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ABSTRACT 

 

Accurate, high-resolution vehicle data including location, speed, and direction is essential 

to connected-vehicle applications, micro-level traffic performance evaluation, and 

adaptive traffic control. The connected-vehicle system provides longer detection distance 

for drivers (or autonomous vehicles) and pedestrians to “see” around corners or 

“through” other vehicles so that threats can be perceived earlier. The current connected-

vehicle system highly relies on information broadcasted by each vehicle. The maximum 

safety benefits of current connected-vehicle deployment would need all vehicles to have 

connected-vehicle devices and broadcast their information in real time. However, the 

mixed traffic with connected-vehicles and unconnected-vehicles will exist for the next 

decades or even longer. Therefore, supplemental data to help the connected-vehicle 

deployment needs to be considered. The traditional traffic sensors only generate macro 

information like occupancy and estimated average speed. Hence the existed sensors 

would not be able to aid the research and application of connected vehicles with high 

accuracy vehicle data. Hence another innovative method which could yield high-

resolution traffic data is desired.   

 

This research developed a data processing procedure for detection and tracking of multi-

lane multi-vehicle trajectories with a roadside Light Detection and Ranging (LiDAR) 

sensor. Different from existing perception methods for the autonomous vehicle system, 

this procedure was explicitly developed to extract trajectories from a roadside LiDAR 
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sensor. This procedure includes six steps. They are preprocessing of the raw data, 

statistical outlier removal, least median of squares-based ground estimation method to 

accurately remove the ground points, vehicle data clouds clustering, principal 

component-based oriented bounding box method to estimate the location of the vehicles 

and geometrically based tracking algorithm.  

 

The developed procedure has been tested against the intersection of Evans Street and 

Enterprise Road; a two way stops sign intersection; and Kietzke lane, an arterial road 

with 40 mph speed limit in Reno, Nevada. Then, the data extraction procedure has been 

validated by comparing tracking results and speeds logged from a testing vehicle through 

the onboard diagnostics interface (OBD-I), at a parking lot of University of Nevada, 

Reno. The validation results suggest that the tracking speed matches real driving speed 

accurately. 

 

A case study was conducted to examine the accuracy of tracking multiple objects on the 

roads. 1000 data frames from the intersection of 15th Street and Virginia Street in Reno, 

Nevada, were used as source data frames. The proposed data processing framework 

successfully tracked 37 objects out of 38 objects on the road, which gives an accuracy of 

97.4%. Then a support vector machine-based algorithm was developed to differentiate 

pedestrians/bicyclists and cars/buses. With the Radial Basis Function (RBF) kernel, this 

algorithm correctly classifies 35 objects among 38 objects, which gives an accuracy of 

92.1%. The result of this case study indicates that the proposed data processing 

framework has a satisfactory tracking and clustering accuracy which could be used for 
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traffic micro information extraction. 

 

This data processing procedure not only could be applied to extract high-resolution 

trajectories for connected-vehicle applications, but it could also be valuable to practices 

in traffic safety, traffic mobility, and fuel efficiency estimation. The ordinary Rectangular 

Rapid Flash Beacon (RRFB) could be upgraded to detect pedestrians automatically; this 

is especially important during night time.  Adaptive traffic signal control which could 

adapt to special events or economic changes also becomes feasible from this research. 

Driving cycle development, which mainly relies on sampling vehicles, could become 

much more accurate because this research enables the possibilities to extract every 

vehicle’s speed profile. In sum, this research provides a reliable way to extract high-

resolution traffic data of all vehicles in the detection range of a roadside LiDAR,  and it 

would benefit research in connected vehicles, traffic safety, traffic mobility and fuel 

consumption estimation. 

 

Keywords: Roadside LiDAR, Vehicle Speed Tracking, Random Sample Consensus 

Method, Oriented Bounding Box, Support Vector Machine, Connected 

Vehicles, Traffic Safety, Traffic Mobility, Fuel Consumption Estimation. 
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1. Introduction 

1.1 Statement of the Problem 

Accurate, high-resolution vehicle data including location, speed, and direction is essential 

to connected-vehicle applications, micro-level traffic performance evaluation, and 

adaptive traffic control. Connected-vehicle technologies, applications and potential 

benefits have been studied since 2003 when United States Department of Transportation 

(USDOT) started the Vehicle Infrastructure Integration (VII) program (1). The 

connected-vehicle system provides longer detection distance for drivers (or autonomous 

vehicles) and pedestrians to “see” around corners or “through” other vehicles so that 

threats can be perceived earlier. There are a lot of application has been developed. But 

most of the applications are limited to present levels or prototype levels. These 

demonstration-oriented applications could not prove the effectiveness for road users. This 

problem was caused by the scope of proof-of-concept. The current connected-vehicle 

system is highly relying on information broadcasted by each vehicle. The maximum 

safety benefits of current connected-vehicle deployment would need all the vehicles to 

install connected-vehicle devices and to broadcast their information in real time. 

However, the mixed traffic with connected-vehicles and unconnected-vehicles will exist 

for the next decades or even longer. Therefore, supplemental data for the connected-

vehicle deployment have to be considered. 

A classical Light Detection and Ranging (LiDAR) sensor would transmit and receive 

light pulses with a relatively high frequency. By multiplying the time difference between 
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emitting and receiving the pulse, the LiDAR is able to locate the objects.  Recently, most 

autonomous vehicle LiDAR uses laser beams to detect objects rather than visible or 

infrared lights. LiDAR can scan a 360-degree horizontal range and able to detect the 

direction of arrival vehicles accurately, but it has a high cost comparing to other sensors. 

Thus its usage was limited. The popularity of the autonomous vehicles brought 

opportunities to the LiDAR sensors. The LiDAR sensor was widely adopted for object 

perception and recognition in the autonomous vehicle field. As an indispensable 

component for autonomous vehicles, the price of LiDAR sensor has decreased 

significantly in recent years. The LiDAR sensor used in this dissertation was Velodyne’s 

VLP-16; it was $7,999 in 2017, with 100 meters of detection range radius, 360 degrees of 

horizontal sensing range, and weight 830grams. The 2017th  LeddarTech Vu-8, which 

has 215 meters of detection range, 100 degrees of horizontal sensing range, and weight 

107 grams was at the price of $750 by the time of this dissertation was completed.  This 

trend enables traffic engineers to utilize cost-efficient LiDARs on roadsides to obtain 

high-resolution dataset including location, speed, and direction information which could 

be used for connected-vehicle applications, micro-level traffic performance evaluation, 

and adaptive traffic control. 

