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Abstra
t

This paper des
ribes a 
ontravariant 
ategory equivalen
e between the 
ategory of unital 
ommuta-

tive C*-algebras with unital *-homomorphisms and the 
ategory of 
ompa
t Hausdor� spa
es with


ontinuous fun
tions in order to 
hara
terize semiproje
tive C*-algebras. Results preliminary to

establishment of the equivalen
e yield homeomorphisms between any 
ompa
t Hausdor� spa
e X ,

the spa
e of maximal ideals on C(X) endowed with the hull-kernel topology, and the spa
e of 
hara
-

ters on C(X) under the weak* topology. The fun
tional 
al
ulus herein 
onstru
ted provides a link

between normal elements of a C*-algebra and 
ontinuous fun
tions on the spe
tra of the elements.

The equivalen
es established, along with the fun
tional 
al
ulus, provide a means to develop the

C*-algebra theory of semiproje
tivity by analogy to the topologi
al 
on
ept of absolute neighbor-

hood retra
ts on 
ompa
t metrizable spa
es; the analogy yields many examples of semiproje
tive

C*-algebras. Semiproje
tivity theory is an instan
e of extending well-established 
onsequen
es from

one mathemati
al 
ontext for use in another 
ontext via 
ategory equivalen
e and it additionally mo-

tivates an exploration of the extent to whi
h results from one 
ontext 
an be developed analogously

in the other beyond the limits of the equivalen
e.
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0 Introdu
tion

The ultimate goals of this paper are to 
hara
terize the C*-algebra theory of semiproje
tivity as it

relates to the topologi
al 
on
ept of ANRs via a 
ontravariant 
ategory equivalen
e and to delineate

known semiproje
tive C*-algebras. To this end, a preliminary portion of results presented 
onstru
ts

homeomorphisms between any 
ompa
t Hausdor� spa
e X , the spa
e of maximal ideals on C(X),

and the spa
e of 
hara
ters on C(X).

The �rst se
tion outlines basi
 de�nitions and results 
on
erning C*-algebras. The se
tion ex-

plores spe
ial properties of the spe
trum and of ideals in a C*-algebra, and it des
ribes the important

C*-algebra C(X). Additionally, important C*-algebra element types and major fundamental results


on
erning C*-algebras are herein in
luded.

Results in the se
ond se
tion outline the 
onstru
tion of the hull-kernel topology on Prim(A),

the set of primitive ideals of a C*-algebra A. The results 
ulminating the se
tion establish for any


ompa
t Hausdor� spa
e X a homeomorphism between the spa
e Prim(C(X)) endowed with the

hull-kernel topology and X under its original topology.

Theory in the third se
tion develops the weak* topology and asso
iates the 
hara
ter spa
e Ω(A)

of a C*-algebra A with this topology. Another homeomorphism is established between any 
ompa
t

Hausdor� spa
e X endowed with its original topology and the 
hara
ter spa
e Ω(C(X)) under

the weak* topology. Next, a 
ontravariant 
ategory equivalen
e between the 
ategory of unital


ommutative C*-algebras with unital *-homomorphisms and the 
ategory of 
ompa
t Hausdor�

spa
es with 
ontinuous fun
tions. The se
tion 
on
ludes with the fun
tional 
al
ulus and polar

de
omposition, tools used in 
hara
terizing semiproje
tive C*-algebras.

The �nal se
tion establishes an analogy between semiproje
tivity and ANRs using the equiva-

len
es developed prior. Partial liftings of spe
i�ed element types in a C*-algebra lead to a 
olle
tion

of examples of semiproje
tive C*-algebras formed as universal C*-algebras ea
h generated by a set

of partially liftable elements. In this way, semiproje
tivity theory explores the analogy between

semiproje
tive C*-algebras and ANRs.
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1 Fundamental C*-Algebra Theory

This se
tion introdu
es C*-algebras and delineates basi
 properties of these algebras. The spe
trum

of an element is de�ned, and fa
ts 
on
erning the spe
trum and ideals in C*-algebras are here

developed as a foundation for the main results of later se
tions.

1.1 C*-Algebras

An algebra is a ve
tor spa
e A over a �eld K, with K = C orK = R, together with a mapM : A2 →A,

M(a1, a2) 7→ a1a2 su
h that

1. a1(a2a3) =(a1a2)a3,

2. a1(a2 + a3) = a1a2 + a1a3,

3. (a1 + a2)a3 = a1a3 + a2a3,

4. α(a1a2) = (αa1)a2 = a1(αa2),

for all a1, a2, a3 ∈ A and α ∈ K. A subalgebra is a ve
tor subspa
e B of an algebra A su
h that

b1b2 ∈ B for all b1, b2 ∈ B. Hereafter, the �eld K will always be C.

A normed algebra is an algebra A having a norm ‖·‖ on its ve
tor spa
e stru
ture with the

property ‖a1a2‖ ≤ ‖a1‖ ‖a2‖ for all a1, a2 ∈ A. If the norm on A is 
omplete in its norm spa
e

stru
ture then A is a Bana
h algebra. An algebra A in whi
h a1a2 = a2a1 for all a1, a2 ∈ A is a


ommutative algebra. If a normed algebra A has an element 1 su
h that ‖1‖ = 1 and 1a = a1 = a

for all a ∈ A then A is unital ; the element 1, whi
h is ne
essarily unique, is 
alled the identity (or

unit) of A. The 
ondition ‖a1a2‖ ≤ ‖a1‖ ‖a2‖ for all a1, a2 in a normed algebra A guarantees that

the multipli
ation operation M(a1, a2) 7→ a1a2 is jointly 
ontinuous.

An involution on an algebra A is a map ∗ : A→ A de�ned by ∗ : a 7→ a∗ su
h that

1. (a1a2)
∗ = a∗2a

∗
1,

2. (a1 + a2)
∗ = a∗1 + a∗2,

3. (αa)∗ = ᾱa∗,

4. (a∗)∗ = a,

for all a, a1, a2 ∈ A and all α ∈ C. An algebra A over K = C together with the involution ∗ is 
alled

a *-algebra. If A is a Bana
h algebra that has an involution ∗ with the property ‖a∗‖ = ‖a‖ for all

a ∈ A, then A is a Bana
h *-algebra. A Bana
h *-algebra su
h that ‖a∗a‖ = ‖a‖2 for all a ∈ A
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is 
alled a C*-algebra. The 
ondition ‖a∗a‖ = ‖a‖2 for all a ∈ A is 
alled the C*-property of A.

A 
losed subalgebra B of a C*-algebra A is a C*-subalgebra if b∗ ∈ B for all b ∈ B. If S is any

subset of a C*-algebra A, the C*-algebra generated by S is the smallest C*-algebra B ⊆ A su
h that

S ⊆ B; B is denoted by C∗(S). In parti
ular, C∗(a) is the C*-algebra generated by a single element

a ∈ A. In a unital C*-algebra A, 1∗ = 11∗ = (11∗)∗ = 1∗∗ = 1, and 1 automati
ally has norm 1

sin
e ‖1‖ = ‖1∗1‖ = ‖1‖2 in A and ‖1‖ 6= 0.

The following spa
es are important examples of algebras needed in 
ontent following. C(X),

with X a 
ompa
t Hausdor� spa
e, is the primary C*-algebra 
onsidered in the results that follow.

Example. C, the 
omplex numbers. C is a unital 
ommutative C*-algebra with involution * given

by 
omplex 
onjugation λ∗ = λ for λ ∈ C. A subsequent result shows that a Bana
h algebra in

whi
h every non-zero element is invertible is isomorphi
 to C.

Example. C(X), Cb(X), and C0(X). Let X be a topologi
al spa
e. The set Cb(X) of all bounded


ontinuous 
omplex-valued fun
tions on X is a unital Bana
h algebra under the pointwise operations

(f + g)(x) = f(x) + g(x),

(fg)(x) = f(x)g(x),

(αf)(x) = αf(x),

and norm

‖f‖∞ = sup
x∈X

|f(x)|.

If X is 
ompa
t, Cb(X) = C(X), the set of 
ontinuous 
omplex-valued fun
tions on X . If X is

a lo
ally 
ompa
t Hausdor� spa
e, the set C0(X) of 
ontinuous fun
tions vanishing at in�nity, that

is the set of fun
tions su
h that Wǫ = {x ∈ X | |f(x)| ≥ ǫ} is 
ompa
t for every ǫ > 0, is a Bana
h

algebra sin
e it is a 
losed subalgebra of Cb(X). If X is 
ompa
t, then C0(X) = C(X), a unital

Bana
h algebra.

Suppose that X is a topologi
al spa
e, and de�ne an involution * on Cb(X) by f∗ = f . Then

Cb(X) is a C*-algebra. Similarly, if X is a lo
ally 
ompa
t Hausdor� spa
e and C0(X) has involution

f∗ = f , then Co(X) is a C*-algebra. If X is 
ompa
t Hausdor� then C(X) = Cb(X) = C0(X) is a

unital 
ommutative C*-algebra.

Example. B(X), the operators on X, and Mn(C), the n× n matri
es. Let X be a normed ve
tor

spa
e. Then B(X), the set of all bounded linear operators on X , is a normed algebra with addition

and s
alar multipli
ation de�ned pointwise, multipli
ation de�ned by

(ST )(x) = (S ◦ T )(x) = S(T (x)),

and norm given by
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‖T ‖ = sup
x 6=0

‖T (x)‖
‖x‖ = sup

‖x‖≤1

‖T (x)‖.

If X is a Bana
h spa
e, B(X) is a Bana
h algebra, and if H is a Hilbert spa
e, B(H) is a C*-

algebra with involution the adjoint operation * de�ned by < T ∗x, y >=< x, Ty > for all x, y ∈ H .

B(X) is never 
ommutative unless dim(X) = 1. Mn(C), the ve
tor spa
e of n × n matri
es with

entries in C, is identi�ed with B(Cn) and is therefore a unital C*-algebra.

1.2 Ideals and Quotient Algebras

Let A be an algebra. A ve
tor subspa
e I of A is a left ideal if as ∈ I for all a ∈ A and s ∈ I and a

right ideal if sa ∈ A for all a ∈ A and s ∈ I; I is an ideal if it is both a left ideal and a right ideal.

A maximal ideal is a proper ideal I in A that is not 
ontained in any other proper ideal. Zorn's

lemma establishes that every proper modular ideal is 
ontained in a maximal ideal, so any unital

algebra posesses maximal ideals [8℄. An ideal I 
ontaining an element u of A su
h that a − au ∈ I

and a− ua ∈ I for all a ∈ A is 
alled a modular ideal. If A is a unital algebra with unit 1 then any

ideal I in A is modular sin
e a− a1 = a− 1a = a− a = 0 ∈ I for any ideal I.

A homomorphism is a linear map φ : A→ B, where A and B are algebras, having the property

that φ(a1a2) = φ(a1)φ(a2) for all a1, a2 ∈ A. A homomorphism φ : A→ B is unital if both A and B

are unital and φ(1) = 1. For any homomorphism φ : A→ B, φ(A) is a subalgebra of B and ker(φ)

is an ideal in A [8℄. A *-homomorphism is a homomorphism φ : A→ B between C*-algebras A and

B having the property φ(a∗) = (φ(a))∗ for all a ∈ A.

Let I be an ideal of an algebra A. Then the ve
tor spa
e A/I is an algebra with multipli
ation

operation (a+ I)(b+ I) = ab+ I [8℄, 
alled the quotient algebra of A by I. Moreover, A/I is unital

if and only if I is modular [9℄.

Theorem 1.1. If A is a C*-algebra and I is a 
losed ideal in A, then I is 
losed under the involution

* and the quotient algebra A/I is itself a C*-algebra when asso
iated with the quotient norm ‖·‖

de�ned by ‖a+ I‖ = inf
a′∈I

‖a+ a′‖.

Proof. The algebrai
 properties of A/I follow dire
tly from the algebrai
 operations of A, and the

quotient norm is a 
omplete norm by the properties of the 
omplete norm on A. Let a1+ I, a2+ I ∈

A/I and let ǫ > 0. Then (‖a1 + I‖ + ǫ) > ‖a1 + s1‖ and (‖a2 + I‖ + ǫ) > ‖a2 + s2‖ for some

s1, s2 ∈ I sin
e ‖a+ I‖ = inf
a′∈I

‖a+ a′‖. Consequently,

(‖a1 + I‖+ ǫ)(‖a2 + I‖+ ǫ) > ‖a1 + s1‖ ‖a2 + s2‖ ≥ ‖a1a2 + a1s2 + a2s1 + s1s2‖

by the submultipli
ative property of the norm on A. Then

(‖a1 + I‖)(‖a2 + I‖) = lim
ǫ→0

(‖a1 + I‖+ ǫ)(‖a2 + I‖+ ǫ) ≥ ‖a1a2 + I‖
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sin
e a1s2 + a2s1 + s1s2 ∈ I for any s1, s2 
orresponding to a �xed ǫ > 0. Thus the quotient norm

is submultipli
ative and A/I is a Bana
h algebra.

The ideal I is automati
ally 
losed under the involution ∗, and this involution indu
es an invo-

lution on A/I rendering A/I a C*-algebra. Proofs of these two fa
ts are beyond the s
ope of this

paper; see [3℄.

The following theorem is a generalization to algebras of an important result from ring theory. It

will not be proven here. See [5℄, [9℄ for details.

Theorem 1.2. Suppose that A is a unital 
ommutative algebra. Then an ideal I in A is maximal

if and only if A/I is a �eld.

Let A be an algebra with L ⊆ A a modular maximal left ideal. Then the largest ideal I ⊆ L of

A is I = {a ∈ A | aA ⊆ L}, 
alled the primitive ideal of A asso
iated to L. The set of primitive

ideals of A is denoted by Prim(A). A prime ideal is an ideal I in A su
h that for any ideals J1 and

J2 of A with J1J2 ⊆ I, the 
onsequen
e J1 ⊆ I or J2 ⊆ I holds.

In a later se
tion, the set Prim(A) of primitive ideals of a C*-algebra will be endowed with the

hull-kernel topology. To this end, in any C*-algebra A, hull(S) is de�ned to be the set of primitive

ideals 
ontaining S for any ideal S of A, and ker(R) denotes the interse
tion of all ideals in a

nonempty set R of primitive ideals of A.

Some additional fa
ts about ideals in 
ertain types of algebras are the following; see [9℄ for proofs

of these results. An ideal I in a 
ommutative C*-algebra A is primitive if and only if I is modular

maximal. Also, any primitive ideal I in a C*-algebra A is prime. In parti
ular, the set Prim(A) of

a unital 
ommutative C*-algebra A is equal to the set of its maximal ideals.

1.3 Spe
trum

Suppose that A is a unital algebra and let a ∈ A. Then a is invertible if an element b exists su
h

that ab = ba = 1. Su
h an element b is unique, and it is denoted by a−1
, the inverse of a. The set of

invertible elements of A, Inv(A) = {a ∈ A | a−1 ∈ A}, is a group under the multipli
ation operation

[9℄. The spe
trum of an element a ∈ A is the set σA(a) = {λ ∈ C | a− λ1 /∈ Inv(A)}. The notation

σ(a) for σA(a) will be used when it is 
lear that a is being 
onsidered as an element of A. In a unital

Bana
h algebra A, the spe
tral radius of an element a ∈ A is de�ned to be r(a) = sup
λ∈σ(a)

|λ|.

