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Abstrat

This paper desribes a ontravariant ategory equivalene between the ategory of unital ommuta-

tive C*-algebras with unital *-homomorphisms and the ategory of ompat Hausdor� spaes with

ontinuous funtions in order to haraterize semiprojetive C*-algebras. Results preliminary to

establishment of the equivalene yield homeomorphisms between any ompat Hausdor� spae X ,

the spae of maximal ideals on C(X) endowed with the hull-kernel topology, and the spae of hara-

ters on C(X) under the weak* topology. The funtional alulus herein onstruted provides a link

between normal elements of a C*-algebra and ontinuous funtions on the spetra of the elements.

The equivalenes established, along with the funtional alulus, provide a means to develop the

C*-algebra theory of semiprojetivity by analogy to the topologial onept of absolute neighbor-

hood retrats on ompat metrizable spaes; the analogy yields many examples of semiprojetive

C*-algebras. Semiprojetivity theory is an instane of extending well-established onsequenes from

one mathematial ontext for use in another ontext via ategory equivalene and it additionally mo-

tivates an exploration of the extent to whih results from one ontext an be developed analogously

in the other beyond the limits of the equivalene.
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0 Introdution

The ultimate goals of this paper are to haraterize the C*-algebra theory of semiprojetivity as it

relates to the topologial onept of ANRs via a ontravariant ategory equivalene and to delineate

known semiprojetive C*-algebras. To this end, a preliminary portion of results presented onstruts

homeomorphisms between any ompat Hausdor� spae X , the spae of maximal ideals on C(X),

and the spae of haraters on C(X).

The �rst setion outlines basi de�nitions and results onerning C*-algebras. The setion ex-

plores speial properties of the spetrum and of ideals in a C*-algebra, and it desribes the important

C*-algebra C(X). Additionally, important C*-algebra element types and major fundamental results

onerning C*-algebras are herein inluded.

Results in the seond setion outline the onstrution of the hull-kernel topology on Prim(A),

the set of primitive ideals of a C*-algebra A. The results ulminating the setion establish for any

ompat Hausdor� spae X a homeomorphism between the spae Prim(C(X)) endowed with the

hull-kernel topology and X under its original topology.

Theory in the third setion develops the weak* topology and assoiates the harater spae Ω(A)

of a C*-algebra A with this topology. Another homeomorphism is established between any ompat

Hausdor� spae X endowed with its original topology and the harater spae Ω(C(X)) under

the weak* topology. Next, a ontravariant ategory equivalene between the ategory of unital

ommutative C*-algebras with unital *-homomorphisms and the ategory of ompat Hausdor�

spaes with ontinuous funtions. The setion onludes with the funtional alulus and polar

deomposition, tools used in haraterizing semiprojetive C*-algebras.

The �nal setion establishes an analogy between semiprojetivity and ANRs using the equiva-

lenes developed prior. Partial liftings of spei�ed element types in a C*-algebra lead to a olletion

of examples of semiprojetive C*-algebras formed as universal C*-algebras eah generated by a set

of partially liftable elements. In this way, semiprojetivity theory explores the analogy between

semiprojetive C*-algebras and ANRs.
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1 Fundamental C*-Algebra Theory

This setion introdues C*-algebras and delineates basi properties of these algebras. The spetrum

of an element is de�ned, and fats onerning the spetrum and ideals in C*-algebras are here

developed as a foundation for the main results of later setions.

1.1 C*-Algebras

An algebra is a vetor spae A over a �eld K, with K = C orK = R, together with a mapM : A2 →A,

M(a1, a2) 7→ a1a2 suh that

1. a1(a2a3) =(a1a2)a3,

2. a1(a2 + a3) = a1a2 + a1a3,

3. (a1 + a2)a3 = a1a3 + a2a3,

4. α(a1a2) = (αa1)a2 = a1(αa2),

for all a1, a2, a3 ∈ A and α ∈ K. A subalgebra is a vetor subspae B of an algebra A suh that

b1b2 ∈ B for all b1, b2 ∈ B. Hereafter, the �eld K will always be C.

A normed algebra is an algebra A having a norm ‖·‖ on its vetor spae struture with the

property ‖a1a2‖ ≤ ‖a1‖ ‖a2‖ for all a1, a2 ∈ A. If the norm on A is omplete in its norm spae

struture then A is a Banah algebra. An algebra A in whih a1a2 = a2a1 for all a1, a2 ∈ A is a

ommutative algebra. If a normed algebra A has an element 1 suh that ‖1‖ = 1 and 1a = a1 = a

for all a ∈ A then A is unital ; the element 1, whih is neessarily unique, is alled the identity (or

unit) of A. The ondition ‖a1a2‖ ≤ ‖a1‖ ‖a2‖ for all a1, a2 in a normed algebra A guarantees that

the multipliation operation M(a1, a2) 7→ a1a2 is jointly ontinuous.

An involution on an algebra A is a map ∗ : A→ A de�ned by ∗ : a 7→ a∗ suh that

1. (a1a2)
∗ = a∗2a

∗
1,

2. (a1 + a2)
∗ = a∗1 + a∗2,

3. (αa)∗ = ᾱa∗,

4. (a∗)∗ = a,

for all a, a1, a2 ∈ A and all α ∈ C. An algebra A over K = C together with the involution ∗ is alled

a *-algebra. If A is a Banah algebra that has an involution ∗ with the property ‖a∗‖ = ‖a‖ for all

a ∈ A, then A is a Banah *-algebra. A Banah *-algebra suh that ‖a∗a‖ = ‖a‖2 for all a ∈ A
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is alled a C*-algebra. The ondition ‖a∗a‖ = ‖a‖2 for all a ∈ A is alled the C*-property of A.

A losed subalgebra B of a C*-algebra A is a C*-subalgebra if b∗ ∈ B for all b ∈ B. If S is any

subset of a C*-algebra A, the C*-algebra generated by S is the smallest C*-algebra B ⊆ A suh that

S ⊆ B; B is denoted by C∗(S). In partiular, C∗(a) is the C*-algebra generated by a single element

a ∈ A. In a unital C*-algebra A, 1∗ = 11∗ = (11∗)∗ = 1∗∗ = 1, and 1 automatially has norm 1

sine ‖1‖ = ‖1∗1‖ = ‖1‖2 in A and ‖1‖ 6= 0.

The following spaes are important examples of algebras needed in ontent following. C(X),

with X a ompat Hausdor� spae, is the primary C*-algebra onsidered in the results that follow.

Example. C, the omplex numbers. C is a unital ommutative C*-algebra with involution * given

by omplex onjugation λ∗ = λ for λ ∈ C. A subsequent result shows that a Banah algebra in

whih every non-zero element is invertible is isomorphi to C.

Example. C(X), Cb(X), and C0(X). Let X be a topologial spae. The set Cb(X) of all bounded

ontinuous omplex-valued funtions on X is a unital Banah algebra under the pointwise operations

(f + g)(x) = f(x) + g(x),

(fg)(x) = f(x)g(x),

(αf)(x) = αf(x),

and norm

‖f‖∞ = sup
x∈X

|f(x)|.

If X is ompat, Cb(X) = C(X), the set of ontinuous omplex-valued funtions on X . If X is

a loally ompat Hausdor� spae, the set C0(X) of ontinuous funtions vanishing at in�nity, that

is the set of funtions suh that Wǫ = {x ∈ X | |f(x)| ≥ ǫ} is ompat for every ǫ > 0, is a Banah

algebra sine it is a losed subalgebra of Cb(X). If X is ompat, then C0(X) = C(X), a unital

Banah algebra.

Suppose that X is a topologial spae, and de�ne an involution * on Cb(X) by f∗ = f . Then

Cb(X) is a C*-algebra. Similarly, if X is a loally ompat Hausdor� spae and C0(X) has involution

f∗ = f , then Co(X) is a C*-algebra. If X is ompat Hausdor� then C(X) = Cb(X) = C0(X) is a

unital ommutative C*-algebra.

Example. B(X), the operators on X, and Mn(C), the n× n matries. Let X be a normed vetor

spae. Then B(X), the set of all bounded linear operators on X , is a normed algebra with addition

and salar multipliation de�ned pointwise, multipliation de�ned by

(ST )(x) = (S ◦ T )(x) = S(T (x)),

and norm given by
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‖T ‖ = sup
x 6=0

‖T (x)‖
‖x‖ = sup

‖x‖≤1

‖T (x)‖.

If X is a Banah spae, B(X) is a Banah algebra, and if H is a Hilbert spae, B(H) is a C*-

algebra with involution the adjoint operation * de�ned by < T ∗x, y >=< x, Ty > for all x, y ∈ H .

B(X) is never ommutative unless dim(X) = 1. Mn(C), the vetor spae of n × n matries with

entries in C, is identi�ed with B(Cn) and is therefore a unital C*-algebra.

1.2 Ideals and Quotient Algebras

Let A be an algebra. A vetor subspae I of A is a left ideal if as ∈ I for all a ∈ A and s ∈ I and a

right ideal if sa ∈ A for all a ∈ A and s ∈ I; I is an ideal if it is both a left ideal and a right ideal.

A maximal ideal is a proper ideal I in A that is not ontained in any other proper ideal. Zorn's

lemma establishes that every proper modular ideal is ontained in a maximal ideal, so any unital

algebra posesses maximal ideals [8℄. An ideal I ontaining an element u of A suh that a − au ∈ I

and a− ua ∈ I for all a ∈ A is alled a modular ideal. If A is a unital algebra with unit 1 then any

ideal I in A is modular sine a− a1 = a− 1a = a− a = 0 ∈ I for any ideal I.

A homomorphism is a linear map φ : A→ B, where A and B are algebras, having the property

that φ(a1a2) = φ(a1)φ(a2) for all a1, a2 ∈ A. A homomorphism φ : A→ B is unital if both A and B

are unital and φ(1) = 1. For any homomorphism φ : A→ B, φ(A) is a subalgebra of B and ker(φ)

is an ideal in A [8℄. A *-homomorphism is a homomorphism φ : A→ B between C*-algebras A and

B having the property φ(a∗) = (φ(a))∗ for all a ∈ A.

Let I be an ideal of an algebra A. Then the vetor spae A/I is an algebra with multipliation

operation (a+ I)(b+ I) = ab+ I [8℄, alled the quotient algebra of A by I. Moreover, A/I is unital

if and only if I is modular [9℄.

Theorem 1.1. If A is a C*-algebra and I is a losed ideal in A, then I is losed under the involution

* and the quotient algebra A/I is itself a C*-algebra when assoiated with the quotient norm ‖·‖

de�ned by ‖a+ I‖ = inf
a′∈I

‖a+ a′‖.

Proof. The algebrai properties of A/I follow diretly from the algebrai operations of A, and the

quotient norm is a omplete norm by the properties of the omplete norm on A. Let a1+ I, a2+ I ∈

A/I and let ǫ > 0. Then (‖a1 + I‖ + ǫ) > ‖a1 + s1‖ and (‖a2 + I‖ + ǫ) > ‖a2 + s2‖ for some

s1, s2 ∈ I sine ‖a+ I‖ = inf
a′∈I

‖a+ a′‖. Consequently,

(‖a1 + I‖+ ǫ)(‖a2 + I‖+ ǫ) > ‖a1 + s1‖ ‖a2 + s2‖ ≥ ‖a1a2 + a1s2 + a2s1 + s1s2‖

by the submultipliative property of the norm on A. Then

(‖a1 + I‖)(‖a2 + I‖) = lim
ǫ→0

(‖a1 + I‖+ ǫ)(‖a2 + I‖+ ǫ) ≥ ‖a1a2 + I‖
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sine a1s2 + a2s1 + s1s2 ∈ I for any s1, s2 orresponding to a �xed ǫ > 0. Thus the quotient norm

is submultipliative and A/I is a Banah algebra.

The ideal I is automatially losed under the involution ∗, and this involution indues an invo-

lution on A/I rendering A/I a C*-algebra. Proofs of these two fats are beyond the sope of this

paper; see [3℄.

The following theorem is a generalization to algebras of an important result from ring theory. It

will not be proven here. See [5℄, [9℄ for details.

Theorem 1.2. Suppose that A is a unital ommutative algebra. Then an ideal I in A is maximal

if and only if A/I is a �eld.

Let A be an algebra with L ⊆ A a modular maximal left ideal. Then the largest ideal I ⊆ L of

A is I = {a ∈ A | aA ⊆ L}, alled the primitive ideal of A assoiated to L. The set of primitive

ideals of A is denoted by Prim(A). A prime ideal is an ideal I in A suh that for any ideals J1 and

J2 of A with J1J2 ⊆ I, the onsequene J1 ⊆ I or J2 ⊆ I holds.

In a later setion, the set Prim(A) of primitive ideals of a C*-algebra will be endowed with the

hull-kernel topology. To this end, in any C*-algebra A, hull(S) is de�ned to be the set of primitive

ideals ontaining S for any ideal S of A, and ker(R) denotes the intersetion of all ideals in a

nonempty set R of primitive ideals of A.

Some additional fats about ideals in ertain types of algebras are the following; see [9℄ for proofs

of these results. An ideal I in a ommutative C*-algebra A is primitive if and only if I is modular

maximal. Also, any primitive ideal I in a C*-algebra A is prime. In partiular, the set Prim(A) of

a unital ommutative C*-algebra A is equal to the set of its maximal ideals.

1.3 Spetrum

Suppose that A is a unital algebra and let a ∈ A. Then a is invertible if an element b exists suh

that ab = ba = 1. Suh an element b is unique, and it is denoted by a−1
, the inverse of a. The set of

invertible elements of A, Inv(A) = {a ∈ A | a−1 ∈ A}, is a group under the multipliation operation

[9℄. The spetrum of an element a ∈ A is the set σA(a) = {λ ∈ C | a− λ1 /∈ Inv(A)}. The notation

σ(a) for σA(a) will be used when it is lear that a is being onsidered as an element of A. In a unital

Banah algebra A, the spetral radius of an element a ∈ A is de�ned to be r(a) = sup
λ∈σ(a)

|λ|.

If an algebra A is nonunital, a unital algebra Ã, known as the unitization of A an always be

formed from A by adjoining a unit to A. See [9℄ for details onerning onstrution of the unitization

of an algebra. Under this onstrution, A an be identi�ed naturally as an ideal of Ã. Moreover, if A
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is a normed algebra, Ã an itself be made into a normed algebra; in this ase, A is a losed algebra of

Ã and Ã is a Banah algebra if A is [9℄. The spetrum of an element a in a nonunital Banah algebra

A is de�ned to be σA(a) = σÃ(a) and the spetral radius of a is de�ned to be r(a) = sup
λ∈σA(a)

|λ|. In

this ase, 0 is always an element of σA(a) for any a ∈ A.