The limitation of traditional sensors has restricted the use of high-resolution micro traffic 

data. Connected vehicles research, safety research and adaptive traffic signal control 

research are all limited by the resolution of data input.  This research aims to provide a 

solution to this problem by developing a 3-D data processing procedure to extract high-

resolution vehicle or pedestrian data from a VLP-16 LiDAR sensor. 
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1.2 Traditional Traffic Data Collector Sensors 

Traffic sensor usually has three necessary modules: a transducer, a signal module and a 

data processing module (2). Some information is derived from the Traffic Detector 

Handbook (3). 

Table 1 depicts widely used sensors in traffic engineering. Table 1 compares them to 

whether it is difficult to install and maintain, whether the detection accuracy is high and 

whether the performance would be affected by bad weather or inadequate illumination. 

Table 1 Advantages and Disadvantages of Mainstream Traffic Sensors 

Sensor Strengths Weaknesses 

Loop 

Detector 

• Well understand and widely 

used. 

• Provides macro traffic data such 

as average speed, headways, and 

volumes 

• Not easy to be affected by 

extreme weather conditions. 

• Installation and maintenance 

require the stop of traffic. 

• Could not provide accurate 

speed tracking data. 

 

Microwave 

Radar 

• Not easy to be affected by 

extreme weather conditions. 

• Detection accuracy is great. 

• Installation and maintenance are 

easy. 

• Traffic used Radar usually do 

not cover 360 degrees range. 

• Not every type of Radar could 

detect stopped vehicles or 

pedestrians. 

Video Image 

Sensor 

• The price is low comparing the 

rich data it collected. 

• Could collect data in multiple 

lanes and directions.  

• The data collected by several 

cameras for the same location 

could be reconstructed to provide a 

3D view of that location.  

 

 

• Installation and maintenance 

require regular cleaning; this is 

especially important in the windy 

area. 

• The performance would be 

seriously affected by bad 

weathers such as rain, snow or 

fog. The older types of cameras 

also require strong contrast to 

reach its maxim accuracy. 
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• Some cameras are susceptible 

to shakes and vibrations caused 

by bad weather. 

• Confident nighttime detection 

requires excellent light 

enlightening. 

 

LiDAR 

• Able to accurately track the 

vehicle position, speed. Could also 

tell which type of vehicle has been 

detected. 

• Provide high-resolution data, 

extremely accurate. 

• Could cover a large area quickly 

with 360 degrees view. 

• Easy to install and maintain. 

 

• The operation may be affected 

by colossal rain or snow. 

• The unit price is relatively high. 

Solid-state LiDAR, a new type of 

LiDAR system, claims to be 

cheaper but has no mature 

products on the market by the 

time this dissertation was written. 

 

 

Additionally, Bluetooth sensors are also researched. The Bluetooth sensor uses MAC 

address to identify the road users. This is controversial because some users consider their 

privacy has been invaded. Besides, if the road users turn off their Bluetooth devices, the 

sensor just could not have any MAC addresses. In sum, the Bluetooth sensors have 

inherent weaknesses thus they are not considered the ideal candidate for this research.  

1.3 LiDAR Products Information 

LiDAR is short for light detection and ranging, and it is an innovative sensing technology 

for contactless sensing (4). The LiDAR system uses the time difference between emitting 

the light to the return of the light to calculate the location of the object. The pulse usually 

has a very high frequency. Hence the detection looks like “real-time” (5). There are three 

types of LiDAR in the market.  
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1.3.1 Airborne LiDAR 

The airborne LiDAR means the LiDAR detection system would be installed in an 

aircraft. The high-frequency laser would be aimed to the ground to collect land surface 

information.  Topographic airborne LiDAR would create surface models which are 

important for geography or archeology. Bathymetric airborne LiDAR would penetrate 

waters and collect the information along the river. It is claimed that it is as good as 

typical survey method as sonar and GPS, but cheaper and faster (6).  

1.3.2 Terrestrial LiDAR 

Terrestrial LiDAR constitutes two types: mobile LiDAR and static LiDAR. Mobile 

LiDAR is widely used in autonomous vehicles, used to perceive the objects, such as 

trees, buildings, traffic signs, pedestrians, and cyclists. Static LiDAR is usually mounted 

on a tripod and was majorly used to track the moving objects such as traffic. Both 

LiDARs in this category are generally cheaper and smaller than Airborne LiDARs. 

Terrestrial LiDAR usually collect more dense information because the mounting position 

does not travel at high speed, this would help to create realistic 3D image or models for 

the surrounding objects. Hence recently this type of LiDAR is more popular than 

Airborne LiDAR systems.  

1.3.3 Solid State LiDAR 

Solid-state LiDAR is capable of aiming without scanning 360 degrees (7). Moreover, it 

cost less than currently scan-based LiDARs. Hence solid-state LiDAR is recognized as 

the next generation LiDAR products. 
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Solid State sensors would use micro-electromechanical systems with a static laser beam 

with a spinning mirror rather than the traditional sensor with scanning the laser beam. 

This improvement would greatly improve the robustness and reliability comparing to the 

current mainstream LiDAR system, while at the same time maintain the same detection 

range and accuracy. Moreover, such a system would be easier to mass produce hence 

have a much lower price. All those advantages lead the Automobile Tycoons, such as 

BMW, moving to focus on solid-state LiDAR (8). 

The Quanenergy S3 is the only solid-state LiDAR on the market by the time this 

dissertation is written. The S3 solid state is small and ideal for integration on platforms 

required lightweight LiDAR. The S3 has no scanning parts, and the Quanenergy claims 

that it outperformed traditional LiDAR. The S3 LiDAR could generate more than 

500,000 points per seconds. However, the S3 could only cover a 120-horizontal field of 

view.  
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1.3.4 LiDAR Applications 

Forest Planning and Management  

Figure 1 is from Terrestrial Laser Scanning International Interest Group meeting at 

Salford, UK. This figure suggests the application of forest management. LiDAR is widely 

used in planning and management of the forest industry (9; 10). The idea is to use the 

LiDAR light to penetrate the dense canopy and measure the height of the canopy. 

