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Abstract

This paper describes a contravariant category equivalence between the category of unital commuta-
tive C*-algebras with unital *-homomorphisms and the category of compact Hausdorff spaces with
continuous functions in order to characterize semiprojective C*-algebras. Results preliminary to
establishment of the equivalence yield homeomorphisms between any compact Hausdorff space X,
the space of maximal ideals on C'(X) endowed with the hull-kernel topology, and the space of charac-
ters on C'(X) under the weak* topology. The functional calculus herein constructed provides a link
between normal elements of a C*-algebra and continuous functions on the spectra of the elements.
The equivalences established, along with the functional calculus, provide a means to develop the
C*-algebra theory of semiprojectivity by analogy to the topological concept of absolute neighbor-
hood retracts on compact metrizable spaces; the analogy yields many examples of semiprojective
C*-algebras. Semiprojectivity theory is an instance of extending well-established consequences from
one mathematical context for use in another context via category equivalence and it additionally mo-
tivates an exploration of the extent to which results from one context can be developed analogously

in the other beyond the limits of the equivalence.
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0 Introduction

The ultimate goals of this paper are to characterize the C*-algebra theory of semiprojectivity as it
relates to the topological concept of ANRs via a contravariant category equivalence and to delineate
known semiprojective C*-algebras. To this end, a preliminary portion of results presented constructs
homeomorphisms between any compact Hausdorff space X, the space of maximal ideals on C(X),
and the space of characters on C(X).

The first section outlines basic definitions and results concerning C*-algebras. The section ex-
plores special properties of the spectrum and of ideals in a C*-algebra, and it describes the important
C*-algebra C(X). Additionally, important C*-algebra element types and major fundamental results
concerning C*-algebras are herein included.

Results in the second section outline the construction of the hull-kernel topology on Prim(A),
the set of primitive ideals of a C*-algebra A. The results culminating the section establish for any
compact Hausdorff space X a homeomorphism between the space Prim(C(X)) endowed with the
hull-kernel topology and X under its original topology.

Theory in the third section develops the weak* topology and associates the character space 2(A)
of a C*-algebra A with this topology. Another homeomorphism is established between any compact
Hausdorff space X endowed with its original topology and the character space Q(C(X)) under
the weak* topology. Next, a contravariant category equivalence between the category of unital
commutative C*-algebras with unital *-homomorphisms and the category of compact Hausdorff
spaces with continuous functions. The section concludes with the functional calculus and polar
decomposition, tools used in characterizing semiprojective C*-algebras.

The final section establishes an analogy between semiprojectivity and ANRs using the equiva-
lences developed prior. Partial liftings of specified element types in a C*-algebra lead to a collection
of examples of semiprojective C*-algebras formed as universal C*-algebras each generated by a set
of partially liftable elements. In this way, semiprojectivity theory explores the analogy between

semiprojective C*-algebras and ANRs.



1 Fundamental C*-Algebra Theory

This section introduces C*-algebras and delineates basic properties of these algebras. The spectrum
of an element is defined, and facts concerning the spectrum and ideals in C*-algebras are here

developed as a foundation for the main results of later sections.

1.1 C*-Algebras

An algebra is a vector space A over a field K, with K = C or K = R, together with a map M : A2 —A,

M (a1, az2) — ayag such that
1. ai(agaz) =(ajaz)as,
2. ai(az + a3) = a1a2 + a1as,
3. (a1 + a2)as = a1az + azas,
4. a(aiaz) = (aar)az = a1 (aas),

for all aj,as,a3 € A and o € K. A subalgebra is a vector subspace B of an algebra A such that
b1bs € B for all by, by € B. Hereafter, the field K will always be C.

A normed algebra is an algebra A having a norm ||-|| on its vector space structure with the
property ||aiaz|| < |la1| |jaz|| for all a1,as € A. If the norm on A is complete in its norm space
structure then A is a Banach algebra. An algebra A in which ajas = asay for all a;,a0 € A is a
commutative algebra. If a normed algebra A has an element 1 such that ||1]] =1 and la=al =a
for all @ € A then A is unital; the element 1, which is necessarily unique, is called the identity (or
unit) of A. The condition ||ajaz|| < ||ai||||az|| for all a;,as in a normed algebra A guarantees that
the multiplication operation M (ay,az2) — ajaz is jointly continuous.

An involution on an algebra A is a map % : A — A defined by * : a — a* such that

1. (a1a2)* = ajaj,

for all a,a1,as € A and all « € C. An algebra A over K = C together with the involution x is called
a *-algebra. If A is a Banach algebra that has an involution * with the property ||a*|| = ||a| for all

a € A, then A is a Banach *-algebra. A Banach *-algebra such that [|a*a|| = |ja||® for all a € A



is called a C*-algebra. The condition ||a*al| = |ja]|® for all a € A is called the C*-property of A.
A closed subalgebra B of a C*-algebra A is a C*-subalgebra if b* € B for all b € B. If S is any
subset of a C*-algebra A, the C*-algebra generated by S is the smallest C*-algebra B C A such that
S C B; B is denoted by C*(S). In particular, C*(a) is the C*-algebra generated by a single element
a € A. In a unital C*-algebra A, 1* = 11* = (11*)* = 1** = 1, and 1 automatically has norm 1
since ||1]] = [|1*1]] = [|11]]* in A and ||1]| # 0.

The following spaces are important examples of algebras needed in content following. C(X),

with X a compact Hausdorff space, is the primary C*-algebra considered in the results that follow.

Example. C, the complex numbers. C is a unital commutative C*-algebra with involution * given
by complex conjugation A* = X for A € C. A subsequent result shows that a Banach algebra in

which every non-zero element is invertible is isomorphic to C.

Example. C(X), Cp(X), and Cy(X). Let X be a topological space. The set Cy(X) of all bounded
continuous complex-valued functions on X is a unital Banach algebra under the pointwise operations
(f +9)(x) = f(z) + g(x),
(fo)(x) = F(@)g(a),
(af)(x) = af (),
and norm
£l = sup (@)l
If X is compact, Cp(X) = C(X), the set of continuous complex-valued functions on X. If X is
a locally compact Hausdorff space, the set Cy(X) of continuous functions vanishing at infinity, that
is the set of functions such that W, = {z € X | |f(x)| > €} is compact for every € > 0, is a Banach
algebra since it is a closed subalgebra of Cy(X). If X is compact, then Co(X) = C(X), a unital
Banach algebra.
Suppose that X is a topological space, and define an involution * on Cy(X) by f* = f. Then
Cy(X) is a C*-algebra. Similarly, if X is a locally compact Hausdorff space and Cy(X) has involution
f* = f, then C,(X) is a C*-algebra. If X is compact Hausdorff then C(X) = Cy(X) = Cy(X) is a

unital commutative C*-algebra.

Example. B(X), the operators on X, and M, (C), the n x n matrices. Let X be a normed vector
space. Then B(X), the set of all bounded linear operators on X, is a normed algebra with addition
and scalar multiplication defined pointwise, multiplication defined by

(ST)(z) = (SoT)(x) = 5(T(x)),

and norm given by



17| = S%M = sup | T(z)]|
x

ll]]
llzll<1
If X is a Banach space, B(X) is a Banach algebra, and if H is a Hilbert space, B(H) is a C*-
algebra with involution the adjoint operation * defined by < T*z,y >=< z,Ty > for all z,y € H.
B(X) is never commutative unless dim(X) = 1. M,(C), the vector space of n x n matrices with

entries in C, is identified with B(C™) and is therefore a unital C*-algebra.

1.2 Ideals and Quotient Algebras

Let A be an algebra. A vector subspace I of A is a left ideal if as € I for all a € A and s € I and a
right ideal if sa € A for all a € A and s € I; I is an ideal if it is both a left ideal and a right ideal.
A mazimal ideal is a proper ideal I in A that is not contained in any other proper ideal. Zorn’s
lemma establishes that every proper modular ideal is contained in a maximal ideal, so any unital
algebra posesses maximal ideals [8]. An ideal I containing an element u of A such that a —au € T
and a —ua € I for all a € A is called a modular ideal. If A is a unital algebra with unit 1 then any
ideal I in A is modular since a —al =a —la =a —a =0 € I for any ideal I.

A homomorphism is a linear map ¢ : A — B, where A and B are algebras, having the property
that ¢(araz) = ¢d(a1)@(az) for all a1, as € A. A homomorphism ¢ : A — B is unital if both A and B
are unital and ¢(1) = 1. For any homomorphism ¢ : A — B, ¢(A) is a subalgebra of B and ker(¢)
is an ideal in A [8]. A *-homomorphism is a homomorphism ¢ : A — B between C*-algebras A and
B having the property ¢(a*) = (¢(a))* for all a € A.

Let I be an ideal of an algebra A. Then the vector space A/I is an algebra with multiplication
operation (a +I)(b+1I) = ab+ I [8], called the quotient algebra of A by I. Moreover, A/I is unital

if and only if I is modular [9].

Theorem 1.1. If A is a C*-algebra and I is a closed ideal in A, then I is closed under the involution
* and the quotient algebra A/I is itself a C*-algebra when associated with the quotient norm |||

defined by |la+ I|| = inf |ja+d/||.
a’el

Proof. The algebraic properties of A/I follow directly from the algebraic operations of A, and the
quotient norm is a complete norm by the properties of the complete norm on A. Let a1 +1,a2+1 €
A/I and let € > 0. Then (|la1 +I|| +€) > ||a1 + s1]| and (Jlaz + I|| +€) > |laz + s2|| for some
s1,82 € I since |la+ I = m]j la + a'||. Consequently,
o
(lax + 11 + €)(||Ea2 + 1 +€) > llar + s1l [laz + s2[| = [Jaraz + a1s2 + azs1 + s1s2|
by the submultiplicative property of the norm on A. Then

(lar + Il (a2 + II]) = lim(llax + 11| + €)(laz + ]| + €) = [laraz + I]|



since a182 + ass1 + s182 € I for any s1, s9 corresponding to a fixed € > 0. Thus the quotient norm
is submultiplicative and A/ is a Banach algebra.

The ideal I is automatically closed under the involution %, and this involution induces an invo-
lution on A/I rendering A/I a C*-algebra. Proofs of these two facts are beyond the scope of this

paper; see [3]. O

The following theorem is a generalization to algebras of an important result from ring theory. It

will not be proven here. See [5], [9] for details.

Theorem 1.2. Suppose that A is a unital commutative algebra. Then an ideal I in A is mazimal

if and only if A/I is a field.

Let A be an algebra with L C A a modular maximal left ideal. Then the largest ideal I C L of
Ais I ={a € A|aA C L}, called the primitive ideal of A associated to L. The set of primitive
ideals of A is denoted by Prim(A). A prime ideal is an ideal I in A such that for any ideals J; and
Jo of A with JyJy C I, the consequence J; C I or Jy C I holds.

In a later section, the set Prim(A) of primitive ideals of a C*-algebra will be endowed with the
hull-kernel topology. To this end, in any C*-algebra A, hull(S) is defined to be the set of primitive
ideals containing S for any ideal S of A, and ker(R) denotes the intersection of all ideals in a
nonempty set R of primitive ideals of A.

Some additional facts about ideals in certain types of algebras are the following; see [9] for proofs
of these results. An ideal I in a commutative C*-algebra A is primitive if and only if I is modular
maximal. Also, any primitive ideal I in a C*-algebra A is prime. In particular, the set Prim(A) of

a unital commutative C*-algebra A is equal to the set of its maximal ideals.

1.3 Spectrum

Suppose that A is a unital algebra and let a € A. Then a is invertible if an element b exists such
that ab = ba = 1. Such an element b is unique, and it is denoted by a~!, the inverse of a. The set of
invertible elements of A, Inv(A) = {a € A|a~! € A}, is a group under the multiplication operation
[9]. The spectrum of an element a € A is the set o4(a) = {A € C|a— Al ¢ Inv(A)}. The notation
o(a) for 04 (a) will be used when it is clear that a is being considered as an element of A. In a unital
Banach algebra A, the spectral radius of an element a € A is defined to be r(a) = Asup [A]-

If an algebra A is nonunital, a unital algebra A, known as the unitization of A€ c(ar)l always be

formed from A by adjoining a unit to A. See [9] for details concerning construction of the unitization

of an algebra. Under this construction, A can be identified naturally as an ideal of A. Moreover, if A



is a normed algebra, A can itself be made into a normed algebra; in this case, A is a closed algebra of
A and A is a Banach algebra if A is [9]. The spectrum of an element a in a nonunital Banach algebra
A is defined to be 04(a) = 0 ;(a) and the spectral radius of @ is defined to be r(a) = sup |A|. In
this case, 0 is always an element of 04 (a) for any a € A. e

The following results are basic properties of invertible elements and spectra of elements in a
unital Banach algebra. Proofs or alternative proofs of many of the results in this subsection can be
found in [9]. A general result following from Liouville’s theorem shows that the spectrum of any
element in a unital Banach algebra is nonempty, a consequence summarized in lemma 1.3 below.

