slab mass, Fd(cb, u̇b) and Fs(ub, u̇b, z)
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Figure 3.3: Schematic view of base isolated system

are the damping force and the restoring force of the isolation system, respectively.

üs, u̇s and us are the acceleration, velocity and displacement vectors of the super-

structure, respectively, with respect to the base slab, as shown in Figure 3.3, where

s = 1, ..., n. üb, u̇b and ub are the acceleration, velocity and displacement vectors of

the base slab with respect to the ground, respectively. The superscript t indicates

the total displacement with respect to a fixed reference, as shown in the figure. ITs

represents the influence array of the superstructure motion on the motion of the base

slab and Vs is the vector of shear forces induced by the superstructure. In other

words, ITs Vs is the total shear force acting on the base slab due to the motion of the

superstructure. Vs can be written as

Vs = −Msü
t
s (3.2)
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The total displacement vectors of the structure shown in Figure 3.3 can be expressed

as

uts = us + Ibub + I1ug (3.3a)

utb = ub + I2ug (3.3b)

where Ib is the influence array of the base slab motion on the DOFs of the superstruc-

ture, I1 and I2 are the influence arrays of the ground motion on the superstructure

and base slab DOFs, respectively, and ug is the total ground displacement. Substitut-

ing uts and utb from Equations 3.3 into 3.1 and rearranging, the governing equations

of motion can be written as

Msüs + Csu̇s + Ksus = −Ms(Ibüb + I1üg) (3.4a)

mbüb + Fd(cb, u̇b) + Fs(ub, u̇b, z) = −mbI2üg − ITs Ms(üs + Ibüb + I1üg) (3.4b)

In the preceding equation, the damping force, Fd(cb, u̇b), can be evaluated based on

whether the isolation system possesses controllable damping device or inherent viscous

damping only. Thus,

Fd =


cbu̇b, uncontrolled damping

cb(t)u̇b, controlled damping

(3.5)

In this study, the isolation systems are modeled with inherent damping only, with

damping coefficient, cb, as specified per the benchmark building (Table 3.1). This

coefficient provides 2% equivalent damping ratio to the first mode of the isolated

benchmark structure. The restoring force, Fs(ub, u̇b, z) represents the bilinear hys-

teretic behavior of conventional LRB isolation system. The Bouc-Wen model is used
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to approximate this behavior (Ikhouane and Rodellar, 2007). Thus the restoring

force, Fs, used to model the LRB is determined as

Fs = kbub + (1− α)kexyz (3.6a)

xyż = Au̇b − β|u̇b|z|z|n−1 − γu̇b|z|n (3.6b)

where α is the ratio of the postyield stiffness (kb) to the preyield stiffness (ke) of

the LRB isolation system, xy is the yield displacement of the isolators, and z is

dimensionless parameter that defines the hysteresis loops of the LRB. It is found by

solving the nonlinear differential Equation 3.6b, in which (n > 1) is a parameter that

defines the sharpness of the transition zone between preyield and postyield stiffness,

A, β, and γ are constant parameters that control the shape of the hysteresis loops.

For the elastic stiffness to be modeled properly (A = β+γ), and for the unloading to

follow the elastic stiffness (β = γ). The effect of the aforementioned parameters on

the hysteresis loops is shown in Figures 3.4 and 3.5. Equation 3.4 can be rewritten

in matrix form as

M̃︷ ︸︸ ︷ Ms MsIb

ITs Ms mb + ITs MsIb


üs

üb

+

C̃︷ ︸︸ ︷Cs 0

0 cb


u̇s

u̇b

+

K̃︷ ︸︸ ︷Ks 0

0 kb


us

ub

 =

 −MsI1

−mbI2 − ITs MsI1


︸ ︷︷ ︸

Eg

üg +

 0

−Ic


︸ ︷︷ ︸

Ec

fc

(3.7)
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Figure 3.4: Effect of the Bouc-Wen parameters on the hysteresis loop shapes, (n =
2, A = 1)
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where Ic is the location matrix of the restoring force of the isolation system. Equa-

tion 3.7 can be written in the state space representation as

ẋ = Ax + Bfc + Eüg (3.8a)

y = Cyx + Dyfc + Eyüg (3.8b)

where x = [uTs ub u̇Ts u̇b]
T is the state vector, and y represents the vector of measure-

ments. The state matrices are defined as

A =

 0 I

−M̃
−1

K̃ −M̃
−1

C̃

 , B =

 0

M̃
−1

Ec

 , E =

 0

M̃
−1

Eg

 (3.9)

while Cy, Dy and Ey are obtained based on the measured state variables. For in-

stance, if the floors and base slab accelerations are measured, the measurement equa-

tion matrices become

Cy =

[
−M̄

−1
K̃ −M̄

−1
C̃

]
, Dy =

[
M̄
−1

Ec

]
, Ey = 0 , M̄ =

 Ms 0

ITs Ms mb


(3.10)

In case of passive isolators, (fc = (1 − α)kexyz) represents the hysteretic behavior,

otherwise, fc is the control force determined according to the control laws that are

presented in Section 3.5.

3.4 Ground Motions and Scaling

To illustrate the effectiveness of the proposed semi-active control algorithms, the

benchmark building (Figure 3.1) is subjected to a series of recorded far-field and

near-fault ground motions. Ten far-field and fourteen near-fault pulse type recorded
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Table 3.2: Far-filed ground motion details and scaling.

EQ Earthquake Recording Station Scale

ID Name Year M Name Owner Factor

02 Northridge 1994 6.70 Canyon Country-WLC USC 1.42
03 Duzce, Turkey 1999 7.10 Bolu ERD 1.09
05 Imperial Valley 1979 6.50 Delta UNAM 2.23
06 Imperial Valley 1979 6.50 El Centro Array No.11 USGS 2.75
08 Kobe, Japan 1995 6.90 Shin-Osaka CUE 2.13
09 Kocaeli, Turkey 1999 7.50 Duzce ERD 1.86
11 Landers 1992 7.30 Yermo Fire Station CDMG 2.60
13 Loma Prieta 1989 6.90 Capitola CDMG 1.46
16 Superstition Hills 1987 6.50 El Centro Imp. Co. CDMG 2.45
19 Chi-Chi, Taiwan 1999 7.60 CHY101 CWB 1.48

ground motions are selected from the record sets provided in FEMA (2009). These

motions are scaled so that the average of the square root of the sum of squares

(SRSS) spectrum, constructed for each pair of the ground motions by taking the

SRSS of the 5% damped response spectra of the scaled components, does not fall

below 1.4 the design response spectra in the range of the period of interest. For

isolated structures, this period range is considered 0.5TD to 1.25TM (ASCE, 2010),

where TD and TM are the effective periods of the isolated structure at the design

displacement and the maximum displacement, respectively. The scaling of the ground

motion records is performed to match 1.4 the design response spectra of a hypothetical

site, where the mapped values of the short period and 1-second spectral accelerations

are (SS = 2.1g), and (S1 = 0.93g), respectively, and the site is assumed of class D.

Tables 3.2 and 3.3 show the far-field and near-fault ground motion sets and their scale

factors, respectively. Figures 3.8 and 3.9 show the 5% damped spectral acceleration,

spectral velocity and spectral displacement for the far-field and the near-fault ground

motion sets, respectively. The average SRSS spectrum of the scaled motions overlaid

on the 1.4 design response spectra are shown in Figures 3.6 and 3.7.
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Table 3.3: Near-fault pulse type ground motion details and scaling.

EQ Earthquake Recording Station Scale

ID Name Year M Name Owner Factor

01 Imperial Valley-06 1979 6.50 El Centro Array No.6 CDMG 1.73
02 Imperial Valley-06 1979 6.50 El Centro Array No.7 USGS 1.35
03 Irpinia, Itali-01 1980 6.90 Sturno ENEL 2.50
04 Superstition Hills-02 1987 6.50 Parachute Test Site USGS 1.22
05 Loma Prieta 1989 6.90 Saratoga - Aloha CDMG 2.36
06 Erzican, Turkey 1992 6.70 Erzincan – 1.36
07 Cape Mendocino 1992 7.00 Petrolia CDMG 0.93
08 Landers 1992 7.30 Lucerne SCE 2.35
09 Northridge-01 1994 6.70 Rinaldi Receiving Sta DWP 0.79
10 Northridge-01 1994 6.70 Sylmar - Olive View CDMG 1.02
11 Kocaeli, Turkey 1999 7.50 Izmit ERD 3.48
12 Chi-Chi, Taiwan 1999 7.60 TCU065 CWB 0.99
13 Chi-Chi, Taiwan 1999 7.60 TCU102 CWB 1.57
14 Duzce, Turkey 1999 7.10 Duzce ERD 1.29
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Figure 3.6: Average of 10 SRSS scaled spectrum for the far-field motions



38

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

Period (sec)

S
pe

ct
ra

l A
cc

el
er

at
io

n 
(g

)

 

 
1.4 x Design Spectrum
Ave of 14 SRSS spectrum

Figure 3.7: Average of 14 SRSS scaled spectrum for the near-fault motions

3.5 Semi-Active Control Algorithms

3.5.1 Minimal Acceleration Control (MAC)

The Minimal Acceleration Control (MAC) presented in this section, is designed to

reduce the total structural acceleration primarily by controlling the isolation system’s

stiffness. Consider a system with an inherent viscous damping, so that (Fd = cbu̇b),

and a controllable stiffness device, such as the one described in Section 3.1, the time

variant stiffness of this controllable device can be described as

kb(t) = k0 + kv(t) (3.11)

where k0 is the base material stiffness, and kv(t) is the variable stiffness controlled

in real-time based on command signals that alter the intensity of the magnetic field

applied to the device. Considering Equation 3.11, the restoring force, Fs, of the
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Figure 3.8: 5% Damped response spectrum of the far-field motions
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Figure 3.9: 5% Damped response spectrum of the near-fault motions
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isolation system can be written as

Fs(t) = k0ub + fc (3.12)

where fc is the controllable term of the restoring force as a result of the regulated

stiffness. Substituting for Fd and Fs into Equation 3.4b, leads to

mbü
t
b + ITs Msü

t
s = −cbu̇b − k0ub − fc (3.13)

In order to minimize or even theoretically eliminate the structural accelerations, the

right hand side of Equation 3.13 should be minimized. Therefore, the controlled

restoring force fc(t) can be adjusted in real-time such that

fc(t) = −cbu̇b(t)− k0ub(t) (3.14)

The desired control force fc(t) obtained in Equation 3.14 is not necessarily achievable

with the practical limitations on the maximum and minimum controllable stiffness,

kv. Therefore, an approximate first-order variable stiffness for a discrete time system

can be calculated as

kminv ≤ kv(ti) =
fc(ti)− fact(ti−1)

ub(ti)− ub(ti−1)
≤ kmaxv (3.15)

where fc(ti) is the desired restoring (control) force at the current time step (ti),

fact(ti−1) is the actually achieved control force in the previous time step (ti−1) and

(ub(ti) − ub(ti−1)) is the change in the base displacement from time ti−1 to ti. The

actual restoring/control force obtained at time step ti by regulating the variable



42

stiffness of the isolation system can be written as

fact(ti) = fact(ti−1) + kv(ti)[ub(ti)− ub(ti−1)] (3.16)

Equation 3.14 is equivalent to Equation 2.2, which is used by Li et al. (2008)

to find the appropriate properties of pseudo viscoelastic (P-VE) damper that could

replace the active or semi-active control devices, so that the passive P-VE damper

would behave the same as the active control device. However, Equation 2.2 is based

on prior knowledge of the desired control force, determined through active control

theory. In the proposed control algorithm, Equation 3.14 determines the desired

unknown control force based on local measurements of the velocity and displacement

of the base slab, with known stiffness and damping parameters. The implementation

of this control law does not need any state predictor, as the control law depends only

on local measurements of the base slab response, as shown in Figure 3.10. Thus, the

obtained measurements y of the structure’s response along with the instantaneous

controlled restoring force, fact, are fed back to the controller. The controller then

uses these measurements to directly determine the desired control force so that the

stiffness of the isolation system is regulated accordingly.

3.5.2 Acceleration Gain Control (AGC)

Consider the structure of Figure 3.3, under the effect of seismic excitation, the total

shear force in the foundation system due to inertia forces is evaluated as

Vfound = −mbü
t
b − ITs Msü

t
s (3.17)

where ITs is the influence array of the motion of the superstructure on the DOFs of the

base slab. In order to reduce the shear force in the foundation level, and consequently
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Figure 3.10: Block diagram of an output feedback semi-active control used with the
MAC

the accelerations, it is desired to adjust the properties of the variable stiffness semi-

active control device, used for the isolation system, so that it minimizes the total

base shear at the foundation level. Therefore, the Acceleration Gain Control (AGC)

presented in this section is designed so that the summation of the semi-active control

force and the inertia forces (fc(t) + Vfound(t)) is minimized in real-time by regulating

the stiffness of the isolation system. Thus, the desired semi-active control force must

be evaluated in real-time as follows

fc(t) ' mbü
t
b + ITs Msü

t
s (3.18)

Expanding the superstructure’s accelerations according to Equation 3.3a, and consid-

ering a two-dimensional analysis (uniaxial excitation), Equation 3.18 can be written

as

fc(t) ' mbü
t
b + ITs Ms(üs + Ibüb + I1üg) (3.19)
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with the n− dimensional unit vectors, Ib = I1, where n is the total number of DOFs

of the superstructure, the evaluation of the control force can be simplified to

fc(t) ' mbü
t
b + ITs MsIbü

t
b + ITs Msüs (3.20)

In Equation 3.20, the term (ITs MsIb) represents the total mass of the superstructure

and the last term in the equation represents the summation of the floor mass times

the floor acceleration relative to the base slab, üs. To eliminate the relative floor

accelerations and rely only on the base acceleration, an acceleration gain is applied

to the relative base acceleration, and the control force is thus evaluated as

fc(t) ' mbü
t
b + ITs MsIbü

t
b +Güb

n∑
i=1

mi (3.21)

where mi is the mass of the ith floor, and n is the total number of floors, as shown in

Figure 3.3. With the desired control force, fc, calculated according to Equation 3.21 at

time instant, i, the variable stiffness of the controllable device is regulated according

to Equation 3.15.

In the Acceleration Gain Control (AGC), the acceleration gain, G, is intended to

estimate the total inertia forces developed in a vibrating superstructure with respect

to a steady base slab in terms of the relative acceleration of the base slab. Therefore,

setting the value of the gain G to zero means ignoring the relative vibration of the

superstructure with respect to the base slab, in other words, converting the structural

system to a single degree of freedom (SDF) or isolated rigid system with a mass

equals to the total mass of the superstructure and base slab. If this is the case, the

AGC algorithm will always pick the minimum stiffness for the isolation system, as

this will be the only available choice to reduce the single parameter in the control

law namely the total base acceleration, ütb, as can be observed from Equation 3.21.
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This is consistent with the fact that the effect of the superstructure on the overall

performance of an isolated system becomes less significant as the isolation system

becomes softer. On the other hand, there will be no control on the base displacement,

which is the most critical parameter for near-fault base isolated structures. For this

reason, the value of the gain G needs to be nonzero at all times, especially for smart

base isolated structures subjected to near-fault ground motions. It should be noticed

that the higher the value of G, the higher the shear capacity of the isolation system

will be. Consequently, this would allow for a controllable system that provides some

control on the base displacement, but of course at the expense of the accelerations.

The most interesting merit of the AGC given by Equation 3.21 is that it is com-

pletely decentralized (depends on only local measurements), where only the ground

acceleration and the absolute base slab acceleration are needed (measured) for the

implementation of the control law, as shown in Figure 3.11. In addition, acceler-

ation measurement is considered the most reliable and readily used measurements

(Spencer Jr. et al., 1994; Jabbari et al., 1995; Dyke et al., 1996b) that can be accu-

rately achieved by means of inexpensive accelerometers. This fact makes the AGC

robust and reliable as the uncertainties of the structural system modeling do not

affect the performance of the controller.

3.5.2.1 Selection of the Acceleration Gain

In order to investigate the effect of the acceleration gain, G, selection on the overall

performance of the controlled structure, a sensitivity analysis has been carried out

using the most critical seismic events of the far-field and near-fault ground motion

records.

Under the near-fault ground motions, with stiffening ratio (−0.7 ≤ α ≤ 0.7), the

base displacement is controlled by increasing the value of G, as shown in Figure 3.12,



46

Figure 3.11: The block diagram used with the AGC

which show the peak responses normalized to the corresponding LRB peak responses.

However, the peak response of the base displacement reaches its minimum achievable

value at G ≈ 5.0. Hence, any further increase of G does not lead to any enhancement

of the base displacement. On the other hand, the base acceleration and the super-

structure acceleration and drifts reach their minimum achievable values at G ≈ 0.8,

and any further increase of G leads to slight increase in the superstructure response.

Beyond the value of 5, the overall structural response does not change, as the high

value of the acceleration gain allows the isolation system to reach its maximum shear

capacity, which is bounded by the maximum stiffening ratio.

With stiffening ratio (−0.7 ≤ α ≤ 2.0), the same observations regarding the effect

of G on the controlled structure performance remain true, as shown in Figure 3.13.

The figure demonstrates how the increased stiffening ratio leads to a better structural

performance. With stiffening ratio (−0.7 ≤ α ≤ 10), the same observations regarding

the effect of G on the controlled structure performance remain true, as shown in

Figure 3.14. It can be concluded from the figure that if the stiffening ratio can be as

high as 10, more than 50% reduction of the base displacement is possible. However,

with the same base displacement, the seismic demands on the superstructure may
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Figure 3.12: Effect of the acceleration gain selection on the performance of the
AGC with αmax ≤ 0.7. The grey and bold curves are events and average normalized
peak response, respectively. (a) base displacement, (b) base acceleration, (c) roof
displacement, and (d) roof acceleration
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Figure 3.13: Effect of the acceleration gain selection on the performance of the
AGC with αmax ≤ 2.0. The grey and bold curves are events and average normalized
peak response, respectively. (a) base displacement, (b) base acceleration, (c) roof
displacement, and (d) roof acceleration

be reduced by up to 50%. Under the far-field ground motions, the same behavior is

observed regarding the sensitivity of the control algorithm to the stiffening ratio and

the acceleration gain.
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Figure 3.14: Effect of the acceleration gain selection on the performance of the
AGC with αmax ≤ 10. The grey and bold curves are events and average normalized
peak response, respectively. (a) base displacement, (b) base acceleration, (c) roof
displacement, and (d) roof acceleration
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3.5.3 Acceleration Feedback Control (AFB)

In the acceleration gain control, only the base and ground accelerations are the re-

quired measurements for the control algorithm to operate. The AGC regulates the

lateral force resistant capacity of the isolation system based on the instantaneous base

shear (approximated by the first two terms of Equation 3.21) and the relative motion

between the base slab and the ground. This relative motion is essential for the AGC

to perform as desired. According to the desired trade-off between the structural re-

sponse and the base displacement, an appropriate gain is applied to the relative base

slab acceleration. However, control algorithm that depends only on the instantaneous

base shear may not result in the desired control of the near-fault base displacement.