If an algebra A is nonunital, a unital algebra Ã, known as the unitization of A 
an always be

formed from A by adjoining a unit to A. See [9℄ for details 
on
erning 
onstru
tion of the unitization

of an algebra. Under this 
onstru
tion, A 
an be identi�ed naturally as an ideal of Ã. Moreover, if A
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is a normed algebra, Ã 
an itself be made into a normed algebra; in this 
ase, A is a 
losed algebra of

Ã and Ã is a Bana
h algebra if A is [9℄. The spe
trum of an element a in a nonunital Bana
h algebra

A is de�ned to be σA(a) = σÃ(a) and the spe
tral radius of a is de�ned to be r(a) = sup
λ∈σA(a)

|λ|. In

this 
ase, 0 is always an element of σA(a) for any a ∈ A.

The following results are basi
 properties of invertible elements and spe
tra of elements in a

unital Bana
h algebra. Proofs or alternative proofs of many of the results in this subse
tion 
an be

found in [9℄. A general result following from Liouville's theorem shows that the spe
trum of any

element in a unital Bana
h algebra is nonempty, a 
onsequen
e summarized in lemma 1.3 below.

The Gelfand-Mazur theorem is an important result following dire
tly from the fa
t that this fa
t.

The following two results are proven in [9℄.

Lemma 1.3. Suppose that A is a unital Bana
h algebra. Then the spe
trum σ(a) 6= ∅ for all a ∈ A.

Corollary 1.4. [Gelfand-Mazur theorem℄ Let A be any unital Bana
h algebra in whi
h every

non-zero element is invertible. Then A = C1.

Proposition 1.5 also relies on the fa
t that the spe
trum σ(a) of an element a ∈ A is nonempty

in any unital Bana
h algebra A. Lemma 1.6 gives a useful 
hara
terization of invertible elements in

a unital Bana
h algebra.

Proposition 1.5. In a unital Bana
h algebra A, σ(p(a)) = p(σ(a)) for all a ∈ A and p ∈ C[z].

Proof. Let p ∈ C[z]. If p is 
onstant, then p = λ for some λ ∈ C, in whi
h 
ase σ(p(a)) = p(σ(a)) = λ.

So assume p is not 
onstant. By the fundamental theorem of algebra, 
omplex 
onstants λ0, λ1, ..., λn

exists with λ0 6= 0 and p−λ = λ0(z−λ1)...(z−λn) for any λ ∈ C. Hen
e p(a)−λ = λ0(a−λ1)...(a−λn)

and p(a) − λ ∈ Inv(A) if and only if a − λi is invertible if and only if a− λi /∈ σ(a) for 1 ≤ i ≤ n.

Thus λ ∈ σ(p(a)) if and only if λ = p(λ̃) for some λ̃ ∈ σ(a), meaning σ(p(a)) = p(σ(a)).

Lemma 1.6. Let A be a unital Bana
h algebra. Then 1 − a ∈ Inv(A) and (1 − a)−1 =
∞
∑

n=0
an for

any a ∈ A having ‖a‖ < 1.

Proof. The series

∞
∑

n=0
‖an‖ is 
onvergent sin
e

∞
∑

n=0
‖an‖ ≤

∞
∑

n=0
‖a‖n= 1

1−‖a‖ , so
∞
∑

n=0
an is itself 
on-

vergent. Then

lim
n→∞

[(1− a)(1 + ...+ an)] = lim
n→∞

(1− an+1) = 1

sin
e lim
n→∞

‖a‖n = 0. Also,

lim
n→∞

[(1− a)(1 + ...+ an)] = (1 − a)
∞
∑

n=0
an

so (1−a)
∞
∑

n=0
an = 1. Similarly, (

∞
∑

n=0
an)(1−a) = 1. Thus 1−a ∈ Inv(A) and (1−a)−1 =

∞
∑

n=0
an.
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Proposition 1.7. Let A be a unital Bana
h algebra. Then the set Inv(A) is open in A and σ(a) is

a 
losed subset of the dis
 with radius ‖a‖ 
entered at the origin for all a ∈ A.

Proof. Let a ∈ Inv(A) and let a′ ∈ A be an element su
h that ‖a− a′‖ < 1
‖a−1‖ . Then

∥

∥a−1a′ − 1
∥

∥ =
∥

∥a−1a′ − a−1a
∥

∥ ≤
∥

∥a−1
∥

∥ ‖a′ − a‖ <
∥

∥a−1
∥

∥

1
‖a−1‖ = 1,

so by the previous lemma a−1a′ − 1 ∈ Inv(A). Therefore a′ ∈ Inv(A) and Inv(A) is open be
ause

1, a−1 ∈ A. Next, let a ∈ A be arbitrary. Suppose that λ ∈ C is an element su
h that ‖a‖ < |λ| .

Then

∥

∥λ−1a
∥

∥ =
∣

∣λ−1
∣

∣ ‖a‖ <
∣

∣λ−1
∣

∣ |λ| = 1,

so 1− λ−1a ∈ Inv(A) by the previous lemma. Thus a− λ1 = −λ(1− λ−1a) ∈ Inv(A) so λ /∈ σ(a).

Hen
e λ ∈ σ(a) implies that |λ| ≤ ‖a‖. The set C\σ(a) = {λ ∈ C | a−λ1 ∈ Inv(A)} is the preimage

of the fun
tion f : C → A de�ned by f(a) = a − λ1, whi
h is 
ontinuous with image Inv(A), an

open set, so C\σ(a) is open. Hen
e σ(a) is a 
losed subset of the dis
 with radius ‖a‖ 
entered at

the origin.

The following theorem shows that maximal ideals in a unital Bana
h algebra are 
losed.

Theorem 1.8. Suppose that A is a unital Bana
h algebra and that I is a proper ideal in A. Then

I is proper as well.

Proof. If a ∈ I is an element su
h that ‖1− a‖ < 1 then 1 − (1 − a) = a is invertible. But then

aa−1 = 1 ∈ A, meaning I = A 
ontrary to the fa
t that I is proper. Therefore ‖1− a‖ ≥ 1 for all

a ∈ I so that 1 /∈ I. Hen
e I is proper.

By the above, the 
losure of a maximal ideal I is a proper 
losed ideal ne
essarily 
ontaining I,

so I = I. Thus every maximal ideal in a unital Bana
h algebra is 
losed.

The following theorem is attributable to Beurling. It yields an expli
it formula for the spe
tral

radius of an element in a unital Bana
h algebra A. See [9℄ for a proof of the result.

Theorem 1.9. [Beurling theorem℄ Let A be a unital Bana
h algebra with a ∈ A. Then

r(a) = inf
n≥1

‖an‖1/n = lim
n→∞

‖an‖1/n.

Thus for any element a in a unital Bana
h algebra A , r(a) ≤ ‖a‖ by the above result and by

the submultipli
ative property of the norm on A.

1.4 Spe
ial C*-Algebra Elements

Let A be a C*-algebra. The following are important types of elements in A.

1. An element a in A is self-adjoint if a∗ = a. An element p in A is a proje
tion if p∗ = p = p2.
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2. An element u in A is normal if u∗u = uu∗. Additionally, if u∗u = uu∗ = 1 then u is a unitary.

3. An element s in A is a partial isometry if s∗s is a proje
tion. An isometry is a partial isometry

x su
h that x∗x = 1, and a 
o-isometry is an element y su
h that yy∗ = 1.

4. If d in A is self-adjoint with σ(d) ⊆ R+
, then d is 
alled positive. Denote the set of positive

elements of A by A+
and let d ≥ 0 mean d ∈ A+. d ≤ e means e− d ∈ A+

.

Every C*-algebra A 
ontains self-adjoint elements: for any a ∈ A,

(a∗a)∗ = a∗a∗∗ = a∗a ∈ A and (aa∗)∗ = a∗∗a∗ = aa∗ ∈ A,

so a∗a and aa∗ are self-adjoint elements of A. Let a be any element in a C*-algebra A, and de�ne

b = 1
2 (a+ a∗) and c = 1

2i (a− a∗). Then a 
an be written uniquely as a = b + ic; in other words, if

b′ and c′ are two self-adjoint elements of A su
h that a = b′ + ic′, then b′ = b and c′ = c. See [9℄ for

details.

The next pair of results show that the norms of self-adjoint elements and normal elements in a

C*-algebra are equal to the spe
tral radii of their respe
tive spe
trums. Proofs 
an also be found in

[3℄.

Lemma 1.10. Let A be a C*-algebra with a ∈ A self-adjoint. Then r(a) = ‖a‖.

Proof. Sin
e a is self-adjoint,

∥

∥a2
∥

∥ = ‖a∗a‖ = ‖a‖2 and hen
e

∥

∥a2
n
∥

∥ = ‖a‖2
n

for all n ∈ N by

indu
tion. Thus

r(a) = lim
n→∞

‖an‖1/n = lim
n→∞

∥

∥a2
n∥

∥

1/2n

= ‖a‖.

Theorem 1.11. Suppose that A is a C*-algebra and let u ∈ A be normal. Then r(u) = ‖u‖.

Proof. The element u is normal so u∗u = uu∗ and

(r(u))2 = inf
n≥1

‖un‖2/n = inf
n≥1

‖(un)∗(u)n‖1/n = inf
n≥1

‖(u∗u)n‖1/n

= r(u∗u) = ‖u∗u‖ = ‖u‖2,

sin
e u∗u is self-adjoint. Thus r(u) = ‖u‖.

Here is an alternative 
hara
terization of partial isometries in a C*-algebra.

Proposition 1.12. An element s in a C*-algebra A is a partial isometry if and only if s = ss∗s.

Proof. Suppose �rst that s = ss∗s. Then

(s∗s)2 = s∗(ss∗s)s∗(ss∗s)s∗(ss∗s) = s∗(ss∗s)s∗s = s∗(ss∗s) = s∗s,

so s∗s is a proje
tion and s is a partial isometry.

Conversely, suppose that s is a partial isometry. Let a = s− ss∗s. Then

a∗a = (s∗ − s∗ss∗)(s− ss∗s) = s∗s− s∗ss∗s− s∗ss∗s+ s∗ss∗ss∗s = 0

sin
e (s∗s)2 = s∗s. Thus ‖a‖2 = ‖a∗a‖ = 0 by the C*-property so that s = ss∗s.
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Corollary 1.13. Let s in a C*-algebra A be a partial isometry. Then ss∗is a proje
tion.

Proof. By the previous proposition sin
e s = ss∗s,

(ss∗)2 = (ss∗s)s∗ = ss∗,

from whi
h it is 
lear that ss∗is a proje
tion.

For a partial isometry s, s∗s is the sour
e proje
tion of s and ss∗ is the range proje
tion of s.
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2 Hull-Kernel Topology on Prim(A)

Here the hull-kernel topology on the set of primitive ideals of a C*-algebra is des
ribed. The results

following establish an equivalen
e between any 
ompa
t Hausdor� spa
e X and the set Prim(C(X))

of maximal ideals of C(X).

2.1 General Topology Preliminaries

The topology results 
olle
ted here are used in the establishment of equivalen
es between a topologi-


al spa
e X and spa
es of obje
ts on the C*-algebra C(X) asso
iated to X . Moreover the results are

used in the development of semiproje
tive C*-algebras. They are here stated for ease of referen
e.

A fundamental topology text 
an be referen
ed for proofs of the results found in this se
tion; see for

example [8℄.

The following theorem is fundamental but it is essential in establishing major results to follow.

Lemma 2.1. Let f : X → Y be a bije
tive 
ontinuous fun
tion between the topologi
al spa
es X

and Y . If X is 
ompa
t and Y is Hausdor�, then f is a homeomorphism.

The next result about normal spa
es is easily proved. It 
onne
ts 
onsequen
es of the Urysohn

Lemma and the Tietze Extension Theorem to 
ompa
t Hausdor� spa
es.

Lemma 2.2. Every 
ompa
t Hausdor� spa
e is normal.

The next two theorems are among the most important results in all of elementary topology. See

[8℄ for proofs and dis
ussion of the theorems.

Theorem 2.3. [Urysohn lemma℄ Let X be a normal spa
e and suppose that F1 and F2 are disjoint


losed subsets of X. Let [a, b] ⊆ R be any 
losed interval. Then a 
ontinuous map f : X → [a, b]

exists su
h that f(x) = a for all x ∈ F1 and f(x) = b for all x ∈ F2.

Theorem 2.4. [Tietze Extension theorem℄ Let X be a normal spa
e with 
losed subspa
e F ,

and let [a, b] ⊆ R be any 
losed interval. Then for any 
ontinuous map f : F → [a, b], there is a


ontinuous map f̃ : X → [a, b] extending f . Moreover, for any 
ontinuous map g:F → R, there is a


ontinuous map g̃ : X → R extending g.

The 
on
ept of 
omplete regularity is also ne
essary in subsequent work. A 
ompletely regular

spa
e is a spa
e X in whi
h one-point sets are 
losed and wherein for ea
h point x0 and ea
h 
losed

set F not 
ontaining x0 there is a 
ontinuous fun
tion fx0
: X → [0, 1] su
h that fx0

(x0) = 1 and

fx0
(x) = 0 for all x ∈ F . A normal spa
e is 
ompletely regular by the Urysohn lemma, and by the



11

lemma pre
eding the statement of the Urysohn lemma above, a 
ompa
t Hausdor� spa
e is thus


ompletely regular.

The 
on
ept of nets generalizes the 
on
ept of sequen
es in a topologi
al spa
e. A basi
 result

from topology shows that for any set A in a metrizable spa
eX and element x ∈ X , x ∈ A if and only

if there is a sequen
e of points of A 
onverging to x. See, for example, [8℄. This sequential 
riterion

for de�ning 
losed sets in a metrizable spa
e will be used in working with topologies 
onsidered

in se
tions following. However, a 
ompa
t Hausdor� spa
e may not be metrizable. Nonetheless,

a generalization of this sequential 
riterion holds for nets and 
losures of sets. To this end, some


on
epts 
on
erning nets and 
onvergen
e must be established.

A dire
ted set is a nonempty set I with a relation � having the properties

1. ι � ι for every ι ∈ I,

2. ι1 � ι3 whenever ι1 � ι2 and ι2 � ι3 for all ι1, ι2, ι3 ∈ I,

3. there exists ι ∈ I su
h that ι1 � ι and ι2 � ι for every ι1, ι2 ∈ I.

Let X be a topologi
al spa
e and suppose that I is a dire
ted set. A net of points of X is a fun
tion

x : I → X , denoted {xι}ι∈I where xι = x(ι). A net {xι}ι∈I is said to 
onverge to a point x ∈ X ,

denoted by xι → x, if for ea
h open set O ∈ x, an index ιO ∈ I exists su
h that xι ∈ O for any ι ∈ I

with ιO � ι.

Given this framework of nets, the following proposition establishes a generalization of the se-

quential 
riterion for a topology on a metrizable spa
e. See [7℄ for a proof of the result.

Proposition 2.5. Let X be a topologi
al spa
e, and let S be a subset of X with x ∈ X. Then x ∈ S

if and only if there is a net {xι}ι∈I of points of S su
h that xι → x.

Similarly, another generalization to a basi
 result from topology yields the following theorem,

proven in [7℄.

Theorem 2.6. Suppose that X and Y are topologi
al spa
es and that φ : X → Y . Then φ is


ontinuous if and only if for any net {xι}ι∈I su
h that xι −→ x, it is true that φ(xι) −→ φ(x).

The pre
eding topology results will be important in establishing subsequent 
on
lusions.

2.2 Hull-kernel Topology Constru
tion

The hull-kernel topology is here 
onstru
ted on the set of primitive ideals of a C*-algebra A. When

X is a 
ompa
t Hausdor� spa
e, Prim(C(X)) is the set of maximal ideals of C(X), sin
e in this
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ase C(X) is a unital 
ommutative C*-algebra, and by 
omments following theorem 1.2 an ideal of

C(X) is primitive if and only if it is maximal whenever X is 
ompa
t Hausdor�.