Another example is LiDAR could measure some tree’s root expansion.  

 

Figure 1 Terrestrial LiDAR Image 

Mapping and Archaeology 

Figure 2 is from an article “Lasers in the Jungle” at Archaeology Magazine. This figure 

suggests the application of pyramid surface mapping (11; 12).  By using LiDAR 

detection system, Digital Elevation Model (DEM) could be created. That DEM map 

could show a 3D view of the land surface. This is especially convenient if the airborne 

LiDAR system was deployed above some ancient buildings. The 3D views make it easier 

for researchers to visualize unclear roads, broken bridges or unnoticeable rivers if 
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observed from the ground.  Figure 3 is from Historical England Magazine. It is clear that 

LiDAR is a critical tool for some archeologist research the surface of the ground (13; 14). 

 

 

Figure 2 Mapping LiDAR Image  

 

Figure 3 Archeology LiDAR Image 
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Highway Survey 

Figure 3 is from an article “Consider the Benefits of Mobile LiDAR for Transportation 

Projects” at Informed Infrastructure Magazine. LiDAR data of highways helps engineers 

to measure the road network (15), such as LiDAR width, elevation, and length of road 

facilities.  

 

Figure 4 Transport Planning LiDAR Image  

 

Solar Energy Planning  

Figure 5 is from an article “Solar Energy” at Terraremote Website. Solar energy is 

getting popular for heating economically and environmentally friendly (16; 17). The solar 

panel is designed to consume and transfer the heat energy from the solar system. There 

are some unique findings that can only be identified with LiDAR data. For example, 

LiDAR helps to find out a solar panel, if not toward the south, which will have a 

significant impact on the solar conversion potential.  
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Figure 5 Solar Energy Planning LiDAR Image 

 

Meteorology  

Figure 6 is from an article “Terrain-induced Windshear & Turbulence over the Hong 

Kong International Airport” at Hong Kong Observatory website. 

LiDAR has been used for the research and the study of the space and universe since the 

very beginning (18; 19). The LiDAR system could be deployed in the satellite, then the 

pulses are emitted from the satellite then hit the unvisitable particles in the space. That 

created image could help us to understand the climate change and the formulation of 

airflow.  
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Figure 6 Meteorology LiDAR Image 
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Imaging  

Figure 7 is from an article “UNAVCO Presents LiDAR Demonstration on Capitol Hill” 

on April 28th, 2010. This image gives the LiDAR scan results of three congressmen (20). 

LiDAR imaging technologies could help to create a 3D image of people or other objects. 

That would be useful for the 3D printing industry. Imagine you have some parts could not 

be easily manufactured in the traditional material forming way. A LiDAR system could 

be deployed and scanned the interested object, then 3D printing technology could be used 

to recreate the shape of this object. This would be important for some industries need to 

prototyping products within short time limits. LiDAR technology could also be used to 

track people in an indoor environment and improve the surveillance system detections. 

 

Figure 7 LiDAR Scan Showing 3D Image of Members of Congress 
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Vehicle Automation  

Figure 8 is from an article “A “low-cost” LIDAR for the autonomous car of tomorrow” at 

Nov 12th, 2016. LiDAR is also widely used in autonomous vehicles (21; 22). LiDAR is 

used to perceive objects around autonomous vehicles. Vehicles, bicyclists, and 

pedestrians are all point could in LiDAR data to be perceived and identified. More 

information about LiDAR application for vehicle automation is elaborated in the 

following chapter.  

 

Figure 8 Vehicles Automation LiDAR Image 
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1.4 LiDAR Vendor Information   

The LiDAR used in this research was purchased from Velodyne LiDAR Company. 

Velodyne LiDAR company was considered as one of the leading vendors in LiDAR 

market by researchers. Products in Velodyne LiDAR Company are displayed in the 

following table (23). 

The VLP-16 sensor was the smallest, and cheapest products in this company by the time 

this dissertation was written. The research group considered the VLP-16 is the more cost-

effective product than similarly sensors, this was especially important when a group of 

roadside LiDAR would be deployed along the road. Moreover, the VLP-16 retained the 

critical functions of Velodyne's LiDAR: real-time, round detection capability, long 

detection distance and relatively large points cloud.  Hence this product was chosen for 

this research. 

Mainstream LiDAR products in the current market are summarized in Table 3. 

Table 2 Mainstream LiDARs and its Specifications 

Key 

vendors 
Products Channels Range Degrees 

point per 

second 
Price 

Velodyne 

LiDAR 
HDL 64E 64 120 360 

2.2 

million 
$75,000 

 HDL 32E 32 80-100 360 
0.7 

million 
$29,900 

 VLP-16 16 100 360 
0.3 

million 
$8000 

 PUCK-Lite 16 100 360 
0.3 

million 

$8000 - 

$10000 

 Puck-High-

Res 
16 100 360 

0.3 

million 
Unavailable 
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Quanenergy 

Systems 
M8   360 

0.42 

million 
Unavailable 

 S3   120 
0.5 

million 
Unavailable 

 S3-Qi  100   Unavailable 

 Q-guard  100   Unavailable 

       

LeddarTech 
Leddar Sensor 

Evaluation Kit 
16 50 45  $299 

 
LeddarVu - 

STARTER 

KIT 

8 215 100  $575 

 

LeddarVu - 

Multi-Element 

Sensor 

Module 

8 215 100  $475 

 

LeddarOne - 

Single-

STARTER 

KIT 

 40 3  $170 

 

LeddarOne - 

Single-

Element 

Sensor 

Module 

 40 3  $115 

 

Leddar M16 - 

Multi-Element 

Sensor 

Module 

16 100 95  $590 

 

Leddar IS16 - 

Multi-Element 

Industrial 

Sensor 

16 50 45  $745 

       

Riegl 

VZ-2000 

Long-Range 

High-Speed 

3D Laser 

Scanners 

 2000 360 
0.4 

million 
Unavailable 
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VMX-1HA 

High-

Performance 

Dual Scanner 

Mobile 

Mapping 

System 

 420 360 
500 scan 

lines/sec 
Unavailable 

 

Other vendors such as Continental, Bosch, Delphi, Hella, Ibeo Automotive, Novariant, 

Phantom Intelligence, PulsedLight, Teledyne Optech, Trilumina, Valeo, and Innoviz have 

limited information. Those website links are summarized in Table 4.  