To illustrate this idea, consider the acceleration feedback control (AFB) determined

according to Equation 3.18. In this equation, the control force is regulated to always

minimize the shear force in the isolation system. Accordingly, the controller will al-

ways use the minimum stiffness of the isolator regardless of the upper stiffening ratio,

and hence provides no control over the base displacement. In order for this control

logic to provide some controllability to the base displacement, the shear force needs

to be exaggerated. This is done by multiplying the total base shear by the base shear

gain, G′, as follows

fc(t) ' G′{mbü
t
b + ITs Msü

t
s} (3.22)

In the AFB control given by Equation 3.22, the base slab as well as the floor accel-

erations need to be measured. Figure 3.15 shows the effect of the base shear gain

selection on the structural response. An upper stiffening ratio of ten is considered

for this analysis. As can be noticed from the figure, the AFB control can achieve

more than 50% reduction to the superstructure demands. However, the base dis-

placement in comparison to the LRB system cannot be reduced. In contrast, the

AGC (Figure 3.14) with the same controllable device can substantially reduce the
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Figure 3.15: Effect of the base shear gain selection on the performance of the
AFB control with αmax ≤ 10. The grey and bold curves are events and average
peak responses normalized to the LRB, respectively. (a) base displacement, (b) base
acceleration, (c) roof displacement, and (d) roof acceleration

near-fault base displacement demand without compromising the performance of the

conventionally isolated structure.
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Figure 3.16: Semi-actively controlled smart base isolated structure

3.6 Stability of the Control Algorithms

In the preceding sections, different semi-active control algorithms were suggested

for controllable stiffness base isolation systems. Unlike the active control devices, the

semi-active devices do not destabilize the controlled structure, as they do not add any

external forces to the system. However, it is essential to study the stability robustness

of the controlled structure. Consider the semi-actively controlled structure shown in

Figure 3.16, the equation of motion for this structure is given by

Mẍ + Cẋ + Kx = −MIüg (3.23)

where M, C, and K are the mass, damping, and stiffness matrices, respectively, x,

ẋ, and ẍ are the vectors of displacement, velocity, and acceleration with respect to

the ground, respectively, üg is the ground acceleration, and I is n-dimensional unit

vector. The energy in the system is determined by

V =
1

2

[
ẋTMẋ + xTKx

]
(3.24)
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which can be considered a Lyapunov function for this system only if M and K are

positive definite matrices. However, M is definitely positive definite matrix, as it is

a diagonal matrix of the floor mass. The question is whether K is a positive definite

or not, as it has the time variant stiffness term, kb(t). The stiffness matrix K for the

shown structure is calculated as

K =



kn −kn 0 · · · 0

−kn kn + kn−1 −kn−1 · · · 0

0
. . . . . . . . . 0

0 · · · −k2 k2 + k1 −k1

0 · · · 0 −k1 k1 + kb(t)


(3.25)

For the K matrix to be positive definite, it must satisfy the following condition

zTKz > 0 (3.26)

where z is a non-zero n-dimensional vector of real numbers. This condition is satisfied

if the time variant base stiffness is positive, (i.e kb(t) > 0) for (t ≥ 0). The base

stiffness kb(t) is defined by Equation 3.11, and repeated here for convenience

kb(t) = k0 + kv(t) (3.27)

in which kv(t) is the variable stiffness part and is bounded by the maximum and

minimum stiffness ratios so that

αmink0 ≤ kv(t) ≤ αmaxk0 (3.28)
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Therefore, kb(t) is always positive as long as (αmin > −1). Since the lower bound in

this study is (αmin = −0.7), Equation 3.24 can be considered as a Lyapanov function.

Its derivative can be expressed as

dV

dt
= ẋTMẍ + ẋTKx (3.29)

For the system to be asymptotically stable, the rate of change of the system energy

should be decreasing with time. In other words, Equation 3.29 needs to be negative

definite. Substituting from Equation 3.23 into Equation 3.29, the derivative of the

Lyapanov function can be written as

dV

dt
= −ẋTCẋ− ẋTMIüg (3.30)

In Equation 3.30, the last term on the right hand side can be disregarded for the

stability analysis, as (limt→∞(üg) = 0). The damping term of the right hand side

represents the energy dissipated in the system. However, this term implies that the

rate of change of system energy is negative semi-definite as (−ẋTCẋ = 0 when ẋ = 0).

From the system dynamics (Equation 3.23), (ẋ = 0) implies that when t→∞

Mẍ = −Kx (3.31)

It can be inferred form Equation 3.31 that the system cannot reach an equilibrium

state unless when (x = 0). Using LaSalle’s invariant principle indicates that the

origin is a locally asymptotically stable point and hence the system is asymptotically

stable.
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3.7 Response History of the Base Isolated Systems

In this section, the response history analyses are performed on the benchmark struc-

ture described in Section 3.2 subject to far-field and near-fault scaled ground motion

records listed in Tables 3.2 and 3.3. In order to evaluate the effectiveness of the semi-

active control algorithms proposed for base isolation systems incorporating MRE

controllable stiffness isolators, the isolation system for the benchmark structure was

obtained first using conventional lead rubber bearing (LRB). The response is com-

pared to the counterpart structures equipped with MRE isolation system using the

minimal acceleration control (MAC) and the acceleration gain control (AGC). The

base material stiffness of the MRE bearing, k0, is taken as the postyielding stiffness

of the isolation system of the benchmark building (i.e. k0 = kb = 232kN/m). As

discussed earlier, the proposed control algorithms have limited control on the base

displacement, as they were original designed to reduce the structural acceleration.

In addition, the maximum upper limit of the stiffening ratio of the MRE base iso-

lation system, which was experimentally obtained by Usman et al. (2009), puts an

extra limitation to the controllability of the base displacement. However, in order to

evaluate the effectiveness of the proposed control algorithms, it is assumed that the

MRE device or another similar one, can achieve a higher stiffening ratio, α. Based

on the results of the sensitivity analyses given in Section 3.5.2.1, the maximum and

minimum stiffening ratios, α, and the gain, G, used for the controls are shown in Ta-

ble 3.4. The table summarized values are selected for the highest base displacement

control as well as the best performance of the superstructure.

The median, which is defined as the geometric mean and given by the exponential

of the average of the natural log values of the data points, as well as the 84th percentile,

defined as the median times the exponent of the standard deviation of the natural log

of the data points (Shome et al., 1997; Gupta and Krawinkler, 1999; FEMA, 2000), are
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Table 3.4: Semi-active control notations and details.

Control Stiffening Ratio Acceleration Gain

ID αmin αmax G

MAC-1 -0.7 0.7 N/A
MAC-2 -0.7 2.0 N/A
AGC-1 -0.7 0.7 0.8
AGC-2 -0.7 2.0 0.8
AGC-3 -0.7 0.7 2.0
AGC-4 -0.7 2.0 2.0

used to represent the statistical values of the peak quantities of the response history

analyses under the effect of the considered ground motions. Theses parameters are

calculated based on Shome et al. (1997) definition as

x̂ = e
1
n

∑n
i=1 lnxi (3.32a)

δ =

√∑n
i=1(lnxi − ln x̂)2

n− 1
(3.32b)

84th percentile = x̂eδ (3.32c)

where x̂ is the median value of total of n data points, and δ is the standard deviation of

the natural logs of the data. These parameters are used to represent the coefficient of

variation in the data series and are useful for the probabilistic and performance-based

design.

3.7.1 Response to the Far-Field Records

The ten pairs of the scaled ground motions given in Table 3.2 are used in this sec-

tion to evaluate the efficacy of the proposed semi-active control algorithms under

the far-field excitations. The displacement response-history and the isolation system
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force-displacement relationship with the MAC against the passive LRB subjected to

the 1994 Northridge, Canyon Country, EQ02, are shown in Figures 3.17 and 3.18,

respectively. Figures 3.19 and 3.20 show the displacement response-history and the

isolation system force-displacement relationship for the system with AGC, under the

same earthquake record. The same response quantities due to the 1992 Landers,

EQ11, are also shown in Figures 3.21 to 3.24. The MAC algorithm results in resid-

ual displacement in the isolation level, and this behavior was observed under most

of the considered ground motions. In addition, increasing the maximum stiffening

ratio (from αmax = 0.7 to αmax = 2.0) neither helps reducing the base displacement

nor the residual displacement. In contrast, the AGC was found to be self-centering

under the effect of all the considered ground motions. On the other hand, the effect

of higher stiffening ratio is remarkable on the base displacement, as can be observed

in Figures 3.19 and 3.23.

The base displacement can be controlled by increasing the acceleration gain used

for the AGC, as discussed in Section 3.5.2.1. However, increasing the gain will only

allow the control law to reach the full capacity of the isolation system, which is

bounded by the maximum stiffening ratio, and should lead to less reduction in the

superstructure response quantities. This can be observed from Figures 3.12, 3.13,

and 3.14. By comparing the isolation system force-displacement relationships for

the systems with the same upper bound of stiffening ratio (e.g. algorithms AGC-1

versus AGC-3 and AGC-2 versus AGC-4) that is shown in Figures 3.20 and 3.24,

it is obvious that the increased acceleration gain, G, reduces the base displacement.

However, comparing the systems with the same acceleration gain (e.g. algorithms

AGC-1 versus AGC-2 and AGC-3 versus AGC-4), it can be noticed that the upper

bound of the stiffening ratio, α, is more effective in reducing the base displacement.

The acceleration gain only defines the trade-off between the base displacement and the
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Figure 3.17: Base displacement response history for MAC systems versus LRB
under far-field EQ02 (Northridge, Canyon Country)

superstructure response. Based on this observation, it can be concluded that variable

stiffness devices that possess a wider range of variable stiffness are more likely to

provide adequate control on the base displacement with the acceleration gain control,

as will be seen in the following section with AGC-5.

Studying the statistical summary of the base displacement peak responses that

is shown in Figure 3.29, the same observation regarding the effect of the increased
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under far-field EQ02 (Northridge, Canyon Country)
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Figure 3.19: Base displacement response history for AGC systems versus LRB under
far-field EQ02 (Northridge, Canyon Country)
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Figure 3.20: Passive LRB vs AGC isolation systems force-displacement relationship,
under far-field EQ02 (Northridge, Canyon Country)
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Figure 3.21: Base displacement response history for MAC systems versus LRB
under far-field EQ11 (Landers)
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Figure 3.22: Passive LRB vs MAC isolation systems force-displacement relationship,
under far-field EQ11 (Landers)
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Figure 3.23: Base displacement response history for AGC versus LRB under far-field
EQ11 (Landers)
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Figure 3.24: Passive LRB vs AGC isolation system force-displacement relationship,
under far-field EQ11 (Landers)
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acceleration gain and the upper bound of the stiffening ratio, holds true. On the

other hand, the effect of the upper bound of stiffening ratio on the base acceleration

is insignificant with the MAC law, but may slightly help controlling the base dis-

placement. With AGC, as can be seen in Figure 3.30, the base acceleration slightly

increases with the increase of the stiffening ratio upper limit, αmax.

In terms of the base acceleration demand, the MAC systems are capable of achiev-

ing up to 75% reduction in the base acceleration compared to the LRB system. The

AGC systems provide less reduction of up to 60% only, as can be seen from Fig-

ures 3.25 to 3.28 that show the base acceleration response history for EQ02 (1994

Northridge, Canyon Country) and EQ11 (1992 Landers). On the other hand, the

effect of increased stiffening ratio on the base acceleration response history is not

significant on the system with the MAC algorithms. However, a slight increase in

the base acceleration, compared to the passive LRB system, is noticeable when the

stiffening ratio and/or the acceleration gain are increased.

In terms of the superstructure seismic demands, the MAC law provides significant

reduction in both the acceleration and displacement demands on the superstructure,

as shown in Figures 3.31 to 3.33. A comparison of the superstructure seismic demands

normalized to the demands on the fixed base structure is given in Table 3.5, while

the structural seismic demands of the proposed control strategies normalized to the

seismic demands of the LRB system are given in Table 3.6. As can be inferred from the

tables, the proposed smart base isolation strategies provide significant reduction to

the seismic demands on both the fixed base and the conventionally isolated structures

subjected to the far-field ground motion records.
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Figure 3.25: Base acceleration response history for LRB versus MAC under far-field
EQ02 (Northridge, Canyon Country)

Table 3.5: Superstructure seismic demands normalized to the fixed base structure
under the far-field records.

Demand LRB MAC-1 MAC-2 AGC-1 AGC-2 AGC-3 AGC-4

Roof Displacement 0.161 0.037 0.038 0.073 0.080 0.087 0.104
Roof Acceleration 0.171 0.032 0.035 0.066 0.074 0.079 0.096
1st floor shear 0.162 0.042 0.042 0.081 0.087 0.097 0.112
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Figure 3.26: Base acceleration response history for LRB versus AGC under far-field
EQ02 (Northridge, Canyon Country)

Table 3.6: Structural seismic demands normalized to the LRB system under the
far-field records.

Demand MAC-1 MAC-2 AGC-1 AGC-2 AGC-3 AGC-4

Base Displacement 1.372 1.279 1.446 1.268 1.412 1.185
Base Acceleration 0.201 0.213 0.409 0.453 0.489 0.589
Roof Displacement 0.231 0.236 0.452 0.494 0.543 0.643
Roof Acceleration 0.189 0.203 0.387 0.434 0.462 0.564
1st floor shear 0.260 0.259 0.497 0.538 0.595 0.692
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Figure 3.27: Base acceleration response history of LRB versus MAC under far-field
EQ11 (Landers)
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Figure 3.28: Base acceleration response history of LRB versus AGC under far-field
EQ11 (Landers)
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Figure 3.29: Summary of the far-field base displacement response.
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Figure 3.30: Summary of the far-field base total acceleration response.
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Figure 3.31: Summary of the far-field roof displacement response relative to the
basemat.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Median 84th Perc.

Roof Acceleration (g)

LRB MAC-1 MAC-2 AGC-1 AGC-2 AGC-3 AGC-4

G:\Mohamed\UNR\Research\SA Control\Uni Direction\Far Field\Final\Comparison_redo

Figure 3.32: Summary of the far-field roof total acceleration response.
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Figure 3.33: Summary of the far-field 1st floor shear response.

3.7.2 Response to the Near-Fault Records

The fourteen pairs of the scaled ground motions given in Table 3.3 are used in this sec-

tion to evaluate the efficacy of the proposed semi-active control algorithms under the

effect of near-fault excitations. The displacement response-history and the isolation

system force-displacement relationship of the structure with the MAC against the pas-

sive LRB system subjected to the 1998 Loma Prieta, EQ05, are shown in Figures 3.34

and 3.35, respectively. Figures 3.36 and 3.37 show the displacement response-history

and the isolation system force-displacement relationship for the system with AGC

under the same earthquake record. From the figures, the MAC algorithm results

in residual displacement in the base slab as in the case under the far-field records.

This behavior was observed under most of the considered ground motions. In this

case however, increasing the maximum stiffening ratio (from αmax = 0.7 for MAC-1

to αmax = 2.0 for MAC-2) provides a slight improvement in the base displacement

but with an increased residual displacement (Figure 3.34b). In contrast, the AGC

has self-centering feature that was observed under the effect of all the considered
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ground motions. The AGC system also results in less base displacement demand

than the MAC system. The effect of higher stiffening ratio on the performance of the

AGC is noticeable on the base displacement response history, as can be observed in

Figures 3.36 and 3.37.

The base displacement can be controlled by increasing the acceleration gain used

for the AGC (see Figures 3.12 to 3.14). However, increasing the gain will only lead to

the full capacity of the isolation system, which is basically limited by the maximum

allowable stiffening ratio of the variable stiffness device. Although increasing the

acceleration gain reduces the base displacement, it leads to minimal reduction of

the seismic demands on the structural system compared to the LRB. Comparing

the isolation system force-displacement relationships for the systems with the same

maximum stiffening ratio (e.g. algorithms AGC-1 versus AGC-3 and AGC-2 versus

AGC-4) that are shown in Figure 3.37, as in the case under the far-field ground

motions the effect of increasing the acceleration gain (G) is less significant on the

base displacement response than the maximum allowable stiffening ratio. The latter

is the most effective parameter in controlling the base displacement. This can also

be concluded by studying the force-displacement relationship of the systems with

the same acceleration gain and different maximum stiffening ratios (e.g. algorithms

AGC-1 versus AGC-2 and AGC-3 versus AGC-4).

Studying the statistical summary of the base displacement peak responses that

is shown in Figure 3.38, the same observation regarding the effect of the increased

acceleration gain and the upper bound of the stiffening ratio, holds true. On the

other hand, the effect of the maximum stiffening ratio on the base acceleration is

insignificant with either MAC or AGC algorithms. This can be seen in Figure 3.39

where the base acceleration barely changes with the increased stiffening ratio.

In terms of response reduction, the MAC systems are capable of achieving up to
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Figure 3.34: Base displacement response history for MAC systems versus LRB
under near-fault EQ05 (1989 Loma Prieta)
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under near-fault EQ05 (1989 Loma Prieta)
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Figure 3.38: Summary of the near-fault base displacement response.
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Figure 3.39: Summary of the near-fault base total acceleration response.
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Table 3.7: Superstructure seismic demands normalized to the fixed base structure
under the near-fault records.

Demand LRB MAC-1 MAC-2 AGC-1 AGC-2 AGC-3 AGC-4

Roof Displacement 0.220 0.084 0.082 0.131 0.130 0.146 0.151
Roof Acceleration 0.210 0.071 0.069 0.112 0.113 0.126 0.134
1st floor shear 0.236 0.097 0.093 0.150 0.147 0.166 0.169

65% reduction in the base acceleration compared to the passive LRB system, while

the AGC systems provide less reduction of up to 44% only, as shown in Table 3.8.

Also Figures 3.40 and 3.41 show an example of the base acceleration response history

under the effect of EQ05 (1989 Loma Prieta). The effect of increased stiffening ratio

on the base acceleration response history is not significant for the system with the

MAC algorithms. However, a slight increase in the base acceleration, compared to

the LRB system, is noticeable when the stiffening ratio or the acceleration gain are

increased.

In terms of the superstructure seismic demands, the MAC law provides significant

reduction in both the acceleration and displacement demands on the superstructure,

as shown in Figures 3.42 to 3.44. A comparison of the superstructure seismic demands

on the considered systems normalized to the demands on the fixed base structure is

given in Table 3.7. The structural seismic demands of the proposed control strategies

normalized to the seismic demands of the LRB system are given in Table 3.8. As

can be inferred from the tables, the proposed smart base isolation strategies provide

significant reduction to the seismic demands on near-fault structures compared to

fixed base and conventionally isolated structures. As an example of the superstruc-

ture performance, Figures 3.45 and 3.46 show the fifth story drift and the roof total

acceleration response histories, respectively, under the EQ05 (1989 Loma Prieta) for

different control strategies.

In the preceding analyses, the proposed semi-active control strategies showed good
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Figure 3.40: Base acceleration response history for LRB versus MAC under near-
fault EQ05 (1989 Loma Prieta)

Table 3.8: Structural seismic demands normalized to the LRB system under the
near-fault records.

Demand MAC-1 MAC-2 AGC-1 AGC-2 AGC-3 AGC-4

Base Displacement 1.539 1.463 1.893 1.599 1.632 1.219
Base Acceleration 0.357 0.349 0.563 0.566 0.633 0.664
Roof Displacement 0.384 0.372 0.597 0.591 0.667 0.687
Roof Acceleration 0.337 0.331 0.533 0.540 0.603 0.640
1st floor shear 0.412 0.394 0.636 0.622 0.703 0.717
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Figure 3.41: Base acceleration response history for LRB versus AGC under near-
fault EQ05 (1989 Loma Prieta)
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Figure 3.42: Summary of the near-fault roof displacement response relative to the
base slab.
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Figure 3.43: Summary of the near-fault roof total acceleration response.
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Figure 3.44: Summary of the near-fault 1st floor shear response.

improvement to the seismic demands on structures located near active faults. How-

ever, the near-fault ground motions are characterized by long velocity pulses accompa-

nied by large ground displacement. This phenomena leads to limited implementation

of the base isolation systems for the near-fault sites. This is due to the fact that the

isolated structures have relatively long period of vibration that may cause resonance

with the near-fault motions. Large ground displacement increases the possibility

of destabilizing the isolators that may need to be uneconomically large in size to

overcome the large base displacement demand. The proposed control strategies are

developed for variable stiffness base isolation systems employing MR elastomers (Us-

man et al., 2009). Because of the limited range of stiffness variation of such devices,

there was no reduction of the near-fault base displacement demand. But there are

other variable stiffness devices with wider range of stiffening ratio, for instance the

MRE 35% Fe that can provide a stiffening ratio of up to 50 (Winthrop et al., 2005).