The next result 
hara
terizes the proper 
losed ideals of a C*-algebraA, and the theorem following

yields the hull-kernel topology on Prim(A). Proofs are available in [9℄.

Lemma 2.7. Let I be a proper 
losed ideal in a C*-algebra A. Then I = ker(hull(I)).

De�ne R̂ = hull(ker(R)) for R ⊆ Prim(A) and let Chk = {R̂ | R ∈ Prim(A)}. The next

theorem, proven in [9℄, follows from the fa
ts (also established in [9℄) that for sets F1, F2 ∈ Chk,

F̂1 ∪ F2 = F̂1 ∪ F̂2, and that for an arbitrary 
olle
tion {Fλ}λ∈Λ of sets of Chk, ̂
⋂

λ∈Λ

Fλ =
⋂

λ∈Λ

F̂λ.

Theorem 2.8. Let A be a C*-algebra. There is a unique topology Thk on Prim(A) su
h that

R = R̂ = hull(ker(R)) for ea
h R ⊆ Prim(A).

The unique topology Thk is Thk = {Prim(A) \ R̂ | R ⊆ Prim(A)}, the set of 
omplements of


losures of subsets of Prim(A).

The next theorem will be proven in the 
ase of A = C(X), with X a 
ompa
t Hausdor� spa
e,

within the results of this se
tion but the bije
tive 
orresponden
e spe
i�ed holds for general C*-

algebras. The se
ond theorem following establishes a relationship between 
losed ideals in a C*-

algebra and their 
orresponding hulls. See [9℄ for proofs of these results.

Proposition 2.9. Let A be a C*-algebra. The map φ from the set of 
losed ideals of A onto the set

of 
losed subsets of Prim(A) de�ned by φ(I) = hull(I) is a bije
tion.

Proposition 2.10. Let A be a C*-algebra. If I and J are 
losed ideals of A, then I ⊆ J if and only

if hull(J) ⊆ hull(I).

In parti
ular, the pre
eding results 
on
erning the hull-kernel topology apply to C(X) when X

is a 
ompa
t Hausdor� spa
e.

2.3 Hull-kernel Topology on Prim(C(X))

In this se
tion, X is a 
ompa
t Hausdor� spa
e. A homeomorphism between X and the set

Prim(C(X)) of maximal ideals on C(X) with the hull-kernel topology is established in the results

that follow.

The next lemma and the theorem immediately following provide the te
hni
al details and intu-

ition for the 
onne
tion between 
losed sets of a 
ompa
t Hausdor� spa
e X and 
losed ideals in

C(X).
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Lemma 2.11. Let I be a 
losed ideal in C(X) and de�ne Y = {x ∈ X | f(x) = 0 for all f ∈ I}.

Then for any open set U 
ontaining Y , there is an f ∈ I su
h that 0 ≤ f(x) ≤ 1 for all x ∈ X and

f(x) = 1 for all x ∈ X \ U .

Proof. Let {yn}n ⊆ Y be a sequen
e that 
onverges to an element y ∈ X . Then fI(yn) = 0 for all

fI ∈ I, and sin
e fI is 
ontinuous, 0 = fI(yn) → fI(y) so that fI(y) = 0 and y ∈ Y . Hen
e Y is


losed. By the 
ompletely regular property of the 
ompa
t Hausdor� spa
e X , for ea
h z ∈ X \ U

a fun
tion fz ∈ I exists su
h that fz(z) 6= 0. Let Vz = {x ∈ X | fz(x) 6= 0}. By 
ontinuity of fz,

the set Vz is open for ea
h z ∈ X \ U . The set V = {Vz | z ∈ X \ U} is then an open 
over of the


ompa
t set X \ U , so X \ U has a �nite sub
over {Vzk}
n
k=1 ⊆ V .

De�ne a fun
tion g = fz1fz1 + fz2fz2 + ...+ fznfzn on X\U . The fun
tion g is in I and g(x) > 0

for all x ∈ X \ U sin
e if x is in X \ U , an element Vzk ⊆ {Vzk}
n
k=1 exists with x ∈ Vzk and

fzk(x) 6= 0. The fun
tion h = 1
g de�ned on X\U is a 
ontinuous real-valued fun
tion, and X\U

is 
ompa
t so h has a minimum a and a maximum b over X\U . Hen
e h extends to a 
ontinuous

fun
tion h̃ : X → [a, b] by the Tietze extension theorem. The fun
tion

1
g : X → [0,∞] is 
ontinuous

when 
onsidered as an extended real-valued fun
tion over X . Let ĥ = min(h̃, 1g ). Then ĥ ∈ C(X),

so the fun
tion f = ĥg ∈ I has the properties 0 ≤ f(x) ≤ 1 for all x ∈ X and f(x) = 1 for all

x ∈ X\U .

Theorem 2.12. Let X be a 
ompa
t Hausdor� spa
e and let I be a 
losed ideal in C(X). De�ne

Y = {x ∈ X | f(x) = 0 for all f ∈ I}. Then I = {f ∈ C(X) | f(y) = 0 for all y ∈ Y }.

Proof. Let J = {f ∈ C(X) | f(y) = 0 for all y ∈ Y } and suppose h ∈ I. Then 
learly by de�nition

of Y , h(x) = 0 for all x ∈ Y so I ⊆ J .

Next let g ∈ C(X) be su
h that g(y) = 0 for all y ∈ Y. De�ne a set Un = {x | |g(x)| < 1
n}

for ea
h n ∈ N. Un is open by 
ontinuity of g and Y ⊆ Un, so a fun
tion fn ∈ I exists su
h that

0 ≤ fn(x) ≤ 1 for all x ∈ X and fn(x) = 1 for all x ∈ X \ Un. Then for all n ∈ N, fng ∈ I and

|(fng − g)(x)| = |(g − g)(x)| = 0

whenever x ∈ X\Un, and

|(fng − g)(x)| = |(fn − 1)(x)g(x)| = |(fn − 1)(x)| |g(x)| ≤ |g(x)| < 1
n

for all x ∈ Un so that ‖fng − g‖ ≤ 1
n for all n ∈ N and all x ∈ X . Hen
e a sequen
e {gn}n∈N ⊆ I

de�ned by gn = fng for n ∈ N exists su
h that gn → g, meaning g ∈ I sin
e I is 
losed. Hen
e J ⊆ I

Therefore I = {f ∈ C(X) | f(y) = 0 for all y ∈ Y }.

Quotient algebras of C(X) by a 
losed ideal are des
ribed in the next lemma.
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Lemma 2.13. Let I be a 
losed ideal in C(X). Then C(X)/I ∼= C(Y ) for the parti
ular 
losed

subset Y in the de�nition of I.

Proof. Sin
e I is 
losed, by the previous theorem I = {f ∈ C(X) | f(y) = 0 for all y ∈ Y } for the


losed set Y ⊆ X given by Y = {x ∈ X | f(x) = 0 for all f ∈ I}. De�ne a map φ : C(X)/I → C(Y )

by φ(f + I) = f |Y . This map is a *-homomorphism be
ause restri
tions of 
ontinuous fun
tions

to 
losed subsets are 
ontinuous. Moreover, if fY ∈ C(Y ), then by the Tietze extension theorem,

a fun
tion fX ∈ C(X) exists su
h that fX is a 
ontinuous extension of fY . Then φ(fX + I) = fY ,

so the map φ is onto. Clearly, ker(φ) = I sin
e for any f ∈ I, f(y) = 0 for all y ∈ Y so

thatφ(f + I) = f |Y= 0, where 0 is the 
onstant fun
tion 0 ∈ C(Y ). Therefore by the �rst

isomorphism theorem, A/I ∼= C(Y ).

The lemma above leads to a proposition 
hara
terizing maximal ideals in C(X).

Proposition 2.14. Let I be an ideal in C(X). Then I is a maximal ideal if and only if a point

x ∈ X exists su
h that I = {f ∈ C(X) | f(x) = 0}.

Proof. Suppose a point x ∈ X exists su
h that I = {f ∈ C(X) | f(x) = 0}. De�ne a map

ϕ : C({x}) → C by ϕ(f) = f(x). For any k ∈ C, a fun
tion k̂ ∈ C({x}) de�ned by k̂(x) = k exists

so ϕ(k̂) = k̂(x) = k and ϕ is onto. Suppose next that f1, f2 ∈ C({x}) su
h that f1(x) = f2(x). Then

f1 = f2 and ϕ is 1-1 sin
e x is the only element of {x}. ϕ is a unital *-homomorphism sin
e fun
tions

in C({x}) are 
ontinuous, f(x) = f(x), and f(1) = 1. Thus the map ϕ is a unital *-isomorphism.

By the previous lemma, C(X)/I ∼= C({x}) ∼= C and sin
e C is a �eld, I is a maximal ideal.

Every maximal ideal is 
losed so I = {f ∈ C(X) | f(y) = 0 for all y ∈ Y } for the 
losed set Y =

{y ∈ X | f(y) = 0 for all f ∈ I}. Y is nonempty sin
e I = C(X) if Y = ∅, 
ontrary to maximality

of I. By the previous lemma, C(X)/I ∼= C(Y ). But I is maximal so C(Y ) ∼= C(X)/I ∼= C. If Y


ontains two or more distin
t points then y1, y2 ∈ Y exist su
h that y1 6= y2. But by the Urysohn

lemma, a 
ontinuous fun
tion f ∈ C(Y ) exists su
h that f(y1) = α1 and f(y2) = α2 for some

α1, α2 ∈ R with α1 6= α2. But then C(Y ) 
an't be *-isomorphi
 to C sin
e C is isomorphi
 to a

spa
e of 
onstant fun
tions and C(Y ) 
ontains a non
onstant fun
tion. The 
on
lusion Y = {x} for

some x ∈ X follows and therefore I = {f ∈ C(X) | f(x) = 0}.

Finally, the homeomorphism between X and Prim(C(X)) is established below.

Theorem 2.15. De�ne a map φ : X → Prim(C(X)) by φ(x) = Ix for all x ∈ X, where Ix = {f ∈

C(X) | f(x) = 0}. Then φ is a homeomorphism.
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Proof. By the results pre
eding, I ∈ Prim(C(X)) i� I = Ix = {f ∈ C(X) | f(x) = 0} for some

x ∈ X . Thus x ∈ X is an element su
h that φ(x) = I, meaning φ is onto. Suppose next that x1

and x2 are two elements of X su
h that φ(x1) = φ(x2). Then Ix1
= Ix2

, whi
h implies that x1 = x2

sin
e if x1 6= x2 by the Urysohn lemma some g ∈ C(X) exists su
h that g(x1) = 0 and g(x2) 6= 0


ontrary to Ix1
= Ix2

. Thus φ is 1-1.

The map φ is thus a bije
tion between X and Prim(C(X)), so a topology homeomorphi
 to the

hull-kernel topology on Prim(C(X)) exists on X . Denote this topology by T X
hk and the original

topology of X by T . φ is a homeomorphism between Prim(C(X)) with the hull-kernel topology

and X with its natural topology if for any set S ⊆ X , x ∈ S
X

if and only if x ∈ S
hk
, where S

X
is

the 
losure of S in T and S
hk

is the 
losure of S in T X
hk . Let S ⊆ X , and de�ne IS =

⋂

I∈φ(S)
. Then

IS = {f ∈ C(X) | f(x) = 0 for all x ∈ S} sin
e f(x) = 0 for all f ∈ Ix and any x ∈ S, and

φ(S) = hull(ker(S)) = {I ∈ Prim(C(X)) | I ⊇ IS},

where φ(S) is the 
losure of φ(S) in the hull-kernel topology on Prim(C(X)). Note that for an

element p ∈ X , p ∈ S
hk

if and only if for any fun
tion f ∈ C(X) su
h that f(x) = 0 for all

x ∈ S, f(p) = 0. This holds sin
e p ∈ S
hk

if and only if Ip ∈ φ(S) if and only if Ip ⊇ IS so that

Ip = {f ∈ C(X) | f(p) = 0} 
ontains all f ∈ C(X) su
h that f(x) = 0 for all x ∈ S.

So let p ∈ S
X
. Then some net {pι}ι∈Λ exists su
h that pι → p in the topology T on X , and by

a general property f(pι) → f(p) for any f ∈ C(X). Sin
e f(pι) = 0 for all pι ∈ {pι}, f(p) = 0 as

well. In parti
ular, if f ∈ C(X) is an element su
h that f(x) = 0 for all x ∈ S, meaning f ∈ IS ,

then f(p) = 0. Therefore Ip ⊇ IS so Ip ∈ φ(S), whi
h leads to the 
on
lusion p ∈ S
hk
.

Conversely, suppose p /∈ S
X
. Sin
e X is 
ompa
t Hausdor�, it is normal and hen
e 
ompletely

regular. Thus a fun
tion fp : X → [0, 1] exists su
h that fp(x) = 0 for all x ∈ S
X

⊇ S and fp(p) = 1.

Therefore p /∈ S
hk

sin
e p ∈ S
hk

if and only if for every fun
tion f ∈ C(X) su
h that f(x) = 0 for all

x ∈ S, f(p) = 0 as well, and fp is a fun
tion not satisfying this 
ondition. Hen
e by 
ontrapositive,

p ∈ S
hk

implies that p ∈ S
X
.

The above 
onsequen
es establishes that φ is a homeomorphism.

The pre
eding theorem establishes that the original topology on X 
an be re
overed from the

hull-kernel topology on Prim(C(X)).
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3 Ω(C(X)) and the Fun
tional Cal
ulus

In this se
tion, the equivalen
e between a 
ompa
t Hausdor� spa
e X and the set of maximal ideals

of C(X) is extended to an equivalen
e with a third obje
t, the set of nonzero homomorphisms on

C(X), Ω(C(X)), endowed with the weak* topology. In parti
ular, a homeomorphism exists between

Ω(C(X)) and X so that the three spa
es X , Ω(C(X)), and Prim(C(X)) are all homeomorphi
.

These results 
ulminate with a 
ategory equivalen
e between 
ompa
t Hausdor� spa
es and unital


ommutative C*-algebras. The fun
tional 
al
ulus is 
hara
terized in the last part of this se
tion;

the 
on
ept is useful in understanding C*-algebras.

3.1 The Weak* Topology

Some preliminaries 
on
erning the 
onstru
tion and properties of the weak* topology are ne
essary

in establishing theory related to the 
hara
ter spa
e of C(X).

Let A be a ve
tor spa
e over a �eld K with K = R or K = C. A seminorm is a fun
tion σ : A→ R

satisfying the 
onditions

1. σ(a) ≥ 0 and σ(0) = 0,

2. σ(αa) = |α|σ(a),

3. σ(a1 + a2) = σ(a1) + σ(a2),

for all a, a1, a2 ∈ A and α ∈ K.

Suppose that A is a normed spa
e. De�ne for ea
h a ∈ A a fun
tion σa : A∗ → R by σa(φ) =

|φ(a)| for φ ∈ A∗
. Then σa is a seminorm on A∗

for ea
h a ∈ A [7℄. The weak* topology on A∗
, the

dual spa
e of A, is the topology indu
ed by the 
olle
tion of seminorms S = {σa | a ∈ A}. In other

words, the weak* topoloy is the topology having subbasis the sets Sa,ǫ = {φ ∈ A∗ | σa(φ) < ǫ} for

all a ∈ A and ǫ > 0.

Let {fn} be a sequen
e of bounded linear fun
tionals on a normed spa
e A. Then {fn} 
onverges

weak* if a bounded linear fun
tional f on A exists su
h that fn(a) −→ f(a) for all a ∈ A. Likewise,

if {fι}ι∈I is a net of bounded linear fun
tionals on a normed spa
e A, {fι}ι∈I 
onverges weak* in A∗

if a bounded linear fun
tional f on A exists su
h that fι(a) −→ f(a) for all a ∈ A. By Proposition

2.5, if S is a subset of A∗
, then an element f ∈ A∗

is in S, the 
losure of S in the weak* topology,

if and only if there is a net {fι}ι∈I in S su
h that fι −→ f weak*.