The Gelfand-Mazur theorem is an important result following directly from the fact that this fact.

The following two results are proven in [9].
Lemma 1.3. Suppose that A is a unital Banach algebra. Then the spectrum o(a) # 0 for all a € A.

Corollary 1.4. [Gelfand-Mazur theorem] Let A be any unital Banach algebra in which every

non-zero element is invertible. Then A = C1.

Proposition 1.5 also relies on the fact that the spectrum o(a) of an element a € A is nonempty
in any unital Banach algebra A. Lemma 1.6 gives a useful characterization of invertible elements in

a unital Banach algebra.
Proposition 1.5. In a unital Banach algebra A, o(p(a)) = p(o(a)) for all a € A and p € Clz].

Proof. Let p € C[z]. If p is constant, then p = X for some A € C, in which case o(p(a)) = p(a(a)) = .
So assume p is not constant. By the fundamental theorem of algebra, complex constants Ag, A1, ..., An
exists with A\g # 0 and p—A = Ag(z—A1)...(2—Ap) for any A € C. Hence p(a)—A = Ag(a—A1)...(a—Ay)
and p(a) — A € Inv(A) if and only if a — A; is invertible if and only if a — \; ¢ o(a) for 1 <i < n.

Thus A € o(p(a)) if and only if A = p()) for some A € o(a), meaning o(p(a)) = p(o(a)). O

o0
Lemma 1.6. Let A be a unital Banach algebra. Then 1 —a € Inv(A) and (1 —a)~! = > a™ for
n=0

any a € A having ||a|| < 1.

o0 o0 o0 o0

Proof. The series Y. ||a"| is convergent since Y |la"| < > ||a||n:m, so Y a™ is itself con-
n=0 n=0 n=0 n=0

vergent. Then

lim[(1—a)(l+..+a")] = lim(1—a"t!) =1

n—oo n—oo

since lim |al|™ = 0. Also,
n—oo

lim [(1— a)(1+ .. +a™)] = (1 — a) i:joan

n—oo
so (1—a) > a™ = 1. Similarly, (> a")(1—a) =1. Thus 1 —a € Inv(A) and (1—a)"' = Y a". O
n=0

n=0 n=0



Proposition 1.7. Let A be a unital Banach algebra. Then the set Inv(A) is open in A and o(a) is

a closed subset of the disc with radius ||a|| centered at the origin for all a € A.

Proof. Let a € Inu(A) and let ' € A be an element such that ||a — /|| < IM—LH Then

a1 = 1) = o - atal] < o~ o' =l < la~ | oy = L
so by the previous lemma a~'a’ — 1 € Inv(A). Therefore a’ € Inv(A) and Inv(A) is open because
1,a=! € A. Next, let a € A be arbitrary. Suppose that A\ € C is an element such that |al| < |A|.
Then

A=l = A1) lall < A= A =1,
so 1 — A "1a € Inv(A) by the previous lemma. Thus a — Al = —\(1 — A~ta) € Inv(A) so A ¢ o(a).
Hence A € o(a) implies that |A| < ||a]|. The set C\o(a) = {A € C| a— Al € Inv(A)} is the preimage
of the function f : C — A defined by f(a) = a — A1, which is continuous with image Inv(A), an
open set, so C\o(a) is open. Hence o(a) is a closed subset of the disc with radius ||a| centered at

the origin. O
The following theorem shows that maximal ideals in a unital Banach algebra are closed.

Theorem 1.8. Suppose that A is a unital Banach algebra and that I is a proper ideal in A. Then

T is proper as well.

Proof. If a € I is an element such that |1 —al| < 1 then 1 — (1 — a) = a is invertible. But then

aa! =1 € A, meaning I = A contrary to the fact that I is proper. Therefore |1 —a|| > 1 for all

a € I so that 1 ¢ I. Hence I is proper. O

By the above, the closure of a maximal ideal I is a proper closed ideal necessarily containing 7,
so I = I. Thus every maximal ideal in a unital Banach algebra is closed.
The following theorem is attributable to Beurling. It yields an explicit formula for the spectral

radius of an element in a unital Banach algebra A. See [9] for a proof of the result.

Theorem 1.9. [Beurling theorem] Let A be a unital Banach algebra with a € A. Then

r(a) = inf """ = lim [la™|"".
n>1 n—oo

Thus for any element a in a unital Banach algebra A , r(a) < ||a|| by the above result and by

the submultiplicative property of the norm on A.

1.4 Special C*-Algebra Elements
Let A be a C*-algebra. The following are important types of elements in A.

1. An element a in A is self-adjoint if a* = a. An element p in A is a projection if p* = p = p2.



2. An element v in A is normal if u*u = wu*. Additionally, if v*u = uu* = 1 then u is a unitary.

3. An element s in A is a partial isometry if s*s is a projection. An isometry is a partial isometry

x such that z*z = 1, and a co-isometry is an element y such that yy* = 1.

4. If d in A is self-adjoint with o(d) C R, then d is called positive. Denote the set of positive

elements of A by AT andlet d >0 meandc A*. d <emeanse—dc AT.

Every C*-algebra A contains self-adjoint elements: for any a € A,

(a*a)* = a*a™ = a*a € A and (aa™)* = a*™*a* = aa* € A,
so a*a and aa* are self-adjoint elements of A. Let a be any element in a C*-algebra A, and define
b= i(a+a*) and ¢ = 5-(a — a*). Then a can be written uniquely as a = b+ ic; in other words, if
b and ¢’ are two self-adjoint elements of A such that a =V 4 ic/, then &’ = b and ¢’ = ¢. See [9] for
details.

The next pair of results show that the norms of self-adjoint elements and normal elements in a

C*-algebra are equal to the spectral radii of their respective spectrums. Proofs can also be found in
[3].
Lemma 1.10. Let A be a C*-algebra with a € A self-adjoint. Then r(a) = ||a|.

Proof. Since a is self-adjoint, Ha2|| = |la*al| = ||la/* and hence HaQnH = ||a||2n for all n € N by

induction. Thus

nHl/n 2"H1/2”

r(a) = lim |la — [all. O

= lim Ha
n—oo
Theorem 1.11. Suppose that A is a C*-algebra and let w € A be normal. Then r(u) = ||ul.

Proof. The element u is normal so v*u = uu™ and
(r()? = inf ™| = inf | (™))" = inf || (uwru)” "
n>1 n>1 n>1
* * 2
=r(uu) = [Juul| = ||ul,

since u*u is self-adjoint. Thus r(u) = ||u]|. O
Here is an alternative characterization of partial isometries in a C*-algebra.

Proposition 1.12. An element s in a C*-algebra A is a partial isometry if and only if s = ss*s.

Proof. Suppose first that s = ss*s. Then
(5*5)% = s*(s5%5)s*(s5%5)s"(85%s) = 5% (55%5)s*s = s*(s5%s) = 5™,
S0 s*s is a projection and s is a partial isometry.
Conversely, suppose that s is a partial isometry. Let a = s — ss*s. Then
a*a = (8" — s*s8*)(s — $8%s) = 8*s — $*58*s — $*58* s + $*s88%s88*s =0

2

since (s*s)2 = s*s. Thus ||a||* = ||a*al| = 0 by the C*-property so that s = ss*s. O



Corollary 1.13. Let s in a C*-algebra A be a partial isometry. Then ss*is a projection.

Proof. By the previous proposition since s = ss*s,
*

(55%)2 = (s5%s)s* = ss%,

from which it is clear that ss*is a projection.

For a partial isometry s, s*s is the source projection of s and ss* is the range projection of s.
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2 Hull-Kernel Topology on Prim(A)

Here the hull-kernel topology on the set of primitive ideals of a C*-algebra is described. The results
following establish an equivalence between any compact Hausdorff space X and the set Prim(C(X))

of maximal ideals of C(X).

2.1 General Topology Preliminaries

The topology results collected here are used in the establishment of equivalences between a topologi-
cal space X and spaces of objects on the C*-algebra C(X) associated to X. Moreover the results are
used in the development of semiprojective C*-algebras. They are here stated for ease of reference.
A fundamental topology text can be referenced for proofs of the results found in this section; see for
example [8].

The following theorem is fundamental but it is essential in establishing major results to follow.

Lemma 2.1. Let f : X — Y be a bijective continuous function between the topological spaces X

and Y. If X is compact and Y is Hausdorff, then [ is a homeomorphism.

The next result about normal spaces is easily proved. It connects consequences of the Urysohn

Lemma and the Tietze Extension Theorem to compact Hausdorff spaces.
Lemma 2.2. Every compact Hausdorff space is normal.

The next two theorems are among the most important results in all of elementary topology. See

[8] for proofs and discussion of the theorems.

Theorem 2.3. [Urysohn lemma] Let X be a normal space and suppose that Fy and Fy are disjoint
closed subsets of X. Let [a,b] C R be any closed interval. Then a continuous map f : X — [a,b]

exists such that f(x) = a for all x € Fy and f(z) = b for all © € Fy.

Theorem 2.4. [Tietze Extension theorem]| Let X be a normal space with closed subspace F,
and let [a,b] C R be any closed interval. Then for any continuous map f : F — [a,b], there is a
continuous map f: X — [a,b] extending f. Moreover, for any continuous map g:F — R, there is a

continuous map g : X — R extending g.

The concept of complete regularity is also necessary in subsequent work. A completely regular
space is a space X in which one-point sets are closed and wherein for each point zg and each closed
set F' not containing xo there is a continuous function f,, : X — [0, 1] such that f,,(zo) = 1 and

fuo(x) =0 for all z € F. A normal space is completely regular by the Urysohn lemma, and by the
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lemma preceding the statement of the Urysohn lemma above, a compact Hausdorff space is thus
completely regular.

The concept of nets generalizes the concept of sequences in a topological space. A basic result
from topology shows that for any set A in a metrizable space X and element = € X, x € A if and only
if there is a sequence of points of A converging to x. See, for example, [8]. This sequential criterion
for defining closed sets in a metrizable space will be used in working with topologies considered
in sections following. However, a compact Hausdorff space may not be metrizable. Nonetheless,
a generalization of this sequential criterion holds for nets and closures of sets. To this end, some
concepts concerning nets and convergence must be established.

A directed set is a nonempty set I with a relation < having the properties
1. t <X forevery L €1,

2. 11 = 13 whenever ¢; < 19 and 1o < 13 for all 11, 9,13 € I,

3. there exists ¢ € I such that ¢; < ¢ and 15 < ¢ for every i1,t0 € I.

Let X be a topological space and suppose that I is a directed set. A net of points of X is a function
x: I — X, denoted {z,},cr where z, = 2(¢). A net {x,},cs is said to converge to a point z € X,
denoted by z, — =, if for each open set O € x, an index 1o € I exists such that z, € O for any ¢ € T
with 1o < ¢.

Given this framework of nets, the following proposition establishes a generalization of the se-

quential criterion for a topology on a metrizable space. See [7] for a proof of the result.

Proposition 2.5. Let X be a topological space, and let S be a subset of X with x € X. Then z € S

if and only if there is a net {x,},e1 of points of S such that x, — x.

Similarly, another generalization to a basic result from topology yields the following theorem,

proven in [7].

Theorem 2.6. Suppose that X and Y are topological spaces and that ¢ : X — Y. Then ¢ is

continuwous if and only if for any net {x,},cr such that xt, — x, it is true that ¢(x,) — o(z).

The preceding topology results will be important in establishing subsequent conclusions.

2.2 Hull-kernel Topology Construction

The hull-kernel topology is here constructed on the set of primitive ideals of a C*-algebra A. When

X is a compact Hausdorff space, Prim(C(X)) is the set of maximal ideals of C(X), since in this
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case C'(X) is a unital commutative C*-algebra, and by comments following theorem 1.2 an ideal of
C(X) is primitive if and only if it is maximal whenever X is compact Hausdorff.
The next result characterizes the proper closed ideals of a C*-algebra A, and the theorem following

yields the hull-kernel topology on Prim(A). Proofs are available in [9].
Lemma 2.7. Let I be a proper closed ideal in a C*-algebra A. Then I = ker(hull(I)).