Assuming a maximum change of the isolation system stiffness as high as ten

times the base material stiffness, the base displacement demand can be reduced by

up to 35% of the conventional isolation systems by implementing the AGC, without
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Figure 3.45: Fifth story drift response history for LRB versus controlled systems
under near-fault EQ05 (1989 Loma Prieta)
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Figure 3.46: Roof acceleration response history for LRB versus controlled systems
under near-fault EQ05 (1989 Loma Prieta)
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Table 3.9: Superstructure seismic demands normalized to the fixed base structure
under the near-fault records, considering higher stiffening ratio for the isolation sys-
tem.

Demand LRB MAC-3 AGC-5

Roof Displacement 0.220 0.080 0.208
Roof Acceleration 0.210 0.082 0.210
1st floor shear 0.236 0.089 0.218

Table 3.10: Structural seismic demands normalized to the LRB system under the
near-fault records, considering higher stiffening ratio for the isolation system.

Demand MAC-3 AGC-5

Base Displacement 1.437 0.676
Base Acceleration 0.362 0.977
Roof Displacement 0.364 0.948
Roof Acceleration 0.391 1.004
1st floor shear 0.377 0.924

compromising the reduced seismic demands obtained by the conventionally isolated

structures, as shown in Tables 3.9 and 3.10, where MAC-3 and AGC-5 are assumed

with maximum stiffening ratio (αmax = 10). As it can be noticed from the tables,

the effect of increased stiffening ratio is limited on the MAC algorithm behavior.

3.8 Semi-Active Control Based on LQR

Active control theory of structures has been widely implemented in the design of

passive energy dissipation devices, as well as in the design of semi-active control

algorithm (Agrawal and Yang, 1999; Li and Ou, 2006; Li et al., 2008; Usman et al.,

2009). This is achieved by deriving the active control forces then command the

semi-active control device to change its properties (stiffness and/or damping) so that

the desired control force could be achieved. Classical linear optimal control (Soong,

1990) depends on modifying the structural parameters (stiffness and damping) so that
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the structure behaves more favorably when subjected to external seismic excitation.

Consider a base isolated structure with a controllable device located at the isolation

level, as shown in Figure 3.1b. The equation of motion for this structure can be

written as

Mẍ + Cẋ + Kx = −MEgẍg + Ecfc (3.33)

where x, ẋ, and ẍ are the displacement, velocity, and acceleration vectors, relative

to the ground, respectively; M, C, and K are the mass, damping, and stiffness

matrices of the dynamic system; ẍg is the ground acceleration; fc is the control force

developed by the controllable device; Eg is the influence array of the ground motion

on the superstructure DOFs, and Ec is the location matrix of the control force.

Equation 3.33 can be written in state space form as follows

ż = Az + Bfc + Eẍg (3.34)

where z = [xT ẋT ]T is the state vector; and the state matrices A, B, and E are

A =

 0 I

−M−1K −M−1C

 , B =

 0

M−1Ec

 , E =

 0

−Eg

 (3.35)

In the linear quadratic optimal control, the control force fc is chosen to minimize the

performance index, J , which can take the form

J =

∫ ∞
0

[
zTQz + Rf 2

c

]
dt (3.36)

where Q and R are the weighting matrices that define the relative importance between

the state variables and the control force, respectively. By assigning large values for the

matrix Q, the performance is given higher priority than the control force magnitude.
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Table 3.11: Range of the stiffening ratio used for the LQG algorithm.

Control Stiffening Ratio

ID αmin αmax

LQG-1 -0.7 0.7
LQG-2 -0.7 2.0
LQG-3 -0.7 10

In the considered example, the control force, fc, is scalar, as the control force is only

developed at the isolation level, thus R is also a scalar. The linear quadratic regulator

(LQR) control law is

fc = −Gz (3.37)

where G is the control gain that is obtained by solving the matrix Ricatti equation

PA− 1

2
PBR−1BTP + ATP + 2Q = 0 (3.38)

The control gain G can be calculated as

G =
1

2
R−1BTP (3.39)

The control force obtained from Equation 3.37 can then be used to regulate the

variable stiffness of the base isolation system by substituting for the desired control

force into Equation 3.15 in real-time.

The semi-active control algorithm developed according to the LQR control theory

is subjected to the near-fault earthquake records (Table 3.3). The considered isolation

system variable stiffness range is summarized in Table 3.11. Next, the structural

response with the LQR control is compared to the corresponding cases of the MAC

and AGC algorithms.

With stiffening ratio (αmax = 0.7), the LQR algorithm fails to reduce the seismic
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demands on the isolated structure. However, under the same constrains, the MAC

and the AGC successfully reduce the superstructure accelerations and drifts at the

expense of increased base displacement. This can be observed from the statistical

summary shown in Figure 3.47. With a higher stiffening ratio (αmax = 2.0) the LQR-

2 slightly reduces the superstructure accelerations and drifts without compromising

the base displacement of the LRB. The base displacement and base acceleration

response history of the isolated building with the LQR-1 and LQR-2 subjected to

the EQ05 (1989 Loma Prieta) are shown in Figures 3.48 and 3.49, respectively. It

is evident from the figures that a wider stiffening ratio range gives more room for

the controller to develop control forces that are closer to the desired active control

forces. Figure 3.50 clearly shows how the wider range of stiffness helps achieving the

performance of the actively controlled structure. The plots show the desired control

force versus the achieved force for different ranges of stiffening ratio.

As mentioned earlier, if the stiffening ratio of the variable stiffness isolation system

is as high as ten, the AGC-5 successfully reduces the base displacement of the LRB

isolated structure by up to 35%. Comparing the performance of the AGC-5 to the

LQR-3, as shown in Figure 3.51, the LQR-3 slightly reduces both base displacement

and superstructure accelerations and drifts. Yet the AGC-5 outperforms the LQR-3

as it reduces the undesirable large base displacement of the near-fault ground motions

while maintaining the same level of other seismic demands as in the conventionally

isolated structure.

As an illustration for the potential of the AGC-5 to control the base displace-

ment of the near-fault ground motion without compromising the performance of the

conventionally isolated structure, Figure 3.52 shows the base displacement response

history under the EQ01 (1979 Imperial Valley-06 ). Figure 3.53 shows the effect of

this control algorithm on the base acceleration. Significant reduction in the base dis-
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Figure 3.48: Base displacement response history for LRB versus LQR systems under
near-fault EQ05 (1989 Loma Prieta)
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Figure 3.49: Base acceleration response history for LRB versus LQR systems under
near-fault EQ05 (1989 Loma Prieta)
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Figure 3.50: Desired and achieved control forces with different stiffening range
under near-fault EQ05 (1989 Loma Prieta)
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Figure 3.51: Median of the near-fault seismic response for the isolated structure
with stiffening ratio α = 10.
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Figure 3.52: Base displacement response history for AGC-5 system versus LRB
under near-fault EQ01 (1979 Imperial Valley-06)

placement is achieved, while the base acceleration remains at the same level of the

LRB system.

In terms of the superstructure response, Figure 3.54 shows the response history for

the inter-story drift of the 5th story, and Figure 3.55 shows the roof total acceleration

response history under the same earthquake record.



97

0 5 10 15 20 25 30 35 40
-5

0

5

A
c
c
e
le

ra
ti
o
n
 (

m
/s

e
c

2
)

0 5 10 15 20 25 30 35 40
-6

-4

-2

0

2

4

6

Time (sec)

A
c
c
e
le

ra
ti
o
n
 (

m
/s

e
c

2
)

 

 

LRB

AGC-5

(a) Component 1

(b) Component 2

Figure 3.53: Base acceleration response history for AGC-5 system versus LRB under
near-fault EQ01 (1979 Imperial Valley-06)
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Figure 3.54: Fifth story drift response history for AGC-5 system versus LRB under
near-fault EQ01 (1979 Imperial Valley-06)
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Figure 3.55: Roof acceleration response history for AGC-5 system versus LRB under
near-fault EQ01 (1979 Imperial Valley-06)
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3.9 Summary

In this chapter, semi-active control strategies for smart base isolation systems employ-

ing Magneto-Rheological Elastomers (MREs) were developed. The proposed control

algorithms were designed to minimize the superstructure and the substructure accel-

erations. Two semi-active control algorithms were proposed, the Minimal Accelera-

tion Control (MAC) and the Acceleration Gain Control (AGC). Both methods led to

significant reduction of the seismic demands on base isolated structures. Under the ef-

fect of far-field ground motions, the MAC algorithm can reduce the overall structural

accelerations and the superstructure displacements by up to 75% compared to the

seismically isolated structure with conventional lead rubber bearing (LRB) system.

However, up to 30% increase in the base displacement demand is possible. The AGC

on the other hand, provides up to 40% reduction in the seismic demands with only

12% increase in the base displacement, or up to 50% reduction in the seismic demands

with 34% increase in the base displacement. The selection of the acceleration gain,

G, is the responsible parameter for the trade-off between the desired seismic response

reduction and the base displacement. In addition, the AGC has self-centering capa-

bility that leaves no residual displacement in the base slab as in the case with the

MAC algorithm.

For the near-fault excitations, almost the same reduction of the seismic demands

can be achieved. The MAC algorithm provides up to 65% reduction in the overall

structural acceleration as well as the superstructure’s displacements relative to the

LRB system. Up to 46% increase in the base displacement is possible with a tendency

to leave residual displacement in the base slab. However, the increased base displace-

ment demand on near-fault isolated structures is too critical, as the base displacement

demand on near-fault seismically isolated structures is typically high, and may cause

instability of the isolation system. To overcome this issue, a variable stiffness device
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that is capable of providing stiffening ratio of up to ten is needed. Such a device can

achieve up to 33% reduction in the base displacement of the conventionally isolated

structure with the AGC algorithm, without compromising the reduced demands on

the isolated structure, which is within the range of 70% to 80% of the fixed base

case. However, the MRE base isolation system with the current properties of limited

stiffening ratio can achieve up to 34% reduction in the overall structural accelerations

and the superstructure’s displacements with 22% increase in the base displacement.

For a better reduction of the seismic demands on the superstructure, the base

displacements achieved using the proposed control algorithms tend to exceed the

base displacement of the conventionally isolated structure. This makes the proposed

systems more suitable for far-field ground motions (low displacement demands) and

for the isolation of acceleration sensitive structural and non-structural components,

unless isolation systems with higher stiffening ratios are available.
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Chapter 4

Stiffening Bracing System

The conventional design of steel braced frames utilizes bracing systems that are ini-

tially stiff, with the capability of providing energy dissipation once the braces yield in

tension. The stiff bracing systems lead to structures with relatively short period that

experience high floor accelerations under frequent (moderate) earthquakes and wind

loads. Under strong seismic events, these systems are designed to yield to allow en-

ergy dissipation by means of hysteretic behavior of the bracing elements. Structures

located in the vicinity of an active fault are likely to experience high displacement

demands, which may lead to large inter-story drifts, especially for those with bracing

systems that are intentionally designed to yield. The excessive inter-story drift usu-

ally leads to permanent deformations and/or instability issues caused by the P −∆

effect on the columns. Gravity columns, which are subjected to the same lateral de-

formation of the lateral load resisting systems, are more likely to experience serious

damage due to the P −∆ effect.

This chapter presents a design procedure for Stiffening Bracing System (SBS).

This bracing system is designed so that it initially provides a relatively low stiffness

and the stiffness increases once a predefined inter-story drift ratio is reached. The

increase of the bracing stiffness can be achieved by installing elements that are engaged

in the seismic resisting system once a certain displacement is reached. The stiffening
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behavior can also be achieved by using controllable stiffness devices, as discussed in

Section 2.3, or by a combination of both alternatives. However, this chapter focuses

on the design and behavior of the passive stiffening bracing system. The assembly

and details of the devices that are capable of providing this kind of stiffening behavior

are not covered in this dissertation.

The main goal of this design alternative is to provide a relatively flexible braced

frame that would experience low floor accelerations during low seismic events. How-

ever, the system will develop larger stiffness once a desired inter-story drift is reached.

This behavior is believed to limit the increasing inter-story drift, which in turn will

reduce the permanent deformations and the P −∆ effect. In addition, the proposed

design methodology maintains a uniform inter-story drift ratio throughout the build-

ing’s height by introducing an optimization process for the vertical distribution of

stiffness as well as the controlling parameters of the stiffening bracing system.

4.1 Introduction

The presumed stiffening force-displacement relationship for the SBS is shown in Fig-

ure 4.1. This behavior can be achieved by using controllable variable stiffness device

(VSD), such as the semi-active stiffness damper (SASD) or the active variable stiff-

ness (AVS) device (Kobori et al., 1993; Yang et al., 1996; Yang and Agrawal, 1999;

Yang et al., 2000; Nasu et al., 2001; Agrawal et al., 2003) or the semiactive indepen-

dently variable stiffness (SAIVS) device (Nagarajaiah and Mate, 1998; Narasimhan

and Nagarajaiah, 2005; Sahasrabudhe and Nagarajaiah, 2005a; Nagarajaiah and Sa-

hasrabudhe, 2006) that were described and discussed in Section 2.3. Alternatively,

the stiffening behavior can be achieved by mechanically engaging and disengaging

additional elements. Figure 4.2 shows an example of mechanical stiffening bracing

system, where two groups of added damping and stiffness (ADAS) devices are in-
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Figure 4.1: Stiffening brace, Force-Displacement relationship

stalled between the braces and the floor beam. The two ADAS groups are separated

by a slotted hole at the top connecting plate, so that only one group is always engaged

in the lateral force resisting system, while the other group participates in the stiffness

once the deformation exceeds the slotted hole tolerance. Figure 4.3 shows another

example, where a scissors-jack is attached to a moment frame, with the diagonal

member attached to the other members by means of a slotted connection, so that

the stiffness of the scissors-jack brace will only be activated once a desired inter-story

drift is reached.

In the following sections, the design procedure, selection of the SBS parameters,

and the optimal stiffness distribution over the building’s height are illustrated.

4.2 Design Concept of the SBS

The seismic demand on structures depends mainly on the fundamental period of vi-

bration as well as the equivalent damping ratio of the system. A small damping

ratio is inherent in civil structures considering the friction between the structural and
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Figure 4.2: Stiffening bracing system using two groups of ADAS

Figure 4.3: Stiffening bracing system using Scissor Jack brace with slotted connec-
tion
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nonstructural elements, such as the frictional forces developed through the interac-

tion between the partition walls and the structural system during lateral vibrations.

However, larger damping ratios are obtained due to hysteretic energy dissipated by

inelastic deformation of the structural members. Although the inelastic deformation

dissipates large portion of the seismic energy, it may lead to permanent deformation

of the structures. As an alternative, supplemental damping and energy-absorbing

devices are used to dissipate the seismic energy while minimizing the damage to the

main structural system (Soong and Spencer Jr., 2002; Yang et al., 2010; Kim et al.,

2006).

Near-fault ground motions are dominated by a long velocity pulse that develops

pulse type displacement for long period structures (Hall et al., 1995). High spectral

acceleration components are observed in the long period range for the fault-normal

direction (Jangid and Kelly, 2001). However, the near-fault high seismic energy in

the long period range together with improper stiffness distribution may lead to local

damage or soft-story failure mechanism (Mohammadi et al., 2004). As an attempt to

resolve this issue, the proposed system is designed so that it provides initially a rela-

tively long period structure but with an optimized stiffness and damping distribution.

The stiffness optimization takes into account the effect of higher modes on the overall

deformation of the structure. Thus, it is possible to achieve a more uniform inter-

story drift ratio over the building’s height, which results in a more uniform seismic

demand distribution and avoids local floor damage and soft-story failure mechanism.

Furthermore, the reduction that could be achieved in floor accelerations reduces the

internal stresses on the structural elements and hence allows for an economical de-

sign. With the initially soft structure, the lateral deformations are expected to be

large, however, the SBS is presumed to stiffen up at a desired inter-story drift ratio to

limit the excessive lateral deformations. In addition, supplemental viscous damping
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devices are distributed over the floors for the same reason.

The design concept of the proposed stiffening bracing system can be summarized

as follows:

• Relatively long period structure subjected to lower seismic forces than conven-

tional braced frames or moment frames.

• Variable stiffness characteristic that reduces the probability of resonance with

the ground excitation, and limits excessive deformations.

• Performance based design to achieve uniform inter-story drift ratio that reduces

the chance of local story damage and nonlinear deformation.

• Low floor accelerations that reduces the seismic demand on nonstructural and

internal contents of the building, in addition to cost effective design.

Reinhorn et al. (2005) and Viti et al. (2006) proposed a strength reduction pro-

cedure for retrofitting of an existing hospital with similar objectives. The method

relies on reducing the strength of the existing structure (weakening) that would re-

sult in reduced acceleration demands. However, the strength reduction leads to an

increase in the structural deformations. Therefore, supplemental damping devices are

used in conjunction with the weakened structure to maintain the deformations within

acceptable range. The weakening of the structure is achieved by removing some of

the lateral force resisting elements, such as shear walls, bracing members, etc., or

by reducing the moment capacity of some of the moment connections. A schematic

representation of the weakening and damping procedure is shown in Figure 4.4. The

figure shows the demand-capacity curves of a typical yielding structure, designated

”Original”. The performance point of the original structure is defined as the inter-

secting point between the capacity curve and the inelastic spectral demand curve

(point 1). Applying the weakening concept to the original structure, the capacity
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Figure 4.4: Schematic representation of the weakening and damping procedure

of the structure reduces, leading to the capacity curve designated ”Weakened”. The

performance point of the weakened structure (point 2) shows that the resulting weak

system experiences less acceleration demand but at the expense of increased displace-

ment. With the addition of viscous damping devices, the demand curve reduces to

the damped inelastic spectral demand curve, leading to performance point 3, which

shows that both acceleration and displacement demands on the new structure are

reduced.

In order to calculate the amount of weakening and added damping, Lavan et al.

(2008) developed a noniterative procedure to optimize the parameters involved in

the weakened system, such as the amount and location of weakened elements and

damping devices. The procedure depends on developing a nonlinear active control

using the theory of sliding mode control. Once the active control forces are obtained,

they can be translated to an equivalent passive system by applying the appropriate

amount of weakening to the structural elements and determining the required added

damping. The location and magnitude of the weakening and damping are selected so

that the error between the forces acting on each degree of freedom in the two systems

(the actively controlled and the weakened and damped systems) is minimized.
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Figure 4.5: Schematic representation of the stiffening bracing system

In contrast to the weakening and damping procedure, the proposed stiffening sys-

tem provides relatively flexible structure, compared to the regular yielding system.

This flexible structure will experience reduced acceleration demands, as shown by

point 2 on the schematic representation of the SBS shown in Figure 4.5. However,

the reduced acceleration demands will be accompanied by increased displacement

demands. Therefore, additional damping is needed to control the increased displace-

ment to an acceptable limit. Thus, the performance point can be dragged form point

2 to point 3 on the capacity-demand curves shown in the figure. The design procedure

is based on an optimized distribution for the stiffening and damping so that uniform

inter-story drift is achieved throughout the building’s height. The performance point

of the final structure (point 3) is not necessarily experiencing less displacement de-

mand as this point is set to the maximum allowable displacement, which ensures

reduced acceleration demands and satisfies the system stability.

The proposed stiffening procedure is not only implementable for design of new

structures, but also for retrofit of existing structures. This can be done by introducing

the weakening technique to the existing structure, so that the retrofitted structure

relies mainly on the added stiffening bracing system for its lateral force resisting
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capacity.

4.3 Optimization Process for the SBS

The first step of the optimization process is to define the site design response spectra

that would be used with the equivalent lateral force procedure described in ASCE 7-10

(ASCE, 2010). Because no significant yielding is expected in the proposed procedure,

the response modification coefficient is taken as, R = 1. The story shear is then

calculated based on the known lateral force distribution. This story shear is used

to specify the initial stiffness of the bracing system, k1, by selecting a hypothetical

inter-story drift value, d1, as shown in Figure 4.6. However, d1 should be selected

so that the resulting stiffening ratio, α, per floor remains a practical value and the

stiffness of the system does not change drastically. Sudden sharp change in the brace

stiffness may lead to an amplified floor accelerations. Therefore, it is suggested that

d1 be assumed within the range of twice the maximum inter-story drift, ∆max. The

initial stiffness per floor, kx1, for the SBS is given by

kx1 =
Vx
dx1

(4.1)

where the subscript x refers to the xth floor.