Alaoglu's theorem, below, shows that the 
losed unit ball of the dual spa
e of a C*-algebra is

weak* 
ompa
t. See [7℄ for a proof of this result.
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Theorem 3.1. [Alaoglu's theorem℄ Let A be a normed spa
e with dual spa
e A∗
. Then the 
losed

unit ball, B1(0) = {f ∈ A∗ | ‖f‖ ≤ 1} ⊆ A∗
, is weak* 
ompa
t.

3.2 Chara
ter Spa
e on C(X) Equivalen
e

Let A be a 
ommutative algebra. A 
hara
ter on A is a nonzero homomorphism φ : A→ C. The set

of 
hara
ters on A is denoted by Ω(A) and is known as the 
hara
ter spa
e of A. In this se
tion and

beyond, given any unital 
ommutative C*-algebra A, let the dual spa
e A∗
, whi
h 
ontains Ω(A)

as a subset, be endowed with the weak* topology. Herein X is a 
ompa
t Hausdor� spa
e unless

otherwise de�ned. Parallel dis
ussions of proposition 3.2, lemma 3.3, theorem 3.4, and theorem 3.5

following 
an be found in [9℄.

Proposition 3.2. Suppose that A is a unital C*-algebra and let δ ∈ Ω(A). Then δ is a unital

*-homomorphism and ‖δ‖ = 1.

Proof. Sin
e A is a C*-algebra, δ(1) = [δ(1)]2 and sin
e δ(1) 6= 0, it follows that δ(1) = 1. Hen
e

δ is a unital homomorphism. So let a ∈ A. Then δ(Inv(A)) ⊆ Inv(C), sin
e a ∈ Inv(A) implies

that a−1
exists and δ(a)δ(a−1) = δ(aa−1) = 1. Let λ ∈ σ(δ(a)). δ(a − λ1) = δ(a) − λ1 /∈ Inv(C)

so δ(a − λ1) /∈ δ(Inv(A)), from whi
h it follows that a − λ1 /∈ Inv(A) and δ(a) ∈ σ(a). Therefore

|δ(a)| ≤ r(a) ≤ ‖a‖, whi
h implies that ‖δ‖ = sup
‖a‖≤1

|δ(a)| ≤ 1. But sin
e ‖1‖ = 1 in any unital

normed algebra and δ(1) = 1 by the pre
eding, ‖δ‖ = 1.

δ is moreover a *-homomorphism: if a ∈ A, then a = b+ ic with b and c self-adjoint so that, by

a result proved later (
orollary 3.17), δ(b) ∈ σ(b) ⊆ R and δ(c) ∈ σ(c) ⊆ R, meaning

δ(a∗) = δ(b− ic) = δ(b)− iδ(c) = δ(b) + iδ(c) = δ(b+ ic) = δ(a).

The following simple lemma is used in the proof of the theorem following it.

Lemma 3.3. Suppose that A is a unital 
ommutative C*-algebra and let δ ∈ Ω(A). Then a−δ(a)1 ∈

ker(δ) for all a ∈ A.

Proof. Let a ∈ A. Then for any δ ∈ Ω(A), δ(a) ∈ C and

δ(a− δ(a)1) = δ(a)− δ(δ(a)1) = δ(a)− δ(a)δ(1) = δ(a)− δ(a) = 0.

Hen
e a− δ(a)1 ∈ ker(δ).

The next two results hold for the spa
e C(X), where X is a 
ompa
t Hausdor� spa
e. The nota-

tion Ix shall hen
eforth mean Ix = {f ∈ C(X) | f(x) = 0}. The next theorem follows immediately

as a 
orollary of proposition 2.14 but the alternative proof below gives insight into the nature of the

kernel of a 
hara
ter on C(X).
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Theorem 3.4. Let x ∈ X and δx ∈ Ω(C(X)), where δx ∈ Ω(C(X)) is the 
hara
ter de�ned by

δx(f) = f(x) for all f ∈ C(X). Then ker(δx) is a maximal ideal of C(X), and

ker(δx) = Ix = {f ∈ C(X) | f(x) = 0}.

Proof. Suppose {xn}n ⊆ ker(δx) 
onverges to an element x ∈ A. Then δx(xn) = 0 for all n ∈ N so

0 = δx(xn) → δx(x) implies that δx(x) = 0 by 
ontinuity of δx. Hen
e ker(δx) is 
losed. ker(δx) is

a proper ideal of C(X) sin
e δx is nonzero so that δx(1) 6= 0. Moreover,

C(X) = ker(δx) + C = {f + λ | f ∈ ker(δx), λ ∈ C}

sin
e for every f ∈ C(X), f − δx(f)1 ∈ ker(δx) by the previous lemma and δx(f) ∈ C so

f = (f − δx(f)) + δx(f) ∈ ker(δx) + C.

Then

C(X)/ker(δx) = (ker(δx) + C)/ker(δx) ∼= C.

Hen
e ker(δx) is a maximal ideal of C(X) be
ause C(X)/ker(δx) is a �eld. Sin
e ker(δx) is a

maximal ideal, by proposition 2.14 some x ∈ X exists su
h that

ker(δx) = {f ∈ C(X) | δx(f) = 0} = {f ∈ C(X) | f(x) = 0} = Ix.

For any x ∈ X the 
hara
ter δx ∈ Ω(C(X)) de�ned by δx(f) = f(x) for all f ∈ C(X) is su
h

that ker(δx) = {f ∈ C(X) | f(x) = 0} = Ix is a maximal ideal, so θ in the following theorem makes

sense.

Theorem 3.5. The map θ : Ω(C(X)) → Prim(C(X)) de�ned by θ(δ) = ker(δ) is a bije
tion. Also,

x ∈ X exists for every δ ∈ Ω(C(X)) su
h that δ = δx, where δx is de�ned by δx(f) = f(x) for all

f ∈ C(X). θ has inverse θ−1 : Prim(C(X)) → Ω(C(X)) given by θ−1(Ix) = δx.

Proof. Suppose that δ1 and δ2 are elements of Ω(C(X)) su
h that ker(δ1) = ker(δ2). Then for any

f ∈ C(X), f − δ2(f)1 ∈ ker(δ2) = ker(δ1) so δ1(f − δ2(f)1) = 0, whi
h implies that

δ1(f) = δ1(δ2(f)1) = δ2(f)δ1(1) = δ2(f)

sin
e δ2(f) ∈ C. Thus δ1 = δ2 and θ is 1-1.

Suppose that I ∈ Prim(C(X)). Then some x ∈ X exists su
h that I = Ix = ker(δx) = θ(δx).

Thus θ is onto, and hen
e a bije
tion.

Sin
e θ is a bije
tion, some δ ∈ Ω(C(X)) exists for any Ix ∈ Prim(C(X)) su
h that Ix = ker(δ),

and in parti
ular, Ix = ker(δx), so δ = δx. Hen
e every δ ∈ Ω(C(X)) is of the form δx for some

x ∈ X . De�ne ψ : Prim(C(X)) → Ω(C(X)) by ψ(Ix) = δx. Then

θ ◦ ψ(Ix) = θ(δx) = ker(δx) = Ix and

ψ ◦ θ(δx) = ψ(ker(δx)) = ψ(Ix) = δx.

Therefore θ−1 = ψ is de�ned by θ−1(Ix) = δx.
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In parti
ular, the above theorem establishes that every maximal ideal in C(X) is the kernel of

some 
hara
ter in Ω(C(X)) and that every 
hara
ter in Ω(C(X)) is of the form δx for some x ∈ X .

Hen
eforth, the notation δx for an element of C(X) will denote the 
hara
ter de�ned by δx(f) = f(x)

for all f ∈ C(X).

The next results establish that a unital 
ommutative C*-algebra endowed with the weak* topol-

ogy is 
ompa
t Hausdor�. A
tually, the weak* topology is always Hausdor�, but this more general

result is not needed and will not be proven here. When a C*-algebra A is C(X) for some 
ompa
t

Hausdor� spa
e X , then in fa
t the 
hara
ter spa
e of A = C(X) is homeomorphi
 with X itself, as

shown at the end of this subse
tion.

Theorem 3.6. Let A be a unital 
ommutative C*-algebra. Then Ω(A) with the weak* topology is a


ompa
t Hausdor� spa
e.

Proof. Suppose that δ ∈ Ω(A). Then some net {δι}ι∈Λ ⊆ Ω(A) exists su
h that δι → δ. In parti
ular,

δι(a) → δ(a) for all a ∈ A sin
e δι → δ weak*. Let a, a1, a2 ∈ A and α ∈ C. Then

δι(a1a2) = δι(a1)δι(a2) → δ(a1)δ(a2) and δι(a1a2) → δ(a1a2),

δι(a1 + a2) = δι(a1) + δι(a2) → δ(a1) + δ(a2) and δι(a1 + a2) → δ(a1 + a2),

δι(αa) = αδι(a) → αδ(a) and δι(αa) → δ(αa),

δι(1) = 1 for all ι ∈ Λ so δι(1) → δ(1) means that δ(1) = 1.

In parti
ular, δ ∈ Ω(A) so Ω(A) = Ω(A) and Ω(A) is weak* 
losed. Sin
e ‖τ‖ = 1 for any τ ∈ Ω(A),

Ω(A) is thus a weak* 
losed subset of the 
losed unit ball B1(0) of A
∗
under the weak* topology.

B1(0) is weak* 
ompa
t by Alaoglu's theorem, so Ω(A) is weak* 
ompa
t as a weak* 
losed subset

of a weak* 
ompa
t set.

Next, suppose that δ1,δ2 ∈ Ω(A) with δ1 6= δ2. Then a ∈ A exists su
h that δ1(a) 6= δ2(a). C is

Hausdor�, so disjoint neighborhoods U1 ∋ δ1(a) and U2 ∋ δ2(a) exist. De�ne

Ũ1 = {δ ∈ Ω(A) | δ(a) ∈ U1} and Ũ2 = {δ ∈ Ω(A) | δ(a) ∈ U2}.

Let (δι)ι∈I be a net in Ω(A) \ Ũ1 that 
onverges to an element δ ∈ Ω(A). Then δι(a) → δ(a) by

de�nition of weak* 
onvergen
e. Then δι(a) ∈ C \ U1 for ea
h ι ∈ I so δ(a) ∈ C \ U1 sin
e C \ U1

is a 
losed set. Hen
e δ(a) /∈ U1 so δ ∈ Ω(A) \ Ũ1, whi
h implies that Ω(A) \ Ũ1 is 
losed. Thus

Ũ1 is open. By the same reasoning, Ũ2 is an open set. Then Ũ1 ∋ δ1 and Ũ2 ∋ δ2 are disjoint

neighborhoods and Ω(A) is Hausdor�.

Theorem 3.7. Suppose that X is a 
ompa
t Hausdor� spa
e. Then there is a homeomorphism

between X and the 
hara
ter spa
e Ω(C(X)) given by the map ϕ : X → Ω(C(X)), ϕ(x) = δx, where

δx ∈ Ω(C(X)) is the 
hara
ter de�ned by δx(f) = f(x) for f ∈ C(X).
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Proof. Let φ : X → Prim(C(X)) be the homeomorphism de�ned by φ(x) = Ix and let θ−1 :

Prim(C(X)) be the map given by θ−1(Ix) = δx. Then θ
−1 ◦φ is a bije
tion sin
e it is a 
omposition

of two bije
tive fun
tions. Moreover,

ϕ(x) = δx = θ−1(Ix) = θ−1 ◦ φ(x)

for all x ∈ X so ϕ = θ−1 ◦ φ. Thus ϕ is a bije
tion.

Next, let δx ∈ Ω(C(X)) and let {δxλ
}λ∈Λ ⊆ Ω(C(X)) be a net 
onverging to δx. Then {xλ}λ∈Λ ⊆

X is a net 
onverging to the point x ∈ X su
h that xλ 
orresponds to δxλ
for ea
h λ ∈ Λ. Moreover,

by 
ontinuity of the elements of C(X), f(xλ) −→ f(x) for any f ∈ C(X). Hen
e δxλ
(f) = f(xλ) −→

f(x) = δx(f) for all f ∈ C(X) so that {δxλ
}λ∈Λ ⊆ Ω(C(X)) is a net 
onverging weak* to δx.

Consequently, ϕ is 
ontinuous.

ϕ is a 
ontinuous bije
tion between 
ompa
t Hausdor� spa
es so ϕ is a homeomorphism.

3.3 Unital Commutative C*-Algebra Category Equivalen
e

The pre
eding results 
an now be employed to 
onstru
t a 
ategory equivalen
e between unital


ommutative C*-algebras and 
ompa
t Hausdor� spa
es. First some preliminaries 
hara
terizing


ommutative C*-algebras are ne
essary.

If A is a 
ommutative C*-algebra and a ∈ A, the map â : Ω(A) → C de�ned by â(δ) = δ(a) is

known as the Gelfand transform of a. The following Gelfand theorem is one of the most important

theorems in the theory of C*-algebras. It shows that a 
ommutative C*-algebra A 
an be thought of

as the C*-algebra C0(Ω(A)), with the asso
iation of a ∈ A to its Gelfand transform â ∈ C0(Ω(A)).

The theorem's proof will not be given here but it 
ould be pie
ed together mostly from results

presented within this paper; see in parti
ular the results establishing the fun
tional 
al
ulus presented

in the next subse
tion. Complete proofs 
an be found in [3℄ and [9℄. The isomorphism in the Gelfand

theorem yields a representation known as the Gelfand representation.

Theorem 3.8. [Gelfand theorem℄ Let A be a non-zero 
ommutative C*-algebra. Then the map

Γ : A→ C0(Ω(A)) de�ned by Γ(a) = â is an isometri
 *-isomorphism.

The following lemma relates 
ontinuous fun
tions between 
ompa
t Hausdor� spa
es to unital

*-homomorphisms between C*-algebras of 
ontinuous fun
tions on the spa
es.

Lemma 3.9. Let X and Y be 
ompa
t Hausdor� spa
es. For every 
ontinuous fun
tion f : X → Y ,

there is a unital *-homomorphism φf : C(Y ) → C(X) given by φf (g) = g ◦ f .

Conversely, for every unital *-homomorphism φ : C(Y ) → C(X), there is a 
ontinuous fun
tion

fφ : X → Y given by fφ(x) = y, where y ∈ Y is the unique element that 
orresponds to δy = δx ◦φ ∈

C(Y ) under the homeomorphism ϕ : Y → Ω(C(Y )) given by ϕ(y0) = δy0 .
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Proof. Let f : X → Y be a 
ontinuous fun
tion and de�ne φf : C(Y ) → C(X) by φf (g) = g ◦ f . By

fundamental properties of 
ompositions of 
ontinuous fun
tions, this map is 
losed under addition,

multipli
ation, s
alar multipli
ation, and 
omplex 
onjugation. Moreover, φf (1) = 1 ◦ f = 1. Hen
e

φf is a unital *-homomorphism.

Conversely, suppose that φ : C(Y ) → C(X) is a unital *-homomorphism. Let x ∈ X . Then

δx 
orresponds to x under the homeomorphism ϕ1 : X → Ω(C(X)) given by ϕ(x0) = δx0
. Also,

δx ◦ φ = δy for some y ∈ Y and δy 
orresponds to this y under the equivalen
e ϕ2 : Y → Ω(C(Y ))

given by ϕ(y0) = δy0 . De�ne in this fashion for ea
h x ∈ X a fun
tion fφ : X → Y by fφ(x) = y.