Define R = hull(ker(R)) for R C Prim(A) and let Chp = {R | R € Prim(A)}. The next
theorem, proven in [9], follows from the facts (also established in [9]) that for sets Fi, Fo € Chp,

Fl/L-J\}'—‘Q = Fy U Fy, and that for an arbitrary collection {F>}xen of sets of Cpy, ﬁ?,\ =N F.
AEA AEA

Theorem 2.8. Let A be a C*-algebra. There is a unique topology Tni on Prim(A) such that
R = R = hull(ker(R)) for each R C Prim(A).

The unique topology Tnx is Trx = {Prim(A) \ R | R C Prim(A)}, the set of complements of
closures of subsets of Prim(A).

The next theorem will be proven in the case of A = C(X), with X a compact Hausdorff space,
within the results of this section but the bijective correspondence specified holds for general C*-
algebras. The second theorem following establishes a relationship between closed ideals in a C*-

algebra and their corresponding hulls. See [9] for proofs of these results.

Proposition 2.9. Let A be a C*-algebra. The map ¢ from the set of closed ideals of A onto the set
of closed subsets of Prim(A) defined by ¢(I) = hull(I) is a bijection.

Proposition 2.10. Let A be a C*-algebra. If I and J are closed ideals of A, then I C J if and only
if hull(J) C hull(I).

In particular, the preceding results concerning the hull-kernel topology apply to C(X) when X

is a compact Hausdorff space.

2.3 Hull-kernel Topology on Prim(C(X))

In this section, X is a compact Hausdorff space. A homeomorphism between X and the set
Prim(C(X)) of maximal ideals on C'(X) with the hull-kernel topology is established in the results
that follow.

The next lemma and the theorem immediately following provide the technical details and intu-
ition for the connection between closed sets of a compact Hausdorff space X and closed ideals in

O(X).
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Lemma 2.11. Let I be a closed ideal in C(X) and define Y = {x € X | f(z) = Oforall f € I}.
Then for any open set U containing Y, there is an f € I such that 0 < f(z) <1 for all x € X and

fl@)=1forallze X\U.

Proof. Let {yn}n CY be a sequence that converges to an element y € X. Then f7(y,) = 0 for all
fr € I, and since f7 is continuous, 0 = fr(yn) — fr(y) so that fr(y) = 0 and y € Y. Hence Y is
closed. By the completely regular property of the compact Hausdorff space X, for each z € X \ U
a function f, € I exists such that f,(z) # 0. Let V, = {z € X | f.(z) # 0}. By continuity of f,,
the set V is open for each z € X \ U. The set V = {V, | z € X \ U} is then an open cover of the
compact set X \ U, so X \ U has a finite subcover {V;, }7_, C V.

Define a function g = f., fo, + fzy fzs + - + f, f=, on X\U. The function g is in I and g(x) > 0
for all z € X \ U since if z is in X \ U, an element V,, C {V,, }}_, exists with 2 € V., and
fz.(x) # 0. The function h = é defined on X\U is a continuous real-valued function, and X\U
is compact so h has a minimum a and a maximum b over X\U. Hence h extends to a continuous
function A : X — [a,b] by the Tietze extension theorem. The function % : X — [0, 00] is continuous
when considered as an extended real-valued function over X. Let h = min(h, é) Then h € C(X),
so the function f = hg € I has the properties 0 < f(x) < 1forall z € X and f(x) = 1 for all
z e X\U. O

Theorem 2.12. Let X be a compact Hausdorff space and let I be a closed ideal in C(X). Define
Y={zeX|f(z)=0forall feI}. ThenI={feC(X)| f(y)=0forally e Y}.

Proof. Let J={f € C(X) | f(y) =0forally € Y} and suppose h € I. Then clearly by definition
of Y,h(z)=0forallz €Y soI CJ.

Next let ¢ € C(X) be such that g(y) = 0 for all y € Y. Define a set U, = {z | [g(z)| < £}
for each n € N. U, is open by continuity of g and Y C U,, so a function f, € I exists such that
0< fo(x) <1lforall z € X and f,(x) =1for all z € X \ U,. Then for all n € N, f,¢g € I and

|(fng = 9)(@)| = [(g — 9)(x)| = 0
whenever x € X\U,, and
[(fng = 9)(@)| = [(fo = D(@)g(2)| = [(fn — D(@)[|g(2)| < lg()

for all z € U, so that || fng —g|| < L for all n € N and all € X. Hence a sequence {g,}nen C I

1
<

defined by g, = fng for n € N exists such that g, — g, meaning g € I since I is closed. Hence J C I

Therefore I = {f € C(X) | f(y) =0forally € Y}. O

Quotient algebras of C'(X) by a closed ideal are described in the next lemma.
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Lemma 2.13. Let I be a closed ideal in C(X). Then C(X)/I = C(Y) for the particular closed

subset Y in the definition of I.

Proof. Since I is closed, by the previous theorem I = {f € C(X) | f(y) = Oforally € Y} for the
closed set Y C X given by Y = {z € X | f(z) = 0forall f € I'}. Define a map ¢ : C(X)/I — C(Y)
by ¢(f +1I) = f |y. This map is a *-homomorphism because restrictions of continuous functions
to closed subsets are continuous. Moreover, if fy € C(Y), then by the Tietze extension theorem,
a function fx € C(X) exists such that fx is a continuous extension of fy. Then ¢(fx + I) = fv,
so the map ¢ is onto. Clearly, ker(¢) = I since for any f € I, f(y) = 0 for all y € Y so
that¢(f + 1) = f |y= 0, where 0 is the constant function 0 € C(Y). Therefore by the first
isomorphism theorem, A/I = C(Y). O

The lemma above leads to a proposition characterizing maximal ideals in C(X).

Proposition 2.14. Let I be an ideal in C(X). Then I is a mazimal ideal if and only if a point
x € X exists such that I = {f € C(X) | f(x) = 0}.

Proof. Suppose a point x € X exists such that I = {f € C(X) | f(x) = 0}. Define a map
¢ : C({zx}) = C by o(f) = f(z). For any k € C, a function k € C({z}) defined by k(z) = k exists
so (k) = k(z) = k and ¢ is onto. Suppose next that fi, fo € C({z}) such that fi(x) = fa(x). Then
f1 = fo and @ is 1-1 since z is the only element of {z}. ¢ is a unital *-homomorphism since functions
in C({x}) are continuous, f(x) = f(z), and f(1) = 1. Thus the map ¢ is a unital *-isomorphism.
By the previous lemma, C(X)/I = C({z}) = C and since C is a field, I is a maximal ideal.

Every maximal ideal is closed so I = {f € C(X) | f(y) = 0forally € Y} for the closed set Y =
{y € X | fly) =0forall f € T}. Y is nonempty since I = C(X) if Y = (), contrary to maximality
of I. By the previous lemma, C'(X)/I = C(Y). But I is maximal so C(Y) 2 C(X)/I =C. IfY
contains two or more distinct points then y;,y2 € Y exist such that y; # y2. But by the Urysohn
lemma, a continuous function f € C(Y) exists such that f(y1) = a1 and f(y2) = «o for some
a1, a9 € R with a3 # as. But then C(Y) can’t be *-isomorphic to C since C is isomorphic to a
space of constant functions and C(Y") contains a nonconstant function. The conclusion Y = {z} for

some z € X follows and therefore I = {f € C(X) | f(x) = 0}. O
Finally, the homeomorphism between X and Prim(C(X)) is established below.

Theorem 2.15. Define a map ¢ : X — Prim(C(X)) by ¢(x) =1, for all x € X, where I, = {f €
C(X) | f(z) =0}. Then ¢ is a homeomorphism.
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Proof. By the results preceding, I € Prim(C(X)) iff I = I, = {f € C(X) | f(x) = 0} for some
2 € X. Thus z € X is an element such that ¢(x) = I, meaning ¢ is onto. Suppose next that z;
and x5 are two elements of X such that ¢(z1) = ¢(x2). Then I, = I,,, which implies that 27 = x4
since if 1 # x2 by the Urysohn lemma some g € C(X) exists such that g(xz;) = 0 and g(x2) # 0
contrary to I, = I,,. Thus ¢ is 1-1.

The map ¢ is thus a bijection between X and Prim(C(X)), so a topology homeomorphic to the
hull-kernel topology on Prim(C(X)) exists on X. Denote this topology by 7% and the original
topology of X by T. ¢ is a homeomorphism between Prim(C(X)) with the hull-kernel topology
and X with its natural topology if for any set S C X, z € 5 if and only if z € 5§, where 5" is
the closure of Sin 7 and S is the closure of S in 7;%. Let S C X, and define g = () . Then

Tegp(S)
Is={feC(X)| f(x) =0forallz € S} since f(z) =0 for all f € I, and any = € S, and

&(S) = hull(ker(S)) = {I € Prim(C(X)) | I 2 Is},

where ¢(S) is the closure of ¢(S) in the hull-kernel topology on Prim(C(X)). Note that for an
element p € X, p € 5" if and only if for any function f € C(X) such that f(z) = 0 for all
z €S, f(p) = 0. This holds since p € S if and only if I, € $(S) if and only if I, D Is so that
I, ={f e C(X) | f(p) = 0} contains all f € C(X) such that f(x) =0for all x € S.

Solet p € 5. Then some net {p.}.en exists such that p, — p in the topology T on X, and by
a general property f(p,) — f(p) for any f € C(X). Since f(p,) =0 for all p, € {p,}, f(p) =0 as
well. In particular, if f € C(X) is an element such that f(z) = 0 for all € S, meaning f € Ig,
then f(p) = 0. Therefore I, D Is so I, € ¢(S), which leads to the conclusion p € i

Conversely, suppose p ¢ ?X. Since X is compact Hausdorff, it is normal and hence completely
regular. Thus a function f, : X — [0, 1] exists such that f,(z) =0forall z € 5~ D Sand fp(p) =1.
Therefore p ¢ 5" since pE 5" if and only if for every function f € C'(X) such that f(z) = 0 for all
z €8, f(p) =0 as well, and f, is a function not satisfying this condition. Hence by contrapositive,
pE ?hk implies that p € ?X.

The above consequences establishes that ¢ is a homeomorphism. O

The preceding theorem establishes that the original topology on X can be recovered from the

hull-kernel topology on Prim(C(X)).
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3 Q(C(X)) and the Functional Calculus

In this section, the equivalence between a compact Hausdorff space X and the set of maximal ideals
of C(X) is extended to an equivalence with a third object, the set of nonzero homomorphisms on
C(X), Q(C(X)), endowed with the weak* topology. In particular, a homeomorphism exists between
Q(C(X)) and X so that the three spaces X, Q(C (X)), and Prim(C(X)) are all homeomorphic.
These results culminate with a category equivalence between compact Hausdorff spaces and unital
commutative C*-algebras. The functional calculus is characterized in the last part of this section;

the concept is useful in understanding C*-algebras.

3.1 The Weak* Topology

Some preliminaries concerning the construction and properties of the weak* topology are necessary
in establishing theory related to the character space of C(X).
Let A be a vector space over a field K with K = R or K = C. A seminorm is a function o : A — R

satisfying the conditions
1. o(a) > 0 and o(0) =0,
2. o(aa) = |a|o(a),
3. o(a1 +a2) = o(a1) + o(az),

for all a,aq,a2 € A and a € K.

Suppose that A is a normed space. Define for each a € A a function o, : A* — R by o,(¢) =
|p(a)| for ¢ € A*. Then o, is a seminorm on A* for each a € A [7]. The weak* topology on A*, the
dual space of A, is the topology induced by the collection of seminorms § = {0, | a € A}. In other
words, the weak* topoloy is the topology having subbasis the sets Sy = {¢p € A* | 04(¢) < €} for
all a € A and € > 0.

Let { f..} be a sequence of bounded linear functionals on a normed space A. Then {f,} converges
weak* if a bounded linear functional f on A exists such that f,(a) — f(a) for all a € A. Likewise,
if {f,}.c1 is a net of bounded linear functionals on a normed space A, {f,},es converges weak™ in A*
if a bounded linear functional f on A exists such that f,(a) — f(a) for all a« € A. By Proposition
2.5, if S is a subset of A*, then an element f € A* is in S, the closure of S in the weak* topology,
if and only if there is a net {f,},c; in S such that f, — f weak*.