By defining the initial stiffness per floor, a modal analysis is then performed and

the story drift ratios, D
(i)
xj , for the xth floor due to the jth mode in the ith iteration are

evaluated. The maximum expected story drift ratios, Di
x, are then estimated based

on the square-root-of-the-sum-of-squares (SRSS) for the dominant modes, as follows

D(i)
x =

√√√√ n∑
j=1

D2
xj

(4.2)
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Figure 4.6: Parameters definition for a typical stiffening brace

The stiffening ratio per floor, α
(i)
x , can now be updated for the next iteration as

α(i+1)
x = α(i)

x

D
(i)
x

Dmax

(4.3)

where Dmax is the maximum allowable drift ratio as defined by ASCE 7-10. The

effective stiffness for the SBS per floor can be calculated and updated for the (i+ 1)

step as

k(i+1)
xeff

=
kx1∆x1 + α

(i+1)
x kx1(∆max −∆x1)

∆max

(4.4)

where the displacement ∆1 is defined as the displacement where the brace starts to

stiffen, Figure 4.6. In this dissertation, ∆1 is assumed to be (0.25 to 0.3)∆max.

With the newly defined effective stiffness, the entire process is repeated based

on the updated stiffness until convergence with the maximum allowable drift ratio,

Dmax, for all floors is achieved.

After the convergence is reached, a pushover analysis is performed on the structure,

and the performance point (the intersection between the capacity and demand curves)

is observed. This performance point also defines the effective period of the structure,
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Figure 4.7: Flowchart for the SBS parameters optimization



113

which is then used to update the equivalent lateral force at the beginning of the

optimization process. Figure 4.7 shows a flowchart for the optimization process.

It should be pointed out here that the stiffness optimization process depends on

determining an effective story stiffness that can be achieved with the bilinear behavior.

If a linear elastic brace is used, the same effect can be achieved. However, linear elastic

brace might be impractical. The stiffening bilinear behavior is suggested here as it

is possible to achieve this behavior through variety of variable stiffness devices, as

discussed earlier.

4.4 Damping Distribution

In the preceding section, the stiffness optimization is based on a desired performance

that defines a damped response spectra which is given by scaling the elastic response

spectra (5% damped) by the demand reduction factor specified by the ATC-40 (1996)

as

SRA =
3.21− 0.68 ln(ζeff )

2.12
(4.5a)

SRV =
2.31− 0.41 ln(ζeff )

1.65
(4.5b)

where SRA and SRV are the spectral reduction factor for the constant acceleration

and constant velocity regions in the linear elastic design response spectra, respectively,

and ζeff represents the effective or equivalent damping ratio in the system that can

be defined as

ζeff = ζ0 + ζhy + ζd (4.6)

where ζ0 is the inherent damping, ζhy and ζd represent the effective hysteretic damping

and the damping provided by supplemental damping devices, respectively. In the
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current study, the main system is assumed to remain in the elastic range (ζhy = 0),

and the required added damping is assumed to be provided by viscous dampers.

The following paragraph describes the procedure used to define the viscous damping

coefficients per floor to assist achieving the desired performance. Although most

of the supplemental energy dissipating devices are nonlinear velocity-dependent, it

is assumed here that the used dampers are linear velocity-dependent. However, it

is possible to transfer the damping coefficient of the linear viscous damper to its

nonlinear counterpart using the equivalent power consumption approach proposed by

Pekcan et al. (1999), or other methods.

The device damping coefficient per floor should be defined so that the desired

added damping ratio (ζd) is achieved. The added damping that needs to be supple-

mented by the dampers can be obtained from the desired equivalent viscous damping

ratio defined in Section 4.3 after subtracting the inherent damping in the system (ζ0).

In order to find the damping device viscous damping coefficient per floor, the

nonlinear static procedure as per FEMA (1997) is used. The equivalent damping

supplemented by the energy dissipation devices can be calculated as (Chopra, 1995;

FEMA, 1997)

ζd =
ED

4πEs
(4.7)

where ED is the energy dissipated by the energy dissipation devices, and Es is the

strain energy stored in the building. At the predefined performance level, these

energies can be calculated as (FEMA, 1997; Kim et al., 2003)
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ED =
2π2

T

∑
j

cj cos2 θj(∆i −∆i−1)2 (4.8a)

Es =
2π2

T 2

∑
i

mi∆
2
i (4.8b)

where cj is the damping coefficient of the jth damper, θj is the jth damper inclina-

tion angle, ∆i is the maximum desired displacement of the ith floor relative to the

ground, as shown in Figure 4.8, T is the effective period of the structure at the de-

sired performance, and mi is the ith floor mass. Substituting from Equation 4.8 into

Equation 4.7, the added damping provided by the supplemental energy dissipation

devices can be calculated as

ζd =
T
∑

j cj cos2 θj(∆i −∆i−1)2

4π
∑

imi∆2
i

(4.9)

With the desired added damping ratio, ζd, the sum of the damping coefficients

(
∑

j cj) can be calculated from Equation 4.9 and then equally distributed per floor

devices, as will be done through the following analyses.

4.5 Implementation of the SBS

To illustrate the effectiveness of the proposed stiffening bracing system (SBS) in

seismic mitigation of far-field and near-fault structures, the Los Angles benchmark

buildings designed for the SAC joint venture are used (FEMA, 2000). The buildings

have been redesigned with the SBS being the lateral force resisting system in lieu of the

special moment resisting frames. For performance assessment, the same benchmark

structures were also designed with buckling restrained braced frames (BRBF).
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Figure 4.8: Deformed Chevron braced frame with viscous damping devices

4.6 Ground Motions and Scaling

The design response spectra originally used for the design of the SAC buildings were

adopted for the design of the SBS and BRBF systems. The site mapped spectral

acceleration for the short period and 1-second period are (SS = 1.65g), and (S1 =

0.64g) respectively. The ground motion sets for the 10% probability of being exceeded

in 50 years (return period of 475 years) designated (10/50) and the 2% probability of

being exceeded in 50 years (return period of 2475 years) designated (2/50) are used for

the response history analyses of the two systems. Unscaled 10/50 records set is used to

examine the structures under the effect of the design earthquake, as the median of the

5% damped elastic response spectra was found to be matching the design response

spectra, as shown in Figure 4.9. However, the 2/50 records set, which is used to

investigate the behavior of the SBS under the effect of the maximum considered
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Figure 4.9: Median of the 5% damped elastic response spectra of the 10/50 ground
motion records and design spectrum

earthquake, was scaled so that the median of the square root of the sum of squares

(SRSS) spectrum, constructed for each pair of the ground motions by taking the SRSS

of the 5% damped response spectra of the scaled components, does not fall below 1.4

times the design spectrum in the range of the period of interest. This period range is

considered 0.2T to 1.5T (ASCE, 2010), where T is the fundamental period of vibration

of the structure. Because the scaled ground motions used by Gupta and Krawinkler

(1999); FEMA (2000) were found to be exceeding the considered maximum response

spectra, only the ground motion records were used with the scaling described above.

The median of the SSRS of the 5% damped elastic response spectra constructed for

each pair of the scaled 2/50 ground motion records is shown in Figure 4.10. The

characteristics of the 10/50 and 2/50 ground motion sets and scale factors used for

the nonlinear response history analyses are given in Tables 4.1 and 4.2, respectively.

These ground motion sets are rich with near-fault and far-field records, however the

individual component of each record is rotated to 45 deg to the fault trace to minimize

the effect of directivity (FEMA, 2000).
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Table 4.1: Details of the 10/50 ground motion records (FEMA, 2000).

Record Record Duration Magnitude R PGA
ID Name (sec) (Mw) (km) (in/sec2)

LA01 Imperial Valley, 1940 39.38 6.9 10.0 178.0
LA02 Imperial Valley, 1940 39.38 6.9 10.0 261.0
LA03 Imperial Valley, 1979 39.38 6.5 4.10 152.0
LA04 Imperial Valley, 1979 39.38 6.5 4.10 188.4
LA05 Imperial Valley, 1979 39.08 6.5 1.20 116.4
LA06 Imperial Valley, 1979 39.08 6.5 1.20 90.60
LA07 Landers, 1992 79.98 7.3 36.0 162.6
LA08 Landers, 1992 79.98 7.3 36.0 164.4
LA09 Landers, 1992 79.98 7.3 25.0 200.7
LA10 Landers, 1992 79.98 7.3 25.0 139.1
LA11 Loma Prieta, 1989 39.98 7.0 12.4 256.9
LA12 Loma Prieta, 1989 39.98 7.0 12.4 374.4
LA13 Northridge, 1994, Newhall 59.98 6.7 6.70 261.8
LA14 Northridge, 1994, Newhall 59.98 6.7 6.70 253.7
LA15 Northridge, 1994, Rinaldi 14.95 6.7 7.50 206.0
LA16 Northridge, 1994, Rinaldi 14.95 6.7 7.50 223.9
LA17 Northridge, 1994, Sylmar 59.98 6.7 6.40 219.9
LA18 Northridge, 1994, Sylmar 59.98 6.7 6.40 315.5
LA19 North Palm Springs, 1986 59.98 6.0 6.70 393.5
LA20 North Palm Springs, 1986 59.98 6.0 6.70 380.9
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Figure 4.10: Median of the SSRS of the 5% damped elastic response spectra con-
structed for each pair of the scaled 2/50 ground motion records
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Table 4.2: Details of the 2/50 ground motion records and scaling (FEMA, 2000).

Record Record Duration Magnitude R PGA
Scale

ID Name (sec) (Mw) (km) (in/sec2)

LA21 Kobe, 1995 59.98 6.9 3.40 495.3 0.72
LA22 Kobe, 1995 59.98 6.9 3.40 355.4 0.72
LA23 Loma Prieta, 1989 24.99 7.0 3.50 161.4 0.69
LA24 Loma Prieta, 1989 24.99 7.0 3.50 182.6 0.69
LA25 Northridge, 1994 14.95 6.7 7.50 335.3 0.95
LA26 Northridge, 1994 14.95 6.7 7.50 364.3 0.95
LA27 Northridge, 1994 59.98 6.7 6.40 357.8 1.20
LA28 Northridge, 1994 59.98 6.7 6.40 513.4 1.20
LA29 Tabas, 1974 49.98 7.4 1.20 312.4 0.90
LA30 Tabas, 1974 49.98 7.4 1.20 382.9 0.90
LA31 Elysian Park, simulated 29.99 7.1 17.5 500.5 0.85
LA32 Elysian Park, simulated 29.99 7.1 17.5 458.1 0.85
LA33 Elysian Park, simulated 29.99 7.1 10.7 302.1 0.43
LA34 Elysian Park, simulated 29.99 7.1 10.7 262.8 0.43
LA35 Elysian Park, simulated 29.99 7.1 11.2 383.1 0.35
LA36 Elysian Park, simulated 29.99 7.1 11.2 424.9 0.35
LA37 Palos Verdes, simulated 59.98 7.1 1.50 274.7 0.48
LA38 Palos Verdes, simulated 59.98 7.1 1.50 299.7 0.48
LA39 Palos Verdes, simulated 59.98 7.1 1.50 193.1 0.55
LA40 Palos Verdes, simulated 59.98 7.1 1.50 241.4 0.55

4.7 LA 3-story Building

The design of the BRBF as well as the SBS is based initially on the equivalent lat-

eral force procedure as per ASCE 7-10 (ASCE, 2010). The response modification

coefficient, R, is taken as eight for the case of BRBF and unity for the SBS. The

distribution of the viscous damping devices for the structure with the SBS was de-

termined such that the effective damping ratio of the structure is 10%. The layout

of the Los Angeles 3-story office building is shown in Figure 4.11. The analyses of

the braced frame systems is conducted for the north-south direction and the exter-

nal bays are chosen to be Chevron braced bays as shown in the figure. The seismic

mass per braced frame is taken as half of the building’s total mass, which is given by

FEMA-355C (FEMA, 2000) as shown in Table 4.3.
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Figure 4.11: Layout of the Los Angeles 3-story braced frame building

Table 4.3: Total floor mass for the 3-story office building.

Floor Total Mass
Level (kips.sec2/ft)

Roof 70.90
Floors 2 & 3 65.53
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4.7.1 Design of LA 3-story Building with SBS

The preliminary design of the stiffening bracing system is based on the equivalent

lateral force procedure as per ASCE (2010). However, the approximate period (Ta)

is not involved in the proposed procedure, as the target performance point with a

particular period (T ) is assumed. The equivalent lateral force as well as the de-

sired effective viscous damping ratio (ζeff ) are determined based on this period. For

the design of the LA 3-story building, the structural period is initially assumed as

(Tinitial = 1.50sec) and the effective damping ratio is (ζeff = 10%). Based on the

assumed damping ratio, the demand reduction factors for the constant acceleration

(SRA) and constant velocity (SRV ) regions are given by (ATC-40, 1996)

SRA =
3.21− 0.68 ln(ζeff )

2.12
= 0.776 (4.10a)

SRV =
2.31− 0.41 ln(ζeff )

1.65
= 0.828 (4.10b)

Therefore, the reduced maximum considered earthquake spectral response accelera-

tions for short period (SMS) and for 1-sec period (SM1) become as follows (ASCE,

2010)

SMS = Fa(SRASS) = (1.0)(0.776)(1.650g) = 1.280g (4.11a)

SM1 = Fv(SRV S1) = (1.5)(0.776)(0.638g) = 0.792g (4.11b)

and the design response accelerations at short and 1-sec periods become

SDS =
2

3
SMS = 0.853g (4.12a)

SD1 =
2

3
SM1 = 0.528g (4.12b)
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4.7.2 Seismic Base Shear

With response modification coefficient (R = 1), importance factor (I = 1), and the

initially assumed structural period (T = 1.50sec), the seismic response coefficient,

Cs, is calculated as

Cs =
SDS
R/I

= 0.853g (4.13)

the seismic response coefficient should not exceed

Cs =
SD1

(R/I)T
=

0.528g

(1/1)1.5
= 0.352g (4.14)

note that the seismic response coefficient should not be less than the maximum of the

following

Cs = 0.044SDSI = 0.038g (4.15a)

Cs =
0.5S1

R/I
= 0.264g (4.15b)

Thus the seismic response coefficient, Cs, is governed by Equation 4.14, and the

seismic base shear, V , becomes

V = CsW (4.16)

where W is the effective seismic weight of the structure.
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Table 4.4: Vertical distribution of shear for the LA 3-story building.

Level
wx

∑
w hx wxh

k
x wxh

k
x/(wxh

k
x)

Fx Vx
(kips) (kips) (ft) (kip− ft) (kips) (kips)

Roof 2283 2283 39 556036 0.595 1362
3 2110 4393 26 279732 0.299 685 1362
2 2110 6503 13 98900 0.106 242 2047
1 2290

Total 6503 934668 2290

4.7.3 Vertical Distribution of Seismic Forces

The seismic base shear, V , is distributed as a lateral force per floor (Fx) which is

given by

Fx = CvxV (4.17a)

Cvx =
wxh

k
x∑n

i=1wih
k
i

(4.17b)

where Cvx is the vertical distribution factor, wx is the effective seismic weight of xth

floor, hx is the level of floor xth measured from the base of the structure, and k is an

exponent related to the structure period so that for structures with a period of 0.5sec

or less, k = 1, and for structures with period of 2.5sec or more, k = 2. For other

periods, k is determined by linear interpolation. For the structure analyzed herein,

the exponent k is calculated as

k = 1 +
1.5− 0.5

2
= 1.50

The typical floor height of the LA 3-story benchmark building is (h = 13ft), as shown

in Figure 4.11, the vertical distribution of shear is as given in Table 4.4.

Considering the accidental torsional moment, the lateral floor forces and floor

shear per braced frame are adjusted as shown in Table 4.5.
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Table 4.5: Braced frame shear forces for the LA 3-story building.

Level Story force Story shear Frame force Frame shear
Fx (kips) Vx (kips) Fx,f (kips) Vx,f (kips)

Roof 1362 731
3 685 1362 368 731
2 242 2047 130 1099
1 2290 1229

Figure 4.12: Lateral force distribution on the LA 3-story building.

4.7.4 Stiffening Bracing System Properties

4.7.4.1 Brace Initial Stiffness

The initial stiffness per floor for the SBS is calculated so that d1 corresponds to an

assumed drift ratio of 4% (see Figure 4.6). The initial stiffness distribution for the SBS

is calculated from Equation 4.1. Assuming four identical braces per braced frame, as

shown in Figure 4.12, the individual brace initial stiffness, kx1 , can be calculated as

kx1 =
Vx,f

nbd1 cos2(θbx)
(4.18)

where Vx,f is the braced frame shear force at floor x, nb is the number of braces per

braced frame, d1 is the assumed inter-story drift, and θbx is the brace angle with

respect to horizontal. A summary of the individual brace stiffness per braced frame

is given in Table 4.6.
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Table 4.6: Initial stiffness distribution of the SBS for the LA 3-story building.

Floor
Height (hx) Brace Angle Story shear Brace Initial Stiff.

(in) θbx (rad) (kips) kx1 (k/in)

3 156 0.714 731 51.3
2 156 0.714 1099 77.1
1 156 0.714 1229 86.2

4.7.4.2 Brace Stiffening Ratios

The floor braces’ stiffening ratios are calculated through the iterative process so that

uniform inter-story drift ratio of 2% is achieve. This is done by calculating the mass

and the effective stiffness matrices of the braced frame, then calculating the maximum

expected inter-story drift that is obtained from the modal properties of the structure,

as described in Section 4.3. The system matrices as well as the optimization process

for the selection of the floor brace stiffening ratio, αx, are performed using MATLAB

(2013). In the calculation of the braced frame stiffness matrix, the floors are consid-

ered as rigid diaphragm, while the columns flexibility are taken into consideration.

The degrees of freedom for the chevron braced bay are as shown in Figure 4.13.

With the parameters set forth, together with the stiffening ratio per floor, αx, a

nonlinear static pushover analysis is carried out on the final structure and the demand

capacity curves are obtained (Freeman, 1998), as shown in Figure 4.14. From the

figure, the performance point of Iteration 01 falls beyond the target performance

point (intersection between 10% damped demand curve and the targeted spectral

displacement), therefore, the fundamental period of the structure should be updated

to a shorter period. Thus, the period of the structure is updated to (T = 1.42sec).

The effective period of the structure is calculated from the demand capacity curves

as

Teff = 2π

√
Sd
Sa

(4.19)
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Figure 4.13: Degrees of freedom considered for the braced bay.
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Figure 4.15: Design steps for the 3-story braced frame stiffening ratio optimization.

With the updated period, the analysis starts over from the base shear calculation

described in Section 4.7.2. As shown in Figure 4.14, the performance point of the

updated structure (Iteration 02 ) has converged to the desired performance point with

an acceptable tolerance, and hence the analysis stops. The optimization steps for the

selection of the stiffening ratios during Iteration 02 (final iteration) and the final

stiffening ratios per floor, αx, are shown in Figure 4.15.
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Table 4.7: Properties of the SBS used with the 3-story building.

Floor
∆1/hx θbx kx1 αx

cx
(%) (rad) (k/in) (k.s/in)

3 0.50 0.714 53.7 1.70 4.25
2 0.50 0.714 81.1 1.60 4.25
1 0.50 0.714 91.1 1.90 4.25

4.7.4.3 Distribution of Viscous Damping Devices

After setting all the stiffness parameters of the SBS, viscous damping devices are

needed to be designed and distributed over the building height. These devices should

provide the structure with the desired viscous damping ratio that the design of the

SBS is based on. As mentioned earlier, the desired damping ratio for the system was

set to 10%. It is assumed that the structure possesses 2% inherent damping ratio, and

the viscous damping devices need to add the remaining 8% damping. Substituting

into Equation 4.9 and assuming identical viscous damping devices placed parallel to

each brace, the typical viscous damping coefficient is found to be (cj = 4.25k.sec/in).