Suppose that {xι}ι∈Λ ∈ X is a net with xι → x. Then xι 
orresponds to δxι
∈ C(X) and δxι

→ δx

be
ause xι → x. Let f ∈ C(Y ). Then φ(f) = g for some g ∈ C(X). Sin
e δxι
→ δx, δxι

(g) → δx(g),

whi
h means that δyι(f) → δy(f), where δyι = δxι
◦ φ. Then sin
e f ∈ C(Y ) is arbitrary, δyι → δy

in the topology on Ω(C(Y )); the topology of Y is homeomorphi
 to this topology so fφ(xι) = yι →

y = fφ(x). Consequently, fφ is 
ontinuous.

The above lemma gives a 
orresponden
e between 
ontinuous fun
tions and unital *-homomorphisms.

This 
orresponden
e is the basis for the 
ategory equivalen
e given in the following theorem.

Theorem 3.10. There is a 
ontravariant 
ategory equivalen
e between the 
ategory of unital 
om-

mutative C*-algebras and unital *-homomorphisms with the 
ategory of 
ompa
t Hausdor� spa
es

and 
ontinuous fun
tions.

Proof. Let A and B be unital 
ommutative C*-algebras. By the Gelfand theorem, A = C(X) and

B = C(Y ) for the 
ompa
t Hausdor� spa
es X = Ω(A) and Y = Ω(B). The lemma pre
eding

this theorem shows that there is a 
ontinuous fun
tion f : X → Y if and only if there is a unital

*-homomorphism φf : C(Y ) → C(X) given by φf (h) = h ◦ f .

Suppose that C is any other unital 
ommutative C*-algebra, so that C = C(Z) for the 
ompa
t

Hausdor� spa
e Z = Ω(C). Let g : Y → Z be a 
ontinuous fun
tion and let φg : C(Z) → C(Y ) be

its 
orresponding unital *-homomorphism. The 
ontinuous fun
tion g ◦ f : X → Z 
orresponds to a

unital *-homomorphism φ : C(Z) → C(X) given by φ(h) = h ◦ (g ◦ f) for h ∈ C(Z) by the previous

lemma. Let h ∈ C(Z). Then

φ(h) = h ◦ (g ◦ f) = (h ◦ g) ◦ f = φf (h ◦ g) = φf (φg(h)) = φf ◦ φg(h)

whi
h shows that φf ◦ φg is the *-homomorphism 
orresponding to the 
ontinuous fun
tion g ◦ f .

Hen
e the 
ontravariant 
ategory equivalen
e has been established.
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3.4 Fun
tional Cal
ulus and Polar De
omposition

The fun
tional 
al
ulus and polar de
omposition are developed here by making use of an isometri


*-isomorphism to essentially apply 
ontinuous fun
tions to parti
ular elements of C*-algebras.

The Stone-Weierstrass theorem is essential in extending the result σ(p(a)) = p(σ(a)) for a poly-

nomial p and a normal element a in a C*-algebraA to an analogous result for any 
ontinuous fun
tion

f ∈ C(σ(a)). The theorem holds for parti
ular algebras over a 
ompa
t Hausdor� spa
e X that


onsist of 
ontinuous fun
tions separating points of X whi
h vanish at no point of X . A 
olle
tion

of fun
tions F ∈ C(X) is said to separate points of X if for any distin
t elements x1, x2 ∈ X there

is an f ∈ F su
h that f(x1) 6= f(x2), and the 
olle
tion F is said to vanish at no point of X if to

ea
h x ∈ X there 
orresponds a fun
tion g ∈ F su
h that g(x) 6= 0. Here is the statement of the

theorem for 
omplex 
ontinuous fun
tions; see for example [10℄ for a proof of the result.

Theorem 3.11. [Stone-Weierstrass theorem℄ Let X be a 
ompa
t Hausdor� spa
e. Suppose

F ⊆ C(X) is an algebra that separates points of X su
h that F vanishes at no points of X and

f ∈ F for every f ∈ F . Then F = C(X).

In parti
ular, the Stone-Weierstrass theorem establishes that the 
losure of the set of polynomials

with 
omplex 
oe�
ients is C(X). This important result is made pre
ise in the following 
orollary.

Corollary 3.12. Let X be a 
ompa
t Hausdor� spa
e and denote the algebra of all polynomials with


omplex 
oe�
ients over X by P. Then P = C(X).

Proof. The algebra P separates points of X and P vanishes at no point of X sin
e P 
ontains the


onstant fun
tions; P is also 
losed under 
omplex 
onjugation. Thus by the Stone-Weierstrass

theorem, P = C(X).

The next theorem 
hara
terizes the spe
trum of an element in a 
ommutative unital Bana
h

algebra as the set of evaluations at the element by 
hara
ters in the algebra's 
hara
ter spa
e; the


hara
terization is useful in subsequent results. See [9℄ for a proof of the result.

Theorem 3.13. Suppose that A is a 
ommutative unital Bana
h algebra and let a ∈ A. Then

σ(a) = {δ(a) | δ ∈ Ω(A)}.

In the following, for an element a in a C*-algebra A, let P (σ(a)) ⊆ C(σ(a)) denote the *-

subalgebra of all polynomials on σ(a).

Proposition 3.14. Let A be a unital C*-algebra and suppose that a ∈ A is normal. Then there is

is an isometri
 unital *-isomorphism ϕ̃ : C(σ(a)) → C∗(a, 1) su
h that ϕ̃(ι) = a, where ι : σ(a) → C

is the in
lusion map.
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Proof. Denote the *-subalgebra of A generated by a and 1 by B. De�ne a map ϕ : P (σ(a)) → B

by ϕ(p) = p(a). Then ϕ(ι) = ι(a) = a. Moreover, σ(a) is 
ompa
t Hausdor� so P (σ(a)) is an

algebra of fun
tions 
losed under 
omplex 
onjugation. Also, ϕ(1) = 1(a) = 1. Consequently, ϕ is a

unital *-homomorphism. Let b ∈ B. B is generated by a and 1 so b = α0 + α1a+ ...+ αna
n
, where

α0, α1, ..., αn ∈ C, from whi
h it is 
lear that b = p(a) for some p ∈ P (σ(a)). Thus ϕ is onto. ϕ is

also 
learly 1-1 sin
e if p1, p2 ∈ P (σ(a)) then p1(a) = p2(a) implies that p1 = p2. Therefore ϕ is a

unital *-isomorphism.

Next, let p ∈ P (σ(a)). Then ϕ(p) = p(a) is normal sin
e a is normal and ϕ is a unital *-

isomorphism. Sin
e p(a) is normal,

‖p(a)‖ = r(p(a)) = sup{|λ| ∈ C | λ ∈ σ(p(a))} = sup{|p(λ)| ∈ C | λ ∈ σ(a)} = ‖p‖,

sin
e σ(p(a)) = p(σ(a)). Therefore ϕ is also isometri
.

The 
ompletion ofB is C∗(a, 1) and the 
ompletion of P (σ(a)) is C(σ(a)) by the Stone-Weierstrass

theorem. Thus ϕ 
an be extended to an isometri
 unital *-isomorphism ϕ̃ : C(σ(a)) → C∗(a, 1) su
h

that ϕ̃(ι) = a.

The map ϕ̃ in the pre
eding proposition is known as the fun
tional 
al
ulus at a. Use the notation

f(a) to denote the element ϕ̃(f) for f ∈ C(σ(a)). The following proposition de�nes a fun
tional


al
ulus for self-adjoint elements in a non-unital C*-algebra. The two de�nitions of the fun
tional


al
ulus are 
onsistent where they overlap. The proposition is not proven here but its proof is similar

to that of the pre
eding proposition.

Proposition 3.15. Let A be a nonunital C*-algebra and suppose that a ∈ A is normal. Then

there is an isometri
 unital *-isomorphism ϕ̃ : C0(σ(a)\{0}) → C∗(a) su
h that ϕ̃(ι) = a, where

ι : σ(a) → C is the in
lusion map.

Thus the fun
tional 
al
ulus 
an be de�ned in a C*-algebra A a

ording to the pre
eding two

propositions depending on whether A is unital or nonunital. In any event, the de�nition of the

fun
tional 
al
ulus ϕ̃ at an element a ∈ A is unambiguous and is denoted by f(a) for f ∈ C(σ(a)).

The following two results establish important properties of the fun
tional 
al
ulus. Note that C(σ(a))

is generated by 1 and ι, the in
lusion map.

Lemma 3.16. Suppose that A is a unital C*-algebra with a ∈ A normal, and let δ ∈ Ω(C∗(a, 1)).

Then for any f ∈ C(σ(a)), δ(f(a)) = f(δ(a)). More generally, if φ : A → B is a unital *-

homomorphism between A and the unital C*-algebra B, then for any f ∈ C(σ(a)), φ(f(a)) =

f(φ(a)). Analogous results hold for nonunital C*-algebras and self-adjoint elements.
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Proof. The C*-subalgebra Ω(C∗(a, 1)) is a unital 
ommutative C*-subalgebra sin
e a is normal.

Then sin
e δ(a) ∈ σ(a) and ι(a) = ϕ̃(ι) = a,

δ(ι(a)) = δ(ϕ̃(ι)) = δ(a) = ι(δ(a)) and

δ(1(a)) = δ(ϕ̃(1)) = δ(1) = 1 = 1(δ(a)).

Thus δ(f(a)) = f(δ(a)) sin
e C(σ(a)) is generated by 1 and ι.

The proof of the general result follows in similar fashion.

Theorem 3.17. [Spe
tral Mapping theorem℄ The equality σ(f(a)) = f(σ(a)) holds for any

normal element a in a unital C*-algebra A and f ∈ C(σ(a)). An analogous result holds for nonunital

C*-algebras and self-adjoint elements.

Proof. Let a ∈ A and let f ∈ C(σ(a)). Then δ(f(a)) = f(δ(a)) for any δ ∈ Ω(C∗(a, 1)) by the

previous lemma, so

σ(f(a)) = {δ(f(a)) | δ ∈ Ω(C∗(a, 1))} = {f(δ(a)) | δ ∈ Ω(C∗(a, 1))} = f(σ(a)).

Example. Let A be a unital C*-algebra and let a ∈ A be a normal element with σ(a) = S1 ∪ S2,

where S1 ⊆ (−∞, k) and S2 ⊆ (k,∞) for 0 < k < 1. De�ne a fun
tion f by

f(t) =















0 for t ∈ S1

1 for t ∈ S2

.

Then f ∈ C(σ(a)) is a proje
tion sin
e f2 = f = f . Consequently, ϕ̃(f) = f(a) is a proje
tion in A

by the fun
tional 
al
ulus.

Example. Suppose that A is a unital C*-algebra and let a ∈ A be positive. The fun
tion f : σ(a) →

R de�ned by f(t) = t
1

2
is a 
ontinuous fun
tion on σ(a) sin
e σ(a) ≥ 0. Hen
e ϕ̃(f) = f(a) = a

1

2
is

a positive element in A. A kth power ak 
an be de�ned in this way for any k > 0. Likewise, a −kth

power a−k 
an be de�ned for a for any k > 0 provided 0 /∈ σ(a).

The fun
tional 
al
ulus yields the following properties of parti
ular elements in a C*-algebra.

Corollary 3.18. Let A be a C*-algebra and let a ∈ A be self-adjoint. Then σ(a) ⊆ R.

Proof. Under the fun
tional 
al
ulus ϕ̃ at a, an isometri
 unital *-isomorphism, ϕ̃(ι) = a. Sin
e a

is self-adjoint, ι must be self-adjoint in C(σ(a)). Consequently, σ(ι) ⊆ R, whi
h implies that

σ(a) = ι(σ(a)) = σ(ι(a)) = σ(ϕ̃(ι)) ⊆ σ(ι) ⊆ R.

Corollary 3.19. Suppose that A is a unital C*-algebra and let u ∈ A be a unitary element. Then

σ(u) ⊆ T.

Proof. Sin
e ϕ̃(ι) = u under the fun
tional 
al
ulus ϕ̃ at u, ι must be unitary in C(σ(u)). Therefore

σ(u) = ι(σ(u)) = σ(ι(u)) = σ(ϕ̃(ι)) ⊆ σ(ι) ⊆ T.



25

Corollary 3.20. An element d in a C*-algebra A is positive if and only if d = a∗a for some a ∈ A.

Proof. The element d is positive if and only if ι ∈ C(σ(p)) is positive under the fun
tional 
al
ulus

ϕ̃ at d, whi
h o

urs if and only if ι = ff for some f ∈ C(σ(d)). Then

d = ϕ̃(ι) = ϕ̃(ff) = ϕ̃(f)ϕ̃(f) = [ϕ̃(f)]∗ϕ̃(f) = a∗a for a = ϕ̃(f) = f(d) ∈ A.

Conversely, if d = a∗a for some a ∈ A then d is 
learly self-adjoint. Moreover,

d = a∗a = ϕ̃(ι)ϕ̃(ι) = ϕ̃(ι)ϕ̃(ι) = ϕ̃(ιι) = ϕ̃(f),

for some fun
tion f ∈ C(σ(a)), and sin
e f = ιι is positive, its image d is positive as well.

The pre
eding 
onsequen
es yield useful properties of spe
ial elements in the C*-algebra C(X),

where X is a 
ompa
t Hausdor� spa
e.

Proposition 3.21. The following results results hold for elements of C(X) with X 
ompa
t Haus-

dor�.

(a) σ(f) is the range of f for any f ∈ C(X),

(b) f ∈ C(X) is self-adjoint if and only if f is real-valued,

(
) f ∈ C(X) is a proje
tion if and only if f takes only the values 0 and 1,

(d) f ∈ C(X) is unitary if and only if |f(x)| = 1 for all x ∈ X.

Proof. Let f ∈ C(X). Then f is invertible if and only f(x) 6= 0 for all x ∈ X , so if λ ∈ C, f − λ1 is

invertible if and only if f(x)− λ 6= 0 for all x ∈ X . Hen
e f − λ1 ∈ Inv(X) if and only if λ /∈ f(X),

meaning λ ∈ σ(f) if and only if λ ∈ f(X). Therefore σ(f) is the range of f .

By 
orollary 3.18, if f ∈ C(X) is self-adjoint then σ(f) ⊆ R. Thus σ(f) = f(X) ⊆ R. If

f(X) ⊆ R, then f = f so f is self-adjoint.

If f is a proje
tion then f2 = f , whi
h means that f 
an only take the values 0 and 1. Conversely,

if f(X) ∈ {0, 1} then [f(x)]2 = 0 whenever f(x) = 0 and [f(x)]2 = 1 whenever f(x) = 1 so f is a

proje
tion.

By 
orollary 3.19, if f in C(X) is unitary then σ(f) ⊆ T. Hen
e by the �rst result of this

proof above, f(X) = σ(f) ⊆ T, meaning |f(x)| = 1 for all x ∈ X . Conversely, if |f(x)| = 1 then

ff = ff=|f |2 = 1, so f is unitary.

The following proposition shows that any invertible element in a unital C*-algebra 
an be de-


omposed uniquely as the produ
t of a unitary and a positive element. This property is 
alled polar

de
omposition.

Proposition 3.22. [Polar de
omposition℄ Suppose that A is a unital C*-algebra and let a ∈ A

be invertible. Then a 
an be written uniquely as the produ
t of a unitary u and a positive element d.
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Proof. The element a∗a is positive sin
e a∗a is self-adjoint and σ(a∗a) ≥ 0. Also, a∗a is nonzero

sin
e if a∗a = 0, then ‖a‖2 = ‖a∗a‖ = 0, whi
h would imply that a = 0 
ontrary to invertibility of

a. De�ne u = a(a∗a)
−1

2
and d = (a∗a)

1

2
. Then (a∗a)

1

2
is positive sin
e f de�ned by f(t) = t

1

2
is

positive on σ(a∗a). And sin
e (a∗a)
−1

2
is positive by the same reasoning, ((a∗a)

−1

2 )∗ = (a∗a)
−1

2
so

that

u∗u = (a∗a)
−1

2 a∗a(a∗a)
−1

2 = 1, and

uu∗a = a(a∗a)−
1

2 (a∗a)−
1

2 a∗a = a(a∗a)−1(a∗a) ⇒ uu∗ = uu∗aa−1 = aa−1 = 1

Thus u is a unitary, d is positive, and a = ud.