Table 3 Other Vendors Information 

Other 

vendors 
Website Information 

- Continental 
http://continental-automated-driving.com/Navigation/Enablers/High-

Resolution-Flash-LiDAR 

- Bosch 
http://safecarnews.com/bosch-invests-in-tetravue-for-3d-LiDAR-

technology/ 

- Delphi 

http://delphi.com/media-old/featurestories/lists/featured-stories/split-

second-decisions-br-how-delphi-is-using-multiple-sensing-

technologies-to-make-driving-even-safer 

- Denso 
http://www.eenewsanalog.com/news/denso-invests-laser-LiDAR-

startup 

- First Sensor 

AG 

https://www.first-sensor.com/en/applications/industrial/length-

measurement/laser-scanners-and-LiDAR-systems/ 

- Hella http://wardsauto.com/news-analysis/LiDAR-drives-hella-s-acc-bid 

- Ibeo 

Automotive 

Systems 

https://www.ibeo-as.com/aboutibeo/LiDAR/ 

- Novariant http://www.novariant.com/content/index.php/solutions-vision-sensors 

- Phantom 

Intelligence 
http://phantomintelligence.com/ 
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- PulsedLight 

https://www.sparkfun.com/products/14032?gclid=CjwKEAjw2qzHBR

ChloWxgoXDpyASJAB01Io04oL_kKdp3i5V8nlwzNVYkepLyznC8-

jn7SLu5O_kDBoCGPDw_wcB 

- Teledyne 

Optech 

http://www.teledyneoptech.com/index.php/products/airborne-

survey/LiDAR-systems/ 

- Trilumina http://www.trilumina.com/product-sheets.aspx 

- Valeo 
http://clepa.eu/mediaroom/valeo-offer-new-low-cost-solid-state-

LiDAR/ 

Innoviz https://www.innoviz.tech/innovizone 

 

1.5 Objective and Scope of the Research  

The LiDAR sensor is widely adopted for object perception and recognition in the 

autonomous vehicle field. Scholars from Victoria Transport Policy Institute (24) have the 

confidence that well-tested autonomous vehicles would be for sale to the public and 

legally drive anywhere around the 2020s. They also suggest that the AVs would 

constitute half of the market at the 2040s. This statement suggests a tremendous 

increasing demand for autonomous vehicles in the upcoming decades. As an 

indispensable component for autonomous vehicles, the price of LiDAR sensor will 

inevitably be dragged down as the result of the massive production of autonomous 

vehicles. This trend enables the traffic engineers to utilize cheaper LiDARs to obtain 

high-resolution dataset including location, speed, and direction information which could 

be used for connected-vehicle applications, micro-level traffic performance evaluation, 

and adaptive traffic control. 

However, the LiDAR application for transportation operation is different from a LiDAR 

application on its closest ally: autonomous vehicles. First, roadside sensing systems 

require LiDAR at fixed locations instead of a moving vehicle. The LiDAR will be 
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installed at the roadside, or on the poles’ top. Secondly, the system should be able to 

continually detect and track vehicles even without an ideal shape of the vehicle. This 

would demand the data processing algorithm to be scalable and robust to track the vehicle 

with a fewer channeled LiDAR sensor. Thirdly, the LiDAR sensor should be able to track 

the speed without the help of optical sensors. More sensors mean more maintenance labor 

and higher budgets, which would bring burden to the finance of city or state. In short, 

how LiDAR could help traffic engineers to gather critical micro information such as 

speed, volumes of traffic on the road, or conduct connected-vehicle applications, micro-

level traffic performance evaluation, adaptive traffic control is remained to be questioned. 

Therefore, this dissertation aims to give a clear answer to this question. 
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2. Literature Review 

2.1 Currently Connected Vehicle Research 

The U.S. Department of Transportation’s (USDOT’s) Connected Vehicle (CV)  Program 

collaborates with a lot of traffic agencies and entities and trying to develop technologies to 

link the traffic items on the road network, such as bus, truck, autonomous vehicles, 

pedestrians, and roadside devices (25). In short, the USDOT aims to test and to develop 

the technologies to enable the seamless communication among the traffic objects and create 

a smart traffic system. 

2.1.1 Communication 

DSRC (Dedicated Short Range Communications) is a two-way short-to-medium-range 

wireless communications capability that permits very high data transmission critical in 

communications-based active safety applications (26).  

The DSRC communication protocols constitute seven layers (from top to bottom): Safety 

Application Sublayer; Message Sublayer; Network and Transport Layer; LLC Sublayer; 

MAC Sublayer Extension; MAC Sublayer; Physical Layer (27). The Federal 

Communications Commission (FCC) allocates 75 MHz of spectrum in the 5.9 GHz band 

just for DSRC communication. The vehicle communications are expected to use these 

frequencies.  The cross-modal program from ITS office at USDOT is aiming to test and 

use DSRC as major technology, other communication protocols as supplemental 

technology to enable the seamless communication among the traffic objects and create a 

smart traffic system (28). 
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Other communication technologies, such as 3G/4G, Bluetooth or Wi-Fi was not considered 

as effective and robust as DSRC communication. Comparing to these technologies, DSRC 

would have some un-comparing advantages. First of all, DSRC has its own bandwidth. 

This means the safe communication between vehicles or infrastructures was maximized. 

Other communication protocols won’t have its own bandwidth; hence it is more susceptible 

to signal interference. DSRC also provide encrypted communication message protocols, 

which could further improve its safety. Secondly, safety information is given higher 

privilege comparing to other information. This is especially important because other 

communication protocols treat all messages equally. Traffic safety, without any doubt, 

should always be considered as a priority in the future intelligent transportation system. 