The final properties of the SBS for the 3-story building are shown in Table 4.7.

To ensure that the distributed damping devices indeed provide the desired effective

damping to the system, a free vibration analysis is carried out. A short period pulse

excitation is applied at the base of the structure and the roof displacement response

history is observed, as shown in Figure 4.16. The effective damping ratio of the

structure can be calculated from the decaying roof displacement as follows

ζ =
1

2πj
ln

(
ui
ui+j

)
(4.20)

where j is the number of considered cycles of vibration, ui is the peak displacement at

cycle i, and ui+j is the peak displacement after j cycles from i. From Figure 4.16 and

Equation 4.20, the effective damping ratio of the structure is found to be (ζeff ' 10%),



129

0 2 4 6 8 10
-15

-10

-5

0

5

10

15

Time(sec)

D
is

p
la

c
e
m

e
n
t 
(i
n
)

Figure 4.16: Decay of the 3-story building roof displacement response history under
free vibration.

which matches the desired value.

4.8 LA 9-story Building

In this section, the implementation of the SBS in the Los Angeles 9-story benchmark

building is presented (FEMA, 2000). The benchmark building was redesigned once

as buckling restrained braced frame (BRBF) and with the proposed stiffening bracing

system (SBS). As mentioned earlier, the response modification factor, R, is taken as

eight for the case of BRBF and unity for the SBS. The distribution of the viscous

damping devices has been determined to achieve an effective damping ratio of 10%.

The layout of the Los Angeles 9-story office building with the moment resisting frame

being replaced by the proposed braced frame is shown in Figure 4.17. The analyses

of the braced frame systems is conducted for the north-south direction. Two inter-

mediate bays are chosen to be Chevron type braced bays, as shown in the figure. The

seismic mass per braced frame is taken as half of the building’s total mass, which is
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Table 4.8: Total floor mass for the 9-story office building.

Floor Total Mass
Level (kips.sec2/ft)

Roof 73.10
Floors 9 to 3 67.86
Floor 2 69.04

given by FEMA-355C (FEMA, 2000) as shown in Table 4.8.

4.8.1 Design of LA 9-story Building with SBS

As mentioned in the design of the 3-story building with the SBS, the initial step is to

assume a performance point on the demand-capacity curves and find the correspond-

ing structural period of vibration. In this section, only the final iteration results are

presented. The effective damping ratio is assumed (ζeff = 10%). In the last itera-

tion, the structural period of vibration was found to be (T = 3.90sec). This period

together with the assumed viscous damping ratio are used to calculate the seismic

base shear and the equivalent lateral force distribution.

With response modification coefficient (R = 1), importance factor (I = 1), and

structural period (T = 3.90sec), the seismic response coefficient (Cs) is governed by

the lower bound as follows

Cs =
0.5S1

(R/I)
=

0.5× 0.528g

(1/1)
= 0.264g

As the structure period is more than 2.5sec, the exponent k is taken as (k = 2.0).

The final vertical distribution of seismic forces is given in Table 4.9. Considering the

accidental torsional moment, the lateral floor forces and floor shear per braced frame

become as shown in Table 4.10.

A summary of the individual brace stiffness per braced frame is given in Table 4.11.
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Figure 4.17: Layout of the Los Angeles 9-story braced frame building
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Table 4.9: Vertical distribution of shear for the LA 9-story building.

Level
wx

∑
w hx wxh

k
x wxh

k
x/(wxh

k
x)

Fx Vx
(kips) (kips) (ft) (kip− ft) (kips) (kips)

Roof 2354 2354 122 35036936 0.289 1519
9 2185 4539 109 25959985 0.214 1126 1519
8 2185 6724 96 20136960 0.166 873 2645
7 2185 8909 83 15052465 0.124 653 3518
6 2185 11094 70 10706500 0.088 464 4170
5 2185 13279 57 7099065 0.059 308 4634
4 2185 15464 44 4230160 0.035 183 4942
3 2185 17649 31 2099785 0.017 91 5126
2 2223 19872 18 720252 0.006 31 5217
1 5248

Total 19872 121042108 5248

Table 4.10: Braced frame shear forces for the LA 9-story building.

Level Story force Story shear Frame force Frame shear
Fx (kips) Vx (kips) Fx,f (kips) Vx,f (kips)

Roof 1519 397
9 1126 1519 294 397
8 873 2645 228 691
7 653 3518 170 918
6 464 4170 121 1089
5 308 4634 80 1210
4 183 4942 48 1290
3 91 5126 24 1338
2 31 5217 8 1362
1 5248 1370
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Table 4.11: Initial stiffness distribution of the SBS for the LA 9-story building.

Floor
Height (hx) Brace Angle Story shear Brace Initial Stiff.

(in) θbx (rad) (kips) kx1 (k/in)

9 156 0.714 397 27.8
8 156 0.714 691 48.4
7 156 0.714 918 64.4
6 156 0.714 1089 76.4
5 156 0.714 1210 84.9
4 156 0.714 1290 90.5
3 156 0.714 1338 93.9
2 156 0.714 1362 95.6
1 216 0.876 1370 96.7
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Figure 4.18: Design steps for the 9-story braced frame stiffening ratio optimization.

A 2% target inter-story drift ratio is chosen as the desired performance of the 9-story

building employing the proposed SBS. Based on this assumption, the iterative process

illustrated in Section 4.3 results in the braces stiffening ratios shown in Figure 4.18.

The nonlinear static pushover analysis conducted for the 9-story building with the

optimized parameters is shown in Figure 4.19. The capacity curve intersects the 10%

damped demand curve at an effective period of 3.9sec as initially assumed.

As in the case of the 3-story building, the 9-story building is assumed to have

2% inherent damping, and the desired addition damping is being provided by means
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Figure 4.19: Capacity demand curves of the 9-story building with the final param-
eters of the SBS.

of viscous damping devices, designed and distributed as before. The dampers are

installed in parallel with the braces. Based on the desired performance and the

required added damping (ζd = 8%), Equation 4.9 leads to a typical viscous damping

coefficient of (cj = 10.5k.sec/in). However, the free vibration analysis showed that

this value needs to be increased to achieve the desired damping level. The damping

coefficient used for this building is (cj = 13k.sec/in). The final properties of the SBS

for the 9-story building are shown in Table 4.12.

4.9 Performance Assessment of the SBS

In the following subsections, the performance of the 3-story and 9-story buildings

employing the stiffening bracing system is investigated under the effect of design

earthquake (10/50) and the maximum considered earthquake (2/50) as described in

Section 4.6. The nonlinear response history analyses is also carried out for a BRBF

systems and compared to SBS. For this purpose, BRBFs are designed for the average
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Table 4.12: Properties of the SBS used with the 9-story building.

Floor
∆1/hx θbx kx1 αx

cx
(%) (rad) (k/in) (k.s/in)

9 0.50 0.714 27.8 2.30 13.0
8 0.50 0.714 48.4 1.80 13.0
7 0.50 0.714 64.4 1.70 13.0
6 0.50 0.714 76.4 1.70 13.0
5 0.50 0.714 84.9 1.70 13.0
4 0.50 0.714 90.5 1.80 13.0
3 0.50 0.714 93.9 1.80 13.0
2 0.50 0.714 95.6 2.00 13.0
1 0.50 0.876 96.7 2.10 13.0

forces induced by the design level earthquake records.

4.9.1 Performance of the 3-story building

A comparison between the BRBF and SBS systems in terms of the pushover capacity

according to the first mode of vibration is shown in Figure 4.20. The peak inter-story

drift angles and the peak floor accelerations for the structure with the SBS under the

effect of the design earthquakes (10/50) are shown in Figure 4.21. The median, which

is defined as the exponential of the average of the natural log values, as well as the

84th percentile, defined as the median times the exponent of the standard deviation

of the natural logs, are overlaid on the figure. The median and 84th percentile are

calculated according to Equation 3.32, which is repeated here for convenience

x̂ = e
1
n

∑n
i=1 lnxi (4.21a)

δ =

√∑n
i=1(lnxi − ln x̂)2

n− 1
(4.21b)

84th percentile = x̂eδ (4.21c)
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As can be seen from Figure 4.21, the proposed stiffening bracing system is capable

of achieving the desired uniform inter-story drift for the structure with an acceptable

accuracy around the 2% target inter-story drift angle. Note that it is allowed for the

average maximum inter-story drift ratios obtained through nonlinear response history

analysis to exceed the target by 25% as per ASCE 7-10. In comparison to the BRBF,

Figure 4.22 shows the median and the 84th percentile of the peak floor drift angles

and accelerations. It is clear that the proposed system significantly reduced the floor

acceleration demands, whereas the roof acceleration was slightly increased. On the

other hand, the figure indicates that the BRBF experiences less inter-story drift than

the SBS. However, permanent story drift was observed under most of the considered

design earthquakes set (10/50), while none of these motions resulted in any yielding

to the structure with the SBS. Figure 4.23 shows the response history of the floor drift

angles under the effect of the near-fault LA04 (1979 Imperial Valley), with a distance

of 4.1km to the fault. It can be seen from the figure that the BRBF experiences

permanent floors yielding, while the proposed system performs as intended without

any yielding of the main frame elements, and successfully maintains the uniform

inter-story drift during the entire duration of the excitation. This behavior can also

be recognized by examining Figure 4.24 which shows the story shear forces versus

inter-story drift under the same excitation.

Under the effect of the maximum considered earthquake (2/50), the target per-

formance of uniform inter-story drift distribution remains unaltered for the structure

with the SBS, as observed from Figure 4.25, where the system successfully maintains

the uniform inter-story drift distribution under most of the considered excitations. A

comparison between the median and the 84th percentile of the peak inter-story drift

angles and the peak floor accelerations for the two considered systems is shown in Fig-

ure 4.26. It is evident that the target response of the proposed SBS is still achievable
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Figure 4.20: Capacity-demand curves for the LA 3-story building

under the effect of higher seismic demand, however the response is accordingly scaled.

The permanent floor drifts that are observed for the BRBF do not occur for the SBS

under most of the considered excitations. Figures 4.27 and 4.28 show an example

of the systems performance under the effect of the LA22 (1995 Kobe) 3.4km away

from the fault. It should be mentioned here that the BRBF analyses under LA27 and

LA28 indicated near collapse condition and their responses were eliminated for both

systems. Other response quantities are shown in Appendix D.

4.9.2 Performance of the 9-story building

The capacity demand curves obtained from the pushover analysis with lateral forces

according to the first mode of vibration of the 9-story buildings are shown in Fig-

ure 4.29. The peak inter-story drift angles and the peak floor accelerations for the

structure with the SBS under the effect of the design earthquakes (10/50) are shown

in Figure 4.30. As can be seen from the figure, the proposed stiffening bracing system
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Figure 4.22: Median and 84th percentile of the peak floor drift angles and accel-
erations for the LA 3-story building with different bracing systems under the 10/50
ground motions set



140

0 5 10 15 20 25 30 35 40
-0.02

-0.01

0

0.01

0.02

Time (sec.)

D
ri
ft
 A

n
g
le

0 5 10 15 20 25 30 35 40
-0.02

-0.01

0

0.01

0.02

Time (sec.)

D
ri
ft
 A

n
g
le

(SBS)

(BRBF)

Figure 4.23: Inter-story drift angle response history under LA04 (Imperial Valley,
1979)



141

-3 -2 -1 0 1 2 3
-1000

-500

0

500

1000
Stiffening bracing system

-3 -2 -1 0 1 2 3
-1000

-500

0

500

1000

S
to

ry
 s

h
e
a
r 

(k
ip

s
)

-3 -2 -1 0 1 2 3
-1000

-500

0

500

1000

Story drift (in)

-3 -2 -1 0 1 2 3
-1000

-500

0

500

1000
Buckling restrained braced frame

-3 -2 -1 0 1 2 3
-1000

-500

0

500

1000

-3 -2 -1 0 1 2 3
-1000

-500

0

500

1000

Story drift (in)

Third floor

Second floor

First floor

Third floor

Second floor

First floor

Figure 4.24: Story shear - interstory drift under LA04 (Imperial Valley, 1979)



142

0 0.02 0.04 0.06 0.08 0.1
1

2

3

Drift Angle

F
lo

o
r 

L
e
v
e
l

SBS response history of the drift angle - (2/50)

 

 

Allowable drift
Event
Median

84
th

 Percentile

0 0.5 1 1.5 2
1

2

3

Floor Acceleration (g)

F
lo

o
r 

L
e
v
e
l

SBS response history of the floors acceleration - (2/50)

 

 

Event
Median

84
th

 Percentile

Figure 4.25: Peak response of the floor drift angles and accelerations under the
2/50 ground motions set
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achieves the desired performance for the 9-story building, as the median of the peak

inter-story drift angles for all floors is around the target drift ratio of the 2%. Fig-

ure 4.31 shows the median and the 84th percentile of the peak floor drift angles and

accelerations for both systems. Clearly, the proposed system significantly reduces the

floor acceleration demands compared to the BRBF. However, the BRBF experiences

less inter-story drift than the SBS due to the high stiffness of the BRBF. In addition,

the BRBF is primarily designed to dissipate energy through yielding. It is therefore

not uncommon to observe permanent story deformations under most of the considered

design earthquakes. The SBS dissipates the seismic energy through implementation

and distribution of passive viscous dampers. Thus, any yielding in the SBS system

would be due to main structural frame yielding, which is not permitted in the pro-

posed methodology. According to the nonlinear response history analyses, none of

the design earthquake motions resulted in any yielding to the structure with the SBS.

Figure 4.32 shows the response history of the floor drift angles under the effect of

LA04 (1979 Imperial Valley), with a distance of 4.1km to the ruptured fault. Un-

der some cases, up to 1% permanent floor deformation is encountered on the BRBF,

which can be avoided with the proposed SBS. From Figure 4.32, it can be noticed

that the target uniform inter-story drift is also achieved generally. A comparison

between the force-displacement characteristics for the considered systems is given in

Figures 4.33 to 4.35 where the stiffening behavior of the SBS is evident.

Under the effect of the maximum considered earthquake (2/50), a slight increase

in the inter-story drift ratio is anticipated. As depicted in Figure 4.36, the target uni-

form inter-story drift is also achieved and remained under the maximum permitted

value, which is 3.0% as per ASCE 7-10. A comparison between the median and the

84th percentile of the peak inter-story drift angles and the peak floor accelerations

for the two systems is shown in Figure 4.37. The figure shows reduced floor accelera-
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Figure 4.29: Capacity-demand curves for the 9-story buildings

tion demands for the structure with the SBS with almost uniform inter-story drifts.

Figure 4.38 shows the response history of the inter-story drift angle under the effect

of selected record, LA31 (Elysian Park). The inter-story drift uniformity for this

record was not evident during the entire duration of the excitation, however after the

15th second, the structure started behaving uniformly as desired. The inter-story dis-

placement inter-story shear relationships for both systems are shown in Figures 4.39

to 4.41 under the effect of the LA31 (Elysian Park) simulated motion with a distance

of 17.5km from the ruptured fault. Appendix D shows more response quantities for

the analyzed structures.
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Figure 4.30: 9-story building, peak response of the floor drift angles and accelera-
tions under the 10/50 ground motions set
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Figure 4.33: 9-story building, story shear - interstory drift for the upper three floors
under LA04 (Imperial Valley, 1979)
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Figure 4.34: 9-story building, story shear - interstory drift for the middle three
floors under LA04 (Imperial Valley, 1979)
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under LA04 (Imperial Valley, 1979)
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Figure 4.36: 9-story building, peak response of the floor drift angles and accelera-
tions under the 2/50 ground motions set
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Figure 4.37: Median and 84th percentile of the peak floor drift angles and acceler-
ations for the 9-story building with different bracing systems under the 2/50 ground
motions set
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Figure 4.38: 9-story building, inter-story drift angle response history under LA31
(Elysian Park, simulated)
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Figure 4.39: 9-story building, story shear - interstory drift for the upper three floors
under LA31 (Elysian Park, simulated)
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Figure 4.40: 9-story building, story shear - interstory drift for the middle three
floors under LA31 (Elysian Park, simulated)
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Figure 4.41: 9-story building, story shear - interstory drift for the lower three floors
under LA31 (Elysian Park, simulated)
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Chapter 5

Effectiveness of SBS for Tall

Buildings

As it was discussed earlier in Chapter 4, the proposed stiffening bracing system re-

lies on softening existing structures when used as a retrofit alternative, and tends to

design for a relatively soft long period structure when used for new design. For the

cases of tall buildings and structures with relatively long fundamental period, the pro-

posed design methodology may not lead to a significant improvement to the system

response compared to conventional methods. This can be inferred by studying a typ-

ical response spectrum as shown in Figure 5.1. For short to medium height buildings,

the SBS design tends to shift the fundamental period of the structure so that the

acceleration demands can be significantly reduced, as the difference between points

1 and 2 indicates. However, for tall buildings that typically have long fundamental

periods, as shown by point 3, the implementation of the SBS leads to a structure

with much longer period. This is shown by point 4 where the effectiveness of reduced

acceleration demands is not essential. In addition, the effect of added damping is not

tangible between points 3 and 4.

In order to investigate the efficacy of the SBS implementation in tall buildings,

the 20-story benchmark building given by FEMA (2000) for the Los Angeles region
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Figure 5.1: Schematic representation for the effect of SBS on different structures

Table 5.1: Total floor mass for the 20-story office building.

Floor Total Mass
Level (kips.sec2/ft)

Roof 40.06
Floors 20 to 3 37.76
Floor 2 38.63

is used. Redesign of the building was carried out with the four SBS braced bays

installed in each direction (2 braced bays per frame) as shown in Figure 5.2. The

seismic mass per braced frame is taken as half of the building’s total mass, which is

summarized in Table 5.1.

5.1 Design of the 20-story Building with SBS

The design of the 20-story building is carried out so that the structure with the

SBS has a fundamental period of vibration after all required iterations of 5.70 sec.

Total effective damping ratio of ζeff = 10%, which is the summation of 2% inherent

damping plus 8% added damping by viscous damping devices, is considered. Based

on these parameters, and response modification factor (R = 1), importance factor
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Figure 5.2: Layout of the 20-story braced frame building
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Table 5.2: Vertical distribution of shear for the 20-story building.

Level
wx

∑
w hx wxh

k
x wxh

k
x/(wxh

k
x)

Fx Vx
(kips) (kips) (ft) (kip− ft) (kips) (kips)

Roof 1290 1290 265 90590250 0.144 929
20 1216 2506 252 77220864 0.123 792 929
19 1216 3722 239 69459136 0.110 712 1721
18 1216 4938 226 62108416 0.099 637 2434
17 1216 6154 213 55168704 0.088 566 3071
16 1216 7370 200 48640000 0.077 499 3636
15 1216 8586 187 42522304 0.068 436 4135
14 1216 9802 174 36815616 0.059 378 4571
13 1216 11018 161 31519936 0.050 323 4949
12 1216 12234 148 26635264 0.042 273 5272
11 1216 13450 135 22161600 0.035 227 5546
10 1216 14666 122 18098944 0.029 186 5773
9 1216 15882 109 14447296 0.023 148 5958
8 1216 17098 96 11206656 0.018 115 6107
7 1216 18314 83 8377024 0.013 86 6222
6 1216 19530 70 5958400 0.009 61 6308
5 1216 20746 57 3950784 0.006 41 6369
4 1216 21962 44 2354176 0.004 24 6409
3 1216 23178 31 1168576 0.002 12 6433
2 1244 24422 18 403056 0.001 4 6445
1 6449

Total 24422 628807002 6449

(I = 1), the seismic response coefficient, Cs, is governed by the lower bound and is

calculated as

Cs =
0.5S1

(R/I)
=

0.5× 0.528g

(1/1)
= 0.264g

As the structure period is higher than 2.5sec, the exponent k is taken as (k = 2.0).