Uniqueness will not be proven here.

Polar de
omposition is preserved under *-homomorphisms, as the following 
orollary shows.

Corollary 3.23. Let a be an invertible element in a unital C*-algebra A su
h that a has polar

de
omposition a = ud, where u is a unitary and d is positive, and suppose that φ : A → B is a

*-homomorphism between A and the unital C*-algebra B. Then the image φ(a) has a unique polar

de
omposition φ(a) = φ(u)φ(d) in B.

Proof. The element φ(a) is invertible be
ause φ(a)φ(a−1) = φ(aa−1) = 1 and φ(a−1)φ(a) =

φ(a−1a) = 1. Also, φ(u)[φ(u)]∗ = φ(uu∗) = 1 = φ(u∗u) = [φ(u)]∗φ(u) so φ(u) is a unitary in

B. Then φ(d) is positive in B sin
e σ(φ(d)) ⊆ σ(d) ⊆ R+
and φ(d) = φ(d∗) = [φ(d)]∗. By the pre-

vious proposition, the polar de
omposition of the invertible element φ(a) = φ(u)φ(d) is unique.

The fun
tional 
al
ulus and polar de
omposition are key results used in the next se
tion to

establish proje
tivity or semiproje
tivity of 
ertain C*-algebras.
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4 Semiproje
tivity

The established equivalen
es relating topologi
al spa
es and C*-algebras 
an now be implemented

to establish operator algebra analogs to topologi
al results for retra
ts.

4.1 Absolute Retra
ts and Absolute Neighborhood Retra
ts

The C*-algebra 
on
ept of semiproje
tivity is 
losely related to the topologi
al 
on
ept of absolute

neighborhood retra
t, and equivalen
es from pre
eding 
onsequen
es allow the relationship to be

made pre
ise. Proje
tivity and semiproje
tivity are de�ned in a later subse
tion, where the spe
i�


relationships of ARs to proje
tivity and ANRs to semiproje
tivity are established.

Let Y be a topologi
al spa
e with subspa
e Z. Then Z is a retra
t of Y if a 
ontinuous fun
tion

r : Y → Z exists su
h that r(z) = z for all z ∈ Z. A normal spa
e X is an absolute retra
t (AR) if

for every normal spa
e Y and 
losed subspa
e Z of Y homeomorphi
 to X , Z is a retra
t of Y . A

topologi
al spa
e X possesses the universal extension property if for every normal spa
e Y , 
losed

subspa
e Z of Y , and 
ontinuous fun
tion f : Z → X , f extends to a 
ontinuous fun
tion f̃ : Y → X .

The following proposition establishes the equivalen
e of the universal extension property and the

AR property for 
ompa
t Hausdor� spa
es.

Example. The spa
e {0, 1} is not an absolute retra
t. Consider {0, 1} as a subspa
e of [0, 1] and

let f : {0, 1} → {0, 1} be de�ned by f(0) = 0 and f(1) = 1. f 
annot be extended to a 
ontinuous

fun
tion over [0, 1].

Proposition 4.1. Let X be a 
ompa
t Hausdor� spa
e. Then X has the universal extension property

if and only if X is an absolute retra
t.

Proof. Suppose �rst that X has the universal extension property. Let Y be a normal spa
e and let

Z ⊆ Y be any 
losed subspa
e homeomorphi
 to X with f : Z → X a homeomorphism between X

and Z. Then f extends to a 
ontinuous fun
tion f̃ : Y → X . De�ne r = f−1 ◦ f̃ . The fun
tion r is


ontinuous, and for any z ∈ Z, the image of z under both f and f̃ is f(z), so

r(z) = f−1 ◦ f̃(z)=f−1(f(z)) = z

for all z ∈ Z. Hen
e Z is a retra
t of Y and X is an absolute retra
t.

Next suppose that X is an absolute retra
t. Let Y be a normal spa
e, Z a 
losed subspa
e

of Y , and f : Z → X a 
ontinuous fun
tion. Sin
e X is 
ompa
t Hausdor�, X is homeomorphi


to some subspa
e X0 of [0, 1]N. The spa
e [0, 1] possesses the universal extension property by the

Tietze extension theorem. Consequently, [0, 1]N also possesses the universal extension property. Let

g : X → X0 be the homeomorphism between X and X0 and de�ne h = g ◦ f : Z → X0. This
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ontinuous fun
tion h extends to a 
ontinuous fun
tion h̃ : Y → [0, 1]N sin
e [0, 1]N has the universal

extension property. Also, sin
e X is an AR, X0 is a retra
t of [0, 1]N so a 
ontinuous fun
tion

r : [0, 1]N → X0 exists su
h that r(x) = x for all x ∈ X0. Finally, de�ne f̃ = g−1 ◦ r ◦ h̃. Then

f̃ : Y → X is a 
ontinuous fun
tion extending f .

Example. The 
ompa
t Hausdor� spa
e [a, b], where a, b ∈ R, has the universal extension property

by the Tietze extension theorem. Hen
e by the pre
eding proposition, this spa
e is an absolute

retra
t.

A normal spa
e X is an absolute neighborhood retra
t (ANR) if for every normal spa
e Y , 
losed

subspa
e Z of Y , and 
ontinuous fun
tion f : Z → X , f extends to a 
ontinuous fun
tion f̃ : U → X

for some neighborhood U ⊆ Y of Z. Any AR is automati
ally an ANR.

The 
on
epts of AR and ANR 
an be restri
ted to a 
ategory of topologi
al spa
es. In the

work following, unless otherwise noted X shall be an element of the 
ategory of 
ompa
t metrizable

spa
es. In this 
ase, X is an AR in the 
ategory of 
ompa
t metrizable spa
es if the 
onditions

in the de�nition of AR above hold with the modi�
ation that any Y is restri
ted to be a 
ompa
t

metrizable spa
e. Likewise, X is an ANR if the 
onditions for being an ANR hold for any 
ompa
t

metrizable spa
e Y .

Lemma 4.2. A spa
e X is an ANR in the 
ategory of 
ompa
t metrizable spa
es if and only if for

any 
ompa
t metrizable spa
e Y , de
reasing sequen
e {Zn}n∈N of 
losed subsets of Y with Z =
⋂

n
Zn,

and 
ontinuous fun
tion f : Z → X, f extends to a 
ontinuous fun
tion f̃ : Zn → X for some

su�
iently large n ∈ N.

Proof. Suppose that X is an ANR. Let Y be a 
ompa
t metrizable spa
e, {Zn}n ⊆ Y a de
reasing

sequen
e of 
losed subsets of Y with Z =
⋂

n
Zn, and f : Z → X a 
ontinuous fun
tion. Sin
e X is an

ANR, a neighborhood U ⊆ Y of Z exists su
h that f extends to a 
ontinuous fun
tion f̃ : U → X .

Y \U is 
ompa
t sin
e U is open and Y is 
ompa
t. De�ne Un = Y \Zn for ea
h n. Then

⋃

n
Un =

⋃

n
Y \Zn = Y ∩

⋃

n
Zcn = Y ∩ (

⋂

n
Zn)

c = Y \Z,

and sin
e Z ⊆ U , Y \U ⊆ Y \Z =
⋃

n
Un. Hen
e {Un}n is an open 
over of the 
ompa
t set Y \U so a

�nite sub
over U = {Un1
, ..., Unm

} ⊆ {Un}n of Y \U exists. Sin
e {Zn} is a de
reasing sequen
e of


losed sets, {Un} is an in
reasing sequen
e of open sets. In parti
ular, U has a largest set Unk
. Then

Y \U ⊆ Unk
so that Znk

⊆ U . Sin
e Zj ⊆ Znk
for all j ≥ nk and sin
e f extends to a 
ontinuous

fun
tion f̃ on U , the restri
tion of f̃ to Zj is a 
ontinuous extension of f to Zj for all Zj having

j ≥ nk.

Conversely, suppose that for any 
ompa
t metrizable spa
e Y , de
reasing sequen
e {Zn}n∈N of
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losed subsets of Y with Z =
⋂

n
Zn, and 
ontinuous fun
tion f : Z → X , there is an N ∈ N su
h

that f extends to a 
ontinuous fun
tion f̃n : Zn → X for all n ≥ N . Y is metrizable so let d be a

metri
 on Y . De�ne a sequen
e of open neighborhoods {Un}n∈N of Z by Un = {y ∈ Y | d(Z, y) < 1
n}

for ea
h n ∈ N, and let Zn = {y ∈ Y | d(Z, y) ≤ 1
n} for ea
h n ∈ N. Then {Zn}n is a de
reasing

sequen
e of 
losed subsets of Y su
h that Z =
⋂

n
Zn. The de�nitions imply that Un+1 ⊆ Zn+1 ⊆ Un

for ea
h n ∈ N. Let M ≥ N and suppose that f : Z → X is a 
ontinuous fun
tion. By hypothesis, f

extends to a 
ontinuous fun
tion f̃ : ZM → X . Therefore sin
e UM ⊆ UM ⊆ ZM is a neighborhood

of Z and f̃ |UM
: UM → X is a 
ontinuous fun
tion extending f , X is an ANR in the 
ategory of


ompa
t metrizable spa
es.

Example. S1
is not an AR sin
e there is no retra
t of D onto S1

; see [8℄ for a proof of this result.

However, S1
is an ANR.

4.2 Semiproje
tivity and Partial Liftings

A separable C*-algebraA is proje
tive if for any C*-algebraB, 
losed ideal J ofB, and *-homomorphism

φ : A → B/J , there is a *-homomorphism ψ : A → B su
h that φ = π ◦ ψ, where π : B → B/J

is the natural quotient map. Any su
h φ is 
alled liftable. A separable C*-algebra A is semiproje
-

tive if for any C*-algebra B, in
reasing sequen
e {Jn}n of 
losed ideals of B, and *-homomorphism

φ : A → B/J , where J =
⋃

n
Jn, there is an n and a *-homomorphism ψ : A → B/Jn su
h that

φ = πn ◦ ψ, where πn : B/Jn → B/J is again the natural quotient map. Any su
h φ is 
alled

partially liftable. An element a ∈ A is liftable if a homomorphism ψ : A → B exists su
h that

φ(a) = π ◦ψ(a) ; a is partially liftable if a homomorphism ψ : A→ B/Jn exists for some n ∈ N su
h

that φ(a) = πn ◦ ψ(a).

The above de�nitions hold for the 
ategory of all C*-algebras. The de�nitions 
hange slightly

for the 
ategory of unital 
ommutative C*-algebras: in this 
ase, B is any unital 
ommutative

C*-algebra and both φ and ψ, provided the map ψ exists for the parameters spe
i�ed, are unital

*-homomorphisms. Similar adjustments modify de�nitions within the 
ategory of unital C*-algebras

and the 
ategory of 
ommutative C*-algebras.

The next theorem shows an equivalen
e between proje
tive C*-algebras and absolute retra
ts.

Theorem 4.3. Suppose that X is a 
ompa
t metrizable spa
e and A = C(X) is a unital 
ommutative

C*-algebra. Then A is proje
tive in the 
ategory of unital 
ommutative C*-algebras if and only if X

is an AR in the 
ategory of 
ompa
t metrizable spa
es.

Proof. Suppose that X is an AR in the 
ategory of 
ompa
t metrizable spa
es. Let B be any

unital 
ommutative C*-algebra, J ⊆ B a 
losed ideal, and φ : A→ B/J a unital *-homomorphism.
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By the Gelfand representation B ∼= C(Y ) for some 
ompa
t metrizable spa
e Y = Ω(A). De�ne

Z = {y ∈ Y | g(y) = 0 for all g ∈ J}; then J ∼= JY = {g ∈ C(Y ) | g(z) = 0 for all z ∈ Z}. Moreover,

B/J ∼= C(Y )/JY ∼= C(Z) so some 
ontinuous fun
tion fφ : Z → X exists by the 
ategory equivalen
e

between 
ompa
t metrizable spa
es and unital 
ommutative C*-algebras. Sin
e X is an AR, the

fun
tion fφ extends to a 
ontinuous fun
tion f̃φ : Y → X . Again by the 
ategory equivalen
e, there

is a *-homomorphism φf̃ : A → B su
h that φ = π ◦ φf̃ . Thus A is proje
tive in the 
ategory of

unital 
ommutative C*-algebras.

Conversely, let A = C(X) be a C*-algebra proje
tive in the 
ategory of unital 
ommutative

C*-algebras. Also, suppose that Y is a 
ompa
t metrizable spa
e, Z ⊆ Y is a 
losed subset, and

f : Z → X is a 
ontinuous fun
tion. Then J = {g ∈ C(Y ) | g(z) = 0 for all z ∈ Z} is a 
losed ideal in

B = C(Y ). B/J ∼= C(Z) so a *-homomorphism φf : A = C(X) → C(Z) ∼= B/J exists 
orresponding

to f . Consequently, a *-homomorphism ψ : A = C(X) → C(Y ) exists su
h that φf = π ◦ ψ sin
e

A is proje
tive. There is a 
ontinuous fun
tion fψ : Y → X extending f 
orresponding to ψ by the


ategory equivalen
e. Therefore X is an AR in the 
ategory of 
ompa
t metrizable spa
es.

A similar result holds for semiproje
tive C*-algebras and absolute neighborhood retra
ts, as

shown in the next theorem.

Theorem 4.4. Suppose that X is a 
ompa
t metrizable spa
e and A = C(X) is a unital 
ommutative

C*-algebra. Then A is semiproje
tive in the 
ategory of unital 
ommutative C*-algebras if and only

if X is an ANR in the 
ategory of 
ompa
t metrizable spa
es.

Proof. Suppose that X is an ANR in the 
ategory of 
ompa
t metrizable spa
es. Let B be a unital


ommutative C*-algebra, {Jn}n an in
reasing sequen
e of 
losed ideals of B with J =
⋃

n
Jn, and

φ : A → B/J a *-homomorphism. By the Gelfand representation B ∼= C(Y ) for some 
ompa
t

metrizable spa
e Y . De�ne Zn = {y ∈ Y | g(y) = 0 for all g ∈ Jn} for ea
h n ∈ N; then {Zn}n∈N is

a de
reasing sequen
e of 
losed subsets of Y and Jn ∼= JnY
= {g ∈ C(Y ) | g(z) = 0 for all z ∈ Zn}

for ea
h n ∈ N. The ideal J 
orresponds to Z ⊆ Y for a 
losed subset Z de�ned similarly. A


ontinuous fun
tion fφ : Z → X exists by the 
ategory equivalen
e between 
ompa
t metrizable

spa
es and unital 
ommutative C*-algebras be
ause B/J ∼= C(Z). Then some N ∈ N exists su
h

that the fun
tion fφextends to a 
ontinuous fun
tion f̃φ : Zn → X for all n ≥ N sin
e X is an ANR.

By the same 
ategory equivalen
e, a *-homomorphism φf̃ : A → B/Jn exists su
h that φ = π ◦ φf̃

sin
e B/Jn ∼= C(Zn). Hen
e A is semiproje
tive in the 
ategory of unital 
ommutative C*-algebras.