Lastly, DSRC is highly reliable even with high-speed moving objects or bad weather 

conditions. Other communication protocols, especially cellular networks, would 

periodically lose information packages with the harsh environment. 

In short, DSRC could allow for the most trustworthy, robust and high-speed commination 

for V2V and V2I applications (28). DSRC could be the foundation for future safety and 

mobility communication systems in ITS. 

2.1.2 Applications 

Over the last five years, application prototyping and assessment have been a focus of 

federal connected vehicle research and development activity (29). Many application 

concepts have been developed and implemented. But most of these applications are 

limited to the presentation. This section would introduce some of the applications most 

related to this dissertation. By reading this section, the readers would better understand 
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the significant contribution of this dissertation. 

 

V2I Safety 

• Stop Sign Gap Assist (SSGA) 

The roadside perception system would first perceive the objects and make the 

predictions of the position of those objects. Then that likely collision information is 

broadcasted for both parties at stop signs.  

• Curve Speed Warning (CSW) 

The roadside perception system would first perceive the objects speed and make the 

predictions whether this object would pass the curve safely. Then those likely run out 

of the way warning information is broadcasted for speeding vehicles.  

• Pedestrian in Signalized Crosswalk Warning (Transit) 

The roadside perception system would first perceive the pedestrian/bus speed and make 

the predictions whether the bus will collide with the pedestrian. Then those likely 

collision warning information is broadcasted for speeding vehicles.  

 

V2V Safety 

• Forward Collision Warning (FCW) 

The roadside perception system would perceive the leading/following speed and make 

the predictions whether the following vehicle has enough stop time. Those crash 

warning information would help the following vehicle driver gain more response time 

and take necessary actions to avoid a head-on crash.  

• Intersection Movement Assist (IMA) 
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The roadside perception system would perceive all the objects on the road. If some 

huge commercial truck is blocking some driver’s view of opposing or crossing traffic 

(vehicle or pedestrian), this system will broadcast those warning information to the 

drivers. 

• Blind Spot/Lane Change Warning (BSW/LCW) 

The roadside perception system would perceive all the objects on the road. If some 

drivers would like to make the lane change but failed to notice the vehicle in his blind 

spot, the warning information would be broadcasted by roadside perception system. 

This would help the drivers to prevent crashes with dangerous lane changes.  

Environment 

• Connected Eco-Driving 

The roadside perception system would perceive all the objects on the road. The 

roadside system would further predict the optimum speed profile for each vehicle. 

Those recommended speed profile could be used as input for connected vehicles. By 

adopting those recommended driving speed profile, vehicles would save the fuels and 

drive more eco-friendly.  

• Eco-Cooperative Adaptive Cruise Control 

The roadside perception system would perceive all the objects on the road. That 

collected information includes speed, acceleration, and location. These data could be 

analyzed and then feed into connected vehicles.  If these data have been put into a 

vehicle’s adaptive cruise control system, then the vehicle could seek the best adaptive 

cruise control strategy to reduce the fuel consumption and emissions. 
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Mobility 

• Dynamic Speed Harmonization (SPD-HARM) 

The roadside perception system would perceive all the objects on the road. That 

collected information includes speed, acceleration, and location. These data are used to 

find the recommended target speed for all vehicles on the road. If there is a traffic jam, 

this system is expected to maximize throughput and reduce crashes. 

• Queue Warning (Q-WARN) 

The roadside perception system would perceive all the objects on the road. It aims to 

give drivers the information about how many vehicles in the queues. 

• Incident Scene Work Zone Alerts for Drivers and Workers (INC-ZONE) 

The roadside perception system would perceive all the objects on the road. It would 

predict the trajectories of incoming vehicles and gives the rank of risk based on the 

speed and trajectory. It would save on-scene worker’s lives. Moreover, that information 

would be broadcasted to incoming vehicle drivers, to notify them the location of 

workers and aid the driver to make decisions such as stop, slow down or lane changes. 

 

2.1.3 Others 

Jackeline et al. (30) proposed an innovative idea about how to coordinate connected 

vehicles when they are merging into the highway. This was particularly interesting 

because the merging area was considered one of the most dangerous segments of the 

highway. This research formulated the problem to be a optimize problem, which had the 

objective as finding a secure and fuel-efficient strategy, such as what was the best speed 
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profile for approaching the vehicle to choose and what is the optimal arrival time. He 

validated the effectiveness of algorithms based on simulation and claimed that this 

solution would tremendously decrease fuel consumption amount and travel time in 

merging areas, more importantly, those algorithms could help avoid any possible 

collisions. 

Some researchers were studying how to defend connected vehicles against malware. 

Zhang et al. (31) claimed that the connected vehicles were becoming sensible for 

malware; because hackers and car hobbyist were all had more tools to compromise the 

security of the control units in connected vehicles. In this paper, he mentioned that 

Polymorphic malware, an artificial intelligence based malware that contained a malicious 

evolutionary code which could modify itself in every generation, was especially 

dangerous. The future connected vehicle users might download this type of malware into 

the system, and then put themselves lives in danger. He also claimed that the current 

malware detection methods all had limitations. In this research, a cloud-assisted vehicle 

malware defense framework was proposed to solve this problem. Cloud services were 

used to help connected vehicle users to identify malware, and to protect their safety and 

investment.  
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2.2 LiDAR Data-Processing Algorithms for Autonomous Vehicle Research 

2.2.1 Introduction 

Autonomous driving research launched at Carnegie Mellon University. They started their 

Navlab vehicles development project (32) in the 1980s. When EUREKA project was 

finished in 1994, the autonomous driving speed could reach up to130 km/h, with the 

ability to monitor both lane markings and surrounding vehicles (33). Today, CMU still 

leads many projects related to autonomous vehicles (34). Autonomous Driving Motion 

Planning project targets to create cost-effective, high-performance moving planning 

strategies for highways and local streets. Autonomous Vehicle Health Monitoring 

projects will absorb knowledge about the current state of their perception, activation, and 

computing capabilities into their jobs and route planning. Autonomous Vehicle Safety 

Verification Project explores all potential driving choice of an autonomous vehicle. This 

project is rooted in the fact that autonomous vehicle might not violate specified safety 

properties such as lane departures or vehicle collision. However, it might have deviate 

from the original designed path to avoid unplanned obstacles. This project detects any 

possible acceptable violation. 