The final vertical seismic force distribution is given in Table 5.2. Considering the

accidental torsional moment, the lateral floor forces and floor shear per braced frame

become as shown in Table 5.3.

The initial stiffness per floor for the SBS is calculated so that d1 corresponds to

an assumed drift ratio of 2% (see Figure 4.6). A summary of the individual brace
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Table 5.3: Braced frame shear forces for the LA 20-story building.

Level Story force Story shear Frame force Frame shear
Fx (kips) Vx (kips) Fx,f (kips) Vx,f (kips)

Roof 929 247
20 792 929 211 247
19 712 1721 190 458
18 637 2434 169 648
17 566 3071 151 817
16 499 3636 133 968
15 436 4135 116 1100
14 378 4571 100 1216
13 323 4949 86 1317
12 273 5272 73 1403
11 227 5546 60 1476
10 186 5773 49 1536
9 148 5958 39 1585
8 115 6107 31 1625
7 86 6222 23 1655
6 61 6308 16 1678
5 41 6369 11 1695
4 24 6409 6 1705
3 12 6433 3 1712
2 4 6445 1 1715
1 6449 1716

stiffness per braced frame is given in Table 5.4. A 1.5% target inter-story drift angle

is chosen as the desired performance. The viscous damping coefficient per each floor

damper calculated based on Equation 4.9 and updated to achieve the desired damping

ratio is (cj = 300k/sec/in). The final properties of the SBS designed for the 20-story

building are shown in Table 5.5. The capacity-demand curves for both systems are

shown in Figure 5.3. It can be noticed that the capacity curve intersects the 10%

damped demand curve at an effective period of 5.7sec as initially assumed.
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Table 5.4: Initial stiffness distribution of the SBS for the LA 20-story building.

Floor
Height (hx) Brace Angle Story shear Brace Initial Stiff.

(in) θbx (rad) (kips) kx1 (k/in)

20 156 0.915 247 106.6
19 156 0.915 458 197.4
18 156 0.915 648 279.1
17 156 0.915 817 352.2
16 156 0.915 968 417.1
15 156 0.915 1100 474.3
14 156 0.915 1216 524.3
13 156 0.915 1317 567.7
12 156 0.915 1403 604.7
11 156 0.915 1476 636.1
10 156 0.915 1536 662.1
9 156 0.915 1585 683.4
8 156 0.915 1625 700.4
7 156 0.915 1655 713.6
6 156 0.915 1678 723.5
5 156 0.915 1695 730.5
4 156 0.915 1705 735.1
3 156 0.915 1712 737.9
2 156 0.915 1715 739.3
1 216 1.064 1716 842.1
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Figure 5.3: Capacity demand curves of the 20-story building with the final param-
eters of the SBS.
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Table 5.5: Properties of the SBS used with the 20-story building.

Floor
∆1/hx θbx kx1 αx(%) (rad) (k/in)

20 0.35 0.915 106.6 3.1
19 0.35 0.915 197.4 2.5
18 0.35 0.915 279.1 2.1
17 0.35 0.915 352.2 2.0
16 0.35 0.915 417.1 1.8
15 0.35 0.915 474.3 1.8
14 0.35 0.915 524.3 1.7
13 0.35 0.915 567.7 1.7
12 0.35 0.915 604.7 1.7
11 0.35 0.915 636.1 1.7
10 0.35 0.915 662.1 1.8
9 0.35 0.915 683.4 1.8
8 0.35 0.915 700.4 1.8
7 0.35 0.915 713.6 1.9
6 0.35 0.915 723.5 1.9
5 0.35 0.915 730.5 2.0
4 0.35 0.915 735.1 2.1
3 0.35 0.915 737.9 2.1
2 0.35 0.915 739.3 2.2
1 0.35 1.064 842.1 2.3

5.2 Performance of the 20-story Building

In this section, the performance of the 20-story building employing the stiffening

bracing system is investigated under the effect of the design earthquake (10/50) and

the maximum considered earthquake (2/50) as described in Section 4.6. The peak

inter-story drift angles and the peak floor accelerations for the structure with the

SBS under the effect of the design earthquakes (10/50) are shown in Figure 5.4. The

median as well as the 84th percentile are overlaid on the figure. Obviously, the SBS

could not effectively maintain the desired uniform inter-story drift angle over the

height of the tall 20-story structure. However, it is clear that the proposed system

outperforms the BRBF in terms of inter-story drift and floor accelerations, as depicted



167

in Figure 5.5. The figure shows the median and 84th percentile of the peak inter-story

drift angles and absolute floor accelerations for the two systems under the effect of

the 10/50 ground motion records. The comparison between the two systems indicates

the significant reduction that has been achieved on the floor acceleration demands.

In terms of inelastic permanent deformation, the BRBF is expected to experience

such deformations as can be observed from Figure 5.6. The figure shows the response

history of the inter-story drift angle under the effect of the near-fault LA04 (1979

Imperial Valley), with a distance of 4.1km to the fault. However, the proposed SBS

outperforms the BRBF, as the main structural elements (steel columns and beams)

remain elastic and the structure reaches the occupants comfort level then rest much

faster than the BRBF. This can be noticed from the figure where starting from the

20th second the SBS vibrates with less than 0.5% inter-story drift ratio, while the

BRBF exhibits vibration with more than 1.0% inter-story drift ratio up to the end of

the excitation duration. In addition, two floors experienced permanent deformation

of about 0.5% of the floor’s height. The median permanent deformation in addition

to other responses are shown in Appendix D.

Under the effect of the maximum considered earthquake (2/50), the target per-

formance of uniform inter-story drift distribution was not effectively achieved for the

tall 20-story building with the implementation of the SBS, as can be observed from

Figure 5.7. Nevertheless, the overall response of the entire structure is under the

maximum permissible inter-story drift. A comparison between the median and the

84th percentile of the peak inter-story drift angles and the peak floor accelerations

for the two systems is shown in Figure 5.8. Although the proposed system does not

achieve the desired uniform inter-story drift distribution for tall buildings, it still can

achieve significant reduction in the inter-story drift and floor acceleration demands.

Figure 5.9 shows a comparison between the two systems in terms of the inter-story
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Figure 5.4: Peak response of the floor drift angles and accelerations under the 10/50
ground motion records
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Figure 5.6: 20-story building, inter-story drift angle response history under LA04
(Imperial Valley, 1979)
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drift angle response history under the effect of the LA27 (1994 Northridge). Clearly,

the proposed system reaches steady-state in very short time without any permanent

deformation under the effect of the maximum considered earthquake.
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Chapter 6

Integrated Design of Steel Frames

Employing SBS

For practical design consideration, it is essential to represent the seismic demands on

structures using an equivalent lateral force distribution. These static forces can be

used for the design of members and for the prediction of the structural performance

under the effect of seismic loads. However, the equivalent lateral force procedures

adopted by most of the seismic design codes (NEHRP, 2003; ASCE, 2010; Interna-

tional Code Council, 2012) do not precisely take into account the nonlinear behavior

that structures undergo. Instead, the elastic seismic demands are reduced to account

for the structural ductility, while the elastic structural deformations are magnified for

the same reason. This method however, does not lead to a reliable seismic perfor-

mance prediction, especially for structures experiencing high nonlinearity and those

with damping devices, as for the stiffening bracing system with viscous damping de-

vices. On the other hand, the equivalent lateral force procedures are mostly dependent

on the first mode of vibration and do not explicitly consider the effect of higher modes.

Researchers realize the need of more rigorous equivalent lateral force distribution for

different types of structures. On this regard, Lee et al. (2004) proposed a new seismic

lateral force distribution based on nonlinear dynamic analyses where the seismic base
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shear was derived from a modified energy balance equation. The proposed seismic

base shear and lateral force distribution showed good agreement with the nonlinear

dynamic response history analysis. Consequently, it is more favorable for the purpose

of seismic design and seismic performance assessment. Chao et al. (2007) investi-

gated the adequacy of the proposed lateral force distribution on a number on framed

structures under a wide variety of earthquake ground motions. It was shown that the

proposed lateral force pattern is more rational and gives a reliable prediction of the

the inelastic seismic demands on different structures. They concluded that the struc-

tures designed according to the proposed loading pattern experience maximum story

shear through the nonlinear dynamic analyses that agrees well with the expected val-

ues. In addition, the structures experience more uniform maximum inter-story drifts

compared to those designed following the code’s equivalent lateral force procedure.

Chopra and Goel (2001a) developed a Modal Pushover Analysis (MPA) procedure to

account for the effect of higher modes for a better prediction of the seismic demands

for inelastic structures. The response history analysis of a 9-story building showed

that the proposed methodology is more accurate in estimating the drift demands and

plastic hinge rotations than all FEMA’s force distribution patterns.

For the case of SBS, it is also essential to derive an equivalent lateral force distri-

bution that can predict the structural performance and the seismic demands on the

framing elements.

In the previous chapters, the steel frame design was based on averaging the mem-

bers internal forces obtained from the nonlinear time history analyses. In this chapter,

an integrated design methodology is proposed. The method is based on deriving lat-

eral force distribution that is relevant to the performance of structures incorporating

stiffening bracing system. With the appropriate lateral force distribution and maxi-

mum expected inter-story shear, the design and the seismic performance prediction
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of the frames become easier than relying on the nonlinear time history analyses. In

order to evaluate the adequacy of the derived lateral force distribution, the three

buildings described in Chapters 4 and 5 are redesigned with the proposed procedure.

In addition, more structures are added and designed to cover a wider range of build-

ing heights. The median of the maximum inter-story shear forces obtained from the

nonlinear time history analyses is then compared to the suggested inter-story shear

distribution.

6.1 Integrated Design Procedure

The proposed integrated design procedure can be subdivided into three stage. In the

first stage, a preliminary design is obtained according to the lateral force distribution

provided by any design code in conjunction with the desired structural performance.

In the second stage, the SBS is introduced and the optimization process for the SBS

properties takes place. With the known SBS properties, the expected inter-story

shear at the predefined inter-story drift can be back calculated, and hence a lateral

force distribution pattern is achieved. This lateral force pattern is used to model

the structure with any commercially available software that accounts for the P −∆

effect. The frame members’ design is then updated based on the internal member

forces. In the third stage, the properties of the SBS are further enhanced. This is

done by using the lateral force distribution obtained in the previous stage to model

the initial stiffness of the braces. Thus, the stiffening ratios of the braces become

almost identical for all floors.
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6.1.1 Stage (A): Preliminary Design

In this section, a preliminary design for the steel frame equipped with the SBS is

developed. This preliminary design relies on the desired performance, where the

inter-story drift angle is assumed to fall within the range of the target value.

6.1.1.1 Design of Braces

Starting with the target inter-story drift, the effective stiffness of the braces at floor

x, kxeff , can be calculated in view of Figure 6.1 as

kxeff =
F x
br

∆x
max cos θx

=
Vx

2∆x
max cos2 θx

(6.1)

where F x
br is the axial force of the brace in the x story at the maximum desired inter-

story drift ∆x
max, θx is the angle of the brace to the horizontal, and Vx is the shear

force at story x, which can be calculated as the sum of the lateral forces acting on

the floors above the considered one. The lateral stiffness of the columns is ignored

in Equation 6.1 as more than 90% of the lateral stiffness of braced frames is usually

provided by the bracing system.

Obviously, the lateral force pattern must be known before calculating the braces

effective stiffness according to Equation 6.1. Therefore, the equivalent lateral force

procedure given by any design code can be used in this stage. However, the lateral

force distribution employed by ASCE (2010) is used in this dissertation.

After defining the effective stiffness of the bracing system per floor, the internal

force induced on the columns and beams can be evaluated.

6.1.1.2 Design of Columns

To evaluate the maximum axial force induced on columns due to lateral force effect,

consider the vertical section shown in Figure 6.2. The earthquake induced axial force
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Figure 6.1: Horizontal section cut through floor x of inverted V braced bay
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on the xth floor column, P x
E, can be determined as the sum of the vertical components

of the braces axial forces for all floors above. The axial force on the xth floor brace

at the desired inter-story drift can be calculated from Equation 6.1 as

F x
br =

Vx
2 cos θx

(6.2)

Hence, the seismically induced axial force on the column at floor x is

P x
E =

n∑
i=x+1

F i
br sin θi =

n∑
i=x+1

Vi tan θi (6.3)

where n is the total number of floors. Based on Equation 6.3, the earthquake axial load

on the nth floor column will be zero. However, to be conservative, it is recommended

to shift the axial forces on columns by one floor (International Code Council, 2012)

so that Equation 6.3 can be rewritten as

P x
E =

n∑
i=x

F i
br sin θi =

n∑
i=x

Vi tan θi (6.4)

The column’s axial load due to the seismic load effect is then added to the gravity

loads acting on the column so that the design axial load can be calculated as

Pu = (1.2 + 0.2SDS)PD + PE + 0.5PL (6.5)

where PD, PL, and PE are the axial column’s force due to dead load, live load, and

seismic load respectively, and SDS is the design response spectral acceleration at short

periods. The term (0.2SDSPD) is added in the load combination to account for the

vertical seismic load effect as specified by ASCE (2010).
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Figure 6.2: Evaluation of Column’s axial load due to lateral effect

6.1.1.3 Design of Beams

It is assumed that the brace elements do not participate in resisting the gravity loads

(dead and live loads). Therefore, the bending moment on the floor beams is calculated

according to the applied dead and live loads on the entire span of the braced bay, L.

Floor beams are also assumed to be pin connected to the columns.

In addition to the gravity loads, the floor beams must resist the axial force resulting

from the horizontal components of the forces in the connected braces, as shown in

Figure 6.3. Therefore, the horizontal force in the floor beam, Qh, can be calculated

as

Qx+1
h = 2F x

br cos θx (6.6)

This horizontal force is permitted to be distributed according to the elastic force
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Figure 6.3: Axial load on floor beams due to seismic effect

distribution, where 60% is resisted by one side and 40% is resisted by the other

side of the beam (International Code Council, 2012). Clearly, the horizontal force

developed in the floor beam is equivalent to the seismic shear developed in the story

below the considered beam. Hence the design axial load for the (x+ 1)th floor beam,

P x+1
b , can be determined as

P x+1
h = 0.6Vx (6.7)

With the preliminary design obtained in this stage, the dynamic properties of the

structure can be evaluated and the SBS stiffness optimization can then take place as

in the following design stage.

6.1.2 Stage (B): SBS Design and Optimization Process

In this stage, the bracing system is replaced with the SBS and the optimization

process described in Section 4.3 is employed. The optimization process yields the

properties of the stiffening bracing system. Hence, the effective stiffness of each brace

at the desired structural performance can be obtained. The effective stiffness of a

typical floor brace (see Figure 4.1) is given by

keff =
k1∆1 + αk1(∆max −∆1)

∆max

(6.8)

Once the effective stiffness of the floor’s braces is defined, the story shear can be
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back calculated as

Vx = 2∆x
maxk

x
eff cos2 θx (6.9)

The story shear updated by Equation 6.9 can now replace the preliminary design inter-

story shear in Equation 6.2, and the design of columns and beams can be revised and

updated as necessary. Also the lateral force distribution can be calculated from the

inter-story shear given by Equation 6.9 as

Fx+1 = Vx − Vx+1 (6.10)

The lateral force distribution defined by Equation 6.10 along with the braces

effective stiffness are used to model the structure so that the P − ∆ effect is taken

into consideration when redesigning the columns. In this study, SAP2000 (2011) is

used for the analysis of the second order effect.

6.1.3 Stage (C): Enhancement of the SBS Properties

This stage is concerned on further enhancement of the SBS properties. This is done by

updating the initial stiffness, k1, of the braces based on the lateral force distribution

obtained by Equation 6.10. However, the optimization process of the SBS takes place

once again to update the stiffening ratios, αx, that are relevant to the new brace

initial stiffness. This stage does not need any redesign of the frame elements, as the

effective stiffness used for the design of members are barely changed. A flowchart of

the integrated design procedure is shown in Figure 6.4.
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Figure 6.4: Flowchart for the integrated design os steel frames employing SBS
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6.2 Implementation of the Integrated Design Pro-

cedure

In this section, the proposed integrated design procedure is implemented for the

previously described SAC buildings, in addition to more structures of different heights.

The structures designed and discussed in this section are 3, 5, 7, 9, 12, 15, and

20 stories. The 3, 9, and 20-story structures are the same as those discussed in

the Chapters 4 and 5. However the new buildings are assumed to have the same

layout of the 9-story SAC building with the same floor seismic weights and structural

system. The dynamic properties of these structures are summarized in Appendix C,

which include the modal periods as well as the mass participation factors for the

pre-stiffening and post-stiffening cases.

As mentioned earlier, the proposed design procedure leads to almost identical

stiffening ratio for the braces in all floors, as can be seen from the design summary

given in Tables B.1 to B.7.

6.2.1 Story Shear and Lateral Force Distribution

The design story shear calculated according to ASCE 7-10, designated (ASCE), and

the maximum expected design value for the story shear calculated according to the

proposed procedure, designated (Expected), are compared to the median maximum

story shear resulted from the response history analyses with the design earthquake

(10/50). The comparison is shown in Figure 6.5 through 6.11. The lateral force

distribution on the considered buildings is shown in Figure 6.12 through 6.18.

It can be observed from the story shear and lateral force distribution shown

in Figure 6.5 through 6.18 that the proposed procedure is capable of predicting the

structural performance of the SBS more accurately than the ASCE 7-10 equivalent
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Figure 6.5: Maximum story shear of the 3-story building

lateral force procedure. It should be mentioned here that the ASCE lateral force

distribution is not really the original lateral force distribution prescribed by ASCE

(2010) but is rather a modified version where the limitations on the upper and lower

bounds of the seismic response coefficient, Cs, have been omitted. In addition, the

actual effective period of the structures under consideration is taken into account

instead of the approximate structural period strictly specified by the code. However,

it is noticeable that the proposed methodology under estimates the base shear for

the 3, 5, and 7-story buildings, and over estimates the base shear for the 12, 15,

and 20-story buildings. For the case of the 9-story building, the expected inter-story

shear shows an excellent agreement with the results of the response history analyses,

as can be seen in Figure 6.8. Clearly, the proposed lateral force distribution precisely

traces the lateral forces induced on the building during the nonlinear response history
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Figure 6.6: Maximum story shear of the 5-story building

analyses, as depicted in Figure 6.15. However, the tendency of tracing the actual

structural behavior of the other cases is still noticeable but with less accuracy, as can

be seen in Figure 6.12 through 6.18.

6.2.2 Seismic Performance under the Design and Maximum

Earthquake Records

The seismic performance of the structures designed in accordance with the proposed

methodology under the effect of the design earthquake records (10/50), (Figure 6.19

through 6.25), shows that the proposed procedure sufficiently leads to structural

design that ends up with a performance sufficiently close to the desired target. From

Figure 6.22, the median peak inter-story drift angle of the 9-story building is not only

uniform throughout the building’s height, but also falls on the target drift that it was
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Figure 6.7: Maximum story shear of the 7-story building

designed for. However, for the other structures where the design base shear is under

estimated, the nonlinear time history analyses resulted in an inter-story drift angle for

these buildings that is slightly higher than the target design value. This is applicable

to the 3, 5, and 7-story buildings, as shown in Figure 6.19 to 6.21. On the other

hand, the structures designed for an overestimated base shear led to an inter-story

drift angle that is slightly below the design target. This is applicable to the 12, 15,

and 20-story buildings, as shown in Figure 6.23 to 6.25. Although the inter-story drift

of the considered structures could be slightly higher or lower than the target value,

the desired uniform inter-story drift is still achievable in all cases. Table 6.1 shows

the seismic base shear of the considered structures with the percentage of the error

in estimating the seismic base shear. It is noticeable from the table that the seismic

performance of the structures is reflected by how accurately the design base shear is
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Figure 6.8: Maximum story shear of the 9-story building

Table 6.1: Base shear induced on the considered structures.