The following results are basi properties of invertible elements and spetra of elements in a

unital Banah algebra. Proofs or alternative proofs of many of the results in this subsetion an be

found in [9℄. A general result following from Liouville's theorem shows that the spetrum of any

element in a unital Banah algebra is nonempty, a onsequene summarized in lemma 1.3 below.

The Gelfand-Mazur theorem is an important result following diretly from the fat that this fat.

The following two results are proven in [9℄.

Lemma 1.3. Suppose that A is a unital Banah algebra. Then the spetrum σ(a) 6= ∅ for all a ∈ A.

Corollary 1.4. [Gelfand-Mazur theorem℄ Let A be any unital Banah algebra in whih every

non-zero element is invertible. Then A = C1.

Proposition 1.5 also relies on the fat that the spetrum σ(a) of an element a ∈ A is nonempty

in any unital Banah algebra A. Lemma 1.6 gives a useful haraterization of invertible elements in

a unital Banah algebra.

Proposition 1.5. In a unital Banah algebra A, σ(p(a)) = p(σ(a)) for all a ∈ A and p ∈ C[z].

Proof. Let p ∈ C[z]. If p is onstant, then p = λ for some λ ∈ C, in whih ase σ(p(a)) = p(σ(a)) = λ.

So assume p is not onstant. By the fundamental theorem of algebra, omplex onstants λ0, λ1, ..., λn

exists with λ0 6= 0 and p−λ = λ0(z−λ1)...(z−λn) for any λ ∈ C. Hene p(a)−λ = λ0(a−λ1)...(a−λn)

and p(a) − λ ∈ Inv(A) if and only if a − λi is invertible if and only if a− λi /∈ σ(a) for 1 ≤ i ≤ n.

Thus λ ∈ σ(p(a)) if and only if λ = p(λ̃) for some λ̃ ∈ σ(a), meaning σ(p(a)) = p(σ(a)).

Lemma 1.6. Let A be a unital Banah algebra. Then 1 − a ∈ Inv(A) and (1 − a)−1 =
∞
∑

n=0
an for

any a ∈ A having ‖a‖ < 1.

Proof. The series

∞
∑

n=0
‖an‖ is onvergent sine

∞
∑

n=0
‖an‖ ≤

∞
∑

n=0
‖a‖n= 1

1−‖a‖ , so
∞
∑

n=0
an is itself on-

vergent. Then

lim
n→∞

[(1− a)(1 + ...+ an)] = lim
n→∞

(1− an+1) = 1

sine lim
n→∞

‖a‖n = 0. Also,

lim
n→∞

[(1− a)(1 + ...+ an)] = (1 − a)
∞
∑

n=0
an

so (1−a)
∞
∑

n=0
an = 1. Similarly, (

∞
∑

n=0
an)(1−a) = 1. Thus 1−a ∈ Inv(A) and (1−a)−1 =

∞
∑

n=0
an.
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Proposition 1.7. Let A be a unital Banah algebra. Then the set Inv(A) is open in A and σ(a) is

a losed subset of the dis with radius ‖a‖ entered at the origin for all a ∈ A.

Proof. Let a ∈ Inv(A) and let a′ ∈ A be an element suh that ‖a− a′‖ < 1
‖a−1‖ . Then

∥

∥a−1a′ − 1
∥

∥ =
∥

∥a−1a′ − a−1a
∥

∥ ≤
∥

∥a−1
∥

∥ ‖a′ − a‖ <
∥

∥a−1
∥

∥

1
‖a−1‖ = 1,

so by the previous lemma a−1a′ − 1 ∈ Inv(A). Therefore a′ ∈ Inv(A) and Inv(A) is open beause

1, a−1 ∈ A. Next, let a ∈ A be arbitrary. Suppose that λ ∈ C is an element suh that ‖a‖ < |λ| .

Then

∥

∥λ−1a
∥

∥ =
∣

∣λ−1
∣

∣ ‖a‖ <
∣

∣λ−1
∣

∣ |λ| = 1,

so 1− λ−1a ∈ Inv(A) by the previous lemma. Thus a− λ1 = −λ(1− λ−1a) ∈ Inv(A) so λ /∈ σ(a).

Hene λ ∈ σ(a) implies that |λ| ≤ ‖a‖. The set C\σ(a) = {λ ∈ C | a−λ1 ∈ Inv(A)} is the preimage

of the funtion f : C → A de�ned by f(a) = a − λ1, whih is ontinuous with image Inv(A), an

open set, so C\σ(a) is open. Hene σ(a) is a losed subset of the dis with radius ‖a‖ entered at

the origin.

The following theorem shows that maximal ideals in a unital Banah algebra are losed.

Theorem 1.8. Suppose that A is a unital Banah algebra and that I is a proper ideal in A. Then

I is proper as well.

Proof. If a ∈ I is an element suh that ‖1− a‖ < 1 then 1 − (1 − a) = a is invertible. But then

aa−1 = 1 ∈ A, meaning I = A ontrary to the fat that I is proper. Therefore ‖1− a‖ ≥ 1 for all

a ∈ I so that 1 /∈ I. Hene I is proper.

By the above, the losure of a maximal ideal I is a proper losed ideal neessarily ontaining I,

so I = I. Thus every maximal ideal in a unital Banah algebra is losed.

The following theorem is attributable to Beurling. It yields an expliit formula for the spetral

radius of an element in a unital Banah algebra A. See [9℄ for a proof of the result.

Theorem 1.9. [Beurling theorem℄ Let A be a unital Banah algebra with a ∈ A. Then

r(a) = inf
n≥1

‖an‖1/n = lim
n→∞

‖an‖1/n.

Thus for any element a in a unital Banah algebra A , r(a) ≤ ‖a‖ by the above result and by

the submultipliative property of the norm on A.

1.4 Speial C*-Algebra Elements

Let A be a C*-algebra. The following are important types of elements in A.

1. An element a in A is self-adjoint if a∗ = a. An element p in A is a projetion if p∗ = p = p2.
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2. An element u in A is normal if u∗u = uu∗. Additionally, if u∗u = uu∗ = 1 then u is a unitary.

3. An element s in A is a partial isometry if s∗s is a projetion. An isometry is a partial isometry

x suh that x∗x = 1, and a o-isometry is an element y suh that yy∗ = 1.

4. If d in A is self-adjoint with σ(d) ⊆ R+
, then d is alled positive. Denote the set of positive

elements of A by A+
and let d ≥ 0 mean d ∈ A+. d ≤ e means e− d ∈ A+

.

Every C*-algebra A ontains self-adjoint elements: for any a ∈ A,

(a∗a)∗ = a∗a∗∗ = a∗a ∈ A and (aa∗)∗ = a∗∗a∗ = aa∗ ∈ A,

so a∗a and aa∗ are self-adjoint elements of A. Let a be any element in a C*-algebra A, and de�ne

b = 1
2 (a+ a∗) and c = 1

2i (a− a∗). Then a an be written uniquely as a = b + ic; in other words, if

b′ and c′ are two self-adjoint elements of A suh that a = b′ + ic′, then b′ = b and c′ = c. See [9℄ for

details.

The next pair of results show that the norms of self-adjoint elements and normal elements in a

C*-algebra are equal to the spetral radii of their respetive spetrums. Proofs an also be found in

[3℄.

Lemma 1.10. Let A be a C*-algebra with a ∈ A self-adjoint. Then r(a) = ‖a‖.

Proof. Sine a is self-adjoint,

∥

∥a2
∥

∥ = ‖a∗a‖ = ‖a‖2 and hene

∥

∥a2
n
∥

∥ = ‖a‖2
n

for all n ∈ N by

indution. Thus

r(a) = lim
n→∞

‖an‖1/n = lim
n→∞

∥

∥a2
n∥

∥

1/2n

= ‖a‖.

Theorem 1.11. Suppose that A is a C*-algebra and let u ∈ A be normal. Then r(u) = ‖u‖.

Proof. The element u is normal so u∗u = uu∗ and

(r(u))2 = inf
n≥1

‖un‖2/n = inf
n≥1

‖(un)∗(u)n‖1/n = inf
n≥1

‖(u∗u)n‖1/n

= r(u∗u) = ‖u∗u‖ = ‖u‖2,

sine u∗u is self-adjoint. Thus r(u) = ‖u‖.

Here is an alternative haraterization of partial isometries in a C*-algebra.

Proposition 1.12. An element s in a C*-algebra A is a partial isometry if and only if s = ss∗s.

Proof. Suppose �rst that s = ss∗s. Then

(s∗s)2 = s∗(ss∗s)s∗(ss∗s)s∗(ss∗s) = s∗(ss∗s)s∗s = s∗(ss∗s) = s∗s,

so s∗s is a projetion and s is a partial isometry.

Conversely, suppose that s is a partial isometry. Let a = s− ss∗s. Then

a∗a = (s∗ − s∗ss∗)(s− ss∗s) = s∗s− s∗ss∗s− s∗ss∗s+ s∗ss∗ss∗s = 0

sine (s∗s)2 = s∗s. Thus ‖a‖2 = ‖a∗a‖ = 0 by the C*-property so that s = ss∗s.
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Corollary 1.13. Let s in a C*-algebra A be a partial isometry. Then ss∗is a projetion.

Proof. By the previous proposition sine s = ss∗s,

(ss∗)2 = (ss∗s)s∗ = ss∗,

from whih it is lear that ss∗is a projetion.

For a partial isometry s, s∗s is the soure projetion of s and ss∗ is the range projetion of s.



10

2 Hull-Kernel Topology on Prim(A)

Here the hull-kernel topology on the set of primitive ideals of a C*-algebra is desribed. The results

following establish an equivalene between any ompat Hausdor� spae X and the set Prim(C(X))

of maximal ideals of C(X).

2.1 General Topology Preliminaries

The topology results olleted here are used in the establishment of equivalenes between a topologi-

al spae X and spaes of objets on the C*-algebra C(X) assoiated to X . Moreover the results are

used in the development of semiprojetive C*-algebras. They are here stated for ease of referene.

A fundamental topology text an be referened for proofs of the results found in this setion; see for

example [8℄.

The following theorem is fundamental but it is essential in establishing major results to follow.

Lemma 2.1. Let f : X → Y be a bijetive ontinuous funtion between the topologial spaes X

and Y . If X is ompat and Y is Hausdor�, then f is a homeomorphism.

The next result about normal spaes is easily proved. It onnets onsequenes of the Urysohn

Lemma and the Tietze Extension Theorem to ompat Hausdor� spaes.

Lemma 2.2. Every ompat Hausdor� spae is normal.

The next two theorems are among the most important results in all of elementary topology. See

[8℄ for proofs and disussion of the theorems.

Theorem 2.3. [Urysohn lemma℄ Let X be a normal spae and suppose that F1 and F2 are disjoint

losed subsets of X. Let [a, b] ⊆ R be any losed interval. Then a ontinuous map f : X → [a, b]

exists suh that f(x) = a for all x ∈ F1 and f(x) = b for all x ∈ F2.

Theorem 2.4. [Tietze Extension theorem℄ Let X be a normal spae with losed subspae F ,

and let [a, b] ⊆ R be any losed interval. Then for any ontinuous map f : F → [a, b], there is a

ontinuous map f̃ : X → [a, b] extending f . Moreover, for any ontinuous map g:F → R, there is a

ontinuous map g̃ : X → R extending g.

The onept of omplete regularity is also neessary in subsequent work. A ompletely regular

spae is a spae X in whih one-point sets are losed and wherein for eah point x0 and eah losed

set F not ontaining x0 there is a ontinuous funtion fx0
: X → [0, 1] suh that fx0

(x0) = 1 and

fx0
(x) = 0 for all x ∈ F . A normal spae is ompletely regular by the Urysohn lemma, and by the
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lemma preeding the statement of the Urysohn lemma above, a ompat Hausdor� spae is thus

ompletely regular.

The onept of nets generalizes the onept of sequenes in a topologial spae. A basi result

from topology shows that for any set A in a metrizable spaeX and element x ∈ X , x ∈ A if and only

if there is a sequene of points of A onverging to x. See, for example, [8℄. This sequential riterion

for de�ning losed sets in a metrizable spae will be used in working with topologies onsidered

in setions following. However, a ompat Hausdor� spae may not be metrizable. Nonetheless,

a generalization of this sequential riterion holds for nets and losures of sets. To this end, some

onepts onerning nets and onvergene must be established.

A direted set is a nonempty set I with a relation � having the properties

1. ι � ι for every ι ∈ I,

2. ι1 � ι3 whenever ι1 � ι2 and ι2 � ι3 for all ι1, ι2, ι3 ∈ I,

3. there exists ι ∈ I suh that ι1 � ι and ι2 � ι for every ι1, ι2 ∈ I.

Let X be a topologial spae and suppose that I is a direted set. A net of points of X is a funtion

x : I → X , denoted {xι}ι∈I where xι = x(ι). A net {xι}ι∈I is said to onverge to a point x ∈ X ,

denoted by xι → x, if for eah open set O ∈ x, an index ιO ∈ I exists suh that xι ∈ O for any ι ∈ I

with ιO � ι.

Given this framework of nets, the following proposition establishes a generalization of the se-

quential riterion for a topology on a metrizable spae. See [7℄ for a proof of the result.

Proposition 2.5. Let X be a topologial spae, and let S be a subset of X with x ∈ X. Then x ∈ S

if and only if there is a net {xι}ι∈I of points of S suh that xι → x.

Similarly, another generalization to a basi result from topology yields the following theorem,

proven in [7℄.

Theorem 2.6. Suppose that X and Y are topologial spaes and that φ : X → Y . Then φ is

ontinuous if and only if for any net {xι}ι∈I suh that xι −→ x, it is true that φ(xι) −→ φ(x).

The preeding topology results will be important in establishing subsequent onlusions.

2.2 Hull-kernel Topology Constrution

The hull-kernel topology is here onstruted on the set of primitive ideals of a C*-algebra A. When

X is a ompat Hausdor� spae, Prim(C(X)) is the set of maximal ideals of C(X), sine in this
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ase C(X) is a unital ommutative C*-algebra, and by omments following theorem 1.2 an ideal of

C(X) is primitive if and only if it is maximal whenever X is ompat Hausdor�.

The next result haraterizes the proper losed ideals of a C*-algebraA, and the theorem following

yields the hull-kernel topology on Prim(A). Proofs are available in [9℄.

Lemma 2.7. Let I be a proper losed ideal in a C*-algebra A. Then I = ker(hull(I)).