The autonomous vehicles usually equipped with sensors which could perceive the 

surroundings, a high-performance embedded computer, and some actuators to control the 

vehicle. Figure 9 shows the LiDARs adopted by some participated vehicles at the 

DARPA Urban Challenge. The LiDARs are usually installed at the top of the vehicles. 
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Figure 9 Testing Vehicles in DARPA Urban Challenge 2007, with Sensors on Top 

Accurately and efficiently perceive the static or mobile objects around the AVs, was 

considered as most challenging task among all the necessary functions in AVs (35). Most 

of the current research combines the strength of LiDAR sensors and other sensors, such 

as cameras. The following chapters will illustrate and explain each step for LiDAR data 

processing in autonomous vehicles field. 
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2.2.2 Data Representation 

Point cloud, feature-based cloud, and voxel-cloud are three most popular kinds of LiDAR 

data structures for autonomous vehicle environment representation (36). Point cloud 

generates an accurate representation, and easy to implement; nevertheless, it needs 

considerable computer resources such as large memory and computing resources, such as 

workstations. So, it is ideal for research purpose. Feature-based methods use local 

features, such as lines (37), surfaces (38) or superquadrics (39) to represent the sensor 

information. However, in practice, this method has many steps to implement thus are 

difficult for researchers new to this area. Voxel-cloud methods (Figure 10 suggested)  

voxelize the space into smaller grid particles, and each particle contains the summary 

information in that cell. Voxel-cloud method consumes less memory, could be easily 

implemented by researchers, hence considered as the most popular method for sensor 

data representation in autonomous vehicle research field.  

 

Figure 10 Grid-Based Data Representation Example 
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2.2.3 Ground Surface Perception 

Correctly and accurately identify and segment the ground scanning plane is an essential 

step for the proposed data processing procedure. The Random Sample 

Consensus(RANSAC) (40) estimated the parameters from the assumed mathematical 

model. By iteration enough times, this method would consider the best-matched model as 

the candidate model for the dataset. This method was widely used in ground surface 

perception. The RANSAC iteration method contained four steps. First, a portion of the 

raw data was randomly chosen; this portion of data was called as hypothetical inliers. 

This predefined model was constructed by using these hypothetical inliers. Then all the 

rest of data were calculated against this predefined model; those points fitted this model 

well would be incorporated into this model. This larger estimation model was considered 

as a good model if there were enough points in this model. Finally, if the model was not 

good, another subset of the dataset was randomly selected and estimated. RANSAC can 

estimate the surface function parameters even with significant noises presented in the 

dataset, but it had no guarantee of delivering optimal solutions within limited iterations. 

This suggested that by computing a more significant number of iterations, the optimized 

solution was approximated. Other variants of RANSAC methods were also tested. 

RANSAC solved the selection problem as an optimization problem with a bounded loss 

function. The loss function was decided as a summation of geometric distance for every 

point to the estimated plane. When a point was within allowed distance, this point was 

considered belonging to the estimated plane hence the loss value for this point is set to 

zero. MSAC (M-estimator SAC) adopted a different loss value for points within allowed 
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distance, while the MLESAC (Maximum Likelihood SAC) utilized different probability 

distribution at loss function for points within and outside allowed distance to evaluate the 

hypothesis. MLESAC modeled inlier points as unbiased Gaussian distribution and outlier 

points as uniform distribution. Partial evaluation methods, such as Randomized 

RANSAC (rRANSAC) and Randomized MSAC (rMSAC), first performed a preliminary 

test, and full estimation was only conducted when the hypothesis passes the test. This will 

decrease the necessary number of data for estimation, so would increase the speed. 

Guided sampling method, such as PROSAC (Progressive SAC), used prior knowledge 

such as a matching score, to generate candidate estimation from top-ranked data points. 

Guidance would reduce the necessary number of iteration than random sampling. 

However, it can make RANSAC slower due to additional computation burden. RANSAC 

needed to tune two variables concerning the given data: a threshold C for evaluating 

hypothesis (Here is the deviated angle) and an iteration number T for generating enough 

hypotheses. Least Median of Squares (LMedS) method did not need any tuning variable 

because it tried to minimize median squared error (9). Thus it was considered as a robust 

estimation. The robust here mean fast and insensitive to noises of the dataset.  
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Figure 11 RANSAC Segmentation Example 

Figure 11 suggests a step in classic RANSAC segmentation process. It should be noted 

that RANSAC would achieve its best performance when the detected ground is flat. 

When testing this method against intersection with large grades, the ground segmentation 

purpose is not satisfactory. The ‘V-disparity’ approach (41) uses stereo cameras to 

perceive the ground surface. Petrovskaya et al. (42) proposed an interesting method to 

detect ground using LiDAR data. If A, B, C are three scans on a flat surface. The slope in 

the middle of AB and BC should be near 0. This research proposed another geometric 

way to approximate the flat surface, unlike the mainstream RANSAC way. 

Figure 12 is a raw LiDAR data frame, which contains concentric circles on the ground. 
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Figure 12 Raw LiDAR Data (Concentric Circles Indicate Ground Surface) 

2.2.4 Pedestrians and Moving Vehicles Perception 

How to perceive pedestrians and vehicles is considered as the most critical step. After 

ground surface perception and segmentation, the point clouds clusters are what left for 

recognized. These unidentified point clouds clusters are subjected to classify into 

passenger cars, bikes, and pedestrians. There is extensive research in this area. 

Himmelsbach et al. (43) proposed a fast response 3D object perception procedure which 

could be applied to autonomous vehicles. In this paper, both object level features and 

Histograms of Point Level Features were removed. The object level features included 

Maximum object intensity, Mean object intensity variance, Object volume V. The Point 
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level features included Lalonde features L1, L2 and L3, and Anguelov feature A1. An 

SVM classifier was adopted to classify objects.  Two types of labels were identified: 

Vehicles or Non-vehicles. They claim that the accuracy could approach 96.7%. It is said 

that only 6 objects were assigned wrong labels from a total of 182 samples. Then a 

multiple model Kalman Filtering method was used to track the pedestrians or moving 

vehicles. 