Alaoglu’s theorem, below, shows that the closed unit ball of the dual space of a C*-algebra is

weak* compact. See [7] for a proof of this result.
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Theorem 3.1. [Alaoglu’s theorem] Let A be a normed space with dual space A*. Then the closed
unit ball, B1(0) = {f € A* | || f|| < 1} C A*, is weak* compact.

3.2 Character Space on C(X) Equivalence

Let A be a commutative algebra. A character on A is a nonzero homomorphism ¢ : A — C. The set
of characters on A is denoted by 2(A) and is known as the character space of A. In this section and
beyond, given any unital commutative C*-algebra A, let the dual space A*, which contains Q(A)
as a subset, be endowed with the weak™ topology. Herein X is a compact Hausdorff space unless
otherwise defined. Parallel discussions of proposition 3.2, lemma 3.3, theorem 3.4, and theorem 3.5

following can be found in [9].

Proposition 3.2. Suppose that A is a unital C*-algebra and let § € Q(A). Then ¢ is a unital

*-homomorphism and ||6| = 1.

Proof. Since A is a C*-algebra, 6(1) = [§(1)]? and since §(1) # 0, it follows that §(1) = 1. Hence
d is a unital homomorphism. So let a € A. Then §(Inv(A)) C Inv(C), since a € Inv(A) implies
that a~! exists and 6(a)d(a™!) = §(aa™t) = 1. Let A € o(5(a)). 6(a — A1) = 6(a) — A1 ¢ Inv(C)
so 6(a — A1) ¢ §(Inv(A)), from which it follows that a — A1 ¢ Inv(A) and §(a) € o(a). Therefore
[6(a)] < r(a) < |la|l, which implies that ||6]] = sup |§(a)] < 1. But since ||1|| = 1 in any unital
normed algebra and (1) = 1 by the preceding, ||H5a|||‘S:1 1.

0 is moreover a *-homomorphism: if a € A, then a = b + ic with b and ¢ self-adjoint so that, by

a result proved later (corollary 3.17), §(b) € o(b) C R and d(c¢) € o(c) C R, meaning

0(a*) =3d(b—ic) = d(b) —id(c) = 6(b) +id(c) = d(b+ic) = 6(a). O
The following simple lemma is used in the proof of the theorem following it.

Lemma 3.3. Suppose that A is a unital commutative C*-algebra and let 6 € Q(A). Thena—d(a)l €
ker(d) for all a € A.

Proof. Let a € A. Then for any § € Q(A), 6(a) € C and
d(a—0(a)l) =d(a) —0(6(a)l) = 6(a) — 6(a)d(1) = é(a) — é6(a) = 0.
Hence a — §(a)1 € ker(9). O

The next two results hold for the space C'(X), where X is a compact Hausdorff space. The nota-
tion I, shall henceforth mean I, = {f € C(X) | f(z) = 0}. The next theorem follows immediately
as a corollary of proposition 2.14 but the alternative proof below gives insight into the nature of the

kernel of a character on C(X).
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Theorem 3.4. Let x € X and 6, € Q(C(X)), where 6, € Q(C(X)) is the character defined by
0:(f) = f(x) for all f € C(X). Then ker(d,) is a mazimal ideal of C(X), and
ker(0.) = 1. = {f € C(X) | f(x) = 0}.

Proof. Suppose {x,}, C ker(d,) converges to an element x € A. Then §,(z,) =0 for all n € N so
0 = 8z (xn) — 0x(x) implies that d,(z) = 0 by continuity of é,. Hence ker(d,) is closed. ker(d,) is
a proper ideal of C(X) since §, is nonzero so that d,(1) # 0. Moreover,
C(X)=ker(0;) +C={f+ | f €ker(é,),\€C}
since for every f € C(X), f — d.(f)1 € ker(d,) by the previous lemma and §,(f) € C so
f=(f=62(f)) + 62(f) € ker(6z) + C.
Then
C(X)/ker(d;) = (ker(d;) + C)/ker(d,) = C.
Hence ker(d,) is a maximal ideal of C(X) because C(X)/ker(d,) is a field. Since ker(d,) is a
maximal ideal, by proposition 2.14 some x € X exists such that

ker(0z) = {f € C(X) | 6.(f) = 0} ={f € C(X) | f(2) = O} = L. O

For any = € X the character §, € Q(C(X)) defined by d,(f) = f(z) for all f € C(X) is such
that ker(d;) = {f € C(X) | f(z) =0} = I, is a maximal ideal, so # in the following theorem makes

sense.

Theorem 3.5. The map 0 : Q(C(X)) — Prim(C(X)) defined by 0(5) = ker(d) is a bijection. Also,
x € X emists for every § € Q(C(X)) such that 6 = 6, where 6, is defined by 0,(f) = f(x) for all
f€C(X). 0 has inverse 0= : Prim(C(X)) — Q(C(X)) given by 0~ 1(I,) = 6,.

Proof. Suppose that §; and d2 are elements of Q(C(X)) such that ker(d,) = ker(d2). Then for any
feC(X), f—08(f)1 € ker(d2) = ker(d1) so 61(f — d62(f)1) = 0, which implies that

61(f) = 61(02(f)1) = 62(f)01(1) = 62(f)
since d2(f) € C. Thus §; = 3 and 6 is 1-1.

Suppose that I € Prim(C(X)). Then some z € X exists such that I = I, = ker(d;) = 0(dz).
Thus 6 is onto, and hence a bijection.

Since 6 is a bijection, some ¢ € Q(C(X)) exists for any I, € Prim(C(X)) such that I, = ker(9),
and in particular, I, = ker(dz), so 6 = d,. Hence every 6 € Q(C(X)) is of the form d, for some
x € X. Define ¢ : Prim(C (X)) — Q(C(X)) by ¥(Iz) = J5. Then

Oo(l;) =6(0;) = ker(6y) = I, and
b0 0(6,) = blker(5,)) = (L) = 5.
Therefore =1 = 1) is defined by 0~(I,) = &,. O
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In particular, the above theorem establishes that every maximal ideal in C'(X) is the kernel of
some character in (C(X)) and that every character in Q(C(X)) is of the form ¢, for some z € X.
Henceforth, the notation d, for an element of C'(X') will denote the character defined by d,(f) = f(x)
for all f € C(X).

The next results establish that a unital commutative C*-algebra endowed with the weak* topol-
ogy is compact Hausdorff. Actually, the weak® topology is always Hausdorff, but this more general
result is not needed and will not be proven here. When a C*-algebra A is C'(X) for some compact
Hausdorff space X, then in fact the character space of A = C(X) is homeomorphic with X itself, as

shown at the end of this subsection.

Theorem 3.6. Let A be a unital commutative C*-algebra. Then Q(A) with the weak* topology is a

compact Hausdorff space.

Proof. Suppose that § € M Then some net {9, },en C Q(A) exists such that 6, — 0. In particular,
d,(a) = d(a) for all a € A since d, — § weak*. Let a,a1,a2 € A and o € C. Then
0,(araz2) = 6,(a1)d,(az) — d(a1)d(az) and §,(a1az) — d(arasq),
0,(a1 4+ a2) = d,(a1) + 0,(az) — d(a1) + 6(az) and §,(a1 + a2) — d(a1 + as2),
0,(aa) = ad,(a) = ad(a) and J,(aa) — §(aa),
0,(1) =1 for all t € A s0 6,(1) — (1) means that §(1) = 1.
In particular, § € Q(A) so Q(A) = Q(A) and Q(A) is weak* closed. Since ||7|| = 1 for any 7 € Q(A),
Q(A) is thus a weak* closed subset of the closed unit ball B1(0) of A* under the weak* topology.
B1(0) is weak* compact by Alaoglu’s theorem, so Q(A) is weak* compact as a weak* closed subset
of a weak* compact set.
Next, suppose that 61,02 € Q(A) with §; # d2. Then a € A exists such that d1(a) # d2(a). C is
Hausdorff, so disjoint neighborhoods Uy 3 d¢1(a) and Uz 3 d2(a) exist. Define
Uy ={6€Q(A)|d(a) e U1} and Uy = {6 € Q(A) | 6(a) € Us}.
Let (0,).er be a net in Q(A) \ U; that converges to an element § € Q(A). Then §,(a) — d(a) by
definition of weak* convergence. Then ¢,(a) € C\ U for each ¢ € I so d(a) € C\ Uy since C\ Uy
is a closed set. Hence &(a) ¢ Uy so 0 € Q(A)\ Uy, which implies that Q(A) \ U; is closed. Thus
ljl is open. By the same reasoning, Ug is an open set. Then Ul > §; and Ug 5 Jo are disjoint

neighborhoods and Q(A) is Hausdorff. O

Theorem 3.7. Suppose that X is a compact Hausdorff space. Then there is a homeomorphism
between X and the character space Q(C(X)) given by the map ¢ : X — Q(C(X)), ¢(z) = dy, where
0 € Q(C(X)) is the character defined by 0,(f) = f(x) for f € C(X).
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Proof. Let ¢ : X — Prim(C(X)) be the homeomorphism defined by ¢(x) = I, and let 67! :
Prim(C(X)) be the map given by 6~'(I,) = &,. Then 6! o ¢ is a bijection since it is a composition
of two bijective functions. Moreover,
o(x) =06, =0"1(I,) =01 ogp(x)

for all z € X so ¢ = 8! o ¢. Thus ¢ is a bijection.

Next, let 6, € Q(C(X)) and let {5z, faear € Q(C(X)) be a net converging to d,. Then {zx}rea C
X is a net converging to the point € X such that z corresponds to d,, for each A € A. Moreover,
by continuity of the elements of C(X), f(zx) — f(x) for any f € C(X). Hence d,, (f) = f(zx) —
f(x) = 8,(f) for all f € C(X) so that {d,, }aea C Q(C(X)) is a net converging weak* to d,.
Consequently, ¢ is continuous.

@ is a continuous bijection between compact Hausdorff spaces so ¢ is a homeomorphism. O

3.3 Unital Commutative C*-Algebra Category Equivalence

The preceding results can now be employed to construct a category equivalence between unital
commutative C*-algebras and compact Hausdorff spaces. First some preliminaries characterizing
commutative C*-algebras are necessary.

If A is a commutative C*-algebra and a € A, the map ad : Q(A) — C defined by a(d) = §(a) is
known as the Gelfand transform of a. The following Gelfand theorem is one of the most important
theorems in the theory of C*-algebras. It shows that a commutative C*-algebra A can be thought of
as the C*-algebra Cy(2(A)), with the association of a € A to its Gelfand transform a € Cy(£2(A4)).
The theorem’s proof will not be given here but it could be pieced together mostly from results
presented within this paper; see in particular the results establishing the functional calculus presented
in the next subsection. Complete proofs can be found in [3] and [9]. The isomorphism in the Gelfand

theorem yields a representation known as the Gelfand representation.

Theorem 3.8. [Gelfand theorem] Let A be a non-zero commutative C*-algebra. Then the map

I':A— Co(QA)) defined by I'(a) = a is an isometric *-isomorphism.

The following lemma relates continuous functions between compact Hausdorff spaces to unital

*-homomorphisms between C*-algebras of continuous functions on the spaces.

Lemma 3.9. Let X and Y be compact Hausdorff spaces. For every continuous function f : X =Y,
there is a unital *-homomorphism ¢5 : C(Y) — C(X) given by ¢s(g) =go f.

Conversely, for every unital *~homomorphism ¢ : C(Y) — C(X), there is a continuous function
fo: X =Y given by fo(x) =y, where y € Y is the unique element that corresponds to 6, = 6,0¢ €
C(Y) under the homeomorphism ¢ : Y — Q(C(Y)) given by ©(yo) = 0y, -
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Proof. Let f : X =Y be a continuous function and define ¢5 : C(Y) = C(X) by ¢¢(9) =go f. By
fundamental properties of compositions of continuous functions, this map is closed under addition,
multiplication, scalar multiplication, and complex conjugation. Moreover, ¢¢(1) = 1o f = 1. Hence
¢y is a unital *-homomorphism.

Conversely, suppose that ¢ : C(Y) — C(X) is a unital *-homomorphism. Let x € X. Then
d; corresponds to z under the homeomorphism ¢; : X — Q(C(X)) given by ¢(r9) = 05,. Also,
0z 0 ¢ = 0, for some y € Y and J, corresponds to this y under the equivalence oo : Y — Q(C(Y))
given by ¢(yo) = d,,. Define in this fashion for each z € X a function fy : X — Y by fs(x) = y.
Suppose that {z,},ca € X is a net with 2, — . Then z, corresponds to é,, € C(X) and §,, —
because z, — z. Let f € C(Y). Then ¢(f) = g for some g € C(X). Since 6., — dz, 0z, (9) = 02(g),
which means that d,,(f) — ,(f), where §,, = d,, o ¢. Then since f € C(Y) is arbitrary, d,, — J,
in the topology on Q(C(Y")); the topology of Y is homeomorphic to this topology so fs(x,) =y, —

y = fs(x). Consequently, f, is continuous. O

The above lemma gives a correspondence between continuous functions and unital *-homomorphisms.