De�ne R̂ = hull(ker(R)) for R ⊆ Prim(A) and let Chk = {R̂ | R ∈ Prim(A)}. The next

theorem, proven in [9℄, follows from the fats (also established in [9℄) that for sets F1, F2 ∈ Chk,

F̂1 ∪ F2 = F̂1 ∪ F̂2, and that for an arbitrary olletion {Fλ}λ∈Λ of sets of Chk, ̂
⋂

λ∈Λ

Fλ =
⋂

λ∈Λ

F̂λ.

Theorem 2.8. Let A be a C*-algebra. There is a unique topology Thk on Prim(A) suh that

R = R̂ = hull(ker(R)) for eah R ⊆ Prim(A).

The unique topology Thk is Thk = {Prim(A) \ R̂ | R ⊆ Prim(A)}, the set of omplements of

losures of subsets of Prim(A).

The next theorem will be proven in the ase of A = C(X), with X a ompat Hausdor� spae,

within the results of this setion but the bijetive orrespondene spei�ed holds for general C*-

algebras. The seond theorem following establishes a relationship between losed ideals in a C*-

algebra and their orresponding hulls. See [9℄ for proofs of these results.

Proposition 2.9. Let A be a C*-algebra. The map φ from the set of losed ideals of A onto the set

of losed subsets of Prim(A) de�ned by φ(I) = hull(I) is a bijetion.

Proposition 2.10. Let A be a C*-algebra. If I and J are losed ideals of A, then I ⊆ J if and only

if hull(J) ⊆ hull(I).

In partiular, the preeding results onerning the hull-kernel topology apply to C(X) when X

is a ompat Hausdor� spae.

2.3 Hull-kernel Topology on Prim(C(X))

In this setion, X is a ompat Hausdor� spae. A homeomorphism between X and the set

Prim(C(X)) of maximal ideals on C(X) with the hull-kernel topology is established in the results

that follow.

The next lemma and the theorem immediately following provide the tehnial details and intu-

ition for the onnetion between losed sets of a ompat Hausdor� spae X and losed ideals in

C(X).
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Lemma 2.11. Let I be a losed ideal in C(X) and de�ne Y = {x ∈ X | f(x) = 0 for all f ∈ I}.

Then for any open set U ontaining Y , there is an f ∈ I suh that 0 ≤ f(x) ≤ 1 for all x ∈ X and

f(x) = 1 for all x ∈ X \ U .

Proof. Let {yn}n ⊆ Y be a sequene that onverges to an element y ∈ X . Then fI(yn) = 0 for all

fI ∈ I, and sine fI is ontinuous, 0 = fI(yn) → fI(y) so that fI(y) = 0 and y ∈ Y . Hene Y is

losed. By the ompletely regular property of the ompat Hausdor� spae X , for eah z ∈ X \ U

a funtion fz ∈ I exists suh that fz(z) 6= 0. Let Vz = {x ∈ X | fz(x) 6= 0}. By ontinuity of fz,

the set Vz is open for eah z ∈ X \ U . The set V = {Vz | z ∈ X \ U} is then an open over of the

ompat set X \ U , so X \ U has a �nite subover {Vzk}
n
k=1 ⊆ V .

De�ne a funtion g = fz1fz1 + fz2fz2 + ...+ fznfzn on X\U . The funtion g is in I and g(x) > 0

for all x ∈ X \ U sine if x is in X \ U , an element Vzk ⊆ {Vzk}
n
k=1 exists with x ∈ Vzk and

fzk(x) 6= 0. The funtion h = 1
g de�ned on X\U is a ontinuous real-valued funtion, and X\U

is ompat so h has a minimum a and a maximum b over X\U . Hene h extends to a ontinuous

funtion h̃ : X → [a, b] by the Tietze extension theorem. The funtion

1
g : X → [0,∞] is ontinuous

when onsidered as an extended real-valued funtion over X . Let ĥ = min(h̃, 1g ). Then ĥ ∈ C(X),

so the funtion f = ĥg ∈ I has the properties 0 ≤ f(x) ≤ 1 for all x ∈ X and f(x) = 1 for all

x ∈ X\U .

Theorem 2.12. Let X be a ompat Hausdor� spae and let I be a losed ideal in C(X). De�ne

Y = {x ∈ X | f(x) = 0 for all f ∈ I}. Then I = {f ∈ C(X) | f(y) = 0 for all y ∈ Y }.

Proof. Let J = {f ∈ C(X) | f(y) = 0 for all y ∈ Y } and suppose h ∈ I. Then learly by de�nition

of Y , h(x) = 0 for all x ∈ Y so I ⊆ J .

Next let g ∈ C(X) be suh that g(y) = 0 for all y ∈ Y. De�ne a set Un = {x | |g(x)| < 1
n}

for eah n ∈ N. Un is open by ontinuity of g and Y ⊆ Un, so a funtion fn ∈ I exists suh that

0 ≤ fn(x) ≤ 1 for all x ∈ X and fn(x) = 1 for all x ∈ X \ Un. Then for all n ∈ N, fng ∈ I and

|(fng − g)(x)| = |(g − g)(x)| = 0

whenever x ∈ X\Un, and

|(fng − g)(x)| = |(fn − 1)(x)g(x)| = |(fn − 1)(x)| |g(x)| ≤ |g(x)| < 1
n

for all x ∈ Un so that ‖fng − g‖ ≤ 1
n for all n ∈ N and all x ∈ X . Hene a sequene {gn}n∈N ⊆ I

de�ned by gn = fng for n ∈ N exists suh that gn → g, meaning g ∈ I sine I is losed. Hene J ⊆ I

Therefore I = {f ∈ C(X) | f(y) = 0 for all y ∈ Y }.

Quotient algebras of C(X) by a losed ideal are desribed in the next lemma.
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Lemma 2.13. Let I be a losed ideal in C(X). Then C(X)/I ∼= C(Y ) for the partiular losed

subset Y in the de�nition of I.

Proof. Sine I is losed, by the previous theorem I = {f ∈ C(X) | f(y) = 0 for all y ∈ Y } for the

losed set Y ⊆ X given by Y = {x ∈ X | f(x) = 0 for all f ∈ I}. De�ne a map φ : C(X)/I → C(Y )

by φ(f + I) = f |Y . This map is a *-homomorphism beause restritions of ontinuous funtions

to losed subsets are ontinuous. Moreover, if fY ∈ C(Y ), then by the Tietze extension theorem,

a funtion fX ∈ C(X) exists suh that fX is a ontinuous extension of fY . Then φ(fX + I) = fY ,

so the map φ is onto. Clearly, ker(φ) = I sine for any f ∈ I, f(y) = 0 for all y ∈ Y so

thatφ(f + I) = f |Y= 0, where 0 is the onstant funtion 0 ∈ C(Y ). Therefore by the �rst

isomorphism theorem, A/I ∼= C(Y ).

The lemma above leads to a proposition haraterizing maximal ideals in C(X).

Proposition 2.14. Let I be an ideal in C(X). Then I is a maximal ideal if and only if a point

x ∈ X exists suh that I = {f ∈ C(X) | f(x) = 0}.

Proof. Suppose a point x ∈ X exists suh that I = {f ∈ C(X) | f(x) = 0}. De�ne a map

ϕ : C({x}) → C by ϕ(f) = f(x). For any k ∈ C, a funtion k̂ ∈ C({x}) de�ned by k̂(x) = k exists

so ϕ(k̂) = k̂(x) = k and ϕ is onto. Suppose next that f1, f2 ∈ C({x}) suh that f1(x) = f2(x). Then

f1 = f2 and ϕ is 1-1 sine x is the only element of {x}. ϕ is a unital *-homomorphism sine funtions

in C({x}) are ontinuous, f(x) = f(x), and f(1) = 1. Thus the map ϕ is a unital *-isomorphism.

By the previous lemma, C(X)/I ∼= C({x}) ∼= C and sine C is a �eld, I is a maximal ideal.

Every maximal ideal is losed so I = {f ∈ C(X) | f(y) = 0 for all y ∈ Y } for the losed set Y =

{y ∈ X | f(y) = 0 for all f ∈ I}. Y is nonempty sine I = C(X) if Y = ∅, ontrary to maximality

of I. By the previous lemma, C(X)/I ∼= C(Y ). But I is maximal so C(Y ) ∼= C(X)/I ∼= C. If Y

ontains two or more distint points then y1, y2 ∈ Y exist suh that y1 6= y2. But by the Urysohn

lemma, a ontinuous funtion f ∈ C(Y ) exists suh that f(y1) = α1 and f(y2) = α2 for some

α1, α2 ∈ R with α1 6= α2. But then C(Y ) an't be *-isomorphi to C sine C is isomorphi to a

spae of onstant funtions and C(Y ) ontains a nononstant funtion. The onlusion Y = {x} for

some x ∈ X follows and therefore I = {f ∈ C(X) | f(x) = 0}.

Finally, the homeomorphism between X and Prim(C(X)) is established below.

Theorem 2.15. De�ne a map φ : X → Prim(C(X)) by φ(x) = Ix for all x ∈ X, where Ix = {f ∈

C(X) | f(x) = 0}. Then φ is a homeomorphism.
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Proof. By the results preeding, I ∈ Prim(C(X)) i� I = Ix = {f ∈ C(X) | f(x) = 0} for some

x ∈ X . Thus x ∈ X is an element suh that φ(x) = I, meaning φ is onto. Suppose next that x1

and x2 are two elements of X suh that φ(x1) = φ(x2). Then Ix1
= Ix2

, whih implies that x1 = x2

sine if x1 6= x2 by the Urysohn lemma some g ∈ C(X) exists suh that g(x1) = 0 and g(x2) 6= 0

ontrary to Ix1
= Ix2

. Thus φ is 1-1.

The map φ is thus a bijetion between X and Prim(C(X)), so a topology homeomorphi to the

hull-kernel topology on Prim(C(X)) exists on X . Denote this topology by T X
hk and the original

topology of X by T . φ is a homeomorphism between Prim(C(X)) with the hull-kernel topology

and X with its natural topology if for any set S ⊆ X , x ∈ S
X

if and only if x ∈ S
hk
, where S

X
is

the losure of S in T and S
hk

is the losure of S in T X
hk . Let S ⊆ X , and de�ne IS =

⋂

I∈φ(S)
. Then

IS = {f ∈ C(X) | f(x) = 0 for all x ∈ S} sine f(x) = 0 for all f ∈ Ix and any x ∈ S, and

φ(S) = hull(ker(S)) = {I ∈ Prim(C(X)) | I ⊇ IS},

where φ(S) is the losure of φ(S) in the hull-kernel topology on Prim(C(X)). Note that for an

element p ∈ X , p ∈ S
hk

if and only if for any funtion f ∈ C(X) suh that f(x) = 0 for all

x ∈ S, f(p) = 0. This holds sine p ∈ S
hk

if and only if Ip ∈ φ(S) if and only if Ip ⊇ IS so that

Ip = {f ∈ C(X) | f(p) = 0} ontains all f ∈ C(X) suh that f(x) = 0 for all x ∈ S.

So let p ∈ S
X
. Then some net {pι}ι∈Λ exists suh that pι → p in the topology T on X , and by

a general property f(pι) → f(p) for any f ∈ C(X). Sine f(pι) = 0 for all pι ∈ {pι}, f(p) = 0 as

well. In partiular, if f ∈ C(X) is an element suh that f(x) = 0 for all x ∈ S, meaning f ∈ IS ,

then f(p) = 0. Therefore Ip ⊇ IS so Ip ∈ φ(S), whih leads to the onlusion p ∈ S
hk
.

Conversely, suppose p /∈ S
X
. Sine X is ompat Hausdor�, it is normal and hene ompletely

regular. Thus a funtion fp : X → [0, 1] exists suh that fp(x) = 0 for all x ∈ S
X

⊇ S and fp(p) = 1.

Therefore p /∈ S
hk

sine p ∈ S
hk

if and only if for every funtion f ∈ C(X) suh that f(x) = 0 for all

x ∈ S, f(p) = 0 as well, and fp is a funtion not satisfying this ondition. Hene by ontrapositive,

p ∈ S
hk

implies that p ∈ S
X
.

The above onsequenes establishes that φ is a homeomorphism.

The preeding theorem establishes that the original topology on X an be reovered from the

hull-kernel topology on Prim(C(X)).
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3 Ω(C(X)) and the Funtional Calulus

In this setion, the equivalene between a ompat Hausdor� spae X and the set of maximal ideals

of C(X) is extended to an equivalene with a third objet, the set of nonzero homomorphisms on

C(X), Ω(C(X)), endowed with the weak* topology. In partiular, a homeomorphism exists between

Ω(C(X)) and X so that the three spaes X , Ω(C(X)), and Prim(C(X)) are all homeomorphi.

These results ulminate with a ategory equivalene between ompat Hausdor� spaes and unital

ommutative C*-algebras. The funtional alulus is haraterized in the last part of this setion;

the onept is useful in understanding C*-algebras.

3.1 The Weak* Topology

Some preliminaries onerning the onstrution and properties of the weak* topology are neessary

in establishing theory related to the harater spae of C(X).

Let A be a vetor spae over a �eld K with K = R or K = C. A seminorm is a funtion σ : A→ R

satisfying the onditions

1. σ(a) ≥ 0 and σ(0) = 0,

2. σ(αa) = |α|σ(a),

3. σ(a1 + a2) = σ(a1) + σ(a2),

for all a, a1, a2 ∈ A and α ∈ K.

Suppose that A is a normed spae. De�ne for eah a ∈ A a funtion σa : A∗ → R by σa(φ) =

|φ(a)| for φ ∈ A∗
. Then σa is a seminorm on A∗

for eah a ∈ A [7℄. The weak* topology on A∗
, the

dual spae of A, is the topology indued by the olletion of seminorms S = {σa | a ∈ A}. In other

words, the weak* topoloy is the topology having subbasis the sets Sa,ǫ = {φ ∈ A∗ | σa(φ) < ǫ} for

all a ∈ A and ǫ > 0.

Let {fn} be a sequene of bounded linear funtionals on a normed spae A. Then {fn} onverges

weak* if a bounded linear funtional f on A exists suh that fn(a) −→ f(a) for all a ∈ A. Likewise,

if {fι}ι∈I is a net of bounded linear funtionals on a normed spae A, {fι}ι∈I onverges weak* in A∗

if a bounded linear funtional f on A exists suh that fι(a) −→ f(a) for all a ∈ A. By Proposition

2.5, if S is a subset of A∗
, then an element f ∈ A∗

is in S, the losure of S in the weak* topology,

if and only if there is a net {fι}ι∈I in S suh that fι −→ f weak*.