 

 

Figure 13 Objects Detected by a Fast Response Procedure 

Figure 13 was from Himmelsbach’s paper LiDAR-based 3D object perception (43).  
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Vatavu et al. (44) utilized 3D data extracted from dense stereo to construct the DEM map 

with clear connection among closed 3D geometrical locations. Then the particle filter 

tracking method was used to track the objects from the DEM map.  

Asvadi et al. (45) utilized the 2.5D voxel spaces to separate input space. A 2.5D 

combination map was constructed by using input LiDAR data and localization data. This 

2.5D motion grid was designed by comparing the current voxel space and updated static 

map. Then a Kalman Filter based tracking method was adopted for track moving objects. 

Nashashibi et al. (46) addressed the problem of detection, tracking, and irrelevant object 

classification.  The adopted some creative metrics such as the combination of geometrical 

information of the potential objects, the predicted occluded part information, and the 

length of tracking time. By experiment that method on lots of miles of driving data, this 

method was claimed to be effective, regardless what type of LiDAR sensor they deployed 

on the vehicle. 

Using LiDAR alone could perceive the pedestrians and moving vehicles with high 

accuracy. However, most of the latest research utilized both LiDAR and optical sensors 

to gain more features in order to increase accuracy further. Cristiano et al. (47) proposed 

such a system. First of all, a linear Kalman Filter was adopted to segment space. The 

segments were then clustered. The feature vector contained five elements: segment 

centroid, normalized Cartesian dimension, internal standard deviation, Radius and mean 

average deviation from the median. The GMMC classifier was adopted as a LiDAR-

based classifier. In the vision-based system, Haar-Like features were extracted, and the 

AdaBoost classifier was trained to conduct object detection. To effectively establish the 
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link between LiDAR features and image features, a coordinate transformation system was 

constructed to find ROI in the image frame. A sum rule was then used to combine the 

output of each classifier based on posterior probability calculated by each classifier. The 

advantages of using a LiDAR associated with vision system were 1) the laser sensor was 

not very sensitive under extreme weather changes; 2) the distance/depth measurement 

was accurate; 3) vision system is cheap and contains differentiable features. In their later 

research (48), A 15-dimensional LiDAR-based feature vector, as well as classic HOG and 

COV features were extracted. Then naïve Bayes, GMMC, MCI-NN, FLDA, and RBF-

SVM were deployed on the same dataset and compared. Two sensor fusion architectures, 

centralized and decentralized, was described and discussed. The result suggests that, 

combined with visual/color features, the proposed methodology would lead to a higher 

detection accuracy. Figure 15 depicts such a process (47). 

 

Figure 14 LiDAR and Image Feature Extraction and Fusion Example 

Szarvas et al. (49) proposed a LiDAR and image integrated method and claimed accuracy 

of detection more than 90%.  His method first used a LiDAR to locate the ROI (Region 

of Interest) fast, and then adopted a Convolutional neural network-based system to 

classify different objects. 
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2.2.5 Road Shape Estimation 

Huang’s thesis (50) described algorithms for feature detection and curve estimation, as 

well as an innovative curve representation that permitted quickly and efficient lane 

approximation. Road shape estimation could be very useful for lane change behavior 

detection, or lane change crash prediction. By the time of this dissertation was written, 

these applications have not been incorporated into the future research plan. Although 

road shape estimation is not indispensable for traffic engineers, this step is essential for 

autonomous vehicles to perceive the surrounding and to make decisions if in an 

unfamiliar environment.  
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2.2.6 Summary 

Table 5 summarizes some of the most cited perception data processing procedure 

literature, especially in autonomous vehicle field (44; 45; 51; 52).  

Table 4 Some Recent Work on 3D Perception System  

 

In sum, to efficiently utilize LiDAR sensor data, first, the ground plane needs to be 

identified and segmented. Then different objects, such as pedestrian and vehicles, are 

classified based on its different features.  For most of the autonomous vehicles, both 

LiDAR and image features are adopted to improve the accuracy of identification and 

tracking result. However, The LiDAR application for roadside traffic surveillance is 

different with LiDAR application on autonomous vehicles. The LiDAR will be installed 

at the roadside, at the top of the signal pole, even at the top of the electrical pole. 

Secondly, the system should be able to continually detect and track vehicles even without 

an ideal shape of the vehicle. This would demand the data processing algorithm to be 

scalable and robust to track the vehicle with a fewer channeled LiDAR sensor. Thirdly, 
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the LiDAR sensor should be able to track the speed without the help of optical sensors. 

More sensors mean more maintenance labor and higher budgets, which would bring 

burden to the finance of city or state. Fourthly, it is unclear whether multiple LiDAR data 

fusion is possible. Therefore, a data-processing procedure needed to be developed 

specifically for roadside LiDAR sensor data. This procedure needs to be able to track a 

vehicle without a good shape and function without the support of other optical sensors. 
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3.  Procedure for Extracting High-Resolution Trajectories 

The LiDAR sensor adopted in this dissertation is Velodyne VLP-16, which has the 

following specifications: 16 channels, 300,000 points per second, and has 360 degrees 

horizontal Field of View (FOV) as well as 15 degrees vertical FOV. Research group 

purchased this LiDAR sensor at a price of $8000 at 2015. Although there are other better 

LiDAR sensors, such as 32 channels HDL-32E or 64 channels HDL-64E, the VLP-16 

was considered best for research for its affordable price.  

The data processing procedure proposed in this research (53; 54) includes several 

modules such as preprocessing of the raw data, statistical outlier removal, a Least Median 

of Squares based ground estimation method to accurately remove the ground points, 

vehicle data clouds clustering, a Principle Component-based oriented bounding box 

method to estimate the location of vehicle, and a geometrical based tracking algorithm. 