This correspondence is the basis for the category equivalence given in the following theorem.

Theorem 3.10. There is a contravariant category equivalence between the category of unital com-
mutative C*-algebras and unital *-homomorphisms with the category of compact Hausdorff spaces

and continuous functions.

Proof. Let A and B be unital commutative C*-algebras. By the Gelfand theorem, A = C(X) and
B = C(Y) for the compact Hausdorff spaces X = Q(A) and Y = Q(B). The lemma preceding
this theorem shows that there is a continuous function f : X — Y if and only if there is a unital
*-homomorphism ¢; : C(Y) — C(X) given by ¢s(h) =ho f.

Suppose that C is any other unital commutative C*-algebra, so that C' = C(Z) for the compact
Hausdorff space Z = Q(C). Let g : Y — Z be a continuous function and let ¢, : C(Z) — C(Y') be
its corresponding unital *~homomorphism. The continuous function go f : X — Z corresponds to a
unital *-homomorphism ¢ : C(Z) — C(X) given by ¢(h) = ho (go f) for h € C(Z) by the previous
lemma. Let h € C(Z). Then

¢(h) =ho(gof)=(hog)of=gs(hog)=ds(dg(h)) =sody(h)
which shows that ¢ o ¢, is the *-homomorphism corresponding to the continuous function g o f.

Hence the contravariant category equivalence has been established. O
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3.4 Functional Calculus and Polar Decomposition

The functional calculus and polar decomposition are developed here by making use of an isometric
*-isomorphism to essentially apply continuous functions to particular elements of C*-algebras.

The Stone-Weierstrass theorem is essential in extending the result o(p(a)) = p(o(a)) for a poly-
nomial p and a normal element a in a C*-algebra A to an analogous result for any continuous function
f € C(o(a)). The theorem holds for particular algebras over a compact Hausdorff space X that
consist of continuous functions separating points of X which vanish at no point of X. A collection
of functions F € C(X) is said to separate points of X if for any distinct elements z1, 29 € X there
is an f € F such that f(x1) # f(x2), and the collection F is said to vanish at no point of X if to
each z € X there corresponds a function g € F such that g(x) # 0. Here is the statement of the

theorem for complex continuous functions; see for example [10] for a proof of the result.

Theorem 3.11. [Stone- Weierstrass theorem] Let X be a compact Hausdorff space. Suppose
F C C(X) is an algebra that separates points of X such that F vanishes at no points of X and
f €F for every f € F. Then F = C(X).

In particular, the Stone-Weierstrass theorem establishes that the closure of the set of polynomials

with complex coefficients is C'(X). This important result is made precise in the following corollary.

Corollary 3.12. Let X be a compact Hausdorff space and denote the algebra of all polynomials with
complex coefficients over X by P. Then P = C(X).

Proof. The algebra P separates points of X and P vanishes at no point of X since P contains the
constant functions; P is also closed under complex conjugation. Thus by the Stone-Weierstrass

theorem, P = C(X). O

The next theorem characterizes the spectrum of an element in a commutative unital Banach
algebra as the set of evaluations at the element by characters in the algebra’s character space; the

characterization is useful in subsequent results. See [9] for a proof of the result.

Theorem 3.13. Suppose that A is a commutative unital Banach algebra and let a € A. Then
o(a) ={0(a) | 6 € QA)}.

In the following, for an element a in a C*-algebra A, let P(o(a)) C C(o(a)) denote the *-

subalgebra of all polynomials on o(a).

Proposition 3.14. Let A be a unital C*-algebra and suppose that a € A is normal. Then there is
is an isometric unital *-isomorphism @ : C(o(a)) = C*(a,1) such that $(1) = a, where 1 : 0(a) = C

is the inclusion map.
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Proof. Denote the *-subalgebra of A generated by a and 1 by B. Define a map ¢ : P(c(a)) — B
by ¢(p) = p(a). Then ¢(¢) = t(a) = a. Moreover, o(a) is compact Hausdorff so P(c(a)) is an
algebra of functions closed under complex conjugation. Also, (1) = 1(a) = 1. Consequently, ¢ is a
unital *-homomorphism. Let b € B. B is generated by a and 1 so b = ag + aya + ... + a,a™, where
g, a1, ..., € C, from which it is clear that b = p(a) for some p € P(o(a)). Thus ¢ is onto. ¢ is
also clearly 1-1 since if p1,p2 € P(o(a)) then p;(a) = p2(a) implies that p; = po. Therefore ¢ is a
unital *-isomorphism.

Next, let p € P(o(a)). Then ¢(p) = p(a) is normal since a is normal and ¢ is a unital *-
isomorphism. Since p(a) is normal,

Ip(a)l| = r(p(a)) = sup{|Al € C | A € o(p(a))} = sup{[p(A)| € C | A € o(a)} = [|pll;

since o(p(a)) = p(c(a)). Therefore ¢ is also isometric.

The completion of B is C*(a, 1) and the completion of P(c(a)) is C(c(a)) by the Stone-Weierstrass
theorem. Thus ¢ can be extended to an isometric unital *-isomorphism ¢ : C(o(a)) — C*(a, 1) such

that ¢(¢) = a. O

The map ¢ in the preceding proposition is known as the functional calculus at a. Use the notation
f(a) to denote the element @(f) for f € C(o(a)). The following proposition defines a functional
calculus for self-adjoint elements in a non-unital C*-algebra. The two definitions of the functional
calculus are consistent where they overlap. The proposition is not proven here but its proof is similar

to that of the preceding proposition.

Proposition 3.15. Let A be a nonunital C*-algebra and suppose that a € A is normal. Then
there is an isometric unital *-isomorphism @ : Co(o(a)\{0}) — C*(a) such that $(1) = a, where

t:0o(a) — C is the inclusion map.

Thus the functional calculus can be defined in a C*-algebra A according to the preceding two
propositions depending on whether A is unital or nonunital. In any event, the definition of the
functional calculus ¢ at an element a € A is unambiguous and is denoted by f(a) for f € C(o(a)).
The following two results establish important properties of the functional calculus. Note that C(o(a))

is generated by 1 and ¢, the inclusion map.

Lemma 3.16. Suppose that A is a unital C*-algebra with a € A normal, and let § € Q(C*(a,1)).
Then for any f € C(o(a)), 6(f(a)) = f(d(a)). More generally, if ¢ : A — B is a unital *
homomorphism between A and the unital C*-algebra B, then for any f € C(o(a)), ¢(f(a)) =

f(@(a)). Analogous results hold for nonunital C*-algebras and self-adjoint elements.
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Proof. The C*-subalgebra Q(C*(a,1)) is a unital commutative C*-subalgebra since a is normal.
o) = a,
d((a)) = o(p() = &(a) = 1(é(a)) and
d(1(a)) = &(¢(1)) = 6(1) =1 = 1(6(a)).
Thus §(f(a)) = f(6(a)) since C(o(a)) is generated by 1 and ¢.

Then since 6(a) € o(a) and t(a) =

The proof of the general result follows in similar fashion. O

Theorem 3.17. [Spectral Mapping theorem] The equality o(f(a)) = f(o(a)) holds for any
normal element a in a unital C*-algebra A and f € C(o(a)). An analogous result holds for nonunital

C*-algebras and self-adjoint elements.

Proof. Let a € A and let f € C(o(a)). Then §(f(a)) = f(6(a)) for any 6 € Q(C*(a,1)) by the
previous lemma, so

o(f(a)) = {0(f(a)) | 6 € 2C*(a,1))} = {f(d(a)) | § € AC"(a, 1))} = f(o(a)). O

Example. Let A be a unital C*-algebra and let a € A be a normal element with o(a) = S; U S,
where S C (—o0, k) and Sy C (k,00) for 0 < k < 1. Define a function f by

0 fortelS
f(t) = :
1 forte Sy

Then f € C(o(a)) is a projection since f2 = f = f. Consequently, ¢(f) = f(a) is a projection in A
by the functional calculus.
Example. Suppose that A is a unital C*-algebra and let a € A be positive. The function f : o(a) —
R defined by f(t) =tz is a continuous function on o(a) since o(a) > 0. Hence @(f) = f(a) = a2 is
a positive element in A. A kth power a* can be defined in this way for any k > 0. Likewise, a —kth
power a~* can be defined for a for any k > 0 provided 0 ¢ o(a).

The functional calculus yields the following properties of particular elements in a C*-algebra.

Corollary 3.18. Let A be a C*-algebra and let a € A be self-adjoint. Then o(a) C R.

Proof. Under the functional calculus ¢ at a, an isometric unital *-isomorphism, ¢(¢) = a. Since a
is self-adjoint, ¢ must be self-adjoint in C'(o(a)). Consequently, o(¢) C R, which implies that

o(a) = 1(o(a)) = o(u(a)) = o(p(1)) C o(1) CR. O

Corollary 3.19. Suppose that A is a unital C*-algebra and let u € A be a unitary element. Then

o(u) CT.

Proof. Since ¢(¢) = u under the functional calculus ¢ at u, ¢ must be unitary in C(o(u)). Therefore

o(u) = o (u)) = ou(u)) = o(p(1)) C o) € T. O
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Corollary 3.20. An element d in a C*-algebra A is positive if and only if d = a*a for some a € A.

Proof. The element d is positive if and only if ¢ € C(c(p)) is positive under the functional calculus
@ at d, which occurs if and only if = ff for some f € C(o(d)). Then

d= () = ¢(ff) = ¢(He(f) = [N ¢(f) = a*afor a = §(f) = f(d) € A.
Conversely, if d = a*a for some a € A then d is clearly self-adjoint. Moreover,

d=aa=()p() = ¢D)3(1) = $(ir) = &(f),

for some function f € C(o(a)), and since f = 7 is positive, its image d is positive as well. O

The preceding consequences yield useful properties of special elements in the C*-algebra C'(X),

where X is a compact Hausdorff space.

Proposition 3.21. The following results results hold for elements of C(X) with X compact Haus-
dorff.

(a) o(f) is the range of f for any f € C(X),

(b) [ € C(X) is self-adjoint if and only if f is real-valued,

(c) [ € C(X) is a projection if and only if f takes only the values 0 and 1,

(d) f € C(X) is unitary if and only if |f(x)| =1 for all z € X.

Proof. Let f € C(X). Then f is invertible if and only f(z) #0forall z € X,s0if A € C, f — Al is
invertible if and only if f(x) — A # 0 for all z € X. Hence f — Al € Inv(X) if and only if A ¢ f(X),
meaning A € o(f) if and only if A € f(X). Therefore o(f) is the range of f.

By corollary 3.18, if f € C(X) is self-adjoint then o(f) € R. Thus o(f) = f(X) C R. If
f(X) CR, then f = f so f is self-adjoint.

If f is a projection then f? = f, which means that f can only take the values 0 and 1. Conversely,
if f(X) € {0,1} then [f(x)]?> = 0 whenever f(z) = 0 and [f(2)]?> = 1 whenever f(z) = 150 f is a
projection.

By corollary 3.19, if f in C(X) is unitary then o(f) C T. Hence by the first result of this

proof above, f(X) = o(f) C T, meaning |f(z)| = 1 for all x € X. Conversely, if |f(z)| = 1 then

f7:7f:|f|2:1, so f is unitary. 0

The following proposition shows that any invertible element in a unital C*-algebra can be de-
composed uniquely as the product of a unitary and a positive element. This property is called polar

decomposition.

Proposition 3.22. [Polar decomposition] Suppose that A is a unital C*-algebra and let a € A

be invertible. Then a can be written uniquely as the product of a unitary v and a positive element d.
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Proof. The element a*a is positive since a*a is self-adjoint and o(a*a) > 0. Also, a*a is nonzero
since if a*a = 0, then ||a]|* = ||a*al| = 0, which would imply that a = 0 contrary to invertibility of
a. Define u = a(a*a)%1 and d = (a*a)z. Then (a*a)? is positive since f defined by f(t) = ¢ is
positive on o(a*a). And since (a*a)2 is positive by the same reasoning, ((a*a)%l)* = (a”‘a)%1 S0

that

uw*u = (a*a) = a*ala*a)® =1, and

1 1
uu*a = a(a*a)"2(a*a)"2a*a = a(a*a)"l(a*a) = wu* = wuraa ! =aa"l =1
Thus v is a unitary, d is positive, and a = ud.
Uniqueness will not be proven here. O

Polar decomposition is preserved under *-homomorphisms, as the following corollary shows.