Alaoglu's theorem, below, shows that the losed unit ball of the dual spae of a C*-algebra is

weak* ompat. See [7℄ for a proof of this result.
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Theorem 3.1. [Alaoglu's theorem℄ Let A be a normed spae with dual spae A∗
. Then the losed

unit ball, B1(0) = {f ∈ A∗ | ‖f‖ ≤ 1} ⊆ A∗
, is weak* ompat.

3.2 Charater Spae on C(X) Equivalene

Let A be a ommutative algebra. A harater on A is a nonzero homomorphism φ : A→ C. The set

of haraters on A is denoted by Ω(A) and is known as the harater spae of A. In this setion and

beyond, given any unital ommutative C*-algebra A, let the dual spae A∗
, whih ontains Ω(A)

as a subset, be endowed with the weak* topology. Herein X is a ompat Hausdor� spae unless

otherwise de�ned. Parallel disussions of proposition 3.2, lemma 3.3, theorem 3.4, and theorem 3.5

following an be found in [9℄.

Proposition 3.2. Suppose that A is a unital C*-algebra and let δ ∈ Ω(A). Then δ is a unital

*-homomorphism and ‖δ‖ = 1.

Proof. Sine A is a C*-algebra, δ(1) = [δ(1)]2 and sine δ(1) 6= 0, it follows that δ(1) = 1. Hene

δ is a unital homomorphism. So let a ∈ A. Then δ(Inv(A)) ⊆ Inv(C), sine a ∈ Inv(A) implies

that a−1
exists and δ(a)δ(a−1) = δ(aa−1) = 1. Let λ ∈ σ(δ(a)). δ(a − λ1) = δ(a) − λ1 /∈ Inv(C)

so δ(a − λ1) /∈ δ(Inv(A)), from whih it follows that a − λ1 /∈ Inv(A) and δ(a) ∈ σ(a). Therefore

|δ(a)| ≤ r(a) ≤ ‖a‖, whih implies that ‖δ‖ = sup
‖a‖≤1

|δ(a)| ≤ 1. But sine ‖1‖ = 1 in any unital

normed algebra and δ(1) = 1 by the preeding, ‖δ‖ = 1.

δ is moreover a *-homomorphism: if a ∈ A, then a = b+ ic with b and c self-adjoint so that, by

a result proved later (orollary 3.17), δ(b) ∈ σ(b) ⊆ R and δ(c) ∈ σ(c) ⊆ R, meaning

δ(a∗) = δ(b− ic) = δ(b)− iδ(c) = δ(b) + iδ(c) = δ(b+ ic) = δ(a).

The following simple lemma is used in the proof of the theorem following it.

Lemma 3.3. Suppose that A is a unital ommutative C*-algebra and let δ ∈ Ω(A). Then a−δ(a)1 ∈

ker(δ) for all a ∈ A.

Proof. Let a ∈ A. Then for any δ ∈ Ω(A), δ(a) ∈ C and

δ(a− δ(a)1) = δ(a)− δ(δ(a)1) = δ(a)− δ(a)δ(1) = δ(a)− δ(a) = 0.

Hene a− δ(a)1 ∈ ker(δ).

The next two results hold for the spae C(X), where X is a ompat Hausdor� spae. The nota-

tion Ix shall heneforth mean Ix = {f ∈ C(X) | f(x) = 0}. The next theorem follows immediately

as a orollary of proposition 2.14 but the alternative proof below gives insight into the nature of the

kernel of a harater on C(X).
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Theorem 3.4. Let x ∈ X and δx ∈ Ω(C(X)), where δx ∈ Ω(C(X)) is the harater de�ned by

δx(f) = f(x) for all f ∈ C(X). Then ker(δx) is a maximal ideal of C(X), and

ker(δx) = Ix = {f ∈ C(X) | f(x) = 0}.

Proof. Suppose {xn}n ⊆ ker(δx) onverges to an element x ∈ A. Then δx(xn) = 0 for all n ∈ N so

0 = δx(xn) → δx(x) implies that δx(x) = 0 by ontinuity of δx. Hene ker(δx) is losed. ker(δx) is

a proper ideal of C(X) sine δx is nonzero so that δx(1) 6= 0. Moreover,

C(X) = ker(δx) + C = {f + λ | f ∈ ker(δx), λ ∈ C}

sine for every f ∈ C(X), f − δx(f)1 ∈ ker(δx) by the previous lemma and δx(f) ∈ C so

f = (f − δx(f)) + δx(f) ∈ ker(δx) + C.

Then

C(X)/ker(δx) = (ker(δx) + C)/ker(δx) ∼= C.

Hene ker(δx) is a maximal ideal of C(X) beause C(X)/ker(δx) is a �eld. Sine ker(δx) is a

maximal ideal, by proposition 2.14 some x ∈ X exists suh that

ker(δx) = {f ∈ C(X) | δx(f) = 0} = {f ∈ C(X) | f(x) = 0} = Ix.

For any x ∈ X the harater δx ∈ Ω(C(X)) de�ned by δx(f) = f(x) for all f ∈ C(X) is suh

that ker(δx) = {f ∈ C(X) | f(x) = 0} = Ix is a maximal ideal, so θ in the following theorem makes

sense.

Theorem 3.5. The map θ : Ω(C(X)) → Prim(C(X)) de�ned by θ(δ) = ker(δ) is a bijetion. Also,

x ∈ X exists for every δ ∈ Ω(C(X)) suh that δ = δx, where δx is de�ned by δx(f) = f(x) for all

f ∈ C(X). θ has inverse θ−1 : Prim(C(X)) → Ω(C(X)) given by θ−1(Ix) = δx.

Proof. Suppose that δ1 and δ2 are elements of Ω(C(X)) suh that ker(δ1) = ker(δ2). Then for any

f ∈ C(X), f − δ2(f)1 ∈ ker(δ2) = ker(δ1) so δ1(f − δ2(f)1) = 0, whih implies that

δ1(f) = δ1(δ2(f)1) = δ2(f)δ1(1) = δ2(f)

sine δ2(f) ∈ C. Thus δ1 = δ2 and θ is 1-1.

Suppose that I ∈ Prim(C(X)). Then some x ∈ X exists suh that I = Ix = ker(δx) = θ(δx).

Thus θ is onto, and hene a bijetion.

Sine θ is a bijetion, some δ ∈ Ω(C(X)) exists for any Ix ∈ Prim(C(X)) suh that Ix = ker(δ),

and in partiular, Ix = ker(δx), so δ = δx. Hene every δ ∈ Ω(C(X)) is of the form δx for some

x ∈ X . De�ne ψ : Prim(C(X)) → Ω(C(X)) by ψ(Ix) = δx. Then

θ ◦ ψ(Ix) = θ(δx) = ker(δx) = Ix and

ψ ◦ θ(δx) = ψ(ker(δx)) = ψ(Ix) = δx.

Therefore θ−1 = ψ is de�ned by θ−1(Ix) = δx.
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In partiular, the above theorem establishes that every maximal ideal in C(X) is the kernel of

some harater in Ω(C(X)) and that every harater in Ω(C(X)) is of the form δx for some x ∈ X .

Heneforth, the notation δx for an element of C(X) will denote the harater de�ned by δx(f) = f(x)

for all f ∈ C(X).

The next results establish that a unital ommutative C*-algebra endowed with the weak* topol-

ogy is ompat Hausdor�. Atually, the weak* topology is always Hausdor�, but this more general

result is not needed and will not be proven here. When a C*-algebra A is C(X) for some ompat

Hausdor� spae X , then in fat the harater spae of A = C(X) is homeomorphi with X itself, as

shown at the end of this subsetion.

Theorem 3.6. Let A be a unital ommutative C*-algebra. Then Ω(A) with the weak* topology is a

ompat Hausdor� spae.

Proof. Suppose that δ ∈ Ω(A). Then some net {δι}ι∈Λ ⊆ Ω(A) exists suh that δι → δ. In partiular,

δι(a) → δ(a) for all a ∈ A sine δι → δ weak*. Let a, a1, a2 ∈ A and α ∈ C. Then

δι(a1a2) = δι(a1)δι(a2) → δ(a1)δ(a2) and δι(a1a2) → δ(a1a2),

δι(a1 + a2) = δι(a1) + δι(a2) → δ(a1) + δ(a2) and δι(a1 + a2) → δ(a1 + a2),

δι(αa) = αδι(a) → αδ(a) and δι(αa) → δ(αa),

δι(1) = 1 for all ι ∈ Λ so δι(1) → δ(1) means that δ(1) = 1.

In partiular, δ ∈ Ω(A) so Ω(A) = Ω(A) and Ω(A) is weak* losed. Sine ‖τ‖ = 1 for any τ ∈ Ω(A),

Ω(A) is thus a weak* losed subset of the losed unit ball B1(0) of A
∗
under the weak* topology.

B1(0) is weak* ompat by Alaoglu's theorem, so Ω(A) is weak* ompat as a weak* losed subset

of a weak* ompat set.

Next, suppose that δ1,δ2 ∈ Ω(A) with δ1 6= δ2. Then a ∈ A exists suh that δ1(a) 6= δ2(a). C is

Hausdor�, so disjoint neighborhoods U1 ∋ δ1(a) and U2 ∋ δ2(a) exist. De�ne

Ũ1 = {δ ∈ Ω(A) | δ(a) ∈ U1} and Ũ2 = {δ ∈ Ω(A) | δ(a) ∈ U2}.

Let (δι)ι∈I be a net in Ω(A) \ Ũ1 that onverges to an element δ ∈ Ω(A). Then δι(a) → δ(a) by

de�nition of weak* onvergene. Then δι(a) ∈ C \ U1 for eah ι ∈ I so δ(a) ∈ C \ U1 sine C \ U1

is a losed set. Hene δ(a) /∈ U1 so δ ∈ Ω(A) \ Ũ1, whih implies that Ω(A) \ Ũ1 is losed. Thus

Ũ1 is open. By the same reasoning, Ũ2 is an open set. Then Ũ1 ∋ δ1 and Ũ2 ∋ δ2 are disjoint

neighborhoods and Ω(A) is Hausdor�.

Theorem 3.7. Suppose that X is a ompat Hausdor� spae. Then there is a homeomorphism

between X and the harater spae Ω(C(X)) given by the map ϕ : X → Ω(C(X)), ϕ(x) = δx, where

δx ∈ Ω(C(X)) is the harater de�ned by δx(f) = f(x) for f ∈ C(X).
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Proof. Let φ : X → Prim(C(X)) be the homeomorphism de�ned by φ(x) = Ix and let θ−1 :

Prim(C(X)) be the map given by θ−1(Ix) = δx. Then θ
−1 ◦φ is a bijetion sine it is a omposition

of two bijetive funtions. Moreover,

ϕ(x) = δx = θ−1(Ix) = θ−1 ◦ φ(x)

for all x ∈ X so ϕ = θ−1 ◦ φ. Thus ϕ is a bijetion.

Next, let δx ∈ Ω(C(X)) and let {δxλ
}λ∈Λ ⊆ Ω(C(X)) be a net onverging to δx. Then {xλ}λ∈Λ ⊆

X is a net onverging to the point x ∈ X suh that xλ orresponds to δxλ
for eah λ ∈ Λ. Moreover,

by ontinuity of the elements of C(X), f(xλ) −→ f(x) for any f ∈ C(X). Hene δxλ
(f) = f(xλ) −→

f(x) = δx(f) for all f ∈ C(X) so that {δxλ
}λ∈Λ ⊆ Ω(C(X)) is a net onverging weak* to δx.

Consequently, ϕ is ontinuous.

ϕ is a ontinuous bijetion between ompat Hausdor� spaes so ϕ is a homeomorphism.

3.3 Unital Commutative C*-Algebra Category Equivalene

The preeding results an now be employed to onstrut a ategory equivalene between unital

ommutative C*-algebras and ompat Hausdor� spaes. First some preliminaries haraterizing

ommutative C*-algebras are neessary.

If A is a ommutative C*-algebra and a ∈ A, the map â : Ω(A) → C de�ned by â(δ) = δ(a) is

known as the Gelfand transform of a. The following Gelfand theorem is one of the most important

theorems in the theory of C*-algebras. It shows that a ommutative C*-algebra A an be thought of

as the C*-algebra C0(Ω(A)), with the assoiation of a ∈ A to its Gelfand transform â ∈ C0(Ω(A)).

The theorem's proof will not be given here but it ould be pieed together mostly from results

presented within this paper; see in partiular the results establishing the funtional alulus presented

in the next subsetion. Complete proofs an be found in [3℄ and [9℄. The isomorphism in the Gelfand

theorem yields a representation known as the Gelfand representation.

Theorem 3.8. [Gelfand theorem℄ Let A be a non-zero ommutative C*-algebra. Then the map

Γ : A→ C0(Ω(A)) de�ned by Γ(a) = â is an isometri *-isomorphism.

The following lemma relates ontinuous funtions between ompat Hausdor� spaes to unital

*-homomorphisms between C*-algebras of ontinuous funtions on the spaes.

Lemma 3.9. Let X and Y be ompat Hausdor� spaes. For every ontinuous funtion f : X → Y ,

there is a unital *-homomorphism φf : C(Y ) → C(X) given by φf (g) = g ◦ f .

Conversely, for every unital *-homomorphism φ : C(Y ) → C(X), there is a ontinuous funtion

fφ : X → Y given by fφ(x) = y, where y ∈ Y is the unique element that orresponds to δy = δx ◦φ ∈

C(Y ) under the homeomorphism ϕ : Y → Ω(C(Y )) given by ϕ(y0) = δy0 .
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Proof. Let f : X → Y be a ontinuous funtion and de�ne φf : C(Y ) → C(X) by φf (g) = g ◦ f . By

fundamental properties of ompositions of ontinuous funtions, this map is losed under addition,

multipliation, salar multipliation, and omplex onjugation. Moreover, φf (1) = 1 ◦ f = 1. Hene

φf is a unital *-homomorphism.

Conversely, suppose that φ : C(Y ) → C(X) is a unital *-homomorphism. Let x ∈ X . Then

δx orresponds to x under the homeomorphism ϕ1 : X → Ω(C(X)) given by ϕ(x0) = δx0
. Also,

δx ◦ φ = δy for some y ∈ Y and δy orresponds to this y under the equivalene ϕ2 : Y → Ω(C(Y ))

given by ϕ(y0) = δy0 . De�ne in this fashion for eah x ∈ X a funtion fφ : X → Y by fφ(x) = y.