Conversely, suppose that A is semiproje
tive. Let Y be a 
ompa
t metrizable spa
e, {Zn}n

a de
reasing sequen
e of 
losed subsets of Y su
h that Z =
⋂

n
Zn, and f : Z → X a 
ontinuous
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fun
tion. Then J = {g ∈ C(Y ) | g(z) = 0 for all z ∈ Z} is a 
losed ideal in B = C(Y ) and

Jn = {g ∈ C(Y ) | g(z) = 0 for all z ∈ Zn} is a 
losed ideal in B for ea
h n ∈ N su
h that

{Jn}n is an in
reasing sequen
e of 
losed ideals. Moreover, B/J ∼= C(Z) so a *-homomorphism

φf : A = C(X) → C(Z) ∼= B/J exists 
orresponding to f by the 
ategory equivalen
e. Sin
e A is

semiproje
tive and B/Jn ∼= C(Zn), there is a *-homomorphism ψ : A = C(X) → C(Zn) ∼= B/Jn

with the property φf = πn ◦ ψ for some n ∈ N. Again by the 
ategory equivalen
e, a 
ontinuous

fun
tion fψ : Zn → X extending f exists. Then sin
e Zm ⊆ Zn for all m ≥ n, f extends to a


ontinuous fun
tion on Zm for all m ≥ n, where the 
ontinuous extension for a parti
ular Zm is

fψ |Zm
. Therefore X is an ANR in the 
ategory of 
ompa
t metrizable spa
es.

Example. The 
ompa
t metrizable spa
e [−1, 1] is an AR so C([−1, 1]) is proje
tive in the 
ategory

of unital 
ommutative C*-algebras.

4.3 Important Liftings and Partial Liftings

In this se
tion, A and B are a C*-algebras, φ : A → B/J is a *-homomorphism,{Jn}n is an

in
reasing sequen
e of 
losed ideals of B, and J =
⋃

n
Jn. Also, let π : B → B/J , π0,n : B → B/Jn,

πk,n : B/Jk → B/Jn, πn : B/Jn → B/J , for k, n ∈ N with k ≤ n, be the natural quotient maps.

Theorem 4.5. Suppose that qA ∈ A is a proje
tion. Then qA is partially liftable to a proje
tion.

Proof. Let q = φ(qA). The element q is a proje
tion in B/J sin
e qA is a proje
tion. Some element

y ∈ B exists su
h that π(y) = q sin
e π is surje
tive. Let x = 1
2 (y + y∗). Then x is self-adjoint,

π(x) = 1
2 ([π(y)]

∗ + π(y)) = q, and π(x − x2) = q − q2 = 0 sin
e π is a *-homomorphism and q

is a proje
tion. Moreover,

∥

∥π(x − x2)
∥

∥ = 0 be
ause π(x − x2) = 0. Some n ∈ N exists su
h that

∥

∥

∥
π0,n(x − x2)

∥

∥

∥
< 1

4 sin
e

∥

∥

∥
π(b)

∥

∥

∥
= inf

∥

∥

∥
πn(b)

∥

∥

∥
for any b ∈ B. Let z = π0,n(x), the image of x

in B/Jn; z is self-adjoint be
ause x is self-adjoint. π(x − x2) = z − z2 so by fun
tional 
al
ulus,

σ(z − z2) = {λ − λ2 | λ ∈ σ(z)} ⊆ (− 1
4 ,

1
4 ), whi
h implies that σ(z) ⊆ (1−

√
2

2 , 12 ) ∪ (12 ,
1+

√
2

2 ). In

parti
ular,

1
2 /∈ σ(z). Let f : (1−

√
2

2 , 12 ) ∪ (12 ,
1+

√
2

2 ) → R be de�ned by

f(t) =















0 for t ∈ (1−
√
2

2 , 12 )

1 for t ∈ (12 ,
1+

√
2

2 )

and set p = f(z). σ(p) = f(σ(z)) = {0, 1} sin
e σ(z) ⊆ (1−
√
2

2 , 12 ) ∪ (12 ,
1+

√
2

2 ). f is a proje
tion

in C(σ(z)) sin
e f(t) = f(t) = [f(t)]2 = 0 for t ∈ (1−
√
2

2 , 12 ) and f(t) = f(t) = [f(t)]2 = 1 for

t ∈ (12 ,
1+

√
2

2 ). Consequently, p = f(z) is a proje
tion in B/Jn and

π(p) = π(f(z)) = f(π(z)) = f(q) = q,
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sin
e q is a proje
tion. Let ψ : A → B/Jn be a *-homomorphism su
h that ψ(qA) = p. Then

φ(qA) = π ◦ ψ(qA) = q, so qA is partially liftable to the proje
tion p.

Corollary 4.6. Let q̃1, q̃2, ..., q̃m ∈ A be mutually orthogonal proje
tions. Then q̃1, q̃2, ..., q̃m are

partially liftable to mutually orthogonal proje
tions.

Proof. Let qk = π(q̃k) for 1 ≤ k ≤ n; qk is a proje
tion for 1 ≤ k ≤ m. By the previous theorem, a

proje
tion p̃1 ∈ B/Jn1
exists su
h that πn1

(p̃1) = q1 for some n1 ∈ N. Then

qk ∈ (1− q1)B/J(1 − q1)

for 2 ≤ k ≤ m and (1− πn1,n(p̃1))B/Jn(1− πn1,n(p̃1)) is a C*-subalgebra of B/Jn for ea
h n ≥ n1.

Again by the previous theorem, a proje
tion

p̃2 ∈ (1− πn1,n2
(p̃1))B/Jn2

(1− πn1,n2
(p̃1))

exists su
h that πn2
(p̃2) = q2 for some n2 ≥ n1. Moreover, p̃2 ⊥ πn1,n2

(p̃1). A third appli
ation of

this theorem yields a proje
tion

p̃3 ∈ (1− πn1,n3
(p̃1)− πn2,n3

(p̃2))B/Jn3
(1− πn1,n3

(p̃1)− πn2,n3
(p̃2))

for some n3 ≥ n2 su
h that p̃3, πn1,n3
(p̃1), and πn2,n3

(p̃2) are mutually orthogonal. Continuing

in this way, some nm ∈ N exists su
h that p̃m is a proje
tion in B/Jnm
while p̃m and the images

of ea
h p̃k in B/Jnm
for 1 ≤ k ≤ m − 1 are all mutually orthogonal and orthogonal to p̃k. Let

pk = πnk,nm
(p̃k) and de�ne a map ψ : A → B/Jnm

by ψ(q̃k) = pk for 1 ≤ k ≤ n. Then ψ is

a *-homomorphism and φ(q̃k) = πnm
◦ ψ(q̃k) for 1 ≤ k ≤ n and the proje
tions p1, p2, ..., pm are

mutually orthogonal.

A unitary in a unital C*-algebra is not liftable but the following theorem shows that it is partially

liftable.

Theorem 4.7. Assume A and B are unital, and let vA ∈ A be a unitary. Then vA is partially

liftable to a unitary.

Proof. Let v = φ(vA). Sin
e 1 is a proje
tion in A, φ(1) = q for some proje
tion q ∈ B/J . Then

v∗v = φ(v∗A)φ(vA) = φ(v∗AvA) = φ(1) = q and

vv∗ = φ(vA)φ(v
∗
A) = φ(vAv

∗
A) = φ(1) = q,

whi
h shows that v is a partial isometry with sour
e proje
tion and range proje
tion both equal

to q. By the previous proposition, a proje
tion p ∈ B/Jn exists su
h that π(p) = q for some

n ∈ N. Then p(B/Jn)p = {pxp | x ∈ B/Jn} is a unital C*-subalgebra of B/Jn, πn,m(p(B/Jn)p)

(= πn,m(p)(B/Jm)πn,m(p)) is a unital C*-subalgebra of B/Jm for all m ≥ n, and q(B/J)q is a

unital C*-subalgebra of B/J . Moreover, φ : A → q(B/J)q is a unital *-homomorphism sin
e q is

the unit in q(B/J)q and φ(1) = q. Thus v is a unitary in q(B/J)q.
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Take x ∈ p(B/J)p with πn(x) = v. Then πn,m(x) ∈ πn,m(p(B/Jn)p) for all m ≥ n and

πn(x
∗x) = v∗v = q.

∥

∥

∥
πn(p− x∗x)

∥

∥

∥
=

∥

∥

∥
q − v∗v

∥

∥

∥
= 0,

so m ∈ N exists su
h that

∥

∥

∥
πn,m(p)− πn,m(x∗x)

∥

∥

∥
< 1 sin
e the norm on q(B/J)q is the in�mum of

the norms on πn,m(p(B/Jn)p). Let y = πn,m(x). Sin
e
∥

∥

∥
πn,m(p)− πn,m(x∗x)

∥

∥

∥
= ‖πn,m(p)− y∗y‖ < 1

and πn,m(p) is the unit in πn,m(p(B/Jn)p), y
∗y = πn,m(p) − (πn,m(p) − y∗y) is invertible. By

similar reasoning, yy∗ is invertible. Consequently, y is itself invertible. By polar de
omposition, a

unitary u and a positive element d exist su
h that y = ud, where u is unitary in the sense that

u∗u = uu∗ = πn,m(p). Then

π(y) = π(u)π(d) = π(u)1 = v,

where π(u) = v and π(d) = 1 by uniqueness of the polar de
omposition of v in B/J . Let ψ : A →

πn,m(p(B/Jn)p) be a unital *-homomorphism su
h that ψ(vA) = u. Then ψ is a homomorphism

from A into B/Jm and φ(vA) = π ◦ ψ(vA) = v. Hen
evA is partially liftable.

The following proposition, needed in the theorem following, establishes that two proje
tions

having a normed di�eren
e less than 1 are unitarily equivalent. It also shows, in parti
ular, that the

fun
tional 
al
ulus is preserved under *-homomorphism on a unitary relating two su
h proje
tions.

See [3℄ for a proof of the result.

Proposition 4.8. Suppose that A is a unital C*-algebra and p1, p2 ∈ A are proje
tions su
h that

‖p1 − p2‖ < 1. Then there is a unitary v = v(p1, p2) ∈ A su
h that p2 = vp1v
∗
. Moreover, v(p, p) = 1

for any proje
tion p and the map θ : A × A → A de�ned by θ((p1, p2)) = v(p1, p2) is fun
torial in

the sense that if φ : A → B is a *-homomorphism between the unital C*-algebras A and B, then

φ(v(p1, p2)) = v(φ(p1), φ(p2)).

The following theorem establishes that a partial isometry 
an be partially lifted in a way that

preserves its sour
e and range proje
tions.

Theorem 4.9. Suppose that sA ∈ A is a partial isometry, and let s = φ(sA) have spe
i�ed partial

liftings p1 of the sour
e proje
tion q1 = s∗s and p2 of the range proje
tion q2 = ss∗ in B/Jm for

some m ∈ N. Then sA is partially liftable to a partial isometry r in B/Jn for some n ∈ N with the

properties that πn(r) = s, r∗r = πm,n(p1), and rr
∗ = πm,n(p2).

Proof. The element s is a partial isometry in B/J with sour
e and range proje
tions q1 = φ(s∗AsA) =

s∗s and q2 = φ(sAs
∗
A) = ss∗. A prior theorem of this se
tion establishes that proje
tions are partially

liftable, so both q1 and q2 
an be lifted to proje
tions p1, p2 in B/Jm su
h that πm(p1) = q1 and

πm(p2) = q2 for some m ∈ N.
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Next, let x ∈ B be an element su
h that π(x) = s. The reasoning of the proof above establishing

that any proje
tion is partially liftable implies that

∥

∥π0,n(x
∗x− (x∗x)2)

∥

∥ < 1
4 in B/Jn for some

n ∈ N sin
e

∥

∥π(x∗x− (x∗x)2)
∥

∥ = 0. Moreover, letting y = π0,n(x), subsequent reasoning in the

aforementioned proof leads to σ(y∗y) ⊆ (1−
√
2

2 , 12 ) ∪ (12 ,
1+

√
2

2 ).

De�ne a fun
tion f : (1−
√
2

2 , 12 ) ∪ (12 ,
1+

√
2

2 ) → R by

f(t) =















0 for t ∈ (1−
√
2

2 , 12 )

t−
1

2 for t ∈ (12 ,
1+

√
2

2 )

.

Let z = yf(y∗y). Then z∗z = f(y∗y)g(y∗y)f(y∗y), where g : (1−
√
2

2 , 12 )∪(
1
2 ,

1+
√
2

2 ) → R is de�ned by

g(t) = t. Sin
e f(t)g(t)f(t) = 0 for t ∈ (1−
√
2

2 , 12 ) and f(t)g(t)f(t) = t−
1

2 tt−
1

2 = 1 for t ∈ (12 ,
1+

√
2

2 ),

the fun
tion h = fgf ∈ C(σ(y∗y)) is a proje
tion. Consequently, z∗z is a proje
tion by the fun
tional


al
ulus at y∗y so the element z is a partial isometry in B/Jn. In parti
ular, zz∗is also a proje
tion.

Let p̃1 = z∗z and p̃2 = zz∗. Then sin
e πn(y) = π(x) = s, by properties of the fun
tional 
al
ulus,

πn(z) = πn(yf(y
∗y)) = πn(y)f(πn(y

∗y)) = sf(s∗s) = ss∗s = s

sin
e s is a partial isometry. Furthermore,

πn(p̃1) = πn(z
∗z) = πn(f(y

∗y)g(y∗y)f(y∗y)) = f(πn(y
∗y))g(πn(y∗y))f(πn(y∗y))

= f(s∗s)g(s∗s)f(s∗s) = s∗ss∗ss∗s = s∗s = q1, and

πn(p̃2) = πn(zz
∗) = πn(yf(y

∗y)f(y∗y)y∗) = πn(y)f(πn(y
∗y))f(πn(y∗y))πn(y∗)

= sf(s∗s)f(s∗s)s∗ = ss∗ss∗ss∗ = ss∗ = q2

Hen
e ‖πn(p̃1)− πm(p1)‖ = 0 in B/J , meaning ‖πn,N1
(p̃1)− πm,N1

(p1)‖ < 1 in B/JN1
for some

N1 ∈ N. Similarly, ‖πn,N2
(p̃2)− πm,N2

(p2)‖ < 1 in B/JN2
for some N2 ∈ N. For the sake of

simpli
ity in notation, hen
eforth p̃1 shall denote πn,N (p̃1) and p1 shall denote πn,N (p1); this 
on-

vention shall apply to the denotations of p̃2 and p2 as well. Finally, z shall denote πn,N (z). Thus

‖p̃1 − p1‖ < 1 and ‖p̃2 − p2‖ < 1 in B/JN . By the proposition pre
eding this theorem, there are

unitaries v1 = v(p1, p̃1) and v2 = v(p2, p̃2) su
h that p̃1 = v1p1v
∗
1 and p̃2 = v2p2v

∗
2 in B/JN .

Next, let r = v∗2zv1. Then

r∗r = v∗1z
∗v2v∗2zv1 = v∗1z

∗zv1 = v∗1 p̃1v1 = p1, and

rr∗ = v∗2zv1v
∗
1z

∗v2 = v∗2zz
∗v2 = v∗2 p̃2v2 = p2.

Finally, by the fun
torial property of the fun
tions v1 = v(p1, p̃1) and v2 = v(p2, p̃2),

πN (r) = πN (v∗2zv1) = πN ([v(p2, p̃2)]
∗)πN (z)πN (v(p1, p̃1)),

= [v(πN (p2), πN (p̃2))]
∗πN (z)v(πN (p1), πN (p̃1)) = [v(q2, q2)]

∗sv(q1, q1) = s

sin
e v(p, p) = 1 for any proje
tion p ∈ B/J .