Corollary 3.23. Let a be an invertible element in a unital C*-algebra A such that a has polar
decomposition a = ud, where u is a unitary and d is positive, and suppose that ¢ : A — B is a
*-homomorphism between A and the unital C*-algebra B. Then the image ¢(a) has a unique polar

decomposition ¢(a) = ¢(u)op(d) in B.

Proof. The element ¢(a) is invertible because ¢(a)p(a™') = ¢(aa™') = 1 and ¢(a ')¢(a) =
#(a"ta) = 1. Also, ¢(u)[p(u)]* = ¢(uu*) = 1 = ¢(u*u) = [d(u)]*¢(u) so ¢(u) is a unitary in
B. Then ¢(d) is positive in B since o(¢(d)) C o(d) € RT and ¢(d) = ¢(d*) = [¢(d)]*. By the pre-

vious proposition, the polar decomposition of the invertible element ¢(a) = ¢(u)P(d) is unique. O

The functional calculus and polar decomposition are key results used in the next section to

establish projectivity or semiprojectivity of certain C*-algebras.
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4 Semiprojectivity

The established equivalences relating topological spaces and C*-algebras can now be implemented

to establish operator algebra analogs to topological results for retracts.

4.1 Absolute Retracts and Absolute Neighborhood Retracts

The C*-algebra concept of semiprojectivity is closely related to the topological concept of absolute
neighborhood retract, and equivalences from preceding consequences allow the relationship to be
made precise. Projectivity and semiprojectivity are defined in a later subsection, where the specific
relationships of ARs to projectivity and ANRs to semiprojectivity are established.

Let Y be a topological space with subspace Z. Then Z is a retract of Y if a continuous function
r:Y — Z exists such that r(z) = z for all z € Z. A normal space X is an absolute retract (AR) if
for every normal space Y and closed subspace Z of Y homeomorphic to X, Z is a retract of Y. A
topological space X possesses the universal extension property if for every normal space Y, closed
subspace Z of Y, and continuous function f : Z — X, f extends to a continuous function f Y —» X.
The following proposition establishes the equivalence of the universal extension property and the

AR property for compact Hausdorff spaces.

Example. The space {0,1} is not an absolute retract. Consider {0,1} as a subspace of [0, 1] and
let f:{0,1} — {0,1} be defined by f(0) = 0 and f(1) = 1. f cannot be extended to a continuous

function over [0, 1].

Proposition 4.1. Let X be a compact Hausdorff space. Then X has the universal extension property

if and only if X is an absolute retract.

Proof. Suppose first that X has the universal extension property. Let Y be a normal space and let
Z CY be any closed subspace homeomorphic to X with f: Z — X a homeomorphism between X
and Z. Then f extends to a continuous function f : Y — X. Define » = f~' o f. The function r is
continuous, and for any z € Z, the image of z under both f and f is f(z), so

r2) = [ o f()=f T (f(2) = 2
for all z € Z. Hence Z is a retract of Y and X is an absolute retract.

Next suppose that X is an absolute retract. Let Y be a normal space, Z a closed subspace
of Y, and f : Z — X a continuous function. Since X is compact Hausdorff, X is homeomorphic
to some subspace Xg of [0,1]N. The space [0, 1] possesses the universal extension property by the
Tietze extension theorem. Consequently, [0, 1]Y also possesses the universal extension property. Let

g : X — Xo be the homeomorphism between X and X and define h = go f : Z — Xy. This
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continuous function A extends to a continuous function i : ¥ — [0, 1]N since [0, 1]N has the universal
extension property. Also, since X is an AR, X is a retract of [0,1]" so a continuous function
r:[0,1]Y — Xy exists such that r(z) = z for all z € X,. Finally, define f=g'oroh. Then

f:Y — X is a continuous function extending f. O

Example. The compact Hausdorff space [a, b], where a,b € R, has the universal extension property
by the Tietze extension theorem. Hence by the preceding proposition, this space is an absolute

retract.

A normal space X is an absolute neighborhood retract (ANR) if for every normal space Y, closed
subspace Z of Y, and continuous function f : Z — X, f extends to a continuous function f U= X
for some neighborhood U C Y of Z. Any AR is automatically an ANR.

The concepts of AR and ANR can be restricted to a category of topological spaces. In the
work following, unless otherwise noted X shall be an element of the category of compact metrizable
spaces. In this case, X is an AR in the category of compact metrizable spaces if the conditions
in the definition of AR above hold with the modification that any Y is restricted to be a compact
metrizable space. Likewise, X is an ANR if the conditions for being an ANR hold for any compact

metrizable space Y.

Lemma 4.2. A space X is an ANR in the category of compact metrizable spaces if and only if for
any compact metrizable space Y, decreasing sequence {Zy }nen of closed subsets of Y with Z = (\Z,,
n

and continuous function f : Z — X, f extends to a continuous function f : Z, — X for some

sufficiently large n € N.

Proof. Suppose that X is an ANR. Let Y be a compact metrizable space, {Z,}, C Y a decreasing
sequence of closed subsets of Y with Z = (Z,, and f : Z — X a continuous function. Since X is an
ANR, a neighborhood U C Y of Z exists :uch that f extends to a continuous function f : U — X.
Y\U is compact since U is open and Y is compact. Define U,, = Y\ Z,, for each n. Then
UU, =UY\Z,. =Y NnUZs=YN(NZ,) =Y \Z,

and since Z g U, Y\T;J CY\Z= Ug'n Hence {I;n}n is an open cover of the compact set Y\U so a
finite subcover U = {Up,,...,Up,, }ng {Un}n of Y\U exists. Since {Z,} is a decreasing sequence of
closed sets, {U,} is an increasing sequence of open sets. In particular, ¢/ has a largest set U,, . Then
Y\U C Uy, so that Z,, C U. Since Z; C Z,, for all j > n; and since f extends to a continuous
function f on U, the restriction of f to Zj is a continuous extension of f to Z; for all Z; having
J > ng.

Conversely, suppose that for any compact metrizable space Y, decreasing sequence {Z, },en of
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closed subsets of Y with Z = (\Z,,, and continuous function f : Z — X, there is an N € N such
that f extends to a continuousnfunction fn : Z, — X for allm > N. Y is metrizable so let d be a
metric on Y. Define a sequence of open neighborhoods {Uy, }nen of Z by U, ={y € Y | d(Z,y) < =}
for each n € N, and let Z, = {y € Y | d(Z,y) < 1} for each n € N. Then {Z,}, is a decreasing
sequence of closed subsets of Y such that Z = ()Z,. The definitions imply that U, 1 C Z,+1 C U,
for each n € N. Let M > N and suppose that fn: Z — X is a continuous function. By hypothesis, f
extends to a continuous function f : Zyr — X. Therefore since Upy C Uar € Zay is a neighborhood
of Z and f luy: U — X is a continuous function extending f, X is an ANR in the category of

compact metrizable spaces. O

Example. S is not an AR since there is no retract of D onto S'; see [8] for a proof of this result.

However, S! is an ANR.

4.2 Semiprojectivity and Partial Liftings

A separable C*-algebra A is projective if for any C*-algebra B, closed ideal J of B, and *-homomorphism
¢ : A — B/J, there is a *-homomorphism ¢ : A — B such that ¢ = 7 o, where 7 : B — B/J

is the natural quotient map. Any such ¢ is called liftable. A separable C*-algebra A is semiprojec-
tive if for any C*-algebra B, increasing sequence {J, },, of closed ideals of B, and *-homomorphism

¢ : A — B/J, where J = |JJ,, there is an n and a *homomorphism ) : A — B/.J, such that

¢ = m, o, where m, : B/il]n — B/J is again the natural quotient map. Any such ¢ is called
partially liftable. An element a € A is liftable if a homomorphism ¢ : A — B exists such that
¢(a) = moep(a) ; a is partially liftable if a homomorphism ¢ : A — B/.J,, exists for some n € N such
that ¢(a) = 7, o ¥(a).

The above definitions hold for the category of all C*-algebras. The definitions change slightly
for the category of unital commutative C*-algebras: in this case, B is any unital commutative
C*-algebra and both ¢ and ), provided the map v exists for the parameters specified, are unital
*_homomorphisms. Similar adjustments modify definitions within the category of unital C*-algebras
and the category of commutative C*-algebras.

The next theorem shows an equivalence between projective C*-algebras and absolute retracts.

Theorem 4.3. Suppose that X is a compact metrizable space and A = C(X) is a unital commutative
C*-algebra. Then A is projective in the category of unital commutative C*-algebras if and only if X

is an AR in the category of compact metrizable spaces.

Proof. Suppose that X is an AR in the category of compact metrizable spaces. Let B be any

unital commutative C*-algebra, J C B a closed ideal, and ¢ : A — B/J a unital *-homomorphism.
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By the Gelfand representation B = C(Y') for some compact metrizable space Y = Q(A4). Define
Z={yeY |g(y) =0forallg € J};then J= Jy ={g € C(Y) | g(z) =0forallz € Z}. Moreover,
B/J=C(Y)/Jy = C(Z) so some continuous function f, : Z — X exists by the category equivalence
between compact metrizable spaces and unital commutative C*-algebras. Since X is an AR, the
function f, extends to a continuous function f~¢ :Y — X. Again by the category equivalence, there
is a *-homomorphism qbf : A — B such that ¢ = 7o (;an Thus A is projective in the category of
unital commutative C*-algebras.

Conversely, let A = C(X) be a C*-algebra projective in the category of unital commutative
C*-algebras. Also, suppose that Y is a compact metrizable space, Z C Y is a closed subset, and
f:Z — X is a continuous function. Then J = {g € C(Y) | g(z) = 0forall z € Z} is a closed ideal in
B=C(Y). B/J = C(Z)soa*homomorphism ¢; : A =C(X) — C(Z) = B/J exists corresponding
to f. Consequently, a *-homomorphism ¢ : A = C'(X) — C(Y) exists such that ¢y = 7 o since
A is projective. There is a continuous function fy : Y — X extending f corresponding to ¢ by the

category equivalence. Therefore X is an AR in the category of compact metrizable spaces. O

A similar result holds for semiprojective C*-algebras and absolute neighborhood retracts, as

shown in the next theorem.

Theorem 4.4. Suppose that X is a compact metrizable space and A = C(X) is a unital commutative
C*-algebra. Then A is semiprojective in the category of unital commutative C*-algebras if and only

if X is an ANR in the category of compact metrizable spaces.

Proof. Suppose that X is an ANR in the category of compact metrizable spaces. Let B be a unital
commutative C*-algebra, {.J,}, an increasing sequence of closed ideals of B with J = [JJ,,, and
¢ : A — B/J a *homomorphism. By the Gelfand representation B = C(Y") for somencompact
metrizable space Y. Define Z, = {y € Y | g(y) = 0forallg € J,} for each n € N; then {Z,,} en is
a decreasing sequence of closed subsets of Y and J,, = J,,, = {g € C(Y) | g(2) = Oforallz € Z,}
for each n € N. The ideal J corresponds to Z C Y for a closed subset Z defined similarly. A
continuous function fy : Z — X exists by the category equivalence between compact metrizable
spaces and unital commutative C*-algebras because B/J = C(Z). Then some N € N exists such
that the function fsextends to a continuous function f, : Z, — X for all n > N since X is an ANR.
By the same category equivalence, a *-homomorphism ¢ P A — B/ J, exists such that ¢ =m0 ¢ 7
since B/J, = C(Z,). Hence A is semiprojective in the category of unital commutative C*-algebras.