Suppose that {xι}ι∈Λ ∈ X is a net with xι → x. Then xι orresponds to δxι
∈ C(X) and δxι

→ δx

beause xι → x. Let f ∈ C(Y ). Then φ(f) = g for some g ∈ C(X). Sine δxι
→ δx, δxι

(g) → δx(g),

whih means that δyι(f) → δy(f), where δyι = δxι
◦ φ. Then sine f ∈ C(Y ) is arbitrary, δyι → δy

in the topology on Ω(C(Y )); the topology of Y is homeomorphi to this topology so fφ(xι) = yι →

y = fφ(x). Consequently, fφ is ontinuous.

The above lemma gives a orrespondene between ontinuous funtions and unital *-homomorphisms.

This orrespondene is the basis for the ategory equivalene given in the following theorem.

Theorem 3.10. There is a ontravariant ategory equivalene between the ategory of unital om-

mutative C*-algebras and unital *-homomorphisms with the ategory of ompat Hausdor� spaes

and ontinuous funtions.

Proof. Let A and B be unital ommutative C*-algebras. By the Gelfand theorem, A = C(X) and

B = C(Y ) for the ompat Hausdor� spaes X = Ω(A) and Y = Ω(B). The lemma preeding

this theorem shows that there is a ontinuous funtion f : X → Y if and only if there is a unital

*-homomorphism φf : C(Y ) → C(X) given by φf (h) = h ◦ f .

Suppose that C is any other unital ommutative C*-algebra, so that C = C(Z) for the ompat

Hausdor� spae Z = Ω(C). Let g : Y → Z be a ontinuous funtion and let φg : C(Z) → C(Y ) be

its orresponding unital *-homomorphism. The ontinuous funtion g ◦ f : X → Z orresponds to a

unital *-homomorphism φ : C(Z) → C(X) given by φ(h) = h ◦ (g ◦ f) for h ∈ C(Z) by the previous

lemma. Let h ∈ C(Z). Then

φ(h) = h ◦ (g ◦ f) = (h ◦ g) ◦ f = φf (h ◦ g) = φf (φg(h)) = φf ◦ φg(h)

whih shows that φf ◦ φg is the *-homomorphism orresponding to the ontinuous funtion g ◦ f .

Hene the ontravariant ategory equivalene has been established.
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3.4 Funtional Calulus and Polar Deomposition

The funtional alulus and polar deomposition are developed here by making use of an isometri

*-isomorphism to essentially apply ontinuous funtions to partiular elements of C*-algebras.

The Stone-Weierstrass theorem is essential in extending the result σ(p(a)) = p(σ(a)) for a poly-

nomial p and a normal element a in a C*-algebraA to an analogous result for any ontinuous funtion

f ∈ C(σ(a)). The theorem holds for partiular algebras over a ompat Hausdor� spae X that

onsist of ontinuous funtions separating points of X whih vanish at no point of X . A olletion

of funtions F ∈ C(X) is said to separate points of X if for any distint elements x1, x2 ∈ X there

is an f ∈ F suh that f(x1) 6= f(x2), and the olletion F is said to vanish at no point of X if to

eah x ∈ X there orresponds a funtion g ∈ F suh that g(x) 6= 0. Here is the statement of the

theorem for omplex ontinuous funtions; see for example [10℄ for a proof of the result.

Theorem 3.11. [Stone-Weierstrass theorem℄ Let X be a ompat Hausdor� spae. Suppose

F ⊆ C(X) is an algebra that separates points of X suh that F vanishes at no points of X and

f ∈ F for every f ∈ F . Then F = C(X).

In partiular, the Stone-Weierstrass theorem establishes that the losure of the set of polynomials

with omplex oe�ients is C(X). This important result is made preise in the following orollary.

Corollary 3.12. Let X be a ompat Hausdor� spae and denote the algebra of all polynomials with

omplex oe�ients over X by P. Then P = C(X).

Proof. The algebra P separates points of X and P vanishes at no point of X sine P ontains the

onstant funtions; P is also losed under omplex onjugation. Thus by the Stone-Weierstrass

theorem, P = C(X).

The next theorem haraterizes the spetrum of an element in a ommutative unital Banah

algebra as the set of evaluations at the element by haraters in the algebra's harater spae; the

haraterization is useful in subsequent results. See [9℄ for a proof of the result.

Theorem 3.13. Suppose that A is a ommutative unital Banah algebra and let a ∈ A. Then

σ(a) = {δ(a) | δ ∈ Ω(A)}.

In the following, for an element a in a C*-algebra A, let P (σ(a)) ⊆ C(σ(a)) denote the *-

subalgebra of all polynomials on σ(a).

Proposition 3.14. Let A be a unital C*-algebra and suppose that a ∈ A is normal. Then there is

is an isometri unital *-isomorphism ϕ̃ : C(σ(a)) → C∗(a, 1) suh that ϕ̃(ι) = a, where ι : σ(a) → C

is the inlusion map.
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Proof. Denote the *-subalgebra of A generated by a and 1 by B. De�ne a map ϕ : P (σ(a)) → B

by ϕ(p) = p(a). Then ϕ(ι) = ι(a) = a. Moreover, σ(a) is ompat Hausdor� so P (σ(a)) is an

algebra of funtions losed under omplex onjugation. Also, ϕ(1) = 1(a) = 1. Consequently, ϕ is a

unital *-homomorphism. Let b ∈ B. B is generated by a and 1 so b = α0 + α1a+ ...+ αna
n
, where

α0, α1, ..., αn ∈ C, from whih it is lear that b = p(a) for some p ∈ P (σ(a)). Thus ϕ is onto. ϕ is

also learly 1-1 sine if p1, p2 ∈ P (σ(a)) then p1(a) = p2(a) implies that p1 = p2. Therefore ϕ is a

unital *-isomorphism.

Next, let p ∈ P (σ(a)). Then ϕ(p) = p(a) is normal sine a is normal and ϕ is a unital *-

isomorphism. Sine p(a) is normal,

‖p(a)‖ = r(p(a)) = sup{|λ| ∈ C | λ ∈ σ(p(a))} = sup{|p(λ)| ∈ C | λ ∈ σ(a)} = ‖p‖,

sine σ(p(a)) = p(σ(a)). Therefore ϕ is also isometri.

The ompletion ofB is C∗(a, 1) and the ompletion of P (σ(a)) is C(σ(a)) by the Stone-Weierstrass

theorem. Thus ϕ an be extended to an isometri unital *-isomorphism ϕ̃ : C(σ(a)) → C∗(a, 1) suh

that ϕ̃(ι) = a.

The map ϕ̃ in the preeding proposition is known as the funtional alulus at a. Use the notation

f(a) to denote the element ϕ̃(f) for f ∈ C(σ(a)). The following proposition de�nes a funtional

alulus for self-adjoint elements in a non-unital C*-algebra. The two de�nitions of the funtional

alulus are onsistent where they overlap. The proposition is not proven here but its proof is similar

to that of the preeding proposition.

Proposition 3.15. Let A be a nonunital C*-algebra and suppose that a ∈ A is normal. Then

there is an isometri unital *-isomorphism ϕ̃ : C0(σ(a)\{0}) → C∗(a) suh that ϕ̃(ι) = a, where

ι : σ(a) → C is the inlusion map.

Thus the funtional alulus an be de�ned in a C*-algebra A aording to the preeding two

propositions depending on whether A is unital or nonunital. In any event, the de�nition of the

funtional alulus ϕ̃ at an element a ∈ A is unambiguous and is denoted by f(a) for f ∈ C(σ(a)).

The following two results establish important properties of the funtional alulus. Note that C(σ(a))

is generated by 1 and ι, the inlusion map.

Lemma 3.16. Suppose that A is a unital C*-algebra with a ∈ A normal, and let δ ∈ Ω(C∗(a, 1)).

Then for any f ∈ C(σ(a)), δ(f(a)) = f(δ(a)). More generally, if φ : A → B is a unital *-

homomorphism between A and the unital C*-algebra B, then for any f ∈ C(σ(a)), φ(f(a)) =

f(φ(a)). Analogous results hold for nonunital C*-algebras and self-adjoint elements.
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Proof. The C*-subalgebra Ω(C∗(a, 1)) is a unital ommutative C*-subalgebra sine a is normal.

Then sine δ(a) ∈ σ(a) and ι(a) = ϕ̃(ι) = a,

δ(ι(a)) = δ(ϕ̃(ι)) = δ(a) = ι(δ(a)) and

δ(1(a)) = δ(ϕ̃(1)) = δ(1) = 1 = 1(δ(a)).

Thus δ(f(a)) = f(δ(a)) sine C(σ(a)) is generated by 1 and ι.

The proof of the general result follows in similar fashion.

Theorem 3.17. [Spetral Mapping theorem℄ The equality σ(f(a)) = f(σ(a)) holds for any

normal element a in a unital C*-algebra A and f ∈ C(σ(a)). An analogous result holds for nonunital

C*-algebras and self-adjoint elements.

Proof. Let a ∈ A and let f ∈ C(σ(a)). Then δ(f(a)) = f(δ(a)) for any δ ∈ Ω(C∗(a, 1)) by the

previous lemma, so

σ(f(a)) = {δ(f(a)) | δ ∈ Ω(C∗(a, 1))} = {f(δ(a)) | δ ∈ Ω(C∗(a, 1))} = f(σ(a)).

Example. Let A be a unital C*-algebra and let a ∈ A be a normal element with σ(a) = S1 ∪ S2,

where S1 ⊆ (−∞, k) and S2 ⊆ (k,∞) for 0 < k < 1. De�ne a funtion f by

f(t) =















0 for t ∈ S1

1 for t ∈ S2

.

Then f ∈ C(σ(a)) is a projetion sine f2 = f = f . Consequently, ϕ̃(f) = f(a) is a projetion in A

by the funtional alulus.

Example. Suppose that A is a unital C*-algebra and let a ∈ A be positive. The funtion f : σ(a) →

R de�ned by f(t) = t
1

2
is a ontinuous funtion on σ(a) sine σ(a) ≥ 0. Hene ϕ̃(f) = f(a) = a

1

2
is

a positive element in A. A kth power ak an be de�ned in this way for any k > 0. Likewise, a −kth

power a−k an be de�ned for a for any k > 0 provided 0 /∈ σ(a).

The funtional alulus yields the following properties of partiular elements in a C*-algebra.

Corollary 3.18. Let A be a C*-algebra and let a ∈ A be self-adjoint. Then σ(a) ⊆ R.

Proof. Under the funtional alulus ϕ̃ at a, an isometri unital *-isomorphism, ϕ̃(ι) = a. Sine a

is self-adjoint, ι must be self-adjoint in C(σ(a)). Consequently, σ(ι) ⊆ R, whih implies that

σ(a) = ι(σ(a)) = σ(ι(a)) = σ(ϕ̃(ι)) ⊆ σ(ι) ⊆ R.

Corollary 3.19. Suppose that A is a unital C*-algebra and let u ∈ A be a unitary element. Then

σ(u) ⊆ T.

Proof. Sine ϕ̃(ι) = u under the funtional alulus ϕ̃ at u, ι must be unitary in C(σ(u)). Therefore

σ(u) = ι(σ(u)) = σ(ι(u)) = σ(ϕ̃(ι)) ⊆ σ(ι) ⊆ T.
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Corollary 3.20. An element d in a C*-algebra A is positive if and only if d = a∗a for some a ∈ A.

Proof. The element d is positive if and only if ι ∈ C(σ(p)) is positive under the funtional alulus

ϕ̃ at d, whih ours if and only if ι = ff for some f ∈ C(σ(d)). Then

d = ϕ̃(ι) = ϕ̃(ff) = ϕ̃(f)ϕ̃(f) = [ϕ̃(f)]∗ϕ̃(f) = a∗a for a = ϕ̃(f) = f(d) ∈ A.

Conversely, if d = a∗a for some a ∈ A then d is learly self-adjoint. Moreover,

d = a∗a = ϕ̃(ι)ϕ̃(ι) = ϕ̃(ι)ϕ̃(ι) = ϕ̃(ιι) = ϕ̃(f),

for some funtion f ∈ C(σ(a)), and sine f = ιι is positive, its image d is positive as well.

The preeding onsequenes yield useful properties of speial elements in the C*-algebra C(X),

where X is a ompat Hausdor� spae.

Proposition 3.21. The following results results hold for elements of C(X) with X ompat Haus-

dor�.

(a) σ(f) is the range of f for any f ∈ C(X),

(b) f ∈ C(X) is self-adjoint if and only if f is real-valued,

() f ∈ C(X) is a projetion if and only if f takes only the values 0 and 1,

(d) f ∈ C(X) is unitary if and only if |f(x)| = 1 for all x ∈ X.

Proof. Let f ∈ C(X). Then f is invertible if and only f(x) 6= 0 for all x ∈ X , so if λ ∈ C, f − λ1 is

invertible if and only if f(x)− λ 6= 0 for all x ∈ X . Hene f − λ1 ∈ Inv(X) if and only if λ /∈ f(X),

meaning λ ∈ σ(f) if and only if λ ∈ f(X). Therefore σ(f) is the range of f .

By orollary 3.18, if f ∈ C(X) is self-adjoint then σ(f) ⊆ R. Thus σ(f) = f(X) ⊆ R. If

f(X) ⊆ R, then f = f so f is self-adjoint.

If f is a projetion then f2 = f , whih means that f an only take the values 0 and 1. Conversely,

if f(X) ∈ {0, 1} then [f(x)]2 = 0 whenever f(x) = 0 and [f(x)]2 = 1 whenever f(x) = 1 so f is a

projetion.

By orollary 3.19, if f in C(X) is unitary then σ(f) ⊆ T. Hene by the �rst result of this

proof above, f(X) = σ(f) ⊆ T, meaning |f(x)| = 1 for all x ∈ X . Conversely, if |f(x)| = 1 then

ff = ff=|f |2 = 1, so f is unitary.

The following proposition shows that any invertible element in a unital C*-algebra an be de-

omposed uniquely as the produt of a unitary and a positive element. This property is alled polar

deomposition.

Proposition 3.22. [Polar deomposition℄ Suppose that A is a unital C*-algebra and let a ∈ A

be invertible. Then a an be written uniquely as the produt of a unitary u and a positive element d.
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Proof. The element a∗a is positive sine a∗a is self-adjoint and σ(a∗a) ≥ 0. Also, a∗a is nonzero

sine if a∗a = 0, then ‖a‖2 = ‖a∗a‖ = 0, whih would imply that a = 0 ontrary to invertibility of

a. De�ne u = a(a∗a)
−1

2
and d = (a∗a)

1

2
. Then (a∗a)

1

2
is positive sine f de�ned by f(t) = t

1

2
is

positive on σ(a∗a). And sine (a∗a)
−1

2
is positive by the same reasoning, ((a∗a)

−1

2 )∗ = (a∗a)
−1

2
so

that

u∗u = (a∗a)
−1

2 a∗a(a∗a)
−1

2 = 1, and

uu∗a = a(a∗a)−
1

2 (a∗a)−
1

2 a∗a = a(a∗a)−1(a∗a) ⇒ uu∗ = uu∗aa−1 = aa−1 = 1

Thus u is a unitary, d is positive, and a = ud.