Building Effective Period Base Shear (kips) Cs = V/W Estimation

ID Teff (sec) THA Expected THA Expectd Error (%)

3-story 1.42 1242 1134 0.382 0.349 -8.69
5-story 2.40 1313 1188 0.236 0.213 -9.50
7-story 3.20 1357 1254 0.175 0.162 -7.56
9-story 4.00 1236 1287 0.124 0.130 4.16
12-story 5.20 1200 1321 0.091 0.100 10.13
15-story 5.20 1570 1714 0.095 0.104 9.14
20-story 5.50 1268 1417 0.104 0.116 11.73

estimated.

For the case of maximum considered earthquake (2/50) records, the seismic per-

formance of the considered structures is again achieves the desired target of uniform

inter-story drift and falls within the allowable code specified range. The median

peak inter-story drift angle as well as the total floor acceleration obtained from the
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Figure 6.9: Maximum story shear of the 12-story building

nonlinear response history analyses under the 2/50 earthquake records are shown in

Figure 6.26 through 6.32. The inter-story drift as well as the floor acceleration for the

common buildings, which were designed according to the integrated design procedure

and the response history procedure (3, 9, and 20-story buildings), are overlaid on

Figures 6.19, 6.22, and 6.25 for the (10/50) analyses, and Figures 6.26, 6.29, and 6.32

for the (2/50) analyses. From the figures, the seismic performance of each pair is

about the same. However, for the 20-story building, the integrated design methodol-

ogy leads to a more uniform inter-story drift than the response history based design.

In addition, the floor accelerations are slightly better, especially for the lower floors.

Generally, the integrated design procedure is much easier and less time consuming

than the response history approach. It also provides a straightforward design method-

ology that is reliable in terms of structural performance and prediction.
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Figure 6.10: Maximum story shear of the 15-story building

6.3 Effect of Stiffness and Damping

The performance of the SBS relies on the stiffness optimization as well as the sup-

plemental damping provided by the viscous damping devices, however. In order to

investigate the effect of stiffness and damping, the 5, 9, and 15-story buildings were

subjected to the 10/50 ground motion records. The response history analyses are car-

ried out on the buildings with the supplemental viscous dampers being eliminated,

so that the stiffening braces act individually. Thus the total effective damping in the

systems is the inherent damping only (2%). As can be seen from Figure 6.33, the

optimized stiffness alone, without any supplemental dampers, successfully achieves

the desired uniform inter-story drift for the 5-story building. However the drift ratio

is higher than the target because of the higher seismic demand. As the building’s

height increases, the effectiveness of the stiffness alone becomes less. For the 9-story
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Figure 6.11: Maximum story shear of the 20-story building

building, the optimized stiffness alone partially achieves the uniform inter-story drift

target, as can be seen in Figure 6.34. While for the 15-story building, the stiffness

alone fails to achieve the desired target and the added supplemental damping becomes

essential for the SBS to behave as desired. Therefore, the SBS procedure is robust,

with or without the supplemental viscous damping devices, for low rise buildings.

For tall buildings, the SBS cannot achieve the desired target performance without

supplemental viscous damping devices.
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Figure 6.12: Lateral force distribution on the 3-story building
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Figure 6.13: Lateral force distribution on the 5-story building
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Figure 6.14: Lateral force distribution on the 7-story building
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Figure 6.15: Lateral force distribution on the 9-story building
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Figure 6.16: Lateral force distribution on the 12-story building
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Figure 6.17: Lateral force distribution on the 15-story building
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Figure 6.18: Lateral force distribution on the 20-story building
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Figure 6.19: Median of the peak inter-story drift angle and peak floor acceleration
for the 3-story building under the 10/50 ground motion records
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Figure 6.20: Median of the peak inter-story drift angle and peak floor acceleration
for the 5-story building under the 10/50 ground motion records
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Figure 6.21: Median of the peak inter-story drift angle and peak floor acceleration
for the 7-story building under the 10/50 ground motion records
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Figure 6.22: Median of the peak inter-story drift angle and peak floor acceleration
for the 9-story building under the 10/50 ground motion records



204

0 0.02 0.04 0.06 0.08 0.1

2

4

6

8

10

12

Drift Angle

F
lo

o
r 

L
e
v
e
l

SBS response history of the drift angle - (10/50)

 

 

Design Target
Median SBS-Int

84
th

 SBS-Int

0 0.5 1 1.5 2

2

4

6

8

10

12

Floor Acceleration (g)

F
lo

o
r 

L
e
v
e
l

SBS response history of the floors acceleration - (10/50)

 

 

Median SBS-Int

84
th

 SBS-Int

Figure 6.23: Median of the peak inter-story drift angle and peak floor acceleration
for the 12-story building under the 10/50 ground motion records
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Figure 6.24: Median of the peak inter-story drift angle and peak floor acceleration
for the 15-story building under the 10/50 ground motion records
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Figure 6.25: Median of the peak inter-story drift angle and peak floor acceleration
for the 20-story building under the 10/50 ground motion records
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Figure 6.26: Median of the peak inter-story drift angle and peak floor acceleration
for the 3-story building under the 2/50 ground motion records
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Figure 6.27: Median of the peak inter-story drift angle and peak floor acceleration
for the 5-story building under the 2/50 ground motion records
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Figure 6.28: Median of the peak inter-story drift angle and peak floor acceleration
for the 7-story building under the 2/50 ground motion records
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Figure 6.29: Median of the peak inter-story drift angle and peak floor acceleration
for the 9-story building under the 2/50 ground motion records
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Figure 6.30: Median of the peak inter-story drift angle and peak floor acceleration
for the 12-story building under the 2/50 ground motion records
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Figure 6.31: Median of the peak inter-story drift angle and peak floor acceleration
for the 15-story building under the 2/50 ground motion records
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Figure 6.32: Median of the peak inter-story drift angle and peak floor acceleration
for the 20-story building under the 2/50 ground motion records
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Figure 6.33: Effect of stiffness and damping on the peak inter-story drift of the
5-story building under the 10/50 ground motions
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Figure 6.34: Effect of stiffness and damping on the peak inter-story drift of the
9-story building under the 10/50 ground motions
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Figure 6.35: Effect of stiffness and damping on the peak inter-story drift of the
15-story building under the 10/50 ground motions



217

Chapter 7

Conclusions

Semi-active control strategies for smart base isolation systems employing Magneto-

Rheological Elastomer (MRE) have been developed. The two proposed control algo-

rithms were designed to minimize the superstructure and the substructure accelera-

tions, namely, the Minimal Acceleration Control (MAC) and the Acceleration Gain

Control (AGC). It was shown that both methods can significantly reduce the seismic

demand on a benchmark base isolated structure. Under the effect of far-field ground

motions, the MAC algorithm can reduce the overall structural accelerations and the

superstructure’s displacements by up to 75% compared to the seismically isolated

structure with conventional lead rubber bearing (LRB) system. However, up to 37%

increase in the base displacement demand is possible. The AGC on the other hand,

provides up to 50% reduction in the seismic demand with only 25% increase in the

base displacement. In addition, the AGC tends to minimize or eventually eliminate

any residual displacement in the base slab that was observed in the cases with the

MAC algorithm.

For near-fault excitations, similar levels of reduction of the seismic demand can

be achieved. The MAC algorithm provides up to 65% reduction in the overall struc-

tural accelerations as well as the superstructure displacements, compared to the LRB

system. However, up to 54% increase in the base displacement and a tendency to



218

leave residual displacement in the base slab is possible. Near-fault ground motions are

dominated by large velocity pulses that induce large base displacements on seismically

isolated structures. The large base displacement may lead to structural instability.

Clearly, further increase of the base displacement is not favorable. To overcome this

issue, a hypothetical variable stiffness device capable of providing stiffening ratio of

up to ten is proposed. Such a device controlled with the AGC can achieve up to 33%

reduction in the base displacement compared to the conventionally isolated structure

without compromising the behavior of the LRB. However, the MRE base isolation

system with the current properties of limited stiffening ratio can achieve up to 35%

reduction in the overall structural accelerations and the superstructure displacements

with only 22% increase in the base displacement.

It is important to note that for a better reduction of the seismic demands on

the superstructure, the base displacement in both of the proposed control algorithms

tends to exceed the base displacement of the conventionally isolated structure. This

fact makes the proposed systems more suitable for far-field ground motions (low

displacement demands) and for the isolation of acceleration sensitive structural and

non-structural components, unless isolation systems with higher stiffening ratios are

available.

The use of variable stiffness devices in multistory structures has also been inves-

tigated. A stiffening bracing system (SBS) has been proposed to replace the conven-

tional bracing systems for braced frames. The SBS is primarily suggested to possess

relatively low stiffness initially. This would allow for lengthened period of vibration

and hence drags the structural performance to a lower level of seismic demands. Af-

ter a predefined inter-story drift angle is reached, the SBS stiffens up in an attempt

to limit the increase in the inter-story drift. This limitation to the inter-story drift

minimizes the P −∆ effect on the columns. An optimization procedure for the SBS
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parameters has been developed. The main objective of the optimization process is

to maintain a uniform inter-story drift angle over the building’s height. In turn, this

results in evenly distributed seismic demand over the building’s height. This behavior

is essential for avoiding excessive damage from being concentrated in a single story. In

addition, all the supplemental viscous damping devices that accompany the stiffening

braces work more efficiently at their maximum capacity, which eventually leads to a

cost efficient design. Structures designed according to the code-specified lateral force

procedures experience nonuniform inter-story drift during seismic events. This is due

to the fact that these procedures do not take into account the higher mode effects.

Although the initial stiffness of the SBS is designed based on the code-specified equiv-

alent lateral force, the optimization process explicitly accounts for the instantaneous

dynamic properties of the structure as well as the higher mode effects.

In order to investigate the adequacy of the proposed system, the three SAC build-

ings designed for Los Angeles area were redesigned with the SBS. In addition, the

buildings were redesigned as buckling restrained braced frames (BRBF) for com-

parison purpose. Twenty pairs of recorded ground motions were applied to both

structures through a nonlinear response history analyses. The ground motion records

are subdivided into two groups to represent design level earthquake and maximum

considered earthquake. Under the effect of the design earthquake records, the pro-

posed methodology successfully achieved the desired performance. The median of the

twenty records showed uniform inter-story drift for the 3-story and 9-story buildings.

However, for the 20-story building, the upper floors experienced higher inter-story

drifts than the lower floors.,On average, the overall performance was quite uniform

and below the target. In contrast, the BRBFs showed a nonuniform inter-story drift

distribution for all of the considered cases. In terms of maximum floor acceleration,

the SBS system showed significant reduction of up to 50% compared to the BRBFs.
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This implies higher comfort level to the building occupants and lower seismic de-

mand on acceleration sensitive nonstructural components. On the other hand, the

main framing elements (Beams and Columns) stayed in their elastic region for struc-

tures with the SBS, while significant yielding and permanent story drift are observed

for the BRBFs.

Under the effect of the maximum considered earthquake records, the performance

of the 3-story and 9-story buildings equipped with the SBS preserved the uniformity

of the inter-story drift within acceptable limit. For the 20-story building, again the

upper floors experienced higher inter-story drifts than the lower floors, however the

maximum inter-story drift did not exceed the allowable limit. The other merits of

the SBS remained true for all cases, where similar levels of reduction of the floor

acceleration demand could be achieved with no yielding of the framing elements.

Finally, an integrated and comprehensive design procedure that can be adopted

by the seismic design codes is developed. An equivalent lateral force pattern has

been developed by back calculating the story shear based on the optimized SBS and

the desired structural performance. This pattern explicitly accounts for the higher

mode effects, the dynamic properties of the structure, the damping level provided

by the supplemental viscous damping devices, and the site specific seismic hazard.

Therefore, the proposed lateral force procedure is reliable in terms of prediction of

structural performance and seismic demand on structural elements.

The integrated design methodology was used to design seven structures with dif-

ferent heights. The nonlinear response history analyses showed that the proposed

procedure predicts with a good agreement the structural performance as well as the

seismic demand on the structural elements. However, the procedure under estimates

the seismic base shear on the low-rise buildings and over estimates it for the high-rise

buildings. This error in the base shear prediction did not exceed 12% in general.
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Recommendations for Future Study

The following topics are recommended for future work and further investigation:

• Experimental studies should be conducted on smart base isolation systems em-

ploying stiffness controllable devices, such as MRE base isolators, to verify the

performance of the proposed control algorithms.

• The mechanical properties of the MRE base isolation devices should be im-

proved so that higher shear stains could be accommodated and higher stiffening

ratios could be achieved.

• In this study, the acceleration gain used with the AGC algorithm was assumed

to be constant. However, considering time variant gain may lead to further

improvement of the structural performance.

• The superstructure nonlinearities of the smart base isolated structure that may

take place during severe seismic events should be investigated.

• A physical device capable of achieving the desired behavior of the SBS should

be developed and experimentally tested.

• The applicability of the proposed SBS in retrofitting existing structures should

be experimentally studied.
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Appendix A

Redesigned Benchmark Buildings

The dynamic properties and structural member sizes of the 3, 9 and 20-story re-

designed SAC benchmark buildings discussed in Chapters 4 and 5 are summarized is

this appendix. The design of the SBS and BRBF frames were based on the average

demands determined according to the response history analyses. The design summary

of the 3-story buildings is shown in Tables A.1 and A.2, while the dynamic proper-

ties are shown in Table A.7. The design summary of the 9-story buildings is shown

in Tables A.3 and A.4, while the dynamic properties are shown in Table A.8. The

design summary of the 20-story buildings is shown in Tables A.5 and A.6, while the

dynamic properties of this building are shown in Table A.9. The dynamic properties

summarized herein include the modal periods (T) and the mass participation factors

(MPF) for the pre-stiffening and post-stiffening cases of the SBS buildings as well as

for the elastic state of the BRBF buildings.

Table A.1: Summary of the SBS 3-story building (units kips, sec., in).

Story Floor Braced Bay Outside Braced Bay SBS Properties

No. No. Column Girder Column Collector ∆x
1/hx kx1 αx cx

1 2 W 14 X 176 W 21 X 55 W 14 X 176 W 21 X 44 0.5% 91.1 1.9 4.25
2 3 W 14 X 176 W 21 X 55 W 14 X 176 W 21 X 44 0.5% 81.1 1.6 4.25
3 Roof W 14 X 176 W 21 X 44 W 14 X 176 W 21 X 44 0.5% 53.7 1.7 4.25



232

Table A.2: Summary of the BRBF 3-story building.

Story Floor Braced Bay Outside Braced Bay Floor Brace

No. No. Column Girder Column Collector Asc (in2)

1 2 W 14 X 311 W 21 X 83 W 14 X 311 W 21 X 44 4.41
2 3 W 14 X 311 W 21 X 68 W 14 X 311 W 21 X 44 3.71
3 Roof W 14 X 311 W 18 X 65 W 14 X 311 W 21 X 44 2.29

Table A.3: Summary of the SBS 9-story building (units kips, sec., in).

Story Floor Braced Bay Outside Braced Bay SBS Properties

No. No. Column Girder Column Collector ∆x
1/hx kx1 αx cx

1 2 W 14 X 233 W 24 X 62 W 14 X 132 W 24 X 62 0.5% 96.7 2.1 13
2 3 W 14 X 211 W 24 X 62 W 14 X 132 W 24 X 62 0.5% 95.6 2.0 13
3 4 W 14 X 211 W 24 X 62 W 14 X 132 W 24 X 62 0.5% 93.9 1.8 13
4 5 W 14 X 193 W 24 X 62 W 14 X 132 W 24 X 62 0.5% 90.5 1.8 13
5 6 W 14 X 193 W 24 X 62 W 14 X 132 W 24 X 62 0.5% 84.9 1.7 13
6 7 W 14 X 145 W 24 X 62 W 14 X 132 W 24 X 62 0.5% 76.4 1.7 13
7 8 W 14 X 145 W 24 X 62 W 14 X 132 W 24 X 62 0.5% 64.4 1.7 13
8 9 W 14 X 132 W 24 X 62 W 14 X 132 W 24 X 62 0.5% 48.4 1.8 13
9 Roof W 14 X 132 W 24 X 62 W 14 X 132 W 24 X 62 0.5% 27.8 2.3 13

Table A.4: Summary of the BRBF 9-story building.

Story Floor Braced Bay Outside Braced Bay Floor Brace

No. No. Column Girder Column Collector Asc (in2)

1 2 W 14 X 500 W 24 X 94 W 14 X 311 W 21 X 44 8.24
2 3 W 14 X 500 W 24 X 84 W 14 X 145 W 21 X 44 6.85
3 4 W 14 X 311 W 24 X 84 W 14 X 145 W 21 X 44 6.60
4 5 W 14 X 311 W 24 X 84 W 14 X 145 W 21 X 44 6.20
5 6 W 14 X 257 W 24 X 76 W 14 X 145 W 21 X 44 5.65
6 7 W 14 X 257 W 24 X 76 W 14 X 145 W 21 X 44 4.92
7 8 W 14 X 211 W 21 X 73 W 14 X 145 W 21 X 44 4.01
8 9 W 14 X 211 W 21 X 68 W 14 X 145 W 21 X 44 2.91
9 Roof W 14 X 193 W 21 X 57 W 14 X 145 W 21 X 44 1.62
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Table A.5: Summary of the SBS 20-story building (units kips, sec., in).

Story Floor Braced Bay Outside Braced Bay SBS Properties

No. No. Column Girder Column Collector ∆x
1/hx kx1 αx cx

1 2 W 14 X 455 W 21 X 50 W 14 X 132 W 21 X 44 0.35% 842.1 2.3 300
2 3 W 14 X 455 W 21 X 50 W 14 X 132 W 21 X 44 0.35% 739.3 2.2 300
3 4 W 14 X 398 W 18 X 46 W 14 X 132 W 21 X 44 0.35% 737.9 2.1 300
4 5 W 14 X 398 W 18 X 46 W 14 X 132 W 21 X 44 0.35% 735.1 2.1 300
5 6 W 14 X 342 W 18 X 46 W 14 X 132 W 21 X 44 0.35% 730.5 2.0 300
6 7 W 14 X 342 W 18 X 46 W 14 X 132 W 21 X 44 0.35% 723.5 1.9 300
7 8 W 14 X 311 W 18 X 46 W 14 X 132 W 21 X 44 0.35% 713.6 1.9 300
8 9 W 14 X 311 W 18 X 46 W 14 X 132 W 21 X 44 0.35% 700.4 1.8 300
9 10 W 14 X 257 W 18 X 46 W 14 X 132 W 21 X 44 0.35% 683.4 1.8 300
10 11 W 14 X 257 W 18 X 46 W 14 X 132 W 21 X 44 0.35% 662.1 1.8 300
11 12 W 14 X 211 W 18 X 46 W 14 X 132 W 21 X 44 0.35% 636.1 1.7 300
12 13 W 14 X 211 W 18 X 46 W 14 X 132 W 21 X 44 0.35% 604.7 1.7 300
13 14 W 14 X 145 W 18 X 46 W 14 X 132 W 21 X 44 0.35% 567.7 1.7 300
14 15 W 14 X 145 W 18 X 46 W 14 X 132 W 21 X 44 0.35% 524.3 1.7 300
15 16 W 14 X 132 W 18 X 46 W 14 X 132 W 21 X 44 0.35% 474.3 1.8 300
16 17 W 14 X 132 W 18 X 46 W 14 X 132 W 21 X 44 0.35% 417.1 1.8 300
17 18 W 14 X 132 W 18 X 46 W 14 X 132 W 21 X 44 0.35% 352.2 2.0 300
18 19 W 14 X 132 W 18 X 46 W 14 X 132 W 21 X 44 0.35% 279.1 2.1 300
19 20 W 14 X 132 W 18 X 46 W 14 X 132 W 21 X 44 0.35% 197.4 2.5 300
20 Roof W 14 X 132 W 18 X 46 W 14 X 132 W 21 X 44 0.35% 106.6 3.1 300

Table A.6: Summary of the BRBF 20-story building.