Therefore r is a partial isometry in B/JN with sour
e proje
tion p1 and range proje
tion p2, so

r is a partial lifting of s in B/JN with sour
e and range proje
tions that map to the sour
e and
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range proje
tions of s in B/J .

The following result 
on
erning an isometry in a C*-algebra is obtained as a spe
ial 
ase of the

previous theorem.

Corollary 4.10. Assume A is unital, and let yA ∈ A be an isometry su
h that y = φ(yA) has

spe
i�ed partial liftings p1 of the sour
e proje
tion q1 = y∗y and p2 of the range proje
tion q2 = yy∗

in B/Jm for some m ∈ N. Then yA is partially liftable to a partial isometry z in B/Jn for some

n ∈ N with the properties that πn(z) = y, z∗z = πm,n(p1), and zz
∗ = πm,n(p2).

Proof. Let y = φ(yA), and let q1 = φ(y∗AyA) = y∗y and q2 = φ(yAy
∗
A) = yy∗. By the previous

theorem, yA is partially liftable to a partial isometry z ∈ B/Jn for some n ∈ N su
h that πn(z
∗z) =

y∗y and πn(zz
∗) = yy∗. A *-homomorphism ψ : A → B/Jn exists su
h that ψ(yA) = z, meaning

φ(yA) = πn ◦ ψ(yA). Furthermore, πn ◦ ψ(y∗AyA) = y∗y and πn ◦ ψ(yAy∗A) = yy∗. Therefore yA is

partially liftable to a partial isometry preserving the sour
e and range proje
tions of yA.

4.4 Semiproje
tive C*-Algebras

Many C*-algebras 
an be de�ned by a set of generators and a set of relations on those generators.

Relations establish relationships between the generators and usually take the form of algebrai


relations. Universal C*-algebras are an example of C*-algebras that 
an be de�ned in terms of a set

of relations on a set of generators. Let G ={xi | i ∈ Ω} and let R be a set of relations. Suppose A

is a C*-algebra su
h that

1. A is generated by a set of elements Y ={yi | i ∈ Ω} satisfying the relations R.

2. If C is any C*-algebra with elements Z = {zi | i ∈ Ω} satisfying the relations R, there is a

*-homomorphism ϕ : A→ C su
h that ϕ(yk) = zk for all k ∈ Ω.

Then C∗(G | R) ∼= A is the universal C*-algebra generated by G with relations R.

Using results established in the previous se
tion, showing that 
ertain basi
 C*-algebras are

semiproje
tive 
an be a

omplished by re
ognizing that these C*-algebras 
an be de�ned as par-

ti
ular universal C*-algebras. The next propositions illustrate this fa
t. Below, C is shown to be

semiproje
tive as the universal C*-algebra generated by a single proje
tion.

Proposition 4.11. Let

G ={p}, R ={p = p∗ = p2}.

Then C∗(G | R) ∼= C is semiproje
tive.
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Proof. C is generated by the element 1 satisfying the relations R. Suppose that C is any other

C*-algebra generated by a single proje
tion pC satisfying the relations R. Then a *-homomorphism

ϕ : C → C mapping 1 to pC exists sin
e 1 is a proje
tion that must map under any *-homomorphism

to a proje
tion in C and C 
ontains the proje
tion pC . Therefore C ∼= C∗(G | R).

Let B be any C*-algebra, {Jn}n an in
reasing sequen
e of 
losed ideals of B with J =
⋃

n
Jn,

and φ : C → B/J a *-homomorphism. Then 1 is partially liftable by Theorem 4.6, meaning a

homomorphism ψ : A → B/Jn exists for some n ∈ N su
h that φ(1) = πn ◦ ψ(1). Therefore C is

semiproje
tive sin
e it is generated by the element 1.

Next, the universal C*-algebra generated by a single unitary and a unit is shown to be C(T),

another semiproje
tive C*-algebra.

Proposition 4.12. Let

G ={u, 1}, R ={1 = 1∗ = 12, u1 = 1u = u, u∗u = uu∗ = 1}.

Then C∗(G | R) ∼= C(T) is semiproje
tive.

Proof. The in
lusion map ι is a unitary in the C*-algebra C(T) sin
e |ι(x)| = |x| = 1 for all x ∈ T.

Moreover, the elements of S = {ι, 1} satisfy the relations R, and S generates C(T) by the Stone-

Weierstrass theorem. Let C be any other C*-algebra generated by element Z = {z, 1z} satisfying the

relations R. De�ne a map ϕ : C(T) → C by ϕ(ι) = z and ϕ(1) = 1z. Then ϕ is a *-homomorphism

so C(T) ∼= C∗(G | R).

Next, suppose that B is any C*-algebra, {Jn}n is an in
reasing sequen
e of 
losed ideals of B

with J =
⋃

n
Jn, and φ : C(T) → B/J is a *-homomorphism. By theorem 4.8, 1 is partially liftable to

a proje
tion p ∈ B/Jn and ι is partially liftable to an element v ∈ B/Jn su
h that v∗v = vv∗ = p for

some n ∈ N. Moreover, p and v preserve the relations R. Thus sin
e C(T) is a universal C*-algebra,

a *-isomorphism ψ : C(T) → B/Jn exists su
h that φ(ι) = πn ◦ψ(ι) and φ(1) = πn ◦ψ(1). Therefore

C(T) is semiproje
tive sin
e ι and 1 generate C(T).

The Toeplitz algebra T is the universal C*-algebra generated by a single isometry. It is also

semiproje
tive.

Proposition 4.13. Let

G ={y, 1}, R ={1 = 1∗ = 12, y1 = 1y = y, y∗y = 1}.

The Toeplitz algebra T = C∗(G | R) is semiproje
tive.

Proof. Let B be any C*-algebra, {Jn}n an in
reasing sequen
e of 
losed ideals of B with J =
⋃

n
Jn,

and φ : T → B/J a *-homomorphism. Let q = φ(1) and s = φ(y). Then q is a proje
tion and
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s is a partial isometry with sour
e proje
tion s∗s = q and range proje
tion ss∗. By theorem 5.5,

the proje
tions q and ss∗ 
an be partially lifted to proje
tions p and ps, respe
tively, in B/Jm0
for

some m0 ∈ N. Then by theorem 5.9, s 
an be lifted to a partial isometry z ∈ B/Jm su
h that

z∗z = πmo,m(q) and zz∗ = πm0,m(ps).

Then sin
e T is a universal C*-algebra andZ = {z, z∗z} satis�es the relationsR, a *-homomorphism

ψ : T → B/Jn exists su
h that φ(y) = πm ◦ ψ(y) and φ(1) = πm ◦ ψ(1). T is thus semiproje
tive

sin
e y and 1 generate T .

Another semiproje
tive C*-algebra is Mn(C) for n ∈ N as shown below.

Proposition 4.14. Let

G ={eij | 1 ≤ i, j ≤ n}, R ={e∗ij = eji, eijekl = δjkeil|1 ≤ i, j, k, l ≤ n}

for n ∈ N, where δjk =















0 if j 6= k

1 if j = k

. Then C∗(G | R) ∼=Mn(C) is semiproje
tive.

Proof. Mn(C) is alternatively the universal C*-algebra generated by

Gc = {e1j |1 ≤ j ≤ n},

Rc = {(e∗1je1j)
2 = e∗1je1j = (e∗1je1j)

∗, e1ie∗1i = e1je
∗
1j = e11 for all 1 ≤ i, j ≤ n,

e∗1ie1i ⊥ e∗1je1j for all i 6= j}.

This is true be
ause eij ∈ G 
an be retrieved as e∗1ie1j for e1i, e1j ∈ Gc and ea
h set of generators

satisfy the same relations.

Let B be any C*-algebra, {Jn}n an in
reasing sequen
e of 
losed ideals of B with J =
⋃

n
Jn,

and φ : Mn(C) → B/J a *-homomorphism, and let f1j = φ(e1j) for 1 ≤ j ≤ n. Then f1j is a

partial isometry with sour
e proje
tion f∗
1jf1j and range proje
tion f1jf

∗
1j = f11 for 1 ≤ j ≤ n.

Moreover, the n sour
e proje
tions are mutually orthogonal so by 
orollary 4.6, they 
an be lifted

to n mutually orthogonal proje
tions p1, p2, ..pn in B/Jm0
for some m0 ∈ N. By theorem 4.9, ea
h

partial isometry f1j 
an be lifted to a partial isometry s1j in B/Jm su
h that s∗1js1j = πm0,m(pj)

and s1js
∗
1j = πm0,m(p1) for 1 ≤ j ≤ n and some m ∈ N.

The partial isometries S = {s1j | 1 ≤ j ≤ n} satisfy the relations R so sin
e Mn(C) is a

universal C*-algebra, a *-homomorphism ψ exists su
h that φ = πm ◦ ψ. Therefore Mn(C) is

semiproje
tive.

The Cuntz algebra On, another semiproje
tive C*-algebra, is the universal C*-algebra generated

by n isometries having mutually orthogonal range proje
tions with sum equal to a unit 1. The Cuntz-

Krieger algebra OA on an matrix n× n matrix A generalizes the Cuntz algebra; it is semiproje
tive

as well. When A 
onsists of all entries aij = 1 for 1 ≤ i, j ≤ n, then OA = On.
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Proposition 4.15. Let

G ={si, 1 | 1 ≤ i ≤ n},

R ={1 = 1∗ = 12, si1 = 1si = si, s
∗
i si = 1,

n
∑

j=1

sjs
∗
j = 1|1 ≤ i ≤ n}

for n ∈ N. The Cuntz algebra On = C∗(G | R) is semiproje
tive.

Proof. Let B be any C*-algebra, {Jn}n an in
reasing sequen
e of 
losed ideals of B with J =
⋃

n
Jn,

and φ : On → B/J a *-homomorphism. Let ri = φ(si) for 1 ≤ i ≤ n. Sin
e 1 is a proje
tion,

there is a partial lifting of 1 to a proje
tion p ∈ B/JNa
for some Na ∈ N by theorem 4.5. Then by


orollary 4.6, the mutally orthogonal proje
tions r1r
∗
1 , r2r

∗
2 , ..., rnr

∗
n are partially liftable to mutually

orthogonal proje
tions p1, p2, ..., pn in B/JNb
for some Nb ≥ Na. Finally, by 
orollary 4.10 ea
h

isometry ri is partially liftable to an isometry zi ∈ B/Jmi
having the properties z∗i zi = πNa,m(p)

and ziz
∗
i = πNb,m(pi) for 1 ≤ i ≤ n and some m ∈ N.

Sin
e On is a universal C*-algebra and set Z = {zi | 1 ≤ i ≤ n} satis�es the relations R, a

*-homomorphism ψ : On → B/Jm exists su
h that ψ(si) = zi for 1 ≤ i ≤ n. Moreover, φ = πm ◦ ψ

so On is semiproje
tive.

Corollary 4.16. Let A be an n× n matrix for n ∈ N with aij ∈ {0, 1} for 1 ≤ i, j ≤ n, and set

G = {si, 1|1 ≤ i ≤ n},

R = {1 = 1∗ = 12, si1 = 1si = si, s
∗
i si =

n
∑

j=1

Aijsjs
∗
j , sks

∗
k ⊥ sls

∗
l | 1 ≤ i, k, l ≤ n, k 6= l}.

The Cuntz-Krieger algebra OA = C∗(G | R) is semiproje
tive.

Proof. The proof of this 
orollary follows the same reasoning as the proof of the pre
eding proposition

with the ex
eption that the sum of the range proje
tions depends on the matrix A.

The Cuntz algebra O∞ is the universal C*-algebra generated by a sequen
e of mutually orthog-

onal range proje
tions. O∞ is semiproje
tive although the theory establishing this fa
t is beyond

the s
ope of this paper. See [3℄ for a 
onstru
tion demonstrating this result.

One last semiproje
tive C*-algebra is C∗(Fn), the universal C*-algebra generated by n unitaries.

Proposition 4.17. Let

G ={ui, 1 | 1 ≤ i ≤ n},

R ={1 = 1∗ = 12, ui1 = 1ui = ui, u
∗
i ui = uiu

∗
i = 1}

for n ∈ N. Then C∗(Fn) = C∗(G | R) is semiproje
tive.

Proof. The universal C*-algebra C∗(G | R) = C∗(Fn) is unital with unit 1. Ea
h ui ∈ C∗(Fn) is a

unitary, so by theorem 4.8, for any C*-algebra B, in
reasing sequen
e {Jn}n of 
losed ideals of B

with J =
⋃

n
Jn, and *-homomorphism φ : C∗(Fn) → B/J , there is a *-homomorphism ψi : C

∗(Fn) →
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B/Jmi
su
h that ψi(ui) is a unitary and φ(ui) = πmi

◦ψi(ui) for somemi ∈ N. Let m = max
1≤i≤n

mi and

let vi = πmi,m ◦ ψi(ui); de�ne a map ψ : C∗(Fn) → B/Jm by ψ(ui) = vi. Then ea
h vi is a unitary

in B/Jm, so ψ is a *-homomorphism su
h that φ = πm ◦ ψ. Thus C∗(Fn) is semiproje
tive.

Unlike O∞, the C*-algebra C∗(F∞), the universal C*-algebra generated by a sequen
e of uni-

taries, is not semiproje
tive.

Moreover, if the unitaries in the 
onstru
tion C∗(G | R) of the previous proposition have addi-

tional relations requiring that the generators 
ommute, the resulting universal C*-algebra may not

be semiproje
tive. The C*-algebra C(Tn) is the universal C*-algebra generated by n 
ommuting

unitaries. And in fa
t, C(Tn) is not semiproje
tive whenever n ≥ 2; see [3℄ for a dis
ussion of this

result.
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5 Con
lusion

The intent of this paper is to explore an equivalen
e between topologies and C*-algebras starting

from the rudiments of C*-algebra theory as well as to derive meaningful results from the equivalen
e.

To this end, preliminary theory delves into the substan
e of the 
hara
ter spa
e of C(X) and the

spa
e of maximal ideals on C(X). From the ensuing homeomorphisms, a 
ategory equivalen
e

is established between 
ertain topologies and C*-algebras. This pro
ess results in a 
olle
tion of

semiproje
tive C*-algebras, illuminating 
ertain useful aspe
ts of these algebras.

The basi
 method for advan
ing theory in this paper is powerful but well-established. Galois

theory, for example, makes use of a similar type of 
orresponden
e to yield 
on
lusions 
on
erning

polynomials out of other areas of abstra
t algebra. In the 
ase of operator algebra theory, often

topology is the mathemati
al 
ontext from whi
h important results 
an be 
arried over to dedu
e


onsequen
es for operator algebras. This paper explores one su
h set of 
orresponden
es, that of

absolute retra
ts and absolute neighborhood retra
ts as they relate to proje
tivity and semiproje
-

tivity. The pro
ess illustrates, among other results highlighted herein, that extensions of 
ontinuous

fun
tions in a topologi
al 
ontext 
orrespond to the existen
e of parti
ular *-homomorphisms in a C*-

algebra 
ontext. And while in this 
ase, results from topology are borrowed to establish C*-algebra

results, C*-algebra theory 
an also produ
e new results in topology. K-theory 
ontains examples of

transplanting theory in the opposite dire
tion within the s
ope of general 
orresponden
es relating

topology and operator algebras. Often in mathemati
s this pro
ess is fruitful.

Nonetheless, the analogy between C*-algebras and topologi
al spa
es is limited in s
ope. As

intimated in the presentation of semiproje
tive C*-algebras, some C*-algebras are not dire
tly 
on-

ne
ted to topologi
al spa
es by analogy similar to that employed in this paper. Alternative argu-

ments without straightforward relation to topologi
al arguments are sometimes needed to analyze

the stru
ture of these C*-algebras, many of whi
h are natural 
andidates to evaluate for the property

of semiproje
tivity.
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