Uniqueness will not be proven here.

Polar deomposition is preserved under *-homomorphisms, as the following orollary shows.

Corollary 3.23. Let a be an invertible element in a unital C*-algebra A suh that a has polar

deomposition a = ud, where u is a unitary and d is positive, and suppose that φ : A → B is a

*-homomorphism between A and the unital C*-algebra B. Then the image φ(a) has a unique polar

deomposition φ(a) = φ(u)φ(d) in B.

Proof. The element φ(a) is invertible beause φ(a)φ(a−1) = φ(aa−1) = 1 and φ(a−1)φ(a) =

φ(a−1a) = 1. Also, φ(u)[φ(u)]∗ = φ(uu∗) = 1 = φ(u∗u) = [φ(u)]∗φ(u) so φ(u) is a unitary in

B. Then φ(d) is positive in B sine σ(φ(d)) ⊆ σ(d) ⊆ R+
and φ(d) = φ(d∗) = [φ(d)]∗. By the pre-

vious proposition, the polar deomposition of the invertible element φ(a) = φ(u)φ(d) is unique.

The funtional alulus and polar deomposition are key results used in the next setion to

establish projetivity or semiprojetivity of ertain C*-algebras.
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4 Semiprojetivity

The established equivalenes relating topologial spaes and C*-algebras an now be implemented

to establish operator algebra analogs to topologial results for retrats.

4.1 Absolute Retrats and Absolute Neighborhood Retrats

The C*-algebra onept of semiprojetivity is losely related to the topologial onept of absolute

neighborhood retrat, and equivalenes from preeding onsequenes allow the relationship to be

made preise. Projetivity and semiprojetivity are de�ned in a later subsetion, where the spei�

relationships of ARs to projetivity and ANRs to semiprojetivity are established.

Let Y be a topologial spae with subspae Z. Then Z is a retrat of Y if a ontinuous funtion

r : Y → Z exists suh that r(z) = z for all z ∈ Z. A normal spae X is an absolute retrat (AR) if

for every normal spae Y and losed subspae Z of Y homeomorphi to X , Z is a retrat of Y . A

topologial spae X possesses the universal extension property if for every normal spae Y , losed

subspae Z of Y , and ontinuous funtion f : Z → X , f extends to a ontinuous funtion f̃ : Y → X .

The following proposition establishes the equivalene of the universal extension property and the

AR property for ompat Hausdor� spaes.

Example. The spae {0, 1} is not an absolute retrat. Consider {0, 1} as a subspae of [0, 1] and

let f : {0, 1} → {0, 1} be de�ned by f(0) = 0 and f(1) = 1. f annot be extended to a ontinuous

funtion over [0, 1].

Proposition 4.1. Let X be a ompat Hausdor� spae. Then X has the universal extension property

if and only if X is an absolute retrat.

Proof. Suppose �rst that X has the universal extension property. Let Y be a normal spae and let

Z ⊆ Y be any losed subspae homeomorphi to X with f : Z → X a homeomorphism between X

and Z. Then f extends to a ontinuous funtion f̃ : Y → X . De�ne r = f−1 ◦ f̃ . The funtion r is

ontinuous, and for any z ∈ Z, the image of z under both f and f̃ is f(z), so

r(z) = f−1 ◦ f̃(z)=f−1(f(z)) = z

for all z ∈ Z. Hene Z is a retrat of Y and X is an absolute retrat.

Next suppose that X is an absolute retrat. Let Y be a normal spae, Z a losed subspae

of Y , and f : Z → X a ontinuous funtion. Sine X is ompat Hausdor�, X is homeomorphi

to some subspae X0 of [0, 1]N. The spae [0, 1] possesses the universal extension property by the

Tietze extension theorem. Consequently, [0, 1]N also possesses the universal extension property. Let

g : X → X0 be the homeomorphism between X and X0 and de�ne h = g ◦ f : Z → X0. This
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ontinuous funtion h extends to a ontinuous funtion h̃ : Y → [0, 1]N sine [0, 1]N has the universal

extension property. Also, sine X is an AR, X0 is a retrat of [0, 1]N so a ontinuous funtion

r : [0, 1]N → X0 exists suh that r(x) = x for all x ∈ X0. Finally, de�ne f̃ = g−1 ◦ r ◦ h̃. Then

f̃ : Y → X is a ontinuous funtion extending f .

Example. The ompat Hausdor� spae [a, b], where a, b ∈ R, has the universal extension property

by the Tietze extension theorem. Hene by the preeding proposition, this spae is an absolute

retrat.

A normal spae X is an absolute neighborhood retrat (ANR) if for every normal spae Y , losed

subspae Z of Y , and ontinuous funtion f : Z → X , f extends to a ontinuous funtion f̃ : U → X

for some neighborhood U ⊆ Y of Z. Any AR is automatially an ANR.

The onepts of AR and ANR an be restrited to a ategory of topologial spaes. In the

work following, unless otherwise noted X shall be an element of the ategory of ompat metrizable

spaes. In this ase, X is an AR in the ategory of ompat metrizable spaes if the onditions

in the de�nition of AR above hold with the modi�ation that any Y is restrited to be a ompat

metrizable spae. Likewise, X is an ANR if the onditions for being an ANR hold for any ompat

metrizable spae Y .

Lemma 4.2. A spae X is an ANR in the ategory of ompat metrizable spaes if and only if for

any ompat metrizable spae Y , dereasing sequene {Zn}n∈N of losed subsets of Y with Z =
⋂

n
Zn,

and ontinuous funtion f : Z → X, f extends to a ontinuous funtion f̃ : Zn → X for some

su�iently large n ∈ N.

Proof. Suppose that X is an ANR. Let Y be a ompat metrizable spae, {Zn}n ⊆ Y a dereasing

sequene of losed subsets of Y with Z =
⋂

n
Zn, and f : Z → X a ontinuous funtion. Sine X is an

ANR, a neighborhood U ⊆ Y of Z exists suh that f extends to a ontinuous funtion f̃ : U → X .

Y \U is ompat sine U is open and Y is ompat. De�ne Un = Y \Zn for eah n. Then

⋃

n
Un =

⋃

n
Y \Zn = Y ∩

⋃

n
Zcn = Y ∩ (

⋂

n
Zn)

c = Y \Z,

and sine Z ⊆ U , Y \U ⊆ Y \Z =
⋃

n
Un. Hene {Un}n is an open over of the ompat set Y \U so a

�nite subover U = {Un1
, ..., Unm

} ⊆ {Un}n of Y \U exists. Sine {Zn} is a dereasing sequene of

losed sets, {Un} is an inreasing sequene of open sets. In partiular, U has a largest set Unk
. Then

Y \U ⊆ Unk
so that Znk

⊆ U . Sine Zj ⊆ Znk
for all j ≥ nk and sine f extends to a ontinuous

funtion f̃ on U , the restrition of f̃ to Zj is a ontinuous extension of f to Zj for all Zj having

j ≥ nk.

Conversely, suppose that for any ompat metrizable spae Y , dereasing sequene {Zn}n∈N of
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losed subsets of Y with Z =
⋂

n
Zn, and ontinuous funtion f : Z → X , there is an N ∈ N suh

that f extends to a ontinuous funtion f̃n : Zn → X for all n ≥ N . Y is metrizable so let d be a

metri on Y . De�ne a sequene of open neighborhoods {Un}n∈N of Z by Un = {y ∈ Y | d(Z, y) < 1
n}

for eah n ∈ N, and let Zn = {y ∈ Y | d(Z, y) ≤ 1
n} for eah n ∈ N. Then {Zn}n is a dereasing

sequene of losed subsets of Y suh that Z =
⋂

n
Zn. The de�nitions imply that Un+1 ⊆ Zn+1 ⊆ Un

for eah n ∈ N. Let M ≥ N and suppose that f : Z → X is a ontinuous funtion. By hypothesis, f

extends to a ontinuous funtion f̃ : ZM → X . Therefore sine UM ⊆ UM ⊆ ZM is a neighborhood

of Z and f̃ |UM
: UM → X is a ontinuous funtion extending f , X is an ANR in the ategory of

ompat metrizable spaes.

Example. S1
is not an AR sine there is no retrat of D onto S1

; see [8℄ for a proof of this result.

However, S1
is an ANR.

4.2 Semiprojetivity and Partial Liftings

A separable C*-algebraA is projetive if for any C*-algebraB, losed ideal J ofB, and *-homomorphism

φ : A → B/J , there is a *-homomorphism ψ : A → B suh that φ = π ◦ ψ, where π : B → B/J

is the natural quotient map. Any suh φ is alled liftable. A separable C*-algebra A is semiproje-

tive if for any C*-algebra B, inreasing sequene {Jn}n of losed ideals of B, and *-homomorphism

φ : A → B/J , where J =
⋃

n
Jn, there is an n and a *-homomorphism ψ : A → B/Jn suh that

φ = πn ◦ ψ, where πn : B/Jn → B/J is again the natural quotient map. Any suh φ is alled

partially liftable. An element a ∈ A is liftable if a homomorphism ψ : A → B exists suh that

φ(a) = π ◦ψ(a) ; a is partially liftable if a homomorphism ψ : A→ B/Jn exists for some n ∈ N suh

that φ(a) = πn ◦ ψ(a).

The above de�nitions hold for the ategory of all C*-algebras. The de�nitions hange slightly

for the ategory of unital ommutative C*-algebras: in this ase, B is any unital ommutative

C*-algebra and both φ and ψ, provided the map ψ exists for the parameters spei�ed, are unital

*-homomorphisms. Similar adjustments modify de�nitions within the ategory of unital C*-algebras

and the ategory of ommutative C*-algebras.

The next theorem shows an equivalene between projetive C*-algebras and absolute retrats.

Theorem 4.3. Suppose that X is a ompat metrizable spae and A = C(X) is a unital ommutative

C*-algebra. Then A is projetive in the ategory of unital ommutative C*-algebras if and only if X

is an AR in the ategory of ompat metrizable spaes.

Proof. Suppose that X is an AR in the ategory of ompat metrizable spaes. Let B be any

unital ommutative C*-algebra, J ⊆ B a losed ideal, and φ : A→ B/J a unital *-homomorphism.
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By the Gelfand representation B ∼= C(Y ) for some ompat metrizable spae Y = Ω(A). De�ne

Z = {y ∈ Y | g(y) = 0 for all g ∈ J}; then J ∼= JY = {g ∈ C(Y ) | g(z) = 0 for all z ∈ Z}. Moreover,

B/J ∼= C(Y )/JY ∼= C(Z) so some ontinuous funtion fφ : Z → X exists by the ategory equivalene

between ompat metrizable spaes and unital ommutative C*-algebras. Sine X is an AR, the

funtion fφ extends to a ontinuous funtion f̃φ : Y → X . Again by the ategory equivalene, there

is a *-homomorphism φf̃ : A → B suh that φ = π ◦ φf̃ . Thus A is projetive in the ategory of

unital ommutative C*-algebras.

Conversely, let A = C(X) be a C*-algebra projetive in the ategory of unital ommutative

C*-algebras. Also, suppose that Y is a ompat metrizable spae, Z ⊆ Y is a losed subset, and

f : Z → X is a ontinuous funtion. Then J = {g ∈ C(Y ) | g(z) = 0 for all z ∈ Z} is a losed ideal in

B = C(Y ). B/J ∼= C(Z) so a *-homomorphism φf : A = C(X) → C(Z) ∼= B/J exists orresponding

to f . Consequently, a *-homomorphism ψ : A = C(X) → C(Y ) exists suh that φf = π ◦ ψ sine

A is projetive. There is a ontinuous funtion fψ : Y → X extending f orresponding to ψ by the

ategory equivalene. Therefore X is an AR in the ategory of ompat metrizable spaes.

A similar result holds for semiprojetive C*-algebras and absolute neighborhood retrats, as

shown in the next theorem.

Theorem 4.4. Suppose that X is a ompat metrizable spae and A = C(X) is a unital ommutative

C*-algebra. Then A is semiprojetive in the ategory of unital ommutative C*-algebras if and only

if X is an ANR in the ategory of ompat metrizable spaes.

Proof. Suppose that X is an ANR in the ategory of ompat metrizable spaes. Let B be a unital

ommutative C*-algebra, {Jn}n an inreasing sequene of losed ideals of B with J =
⋃

n
Jn, and

φ : A → B/J a *-homomorphism. By the Gelfand representation B ∼= C(Y ) for some ompat

metrizable spae Y . De�ne Zn = {y ∈ Y | g(y) = 0 for all g ∈ Jn} for eah n ∈ N; then {Zn}n∈N is

a dereasing sequene of losed subsets of Y and Jn ∼= JnY
= {g ∈ C(Y ) | g(z) = 0 for all z ∈ Zn}

for eah n ∈ N. The ideal J orresponds to Z ⊆ Y for a losed subset Z de�ned similarly. A

ontinuous funtion fφ : Z → X exists by the ategory equivalene between ompat metrizable

spaes and unital ommutative C*-algebras beause B/J ∼= C(Z). Then some N ∈ N exists suh

that the funtion fφextends to a ontinuous funtion f̃φ : Zn → X for all n ≥ N sine X is an ANR.

By the same ategory equivalene, a *-homomorphism φf̃ : A → B/Jn exists suh that φ = π ◦ φf̃

sine B/Jn ∼= C(Zn). Hene A is semiprojetive in the ategory of unital ommutative C*-algebras.

Conversely, suppose that A is semiprojetive. Let Y be a ompat metrizable spae, {Zn}n

a dereasing sequene of losed subsets of Y suh that Z =
⋂

n
Zn, and f : Z → X a ontinuous
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funtion. Then J = {g ∈ C(Y ) | g(z) = 0 for all z ∈ Z} is a losed ideal in B = C(Y ) and

Jn = {g ∈ C(Y ) | g(z) = 0 for all z ∈ Zn} is a losed ideal in B for eah n ∈ N suh that

{Jn}n is an inreasing sequene of losed ideals. Moreover, B/J ∼= C(Z) so a *-homomorphism

φf : A = C(X) → C(Z) ∼= B/J exists orresponding to f by the ategory equivalene. Sine A is

semiprojetive and B/Jn ∼= C(Zn), there is a *-homomorphism ψ : A = C(X) → C(Zn) ∼= B/Jn

with the property φf = πn ◦ ψ for some n ∈ N. Again by the ategory equivalene, a ontinuous

funtion fψ : Zn → X extending f exists. Then sine Zm ⊆ Zn for all m ≥ n, f extends to a

ontinuous funtion on Zm for all m ≥ n, where the ontinuous extension for a partiular Zm is

fψ |Zm
. Therefore X is an ANR in the ategory of ompat metrizable spaes.