Conversely, suppose that A is semiprojective. Let Y be a compact metrizable space, {Z,}»

a decreasing sequence of closed subsets of Y such that Z = (\Z,, and f : Z — X a continuous
n
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function. Then J = {g € C(Y) | g(2) = Oforallz € Z} is a closed ideal in B = C(Y) and
Jp = {9 € C(Y) | g(z) = Oforallz € Z,} is a closed ideal in B for each n € N such that
{Jn}n is an increasing sequence of closed ideals. Moreover, B/J = C(Z) so a *-homomorphism
¢5: A= C(X) = C(Z) = B/J exists corresponding to f by the category equivalence. Since A is
semiprojective and B/J, = C(Z,), there is a *-homomorphism ¢ : A = C(X) — C(Z,) = B/J,
with the property ¢y = m, o for some n € N. Again by the category equivalence, a continuous
function fy : Z,, — X extending f exists. Then since Z,, C Z, for all m > n, f extends to a
continuous function on Z,, for all m > n, where the continuous extension for a particular Z,, is

fu |z,,- Therefore X is an ANR in the category of compact metrizable spaces. O

Example. The compact metrizable space [—1,1] is an AR so C([—1, 1]) is projective in the category

of unital commutative C*-algebras.

4.3 Important Liftings and Partial Liftings

In this section, A and B are a C*-algebras, ¢ : A — B/J is a *-homomorphism,{.J,}, is an
increasing sequence of closed ideals of B, and J = JJ,,. Also, let 7 : B — B/J, mon, : B — B/J,,
n

Tk @ B/Jy = B/Jp, w0 : B/J,, — B/J, for k,n € N with k£ < n, be the natural quotient maps.
Theorem 4.5. Suppose that g4 € A is a projection. Then qa is partially liftable to a projection.

Proof. Let ¢ = ¢(qa). The element ¢ is a projection in B/J since g4 is a projection. Some element
y € B exists such that 7n(y) = ¢ since 7 is surjective. Let z = %(y + y*). Then z is self-adjoint,
m(z) = 1([r(y)]* + 7(y)) = ¢, and 7(z — 2?) = g — ¢*> = 0 since 7 is a *-homomorphism and ¢
is a projection. Moreover, ||m(z — 2?)|| = 0 because m(z — 2?) = 0. Some n € N exists such that

“7‘(07”(1' facQ)H < 1 since Hw(b)H = inf‘

wn(b)H for any b € B. Let z = my,(x), the image of z

in B/J,; z is self-adjoint because x is self-adjoint. 7(z — 22) = 2z — 22 so by functional calculus,

o(z = 22) = {A= X | A € 0(2)} C (=%, 1), which implies that o(z) C (12, 3) U (3, 142), In

2 2

N

i
particular, 3 ¢ o(z). Let f : (172‘/5, U3, 1+2‘/§) — R be defined by

0 forte (1*2‘/5, %)

(1) =

1 forte (3, 1+2\/§)
and set p = f(z). o(p) = f(o(z)) = {0,1} since o(z) C (1’2‘/5, Hu (s, 1+2‘/§). f is a projection
in C(o(2)) since f(t) = f(t) = [f(t)2 = 0 for t € (A2, 1) and f(t) = f(t) = [f(t)]2 = 1 for

te (L, Y2). Consequently, p = f(2) is a projection in B/.J,, and

m(p) = 7(f(2)) = f(w(2)) = fla) = ¢,
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since ¢ is a projection. Let ¢ : A — B/J, be a *-homomorphism such that ¢¥(¢a) = p. Then

?(ga) = mop(ga) = q, so qa is partially liftable to the projection p. O

Corollary 4.6. Let G¢i,Go,...,Gm € A be mutually orthogonal projections. Then §i,Gz2, .., Gm are

partially liftable to mutually orthogonal projections.

Proof. Let g, = w(qx) for 1 < k < n; g is a projection for 1 < k < m. By the previous theorem, a
projection p; € B/J,, exists such that m,, (p1) = ¢1 for some ny € N. Then

€ (1=q1)B/J(1 —q1)
for 2 <k <mand (1 —mp, n(p1))B/JIn(l — Tny n(P1)) is a C*-subalgebra of B/.J,, for each n > n;.
Again by the previous theorem, a projection

P2 € (1= py iny (P1)) B/ Jny (1 = Ty nsy (B1))
exists such that m,,(p2) = g2 for some ny > nq. Moreover, pa L 7y, n, (P1). A third application of
this theorem yields a projection

D3 € (1 = ny ing (P1) — Tnging (2)) B/ Ing (1 = Tny ing (P1) — T ng (P2))
for some ng > ny such that p3, mp, ng(P1), and m,, n,(P2) are mutually orthogonal. Continuing
in this way, some n,, € N exists such that p,, is a projection in B/.J,, while p,, and the images
of each p in B/J,, for 1 < k < m — 1 are all mutually orthogonal and orthogonal to py. Let
Pk = Tngnm (Pr) and define a map ¢ : A — B/J,,, by ©(dx) = px for 1 < k < n. Then ¢ is
a *-homomorphism and ¢(G;) = m,, © ¥(Gk) for 1 < k < n and the projections p1, pa, ..., pm are

mutually orthogonal. O

A unitary in a unital C*-algebra is not liftable but the following theorem shows that it is partially

liftable.

Theorem 4.7. Assume A and B are unital, and let vg € A be a unitary. Then vy is partially

liftable to a unitary.

Proof. Let v = ¢(va). Since 1 is a projection in A, ¢(1) = ¢ for some projection ¢ € B/J. Then
v*0 = ¢(vh)p(va) = p(viva) = ¢(1) = g and
oo = 6(vA)6(v3) = Bvavs) = 6(1) =
which shows that v is a partial isometry with source projection and range projection both equal
to ¢. By the previous proposition, a projection p € B/J, exists such that 7(p) = ¢ for some
n € N. Then p(B/J,)p = {pzp | x € B/J,} is a unital C*-subalgebra of B/J,, mp m(p(B/Jn)p)
(= Tn,m(P)(B/Jm)Tn,m(p)) is a unital C*-subalgebra of B/J,, for all m > n, and ¢(B/J)q is a
unital C*-subalgebra of B/J. Moreover, ¢ : A — q(B/J)q is a unital *-homomorphism since g is

the unit in ¢(B/J)q and ¢(1) = ¢q. Thus v is a unitary in ¢(B/J)q.
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Take x € p(B/J)p with m,(x) = v. Then mp m(z) € mp m(p(B/Jy)p) for all m > n and

T (x*x) = v v = q. ‘

= Hq —v*v

Tn(p — %) ’ =0,
so m € N exists such that Hwn,m(p) - an(ﬂf*ﬂf)H < 1 since the norm on ¢(B/J)q is the infimum of
the norms on 7, m (p(B/Jn)p). Let y = mp m(x). Since

and 7y, (p) is the unit in 7, 0 (P(B/Jn)D), ¥*y = Tnm(®) — (Mn,m(p) — y*y) is invertible. By

T (P) = T (2°2) | = | (p) = y7yll < 1

similar reasoning, yy* is invertible. Consequently, y is itself invertible. By polar decomposition, a
unitary u and a positive element d exist such that y = ud, where v is unitary in the sense that
w*u = uu* = mpy m(p). Then

7(y) = m(u)n(d) = w(u)l = v,
where m(u) = v and 7(d) = 1 by uniqueness of the polar decomposition of v in B/J. Let ¢ : A —
Ton,m (P(B/Jy)p) be a unital *-homomorphism such that i(v4) = u. Then ¢ is a homomorphism

from A into B/J,, and ¢(va) = mop(va) = v. Hencevy is partially liftable. O

The following proposition, needed in the theorem following, establishes that two projections
having a normed difference less than 1 are unitarily equivalent. It also shows, in particular, that the
functional calculus is preserved under *-homomorphism on a unitary relating two such projections.

See [3] for a proof of the result.

Proposition 4.8. Suppose that A is a unital C*-algebra and p1,ps € A are projections such that
|lp1 — p2|| < 1. Then there is a unitary v = v(p1,p2) € A such that po = vprv*. Moreover, v(p,p) =1
for any projection p and the map 6 : A x A — A defined by 0((p1,p2)) = v(p1,p2) is functorial in

the sense that if ¢ : A — B is a *-homomorphism between the unital C*-algebras A and B, then
P(v(p1,p2)) = v(P(p1), d(p2))-

The following theorem establishes that a partial isometry can be partially lifted in a way that

preserves its source and range projections.

Theorem 4.9. Suppose that sa € A is a partial isometry, and let s = ¢(sa) have specified partial
liftings p1 of the source projection ¢1 = s*s and pa of the range projection qo = ss* in B/Jy, for
some m € N. Then sa is partially liftable to a partial isometry r in B/J, for some n € N with the

properties that m,(r) = s, r*r = Ty n(p1), and r7* = T n(p2)-

Proof. The element s is a partial isometry in B/J with source and range projections ¢1 = ¢(s%sa) =
s*sand g2 = ¢(sas%) = ss*. A prior theorem of this section establishes that projections are partially
liftable, so both ¢; and g2 can be lifted to projections py,ps in B/J,, such that 7, (p1) = ¢ and

Tm(p2) = g for some m € N.
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Next, let © € B be an element such that w(z) = s. The reasoning of the proof above establishing
that any projection is partially liftable implies that ||7r0n x*r — (z*x) H < in B/J, for some
n € N since ||w(z*z — (2*2)?)|| = 0. Moreover, letting y = mon(z), subsequent reasoning in the
UL, 52),

Define a function f : (1522 V2 SADHu@d,d ‘[) — R by

’2 27

aforementioned proof leads to o(y*y) C (15

0 forte (1*2‘/5,%)

)
Let z = yf(y*y). Then z*z = f(y*y)g(y*y) f(y*y), where g : (252, Lyu(L, 12¥2) R is defined by
g(t) =t. Since f(t)g(t)f(t) = 0for t € (}522, 1) and f(t)g(t)f(t) = t=3tt"3 =1fort € (3, ”2‘/5),

the function h = fgf € C(o(y*y)) is a projection. Consequently, z*z is a projection by the functional

calculus at y*y so the element z is a partial isometry in B/.J,,. In particular, zz*is also a projection.
Let p1 = z*z and py = zz*. Then since 7, (y) = w(x) = s, by properties of the functional calculus,
mn(2) = Tn(yf (YY) = T () f(mn(y™y)) = sf(ss) = ss7s = s
since s is a partial isometry. Furthermore,
Tn(P1) = mn(2"2) = T (f (W 9)g (™ y)f (y"y)) = [ (T (Y y))g(mn (y™y)) f (mn (YY)
= f(s*s)g(s*s)f(s*s) = s*ss*ss*s = s*s = ¢q1, and
Tn(P2) = T (22") = T (W (W Y) F W y)y") = T ().f (T (Y y)) S (T (YY) (™)
=sf(s"s)f(s"s)s™ = ss™ss*ss* = 58% = ¢
Hence ||m,(p1) — Tm(p1)]] = 0 in B/J, meaning ||7n N, (P1) — Tm, Ny (p1)]|| < 1 in B/Jn, for some
N; € N. Similarly, ||7n,n,(P2) — Tm,n,(P2)|| < 1 in B/Jn, for some Ny € N. For the sake of
simplicity in notation, henceforth p; shall denote m, n(p1) and p; shall denote 7, n(p1); this con-
vention shall apply to the denotations of py and py as well. Finally, z shall denote 7, y(z). Thus
lp1 —p1l] < 1 and |[p2 — p2|| < 1 in B/Jy. By the proposition preceding this theorem, there are
unitaries v1 = v(p1,p1) and vy = v(p2, P2) such that p1 = vipi1v} and po = vepavs in B/Jn.
Next, let » = v5zv;. Then
r*r = v} 2"l zu; = viz*zv; = vip1v1 = p1, and
Tt = v3 20107 2 v = V522 v = V5 Pavs = Pa.
Finally, by the functorial property of the functions v; = v(p1,p1) and vo = v(pa2, Pa),
TN (r) = v (v3z1) = TN ([v(p2, P2)]") 7N (2) 7N (v(p1, P1),
= [v(mn(p2), 7N (D))" 7 (2)v(mn (pr), T (P1) = [v(g2, @2)]"sv(qr, 1) = s
since v(p,p) = 1 for any projection p € B/J.
Therefore r is a partial isometry in B/Jy with source projection p; and range projection pa, so

r is a partial lifting of s in B/Jy with source and range projections that map to the source and
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range projections of s in B/J. O

The following result concerning an isometry in a C*-algebra is obtained as a special case of the

previous theorem.