Story Floor Braced Bay Outside Braced Bay Floor Brace

No. No. Column Girder Column Collector Asc (in2)

1 2 W 14 X 665 W 27 X 114 W 14 X 132 W 21 X 44 18.46
2 3 W 14 X 665 W 27 X 114 W 14 X 132 W 21 X 44 11.70
3 4 W 14 X 550 W 24 X 94 W 14 X 132 W 21 X 44 11.68
4 5 W 14 X 550 W 24 X 94 W 14 X 132 W 21 X 44 11.64
5 6 W 14 X 398 W 24 X 94 W 14 X 132 W 21 X 44 11.56
6 7 W 14 X 398 W 24 X 94 W 14 X 132 W 21 X 44 11.45
7 8 W 14 X 370 W 24 X 94 W 14 X 132 W 21 X 44 11.29
8 9 W 14 X 370 W 24 X 94 W 14 X 132 W 21 X 44 11.08
9 10 W 14 X 370 W 24 X 94 W 14 X 132 W 21 X 44 10.81
10 11 W 14 X 370 W 24 X 94 W 14 X 132 W 21 X 44 10.47
11 12 W 14 X 342 W 21 X 83 W 14 X 132 W 21 X 44 10.06
12 13 W 14 X 342 W 21 X 83 W 14 X 132 W 21 X 44 9.56
13 14 W 14 X 311 W 18 X 76 W 14 X 132 W 21 X 44 8.96
14 15 W 14 X 311 W 18 X 76 W 14 X 132 W 21 X 44 8.27
15 16 W 14 X 257 W 18 X 71 W 14 X 132 W 21 X 44 7.47
16 17 W 14 X 257 W 18 X 71 W 14 X 132 W 21 X 44 6.56
17 18 W 14 X 233 W 18 X 60 W 14 X 132 W 21 X 44 5.52
18 19 W 14 X 233 W 18 X 60 W 14 X 132 W 21 X 44 4.36
19 20 W 14 X 193 W 18 X 46 W 14 X 132 W 21 X 44 3.05
20 Roof W 14 X 193 W 18 X 46 W 14 X 132 W 21 X 44 1.60
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Table A.7: Dynamic properties of the 3-story buildings.

Mode SBS Pre-Stiffening SBS Post-Stiffening BRBF

No. T (sec) MPF T (sec) MPF T (sec) MPF

1 1.79 0.867 1.44 0.858 0.69 0.838
2 0.56 0.115 0.48 0.121 0.24 0.126
3 0.25 0.018 0.23 0.021 0.13 0.036

Table A.8: Dynamic properties of the 9-story buildings.

Mode SBS Pre-Stiffening SBS Post-Stiffening BRBF

No. T (sec) MPF T (sec) MPF T (sec) MPF

1 4.95 0.829 3.93 0.811 1.86 0.768
2 1.83 0.110 1.44 0.123 0.70 0.144
3 1.03 0.037 0.83 0.039 0.41 0.045
4 0.66 0.014 0.56 0.016 0.29 0.021

Table A.9: Dynamic properties of the 20-story buildings.

Mode SBS Pre-Stiffening SBS Post-Stiffening BRBF

No. T (sec) MPF T (sec) MPF T (sec) MPF

1 5.83 0.665 5.43 0.636 5.36 0.639
2 1.77 0.213 1.48 0.220 1.28 0.216
3 0.93 0.060 0.75 0.071 0.64 0.068
4 0.64 0.025 0.50 0.030 0.43 0.031
5 0.48 0.013 0.38 0.015 0.32 0.017
6 0.38 0.008 0.30 0.009 0.25 0.010
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Appendix B

Summary of the Building’s

Structural Elements

The summary of the structural member sizes designed according to the integrated

design procedure, as discussed in Chapter 6, is given in Tables B.1 through B.7.

Table B.1: Summary of the 3-story building design (units kips, sec., in).

Story Floor Braced Bay Outside Braced Bay SBS Properties

No. No. Column Girder Column Collector ∆x
1/hx kx1 αx cx

1 2 W 12 X 96 W 18 X 60 W 12 X 96 W 18 X 50 0.5 % 77.6 2.4 4.25
2 3 W 12 X 96 W 18 X 60 W 12 X 96 W 18 X 50 0.5 % 60.3 2.4 4.25
3 Roof W 12 X 96 W 18 X 50 W 12 X 96 W 18 X 50 0.5 % 43.8 2.4 4.25
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Table B.2: Summary of the 5-story building design (units kips, sec., in).

Story Floor Braced Bay Outside Braced Bay SBS Properties

No. No. Column Girder Column Collector ∆x
1/hx kx1 αx cx

1 2 W 12 X 152 W 21 X 93 W 12 X 96 W 18 X 50 0.5 % 81.8 2.4 7.0
2 3 W 12 X 152 W 21 X 83 W 12 X 96 W 18 X 50 0.5 % 72.5 2.3 7.0
3 4 W 12 X 96 W 21 X 73 W 12 X 96 W 18 X 50 0.5 % 63.1 2.3 7.0
4 5 W 12 X 96 W 21 X 62 W 12 X 96 W 18 X 50 0.5 % 49.0 2.4 7.0
5 Roof W 12 X 96 W 21 X 55 W 12 X 96 W 18 X 50 0.5 % 34.6 2.3 7.0

Table B.3: Summary of the 7-story building design (units kips, sec., in).

Story Floor Braced Bay Outside Braced Bay SBS Properties

No. No. Column Girder Column Collector ∆x
1/hx kx1 αx cx

1 2 W 14 X 211 W 21 X 68 W 12 X 96 W 18 X 50 0.5 % 86.3 2.4 10.75
2 3 W 14 X 176 W 21 X 68 W 12 X 96 W 18 X 50 0.5 % 77.9 2.4 10.75
3 4 W 14 X 176 W 21 X 68 W 12 X 96 W 18 X 50 0.5 % 71.9 2.3 10.75
4 5 W 12 X 106 W 21 X 68 W 12 X 96 W 18 X 50 0.5 % 63.5 2.4 10.75
5 6 W 12 X 106 W 21 X 68 W 12 X 96 W 18 X 50 0.5 % 55.4 2.3 10.75
6 7 W 12 X 96 W 21 X 62 W 12 X 96 W 18 X 50 0.5 % 42.8 2.3 10.75
7 Roof W 12 X 96 W 21 X 50 W 12 X 96 W 18 X 50 0.5 % 31.4 2.3 10.75

Table B.4: Summary of the 9-story building design (units kips, sec., in).

Story Floor Braced Bay Outside Braced Bay SBS Properties

No. No. Column Girder Column Collector ∆x
1/hx kx1 αx cx

1 2 W 14 X 311 W 21 X 83 W 12 X 96 W 18 X 50 0.5 % 88.7 2.4 12.25
2 3 W 14 X 233 W 18 X 76 W 12 X 96 W 18 X 50 0.5 % 81.4 2.4 12.25
3 4 W 14 X 233 W 18 X 76 W 12 X 96 W 18 X 50 0.5 % 77.0 2.3 12.25
4 5 W 14 X 159 W 21 X 68 W 12 X 96 W 18 X 50 0.5 % 71.3 2.3 12.25
5 6 W 14 X 159 W 21 X 68 W 12 X 96 W 18 X 50 0.5 % 64.1 2.4 12.25
6 7 W 12 X 106 W 21 X 68 W 12 X 96 W 18 X 50 0.5 % 57.7 2.3 12.25
7 8 W 12 X 106 W 18 X 65 W 12 X 96 W 18 X 50 0.5 % 50.5 2.3 12.25
8 9 W 12 X 96 W 18 X 65 W 12 X 96 W 18 X 50 0.5 % 39.6 2.3 12.25
9 Roof W 12 X 96 W 18 X 60 W 12 X 96 W 18 X 50 0.5 % 28.2 2.4 12.25

Table B.5: Summary of the 12-story building design (units kips, sec., in).

Story Floor Braced Bay Outside Braced Bay SBS Properties

No. No. Column Girder Column Collector ∆x
1/hx kx1 αx cx

1 2 W 14 X 455 W 21 X 83 W 12 X 96 W 18 X 50 0.5 % 91.0 2.4 18
2 3 W 14 X 398 W 21 X 83 W 12 X 96 W 18 X 50 0.5 % 88.0 2.4 18
3 4 W 14 X 398 W 21 X 83 W 12 X 96 W 18 X 50 0.5 % 80.6 2.4 18
4 5 W 14 X 311 W 21 X 83 W 12 X 96 W 18 X 50 0.5 % 76.4 2.4 18
5 6 W 14 X 311 W 21 X 83 W 12 X 96 W 18 X 50 0.5 % 74.2 2.3 18
6 7 W 14 X 233 W 21 X 83 W 12 X 96 W 18 X 50 0.5 % 68.5 2.3 18
7 8 W 14 X 233 W 21 X 83 W 12 X 96 W 18 X 50 0.5 % 64.2 2.3 18
8 9 W 14 X 145 W 21 X 83 W 12 X 96 W 18 X 50 0.5 % 58.4 2.3 18
9 10 W 14 X 145 W 21 X 83 W 12 X 96 W 18 X 50 0.5 % 51.2 2.3 18
10 11 W 14 X 132 W 21 X 68 W 12 X 96 W 18 X 50 0.5 % 43.7 2.3 18
11 12 W 14 X 132 W 21 X 62 W 12 X 96 W 18 X 50 0.5 % 34.4 2.3 18
12 Roof W 14 X 132 W 21 X 50 W 12 X 96 W 18 X 50 0.5 % 25.7 2.3 18
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Table B.6: Summary of the 15-story building design (units kips, sec., in).

Story Floor Braced Bay Outside Braced Bay SBS Properties

No. No. Column Girder Column Collector ∆x
1/hx kx1 αx cx

1 2 W 14 X 500 W 24 X 94 W 12 X 96 W 18 X 50 0.5 % 161.4 2.5 32
2 3 W 14 X 455 W 24 X 94 W 12 X 96 W 18 X 50 0.5 % 154.6 2.5 32
3 4 W 14 X 455 W 24 X 94 W 12 X 96 W 18 X 50 0.5 % 148.1 2.5 32
4 5 W 14 X 370 W 24 X 94 W 12 X 96 W 18 X 50 0.5 % 142.1 2.5 32
5 6 W 14 X 370 W 24 X 94 W 12 X 96 W 18 X 50 0.5 % 134.6 2.5 32
6 7 W 14 X 283 W 24 X 94 W 12 X 96 W 18 X 50 0.5 % 127.1 2.5 32
7 8 W 14 X 283 W 21 X 93 W 12 X 96 W 18 X 50 0.5 % 122.4 2.5 32
8 9 W 14 X 211 W 21 X 93 W 12 X 96 W 18 X 50 0.5 % 113.0 2.5 32
9 10 W 14 X 211 W 21 X 83 W 12 X 96 W 18 X 50 0.5 % 105.5 2.6 32
10 11 W 14 X 145 W 21 X 83 W 12 X 96 W 18 X 50 0.5 % 97.2 2.6 32
11 12 W 14 X 145 W 21 X 73 W 12 X 96 W 18 X 50 0.5 % 90.6 2.5 32
12 13 W 12 X 96 W 21 X 73 W 12 X 96 W 18 X 50 0.5 % 80.7 2.5 32
13 14 W 12 X 96 W 21 X 68 W 12 X 96 W 18 X 50 0.5 % 68.3 2.5 32
14 15 W 12 X 96 W 21 X 68 W 12 X 96 W 18 X 50 0.5 % 54.8 2.5 32
15 Roof W 12 X 96 W 21 X 57 W 12 X 96 W 18 X 50 0.5 % 38.7 2.5 32

Table B.7: Summary of the 20-story building design (units kips, sec., in).

Story Floor Braced Bay Outside Braced Bay SBS Properties

No. No. Column Girder Column Collector ∆x
1/hx kx1 αx cx

1 2 W 14 X 730 W 21 X 68 W 12 X 96 W 18 X 46 0.35 % 330.3 2.7 65
2 3 W 14 X 730 W 21 X 68 W 12 X 96 W 18 X 46 0.35 % 289.0 2.6 65
3 4 W 14 X 605 W 21 X 68 W 12 X 96 W 18 X 46 0.35 % 278.3 2.6 65
4 5 W 14 X 605 W 21 X 68 W 12 X 96 W 18 X 46 0.35 % 267.2 2.7 65
5 6 W 14 X 500 W 21 X 68 W 12 X 96 W 18 X 46 0.35 % 257.3 2.7 65
6 7 W 14 X 500 W 21 X 68 W 12 X 96 W 18 X 46 0.35 % 253.0 2.7 65
7 8 W 14 X 426 W 21 X 68 W 12 X 96 W 18 X 46 0.35 % 247.3 2.6 65
8 9 W 14 X 426 W 21 X 68 W 12 X 96 W 18 X 46 0.35 % 235.3 2.7 65
9 10 W 14 X 342 W 21 X 68 W 12 X 96 W 18 X 46 0.35 % 229.6 2.6 65
10 11 W 14 X 342 W 18 X 65 W 12 X 96 W 18 X 46 0.35 % 213.5 2.7 65
11 12 W 14 X 257 W 18 X 65 W 12 X 96 W 18 X 46 0.35 % 204.9 2.7 65
12 13 W 14 X 257 W 18 X 65 W 12 X 96 W 18 X 46 0.35 % 194.8 2.7 65
13 14 W 14 X 193 W 18 X 60 W 12 X 96 W 18 X 46 0.35 % 182.8 2.7 65
14 15 W 14 X 193 W 18 X 60 W 12 X 96 W 18 X 46 0.35 % 169.1 2.7 65
15 16 W 14 X 132 W 18 X 55 W 12 X 96 W 18 X 46 0.35 % 159.3 2.6 65
16 17 W 14 X 132 W 18 X 50 W 12 X 96 W 18 X 46 0.35 % 141.3 2.7 65
17 18 W 12 X 96 W 18 X 50 W 12 X 96 W 18 X 46 0.35 % 128.0 2.6 65
18 19 W 12 X 96 W 18 X 46 W 12 X 96 W 18 X 46 0.35 % 109.1 2.7 65
19 20 W 12 X 96 W 18 X 46 W 12 X 96 W 18 X 46 0.35 % 88.1 2.6 65
20 Roof W 12 X 96 W 18 X 46 W 12 X 96 W 18 X 46 0.35 % 59.3 2.7 65



238

Appendix C

Dynamic Properties of the

Analyzed Structures

The dynamics properties of the structures analyzed in Chapter 6 are listed in Ta-

bles C.1 through C.7. This includes the modal periods (T) and the mass participation

factors (MPF) for the pre-stiffening and post-stiffening cases.

Table C.1: Dynamic properties of the 3-story building.

Mode Pre-Stiffening Post-Stiffening

No. T (sec) MPF T (sec) MPF

1 1.98 0.86 1.40 0.86
2 0.68 0.12 0.51 0.12
3 0.35 0.02 0.28 0.02
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Table C.2: Dynamic properties of the 5-story building.

Mode Pre-Stiffening Post-Stiffening

No. T (sec) MPF T (sec) MPF

1 3.27 0.857 2.24 0.852
2 1.19 0.107 0.87 0.110
3 0.64 0.027 0.50 0.029
4 0.41 0.007 0.33 0.008
5 0.29 0.002 0.25 0.002

Table C.3: Dynamic properties of the 7-story building.

Mode Pre-Stiffening Post-Stiffening

No. T (sec) MPF T (sec) MPF

1 4.33 0.834 3.10 0.825
2 1.59 0.112 1.16 0.118
3 0.89 0.035 0.67 0.036
4 0.57 0.013 0.46 0.014

Table C.4: Dynamic properties of the 9-story building.

Mode Pre-Stiffening Post-Stiffening

No. T (sec) MPF T (sec) MPF

1 5.40 0.818 3.90 0.807
2 1.99 0.115 1.45 0.123
3 1.15 0.038 0.85 0.039
4 0.76 0.016 0.59 0.017

Table C.5: Dynamic properties of the 12-story building.

Mode Pre-Stiffening Post-Stiffening

No. T (sec) MPF T (sec) MPF

1 7.00 0.805 5.07 0.792
2 2.58 0.116 1.88 0.126
3 1.48 0.040 1.10 0.041
4 0.98 0.018 0.76 0.019
5 0.70 0.010 0.56 0.010
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Table C.6: Dynamic properties of the 15-story building.

Mode Pre-Stiffening Post-Stiffening

No. T (sec) MPF T (sec) MPF

1 6.76 0.779 5.07 0.761
2 2.50 0.130 1.85 0.145
3 1.47 0.042 1.07 0.044
4 1.03 0.020 0.76 0.020
5 0.77 0.011 0.58 0.011
6 0.61 0.007 0.47 0.007

Table C.7: Dynamic properties of the 20-story building.

Mode Pre-Stiffening Post-Stiffening

No. T (sec) MPF T (sec) MPF

1 6.80 0.731 5.45 0.693
2 2.43 0.162 1.84 0.191
3 1.37 0.047 1.00 0.054
4 0.95 0.022 0.69 0.023
5 0.72 0.012 0.53 0.013
6 0.57 0.008 0.42 0.008
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Appendix D

Residual Drift, Inter-Story Shear,

and O.T.M. of the Benchmark

Buildings

The residual inter-story drift of the benchmark buildings discussed in Chapters 4

and 5 under the design earthquake and the maximum considered earthquake records

is shown in Figures D.1 through D.6. The median peak inter-story shear on these

buildings is shown in Figures D.7 through D.12. It should be noticed that the base

shear on the SBS equipped buildings may, in some cases, appear to be greater than

that induced on the BRBF. This is because the total effective damping for the SBS

buildings was set to 10%. While the hysteretic damping of the BRBF is higher

than that. For instance, the effective damping of the 3-story BRBF building is 26%.

Therefore, it is expected that the base shear and the overturning moment be higher for

the SBS buildings. It should also be mentioned that the 3-story BRBF approached

near collapse under earthquake records LA27 and LA28, accordingly, their results

were eliminated from the statistical summary. However, the SBS building successfully

sustained all the considered ground motions. The median peak overturning moment

on these buildings is shown in Figures D.13 through D.18.
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Figure D.1: Residual inter-story drift on the 3-story building under the (10/50)
ground motions
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Figure D.2: Residual inter-story drift on the 3-story building under the (2/50)
ground motions
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Figure D.3: Residual inter-story drift on the 9-story building under the (10/50)
ground motions
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Figure D.4: Residual inter-story drift on the 9-story building under the (2/50)
ground motions
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Figure D.5: Residual inter-story drift on the 20-story building under the (10/50)
ground motions
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Figure D.6: Residual inter-story drift on the 20-story building under the (2/50)
ground motions
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Figure D.7: Median inter-story shear on the 3-story building under the (10/50)
ground motions
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Figure D.8: Median inter-story shear on the 3-story building under the (2/50)
ground motions
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Figure D.9: Median inter-story shear on the 9-story building under the (10/50)
ground motions
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Figure D.10: Median inter-story shear on the 9-story building under the (2/50)
ground motions
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Figure D.11: Median inter-story shear on the 20-story building under the (10/50)
ground motions
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Figure D.12: Median inter-story shear on the 20-story building under the (2/50)
ground motions
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Figure D.13: Median overturning moment on the 3-story building under the (10/50)
ground motions
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Figure D.14: Median overturning moment on the 3-story building under the (2/50)
ground motions
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Figure D.15: Median overturning moment on the 9-story building under the (10/50)
ground motions
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Figure D.16: Median overturning moment on the 9-story building under the (2/50)
ground motions
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Figure D.17: Median overturning moment on the 20-story building under the
(10/50) ground motions
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Figure D.18: Median overturning moment on the 20-story building under the (2/50)
ground motions
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