Example. The ompat metrizable spae [−1, 1] is an AR so C([−1, 1]) is projetive in the ategory

of unital ommutative C*-algebras.

4.3 Important Liftings and Partial Liftings

In this setion, A and B are a C*-algebras, φ : A → B/J is a *-homomorphism,{Jn}n is an

inreasing sequene of losed ideals of B, and J =
⋃

n
Jn. Also, let π : B → B/J , π0,n : B → B/Jn,

πk,n : B/Jk → B/Jn, πn : B/Jn → B/J , for k, n ∈ N with k ≤ n, be the natural quotient maps.

Theorem 4.5. Suppose that qA ∈ A is a projetion. Then qA is partially liftable to a projetion.

Proof. Let q = φ(qA). The element q is a projetion in B/J sine qA is a projetion. Some element

y ∈ B exists suh that π(y) = q sine π is surjetive. Let x = 1
2 (y + y∗). Then x is self-adjoint,

π(x) = 1
2 ([π(y)]

∗ + π(y)) = q, and π(x − x2) = q − q2 = 0 sine π is a *-homomorphism and q

is a projetion. Moreover,

∥

∥π(x − x2)
∥

∥ = 0 beause π(x − x2) = 0. Some n ∈ N exists suh that

∥

∥

∥
π0,n(x − x2)

∥

∥

∥
< 1

4 sine

∥

∥

∥
π(b)

∥

∥

∥
= inf

∥

∥

∥
πn(b)

∥

∥

∥
for any b ∈ B. Let z = π0,n(x), the image of x

in B/Jn; z is self-adjoint beause x is self-adjoint. π(x − x2) = z − z2 so by funtional alulus,

σ(z − z2) = {λ − λ2 | λ ∈ σ(z)} ⊆ (− 1
4 ,

1
4 ), whih implies that σ(z) ⊆ (1−

√
2

2 , 12 ) ∪ (12 ,
1+

√
2

2 ). In

partiular,

1
2 /∈ σ(z). Let f : (1−

√
2

2 , 12 ) ∪ (12 ,
1+

√
2

2 ) → R be de�ned by

f(t) =















0 for t ∈ (1−
√
2

2 , 12 )

1 for t ∈ (12 ,
1+

√
2

2 )

and set p = f(z). σ(p) = f(σ(z)) = {0, 1} sine σ(z) ⊆ (1−
√
2

2 , 12 ) ∪ (12 ,
1+

√
2

2 ). f is a projetion

in C(σ(z)) sine f(t) = f(t) = [f(t)]2 = 0 for t ∈ (1−
√
2

2 , 12 ) and f(t) = f(t) = [f(t)]2 = 1 for

t ∈ (12 ,
1+

√
2

2 ). Consequently, p = f(z) is a projetion in B/Jn and

π(p) = π(f(z)) = f(π(z)) = f(q) = q,
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sine q is a projetion. Let ψ : A → B/Jn be a *-homomorphism suh that ψ(qA) = p. Then

φ(qA) = π ◦ ψ(qA) = q, so qA is partially liftable to the projetion p.

Corollary 4.6. Let q̃1, q̃2, ..., q̃m ∈ A be mutually orthogonal projetions. Then q̃1, q̃2, ..., q̃m are

partially liftable to mutually orthogonal projetions.

Proof. Let qk = π(q̃k) for 1 ≤ k ≤ n; qk is a projetion for 1 ≤ k ≤ m. By the previous theorem, a

projetion p̃1 ∈ B/Jn1
exists suh that πn1

(p̃1) = q1 for some n1 ∈ N. Then

qk ∈ (1− q1)B/J(1 − q1)

for 2 ≤ k ≤ m and (1− πn1,n(p̃1))B/Jn(1− πn1,n(p̃1)) is a C*-subalgebra of B/Jn for eah n ≥ n1.

Again by the previous theorem, a projetion

p̃2 ∈ (1− πn1,n2
(p̃1))B/Jn2

(1− πn1,n2
(p̃1))

exists suh that πn2
(p̃2) = q2 for some n2 ≥ n1. Moreover, p̃2 ⊥ πn1,n2

(p̃1). A third appliation of

this theorem yields a projetion

p̃3 ∈ (1− πn1,n3
(p̃1)− πn2,n3

(p̃2))B/Jn3
(1− πn1,n3

(p̃1)− πn2,n3
(p̃2))

for some n3 ≥ n2 suh that p̃3, πn1,n3
(p̃1), and πn2,n3

(p̃2) are mutually orthogonal. Continuing

in this way, some nm ∈ N exists suh that p̃m is a projetion in B/Jnm
while p̃m and the images

of eah p̃k in B/Jnm
for 1 ≤ k ≤ m − 1 are all mutually orthogonal and orthogonal to p̃k. Let

pk = πnk,nm
(p̃k) and de�ne a map ψ : A → B/Jnm

by ψ(q̃k) = pk for 1 ≤ k ≤ n. Then ψ is

a *-homomorphism and φ(q̃k) = πnm
◦ ψ(q̃k) for 1 ≤ k ≤ n and the projetions p1, p2, ..., pm are

mutually orthogonal.

A unitary in a unital C*-algebra is not liftable but the following theorem shows that it is partially

liftable.

Theorem 4.7. Assume A and B are unital, and let vA ∈ A be a unitary. Then vA is partially

liftable to a unitary.

Proof. Let v = φ(vA). Sine 1 is a projetion in A, φ(1) = q for some projetion q ∈ B/J . Then

v∗v = φ(v∗A)φ(vA) = φ(v∗AvA) = φ(1) = q and

vv∗ = φ(vA)φ(v
∗
A) = φ(vAv

∗
A) = φ(1) = q,

whih shows that v is a partial isometry with soure projetion and range projetion both equal

to q. By the previous proposition, a projetion p ∈ B/Jn exists suh that π(p) = q for some

n ∈ N. Then p(B/Jn)p = {pxp | x ∈ B/Jn} is a unital C*-subalgebra of B/Jn, πn,m(p(B/Jn)p)

(= πn,m(p)(B/Jm)πn,m(p)) is a unital C*-subalgebra of B/Jm for all m ≥ n, and q(B/J)q is a

unital C*-subalgebra of B/J . Moreover, φ : A → q(B/J)q is a unital *-homomorphism sine q is

the unit in q(B/J)q and φ(1) = q. Thus v is a unitary in q(B/J)q.
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Take x ∈ p(B/J)p with πn(x) = v. Then πn,m(x) ∈ πn,m(p(B/Jn)p) for all m ≥ n and

πn(x
∗x) = v∗v = q.

∥

∥

∥
πn(p− x∗x)

∥

∥

∥
=

∥

∥

∥
q − v∗v

∥

∥

∥
= 0,

so m ∈ N exists suh that

∥

∥

∥
πn,m(p)− πn,m(x∗x)

∥

∥

∥
< 1 sine the norm on q(B/J)q is the in�mum of

the norms on πn,m(p(B/Jn)p). Let y = πn,m(x). Sine
∥

∥

∥
πn,m(p)− πn,m(x∗x)

∥

∥

∥
= ‖πn,m(p)− y∗y‖ < 1

and πn,m(p) is the unit in πn,m(p(B/Jn)p), y
∗y = πn,m(p) − (πn,m(p) − y∗y) is invertible. By

similar reasoning, yy∗ is invertible. Consequently, y is itself invertible. By polar deomposition, a

unitary u and a positive element d exist suh that y = ud, where u is unitary in the sense that

u∗u = uu∗ = πn,m(p). Then

π(y) = π(u)π(d) = π(u)1 = v,

where π(u) = v and π(d) = 1 by uniqueness of the polar deomposition of v in B/J . Let ψ : A →

πn,m(p(B/Jn)p) be a unital *-homomorphism suh that ψ(vA) = u. Then ψ is a homomorphism

from A into B/Jm and φ(vA) = π ◦ ψ(vA) = v. HenevA is partially liftable.

The following proposition, needed in the theorem following, establishes that two projetions

having a normed di�erene less than 1 are unitarily equivalent. It also shows, in partiular, that the

funtional alulus is preserved under *-homomorphism on a unitary relating two suh projetions.

See [3℄ for a proof of the result.

Proposition 4.8. Suppose that A is a unital C*-algebra and p1, p2 ∈ A are projetions suh that

‖p1 − p2‖ < 1. Then there is a unitary v = v(p1, p2) ∈ A suh that p2 = vp1v
∗
. Moreover, v(p, p) = 1

for any projetion p and the map θ : A × A → A de�ned by θ((p1, p2)) = v(p1, p2) is funtorial in

the sense that if φ : A → B is a *-homomorphism between the unital C*-algebras A and B, then

φ(v(p1, p2)) = v(φ(p1), φ(p2)).

The following theorem establishes that a partial isometry an be partially lifted in a way that

preserves its soure and range projetions.

Theorem 4.9. Suppose that sA ∈ A is a partial isometry, and let s = φ(sA) have spei�ed partial

liftings p1 of the soure projetion q1 = s∗s and p2 of the range projetion q2 = ss∗ in B/Jm for

some m ∈ N. Then sA is partially liftable to a partial isometry r in B/Jn for some n ∈ N with the

properties that πn(r) = s, r∗r = πm,n(p1), and rr
∗ = πm,n(p2).

Proof. The element s is a partial isometry in B/J with soure and range projetions q1 = φ(s∗AsA) =

s∗s and q2 = φ(sAs
∗
A) = ss∗. A prior theorem of this setion establishes that projetions are partially

liftable, so both q1 and q2 an be lifted to projetions p1, p2 in B/Jm suh that πm(p1) = q1 and

πm(p2) = q2 for some m ∈ N.



34

Next, let x ∈ B be an element suh that π(x) = s. The reasoning of the proof above establishing

that any projetion is partially liftable implies that

∥

∥π0,n(x
∗x− (x∗x)2)

∥

∥ < 1
4 in B/Jn for some

n ∈ N sine

∥

∥π(x∗x− (x∗x)2)
∥

∥ = 0. Moreover, letting y = π0,n(x), subsequent reasoning in the

aforementioned proof leads to σ(y∗y) ⊆ (1−
√
2

2 , 12 ) ∪ (12 ,
1+

√
2

2 ).

De�ne a funtion f : (1−
√
2

2 , 12 ) ∪ (12 ,
1+

√
2

2 ) → R by

f(t) =















0 for t ∈ (1−
√
2

2 , 12 )

t−
1

2 for t ∈ (12 ,
1+

√
2

2 )

.

Let z = yf(y∗y). Then z∗z = f(y∗y)g(y∗y)f(y∗y), where g : (1−
√
2

2 , 12 )∪(
1
2 ,

1+
√
2

2 ) → R is de�ned by

g(t) = t. Sine f(t)g(t)f(t) = 0 for t ∈ (1−
√
2

2 , 12 ) and f(t)g(t)f(t) = t−
1

2 tt−
1

2 = 1 for t ∈ (12 ,
1+

√
2

2 ),

the funtion h = fgf ∈ C(σ(y∗y)) is a projetion. Consequently, z∗z is a projetion by the funtional

alulus at y∗y so the element z is a partial isometry in B/Jn. In partiular, zz∗is also a projetion.

Let p̃1 = z∗z and p̃2 = zz∗. Then sine πn(y) = π(x) = s, by properties of the funtional alulus,

πn(z) = πn(yf(y
∗y)) = πn(y)f(πn(y

∗y)) = sf(s∗s) = ss∗s = s

sine s is a partial isometry. Furthermore,

πn(p̃1) = πn(z
∗z) = πn(f(y

∗y)g(y∗y)f(y∗y)) = f(πn(y
∗y))g(πn(y∗y))f(πn(y∗y))

= f(s∗s)g(s∗s)f(s∗s) = s∗ss∗ss∗s = s∗s = q1, and

πn(p̃2) = πn(zz
∗) = πn(yf(y

∗y)f(y∗y)y∗) = πn(y)f(πn(y
∗y))f(πn(y∗y))πn(y∗)

= sf(s∗s)f(s∗s)s∗ = ss∗ss∗ss∗ = ss∗ = q2

Hene ‖πn(p̃1)− πm(p1)‖ = 0 in B/J , meaning ‖πn,N1
(p̃1)− πm,N1

(p1)‖ < 1 in B/JN1
for some

N1 ∈ N. Similarly, ‖πn,N2
(p̃2)− πm,N2

(p2)‖ < 1 in B/JN2
for some N2 ∈ N. For the sake of

simpliity in notation, heneforth p̃1 shall denote πn,N (p̃1) and p1 shall denote πn,N (p1); this on-

vention shall apply to the denotations of p̃2 and p2 as well. Finally, z shall denote πn,N (z). Thus

‖p̃1 − p1‖ < 1 and ‖p̃2 − p2‖ < 1 in B/JN . By the proposition preeding this theorem, there are

unitaries v1 = v(p1, p̃1) and v2 = v(p2, p̃2) suh that p̃1 = v1p1v
∗
1 and p̃2 = v2p2v

∗
2 in B/JN .

Next, let r = v∗2zv1. Then

r∗r = v∗1z
∗v2v∗2zv1 = v∗1z

∗zv1 = v∗1 p̃1v1 = p1, and

rr∗ = v∗2zv1v
∗
1z

∗v2 = v∗2zz
∗v2 = v∗2 p̃2v2 = p2.

Finally, by the funtorial property of the funtions v1 = v(p1, p̃1) and v2 = v(p2, p̃2),

πN (r) = πN (v∗2zv1) = πN ([v(p2, p̃2)]
∗)πN (z)πN (v(p1, p̃1)),

= [v(πN (p2), πN (p̃2))]
∗πN (z)v(πN (p1), πN (p̃1)) = [v(q2, q2)]

∗sv(q1, q1) = s

sine v(p, p) = 1 for any projetion p ∈ B/J .

Therefore r is a partial isometry in B/JN with soure projetion p1 and range projetion p2, so

r is a partial lifting of s in B/JN with soure and range projetions that map to the soure and
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range projetions of s in B/J .

The following result onerning an isometry in a C*-algebra is obtained as a speial ase of the

previous theorem.