Corollary 4.10. Assume A is unital, and let ya € A be an isometry such that y = ¢(ya) has
specified partial liftings p1 of the source projection qu = y*y and p2 of the range projection g2 = yy*
in B/ Jy, for some m € N. Then ya is partially liftable to a partial isometry z in B/J, for some

n € N with the properties that m,(z) =y, 2*2 = T n(p1), and 22* = Ty n(P2)-

Proof. Let y = ¢(ya), and let ¢1 = ¢(yhya) = y*y and ¢2 = ¢(yay’) = yy*. By the previous
theorem, y 4 is partially liftable to a partial isometry z € B/J, for some n € N such that m,(2*2) =
y*y and 7, (2z*) = yy*. A *-homomorphism ¢ : A — B/J, exists such that 1¥(y4) = z, meaning
¢(ya) = mp 0 P(ya). Furthermore, m, o ¥(yiya) = y*y and 7, o Y(yay?) = yy*. Therefore yy4 is

partially liftable to a partial isometry preserving the source and range projections of y 4. O

4.4 Semiprojective C*-Algebras

Many C*-algebras can be defined by a set of generators and a set of relations on those generators.
Relations establish relationships between the generators and usually take the form of algebraic
relations. Universal C*-algebras are an example of C*-algebras that can be defined in terms of a set
of relations on a set of generators. Let G ={x; | i € Q} and let R be a set of relations. Suppose A

is a C*-algebra such that
1. A is generated by a set of elements Y ={y; | i € Q} satisfying the relations R.

2. If C is any C*-algebra with elements Z = {z; | i € Q} satisfying the relations R, there is a

*_-homomorphism ¢ : A — C such that ¢(yi) = zx for all k € Q.

Then C*(G | R) = A is the universal C*-algebra generated by G with relations R.

Using results established in the previous section, showing that certain basic C*-algebras are
semiprojective can be accomplished by recognizing that these C*-algebras can be defined as par-
ticular universal C*-algebras. The next propositions illustrate this fact. Below, C is shown to be

semiprojective as the universal C*-algebra generated by a single projection.

Proposition 4.11. Let

G={p}, R={p=p"=p}.
Then C*(G | R) = C is semiprojective.
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Proof. C is generated by the element 1 satisfying the relations R. Suppose that C' is any other
C*-algebra generated by a single projection pc satisfying the relations R. Then a *-homomorphism
¢ : C — C mapping 1 to pc exists since 1 is a projection that must map under any *-homomorphism
to a projection in C' and C contains the projection pc. Therefore C = C*(G | R).

Let B be any C*-algebra, {J,,}, an increasing sequence of closed ideals of B with J = [JJ,,
and ¢ : C — B/J a *-homomorphism. Then 1 is partially liftable by Theorem 4.6, meani;g a
homomorphism ¢ : A — B/J, exists for some n € N such that ¢(1) = m, o 1(1). Therefore C is

semiprojective since it is generated by the element 1. O

Next, the universal C*-algebra generated by a single unitary and a unit is shown to be C(T),

another semiprojective C*-algebra.

Proposition 4.12. Let
G={u,1}, R={1=1"=1% ul = lu = u, v*u = uu* = 1}.
Then C*(G | R) = C(T) is semiprojective.

Proof. The inclusion map ¢ is a unitary in the C*-algebra C(T) since |¢(z)| = |z| =1 for all z € T.
Moreover, the elements of S = {¢, 1} satisfy the relations R, and S generates C(T) by the Stone-
Weierstrass theorem. Let C be any other C*-algebra generated by element Z = {z,1,} satisfying the
relations R. Define a map ¢ : C(T) — C by ¢(¢) = z and ¢(1) = 1,. Then ¢ is a *-homomorphism
so O(T) 2 C*(G | R).

Next, suppose that B is any C*-algebra, {J,}, is an increasing sequence of closed ideals of B
with J = [JJ,, and ¢ : C(T) — B/.J is a *-homomorphism. By theorem 4.8, 1 is partially liftable to
a projecti(:n p € B/J, and ¢ is partially liftable to an element v € B/.J,, such that v*v = vv* = p for
some n € N. Moreover, p and v preserve the relations R. Thus since C(T) is a universal C*-algebra,
a *-isomorphism ¢ : C(T) — B/J, exists such that ¢(¢) = 7, 09(¢) and ¢(1) = m, 0¢)(1). Therefore

C(T) is semiprojective since ¢ and 1 generate C(T). O

The Toeplitz algebra 7 is the universal C*-algebra generated by a single isometry. It is also

semiprojective.

Proposition 4.13. Let

G={y,1}, R={1=1"=12, yl =1y =y, y'y=1}.

The Toeplitz algebra T = C*(G | R) is semiprojective.

Proof. Let B be any C*-algebra, {J,}, an increasing sequence of closed ideals of B with J = |J.J,,,
n

and ¢ : T — B/J a *-homomorphism. Let ¢ = ¢(1) and s = ¢(y). Then ¢ is a projection and
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s is a partial isometry with source projection s*s = ¢ and range projection ss*. By theorem 5.5,
the projections ¢ and ss* can be partially lifted to projections p and ps, respectively, in B/J,,, for
some my € N. Then by theorem 5.9, s can be lifted to a partial isometry z € B/J,, such that
2*2 = T, m(qQ) and 22" = Ty m(Ps)-

Then since T is a universal C*-algebra and Z = {z, z*2} satisfies the relations R, a *-homomorphism
Y : T — B/J, exists such that ¢(y) = 7, o ¥(y) and ¢(1) = mp, 0 (1), T is thus semiprojective

since y and 1 generate 7. O
Another semiprojective C*-algebra is M, (C) for n € N as shown below.

Proposition 4.14. Let
G={e;;|1<i,j<n}, R :{efj = eji, eijer = Ojkeq|l < i,4,k, 1 < n}
0 ifj#k
for n € N, where §;, = . Then C*(G | R) =2 M,,(C) is semiprojective.
1 ifj=k
Proof. M, (C) is alternatively the universal C*-algebra generated by
Ge = {ey;]1 < j < n},
Re = {(efjelj)Q = eje1j = (efjelj)*,eue’{i = eyjey; = e foralll <i4,j <mn,
ejeri L ejjeq; foralli # j}.
This is true because e;; € G can be retrieved as ej;ei; for ei;,e1; € G, and each set of generators
satisfy the same relations.

Let B be any C*-algebra, {J,,}, an increasing sequence of closed ideals of B with J = [JJ,,,
and ¢ : M,(C) — B/J a *-homomorphism, and let fi; = ¢(e1;) for 1 < j < n. Then fljnis a
partial isometry with source projection f;;fi; and range projection fi;f;; = fi1 for 1 < j < n.
Moreover, the n source projections are mutually orthogonal so by corollary 4.6, they can be lifted
to n mutually orthogonal projections p1, ps,..pn in B/Jp, for some my € N. By theorem 4.9, each
partial isometry fi; can be lifted to a partial isometry s1; in B/Jp, such that sj;s1; = Tmg,m(p))
and s1;s}; = Tme,m(P1) for 1 < j <n and some m € N.

The partial isometries S = {s1; | 1 < j < n} satisfy the relations R so since M,(C) is a
universal C*-algebra, a *-homomorphism v exists such that ¢ = =, o). Therefore M,(C) is

semiprojective. O

The Cuntz algebra O,,, another semiprojective C*-algebra, is the universal C*-algebra generated
by n isometries having mutually orthogonal range projections with sum equal to a unit 1. The Cuntz-
Krieger algebra O4 on an matrix n x n matrix A generalizes the Cuntz algebra; it is semiprojective

as well. When A consists of all entries a;; =1 for 1 <i,5 < n, then O4 = O,.
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Proposition 4.15. Let

G ={si;,1]1<i<n},

R={1=1"=1% 5,1 =1s; = s;, 8is; = 1, £:1Sj8; =11<i<n}
for n € N. The Cuntz algebra O,, = C*(G | R) is semipr;;ective.
Proof. Let B be any C*-algebra, {J,,},, an increasing sequence of closed ideals of B with J = (J.J,,,
and ¢ : O, — B/J a *-homomorphism. Let r; = ¢(s;) for 1 < i < n. Since 1 is a projecZion,
there is a partial lifting of 1 to a projection p € B/Jy, for some N, € N by theorem 4.5. Then by
corollary 4.6, the mutally orthogonal projections 17y, rar5, ..., o7y are partially liftable to mutually
orthogonal projections piy,pa,...,p, in B/Jy, for some N, > N,. Finally, by corollary 4.10 each
isometry r; is partially liftable to an isometry z; € B/J,,, having the properties 2}z, = 7, m(p)
and z;z] = wn,.m(p;) for 1 < i <n and some m € N.

Since O,, is a universal C*-algebra and set £ = {z; | 1 < i < n} satisfies the relations R, a

*_-homomorphism ¢ : O,, — B/J,, exists such that ¢(s;) = z; for 1 <i < n. Moreover, ¢ = 7, 0 ¢

so O, is semiprojective. O

Corollary 4.16. Let A be an n x n matriz for n € N with a;; € {0,1} for 1 <i,j < n, and set
g = {5171|]— § . § n}?
n
R={1=1"=12 5,1 =1s;=s;, si8; = ZAijsjs;f, spsy Lsisf |1 <4,k l<n, k#l}.
j=1

The Cuntz-Krieger algebra O4 = C*(G | R) is semiprojective.

Proof. The proof of this corollary follows the same reasoning as the proof of the preceding proposition

with the exception that the sum of the range projections depends on the matrix A. O

The Cuntz algebra O, is the universal C*-algebra generated by a sequence of mutually orthog-
onal range projections. O is semiprojective although the theory establishing this fact is beyond
the scope of this paper. See [3] for a construction demonstrating this result.

One last semiprojective C*-algebra is C*(F"), the universal C*-algebra generated by n unitaries.

Proposition 4.17. Let
R={1=1*=1% wl = lu; = u;, uju; = wu} =1}

for n € N. Then C*(F") = C*(G | R) is semiprojective.

Proof. The universal C*-algebra C*(G | R) = C*(F") is unital with unit 1. Each u; € C*(F") is a
unitary, so by theorem 4.8, for any C*-algebra B, increasing sequence {J,}, of closed ideals of B

with J = (JJ,, and *-homomorphism ¢ : C*(F") — B/J, there is a *-homomorphism ¢; : C*(F") —
n
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B/ J,, such that v;(u;) is a unitary and ¢(u;) = mm, 01;(u;) for some m; € N. Let m = [mag m; and

let v; = T, m © Vi(u;); define a map ¢ : C*(F") — B/Jp, by 9¥(u;) = v;. Then each v; is a unitary

in B/Jpm, so ¢ is a *-homomorphism such that ¢ = m,, o 1. Thus C*(F™) is semiprojective. O

Unlike Oy, the C*-algebra C*(F>), the universal C*-algebra generated by a sequence of uni-
taries, is not semiprojective.

Moreover, if the unitaries in the construction C*(G | R) of the previous proposition have addi-
tional relations requiring that the generators commute, the resulting universal C*-algebra may not
be semiprojective. The C*-algebra C(T") is the universal C*-algebra generated by n commuting
unitaries. And in fact, C(T") is not semiprojective whenever n > 2; see [3] for a discussion of this

result.
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5 Conclusion

The intent of this paper is to explore an equivalence between topologies and C*-algebras starting
from the rudiments of C*-algebra theory as well as to derive meaningful results from the equivalence.
To this end, preliminary theory delves into the substance of the character space of C(X) and the
space of maximal ideals on C(X). From the ensuing homeomorphisms, a category equivalence
is established between certain topologies and C*-algebras. This process results in a collection of
semiprojective C*-algebras, illuminating certain useful aspects of these algebras.

The basic method for advancing theory in this paper is powerful but well-established. Galois
theory, for example, makes use of a similar type of correspondence to yield conclusions concerning
polynomials out of other areas of abstract algebra. In the case of operator algebra theory, often
topology is the mathematical context from which important results can be carried over to deduce
consequences for operator algebras. This paper explores one such set of correspondences, that of
absolute retracts and absolute neighborhood retracts as they relate to projectivity and semiprojec-
tivity. The process illustrates, among other results highlighted herein, that extensions of continuous
functions in a topological context correspond to the existence of particular *-homomorphisms in a C*-
algebra context. And while in this case, results from topology are borrowed to establish C*-algebra
results, C*-algebra theory can also produce new results in topology. K-theory contains examples of
transplanting theory in the opposite direction within the scope of general correspondences relating
topology and operator algebras. Often in mathematics this process is fruitful.

Nonetheless, the analogy between C*-algebras and topological spaces is limited in scope. As
intimated in the presentation of semiprojective C*-algebras, some C*-algebras are not directly con-
nected to topological spaces by analogy similar to that employed in this paper. Alternative argu-
ments without straightforward relation to topological arguments are sometimes needed to analyze
the structure of these C*-algebras, many of which are natural candidates to evaluate for the property

of semiprojectivity.
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