Corollary 4.10. Assume A is unital, and let yA ∈ A be an isometry suh that y = φ(yA) has

spei�ed partial liftings p1 of the soure projetion q1 = y∗y and p2 of the range projetion q2 = yy∗

in B/Jm for some m ∈ N. Then yA is partially liftable to a partial isometry z in B/Jn for some

n ∈ N with the properties that πn(z) = y, z∗z = πm,n(p1), and zz
∗ = πm,n(p2).

Proof. Let y = φ(yA), and let q1 = φ(y∗AyA) = y∗y and q2 = φ(yAy
∗
A) = yy∗. By the previous

theorem, yA is partially liftable to a partial isometry z ∈ B/Jn for some n ∈ N suh that πn(z
∗z) =

y∗y and πn(zz
∗) = yy∗. A *-homomorphism ψ : A → B/Jn exists suh that ψ(yA) = z, meaning

φ(yA) = πn ◦ ψ(yA). Furthermore, πn ◦ ψ(y∗AyA) = y∗y and πn ◦ ψ(yAy∗A) = yy∗. Therefore yA is

partially liftable to a partial isometry preserving the soure and range projetions of yA.

4.4 Semiprojetive C*-Algebras

Many C*-algebras an be de�ned by a set of generators and a set of relations on those generators.

Relations establish relationships between the generators and usually take the form of algebrai

relations. Universal C*-algebras are an example of C*-algebras that an be de�ned in terms of a set

of relations on a set of generators. Let G ={xi | i ∈ Ω} and let R be a set of relations. Suppose A

is a C*-algebra suh that

1. A is generated by a set of elements Y ={yi | i ∈ Ω} satisfying the relations R.

2. If C is any C*-algebra with elements Z = {zi | i ∈ Ω} satisfying the relations R, there is a

*-homomorphism ϕ : A→ C suh that ϕ(yk) = zk for all k ∈ Ω.

Then C∗(G | R) ∼= A is the universal C*-algebra generated by G with relations R.

Using results established in the previous setion, showing that ertain basi C*-algebras are

semiprojetive an be aomplished by reognizing that these C*-algebras an be de�ned as par-

tiular universal C*-algebras. The next propositions illustrate this fat. Below, C is shown to be

semiprojetive as the universal C*-algebra generated by a single projetion.

Proposition 4.11. Let

G ={p}, R ={p = p∗ = p2}.

Then C∗(G | R) ∼= C is semiprojetive.
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Proof. C is generated by the element 1 satisfying the relations R. Suppose that C is any other

C*-algebra generated by a single projetion pC satisfying the relations R. Then a *-homomorphism

ϕ : C → C mapping 1 to pC exists sine 1 is a projetion that must map under any *-homomorphism

to a projetion in C and C ontains the projetion pC . Therefore C ∼= C∗(G | R).

Let B be any C*-algebra, {Jn}n an inreasing sequene of losed ideals of B with J =
⋃

n
Jn,

and φ : C → B/J a *-homomorphism. Then 1 is partially liftable by Theorem 4.6, meaning a

homomorphism ψ : A → B/Jn exists for some n ∈ N suh that φ(1) = πn ◦ ψ(1). Therefore C is

semiprojetive sine it is generated by the element 1.

Next, the universal C*-algebra generated by a single unitary and a unit is shown to be C(T),

another semiprojetive C*-algebra.

Proposition 4.12. Let

G ={u, 1}, R ={1 = 1∗ = 12, u1 = 1u = u, u∗u = uu∗ = 1}.

Then C∗(G | R) ∼= C(T) is semiprojetive.

Proof. The inlusion map ι is a unitary in the C*-algebra C(T) sine |ι(x)| = |x| = 1 for all x ∈ T.

Moreover, the elements of S = {ι, 1} satisfy the relations R, and S generates C(T) by the Stone-

Weierstrass theorem. Let C be any other C*-algebra generated by element Z = {z, 1z} satisfying the

relations R. De�ne a map ϕ : C(T) → C by ϕ(ι) = z and ϕ(1) = 1z. Then ϕ is a *-homomorphism

so C(T) ∼= C∗(G | R).

Next, suppose that B is any C*-algebra, {Jn}n is an inreasing sequene of losed ideals of B

with J =
⋃

n
Jn, and φ : C(T) → B/J is a *-homomorphism. By theorem 4.8, 1 is partially liftable to

a projetion p ∈ B/Jn and ι is partially liftable to an element v ∈ B/Jn suh that v∗v = vv∗ = p for

some n ∈ N. Moreover, p and v preserve the relations R. Thus sine C(T) is a universal C*-algebra,

a *-isomorphism ψ : C(T) → B/Jn exists suh that φ(ι) = πn ◦ψ(ι) and φ(1) = πn ◦ψ(1). Therefore

C(T) is semiprojetive sine ι and 1 generate C(T).

The Toeplitz algebra T is the universal C*-algebra generated by a single isometry. It is also

semiprojetive.

Proposition 4.13. Let

G ={y, 1}, R ={1 = 1∗ = 12, y1 = 1y = y, y∗y = 1}.

The Toeplitz algebra T = C∗(G | R) is semiprojetive.

Proof. Let B be any C*-algebra, {Jn}n an inreasing sequene of losed ideals of B with J =
⋃

n
Jn,

and φ : T → B/J a *-homomorphism. Let q = φ(1) and s = φ(y). Then q is a projetion and



37

s is a partial isometry with soure projetion s∗s = q and range projetion ss∗. By theorem 5.5,

the projetions q and ss∗ an be partially lifted to projetions p and ps, respetively, in B/Jm0
for

some m0 ∈ N. Then by theorem 5.9, s an be lifted to a partial isometry z ∈ B/Jm suh that

z∗z = πmo,m(q) and zz∗ = πm0,m(ps).

Then sine T is a universal C*-algebra andZ = {z, z∗z} satis�es the relationsR, a *-homomorphism

ψ : T → B/Jn exists suh that φ(y) = πm ◦ ψ(y) and φ(1) = πm ◦ ψ(1). T is thus semiprojetive

sine y and 1 generate T .

Another semiprojetive C*-algebra is Mn(C) for n ∈ N as shown below.

Proposition 4.14. Let

G ={eij | 1 ≤ i, j ≤ n}, R ={e∗ij = eji, eijekl = δjkeil|1 ≤ i, j, k, l ≤ n}

for n ∈ N, where δjk =















0 if j 6= k

1 if j = k

. Then C∗(G | R) ∼=Mn(C) is semiprojetive.

Proof. Mn(C) is alternatively the universal C*-algebra generated by

Gc = {e1j |1 ≤ j ≤ n},

Rc = {(e∗1je1j)
2 = e∗1je1j = (e∗1je1j)

∗, e1ie∗1i = e1je
∗
1j = e11 for all 1 ≤ i, j ≤ n,

e∗1ie1i ⊥ e∗1je1j for all i 6= j}.

This is true beause eij ∈ G an be retrieved as e∗1ie1j for e1i, e1j ∈ Gc and eah set of generators

satisfy the same relations.

Let B be any C*-algebra, {Jn}n an inreasing sequene of losed ideals of B with J =
⋃

n
Jn,

and φ : Mn(C) → B/J a *-homomorphism, and let f1j = φ(e1j) for 1 ≤ j ≤ n. Then f1j is a

partial isometry with soure projetion f∗
1jf1j and range projetion f1jf

∗
1j = f11 for 1 ≤ j ≤ n.

Moreover, the n soure projetions are mutually orthogonal so by orollary 4.6, they an be lifted

to n mutually orthogonal projetions p1, p2, ..pn in B/Jm0
for some m0 ∈ N. By theorem 4.9, eah

partial isometry f1j an be lifted to a partial isometry s1j in B/Jm suh that s∗1js1j = πm0,m(pj)

and s1js
∗
1j = πm0,m(p1) for 1 ≤ j ≤ n and some m ∈ N.

The partial isometries S = {s1j | 1 ≤ j ≤ n} satisfy the relations R so sine Mn(C) is a

universal C*-algebra, a *-homomorphism ψ exists suh that φ = πm ◦ ψ. Therefore Mn(C) is

semiprojetive.

The Cuntz algebra On, another semiprojetive C*-algebra, is the universal C*-algebra generated

by n isometries having mutually orthogonal range projetions with sum equal to a unit 1. The Cuntz-

Krieger algebra OA on an matrix n× n matrix A generalizes the Cuntz algebra; it is semiprojetive

as well. When A onsists of all entries aij = 1 for 1 ≤ i, j ≤ n, then OA = On.
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Proposition 4.15. Let

G ={si, 1 | 1 ≤ i ≤ n},

R ={1 = 1∗ = 12, si1 = 1si = si, s
∗
i si = 1,

n
∑

j=1

sjs
∗
j = 1|1 ≤ i ≤ n}

for n ∈ N. The Cuntz algebra On = C∗(G | R) is semiprojetive.

Proof. Let B be any C*-algebra, {Jn}n an inreasing sequene of losed ideals of B with J =
⋃

n
Jn,

and φ : On → B/J a *-homomorphism. Let ri = φ(si) for 1 ≤ i ≤ n. Sine 1 is a projetion,

there is a partial lifting of 1 to a projetion p ∈ B/JNa
for some Na ∈ N by theorem 4.5. Then by

orollary 4.6, the mutally orthogonal projetions r1r
∗
1 , r2r

∗
2 , ..., rnr

∗
n are partially liftable to mutually

orthogonal projetions p1, p2, ..., pn in B/JNb
for some Nb ≥ Na. Finally, by orollary 4.10 eah

isometry ri is partially liftable to an isometry zi ∈ B/Jmi
having the properties z∗i zi = πNa,m(p)

and ziz
∗
i = πNb,m(pi) for 1 ≤ i ≤ n and some m ∈ N.

Sine On is a universal C*-algebra and set Z = {zi | 1 ≤ i ≤ n} satis�es the relations R, a

*-homomorphism ψ : On → B/Jm exists suh that ψ(si) = zi for 1 ≤ i ≤ n. Moreover, φ = πm ◦ ψ

so On is semiprojetive.

Corollary 4.16. Let A be an n× n matrix for n ∈ N with aij ∈ {0, 1} for 1 ≤ i, j ≤ n, and set

G = {si, 1|1 ≤ i ≤ n},

R = {1 = 1∗ = 12, si1 = 1si = si, s
∗
i si =

n
∑

j=1

Aijsjs
∗
j , sks

∗
k ⊥ sls

∗
l | 1 ≤ i, k, l ≤ n, k 6= l}.

The Cuntz-Krieger algebra OA = C∗(G | R) is semiprojetive.

Proof. The proof of this orollary follows the same reasoning as the proof of the preeding proposition

with the exeption that the sum of the range projetions depends on the matrix A.

The Cuntz algebra O∞ is the universal C*-algebra generated by a sequene of mutually orthog-

onal range projetions. O∞ is semiprojetive although the theory establishing this fat is beyond

the sope of this paper. See [3℄ for a onstrution demonstrating this result.

One last semiprojetive C*-algebra is C∗(Fn), the universal C*-algebra generated by n unitaries.

Proposition 4.17. Let

G ={ui, 1 | 1 ≤ i ≤ n},

R ={1 = 1∗ = 12, ui1 = 1ui = ui, u
∗
i ui = uiu

∗
i = 1}

for n ∈ N. Then C∗(Fn) = C∗(G | R) is semiprojetive.

Proof. The universal C*-algebra C∗(G | R) = C∗(Fn) is unital with unit 1. Eah ui ∈ C∗(Fn) is a

unitary, so by theorem 4.8, for any C*-algebra B, inreasing sequene {Jn}n of losed ideals of B

with J =
⋃

n
Jn, and *-homomorphism φ : C∗(Fn) → B/J , there is a *-homomorphism ψi : C

∗(Fn) →
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B/Jmi
suh that ψi(ui) is a unitary and φ(ui) = πmi

◦ψi(ui) for somemi ∈ N. Let m = max
1≤i≤n

mi and

let vi = πmi,m ◦ ψi(ui); de�ne a map ψ : C∗(Fn) → B/Jm by ψ(ui) = vi. Then eah vi is a unitary

in B/Jm, so ψ is a *-homomorphism suh that φ = πm ◦ ψ. Thus C∗(Fn) is semiprojetive.

Unlike O∞, the C*-algebra C∗(F∞), the universal C*-algebra generated by a sequene of uni-

taries, is not semiprojetive.

Moreover, if the unitaries in the onstrution C∗(G | R) of the previous proposition have addi-

tional relations requiring that the generators ommute, the resulting universal C*-algebra may not

be semiprojetive. The C*-algebra C(Tn) is the universal C*-algebra generated by n ommuting

unitaries. And in fat, C(Tn) is not semiprojetive whenever n ≥ 2; see [3℄ for a disussion of this

result.
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5 Conlusion

The intent of this paper is to explore an equivalene between topologies and C*-algebras starting

from the rudiments of C*-algebra theory as well as to derive meaningful results from the equivalene.

To this end, preliminary theory delves into the substane of the harater spae of C(X) and the

spae of maximal ideals on C(X). From the ensuing homeomorphisms, a ategory equivalene

is established between ertain topologies and C*-algebras. This proess results in a olletion of

semiprojetive C*-algebras, illuminating ertain useful aspets of these algebras.

The basi method for advaning theory in this paper is powerful but well-established. Galois

theory, for example, makes use of a similar type of orrespondene to yield onlusions onerning

polynomials out of other areas of abstrat algebra. In the ase of operator algebra theory, often

topology is the mathematial ontext from whih important results an be arried over to dedue

onsequenes for operator algebras. This paper explores one suh set of orrespondenes, that of

absolute retrats and absolute neighborhood retrats as they relate to projetivity and semiproje-

tivity. The proess illustrates, among other results highlighted herein, that extensions of ontinuous

funtions in a topologial ontext orrespond to the existene of partiular *-homomorphisms in a C*-

algebra ontext. And while in this ase, results from topology are borrowed to establish C*-algebra

results, C*-algebra theory an also produe new results in topology. K-theory ontains examples of

transplanting theory in the opposite diretion within the sope of general orrespondenes relating

topology and operator algebras. Often in mathematis this proess is fruitful.

Nonetheless, the analogy between C*-algebras and topologial spaes is limited in sope. As

intimated in the presentation of semiprojetive C*-algebras, some C*-algebras are not diretly on-

neted to topologial spaes by analogy similar to that employed in this paper. Alternative argu-

ments without straightforward relation to topologial arguments are sometimes needed to analyze

the struture of these C*-algebras, many of whih are natural andidates to evaluate for the property

of semiprojetivity.
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