3.1 Raw Data Processing 

The preprocessing algorithm first removes the 3D points of LiDAR sensor itself. The 

removing range usually could be set within one meter, which means all the data points in 

this one-meter radius range would be deleted. The reason for this step is the LiDAR 

sensor‘s data in this range has no valuable information. The region of interest (ROI) is 

then determined relied on the intersection’s geometry. First, the buildings, trees, traffic 

signs and other irrelevant objects would be filtered out from the original raw dataset. 

Filtering of the irrelevant object would decrease the data size for processing. So this will 

increase the efficiency of the follow-up algorithms by searching fewer points or spaces. 
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The background filtering will also reduce the influence of uninteresting objects in this 

step. Figure 15 shows the difference between a raw data frame and a preprocessed data 

frame. 

 

Figure 15 Raw Data Frame (Left) and Data Frame after Preprocessing (Right) 

3.2 Statistical Outlier Removal 

This step removes the noise data points near the targeting objects. These noises in each 

data frame would complicate the vehicle identification and tracking and could introduce 

errors of vehicle locations and speeds. A statistical outlier remover algorithm (55) was 

applied at this step. This sparse outlier removal algorithm is based on the computation of 

the distribution of its K neighbor’s distances in the input data frame. For each point, the 

algorithm will compute the average distance to all the points close to it. It is assumed that 

all the points would follow a Gaussian distribution. Then by plotting all these points into 

the Gaussian distribution figure, any points outside of predefined standard deviation 

would be recognized as noise points and removed from the dataset. Figure 16 presents the 

comparison of before and after the outlier removal step. 



40 

 

 

 

Figure 16 Data Frame Before Outlier Removal (Left) and After Outlier Removal 

(Right) 

3.3 Ground Plane Identification and Segmentation 

Ground plane identification and segmentation is an essential step for the proposed data 

processing procedure. The ground plane here is defined as a group of concentric circle 

points when LiDAR is scanning the ground. So, these sparse noises are subject to be 

identified and removed. The ground plane is recognized as the noise of the data frame, 

thus Random Sample Consensus(RANSAC) (40). The input of RANSAC method 

contains three parts: the data to be processed, a candidate mathematical model fit into the 

data frame outliers, and parameters related to the approximation of the model. Here a 

mathematical model was considered as a surface function which could represent the 

ground plane. There are two critical parameters. The first parameter is iteration times. 

The iteration limits were set to 200 times regarding efficiency and success rate.  The 

second allowed error parameter is the allowed deviate angle. This deviate angle was set 

to 15 degrees, which means the direction of the estimated surface could not deviate 15 

degrees away from the vertical vector (0, 0, 1).  If the estimated surface has a degree 
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more significant than this, it will automatically trigger failure segmentation. The 

RANSAC iteration method contains four steps. A random portion of the raw data was 

selected first. This portion of data was called as hypothetical inliers. Then all the rest of 

data were calculated against this predefined model; those points fitted this model well 

would be incorporated into this model. This larger estimation model was considered as a 

good model if there were enough points in this model. Finally, if the model is not good, 

another subset of data frame was randomly selected and estimated. RANSAC can 

estimate the surface function parameters even with significant noises presented in the 

data frame, but it has no guarantee of delivering optimal solutions within limited 

iterations. This suggests that by computing a more significant number of iterations, the 

optimized solution was approximated. Other variants of RANSAC methods (56) were 

also tested. RANSAC solves the selection problem as an optimization problem with a 

bounded loss function. The loss function is recognized as a summation of geometric 

distance for all the points to the estimated plane. When a point is within allowed distance, 

this point is considered belonged to the estimated plane hence the loss value for this point 

is set to zero. Least Median of Squares (LMedS) method does not need any tuning 

variable because it tries to minimize median squared error (57). Thus it is considered as a 

robust estimation. The robust here means fast and insensitive to noises of the data frame. 

Different modified RANSAC methods were tested against same data frames; the LMedS 

model was found to achieve high accuracy while only consume a limited computation 

time, as presented in Table 6. Therefore, it was adopted for ground plane segmentation 

method in this research.  The accurate frame in the table was defined as a frame whose 
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ground plane was perfectly removed and there is no scanning line on the ground left for 

this frame after ground plane segmentation. 

Table 5 Ranking Table in Terms of Average Segmentation Time and Accuracy 

against Three Hundred Frames 

Name RANSAC MSAC MLESAC rRANSAC rMSAC PROSAC LMedS 

Time 1us 1us 1us 2us 2us 2us 1us 

Accurate 

Frame 

Numbers 

231 242 25 187 158 236 291 

 

It should be noted that none of the mentioned methods could guarantee a perfect 

segmentation for all tested data frames, thus in this research, a follow-up cleaning 

algorithm was designed. This algorithm removes a 0.2 meters thick cuboid by utilizing 

the plane model parameters, instead of just removing points in a plane. This follow-up 

algorithm deletes residual ground points around the plane while keeping the vehicle 

clouds points integrated and completed. Figure 17 indicates this effort. 

 

Figure 17 Data Frame After Outlier Removal (left) and Data Frame After Ground 

Plane Removal (right) 
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3.4 Vehicle Clustering 

A clustering method is needed to cluster separate points to vehicles. The algorithm 

applied in this research was developed by Rusu et al. (58). This clustering algorithm was 

named Basic Clustering Techniques. The critical part is let the system understand what an 

object point cluster is, and what makes it different from one another. A threshold is 

required as the input to this algorithm, a minimal distance between two cloud sets needs 

to be estimated. He proposed to approximate nearest neighbors via the KD-tree structure 

(59). First, an empty list of clusters was set up, and an empty queue was set up. Then for 

a random point P in a LiDAR data frame, it is added to the current queue. The algorithm 

then searches points within a user-defined radius from point P. These neighbor points are 

marked as processed points, and won’t be added to another queue. After the search for 

point P and adding all its neighbor points into the current queue, the corresponding queue 

will be saved then a new one is created. The next candidate point is randomly selected, 

and its neighbor points are searched in the same method. The algorithm terminates when 

all points are scanned and selected. After clustering, the points are grouped into 

individual objects and subject to extract the useful information. Figure 18 demonstrates 

clustered result. 
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Figure 18 Clustered Results: The Blue Points Indicate Preprocessed Data; the Green 

Points Indicate Clustered Interested Vehicles 

3.5 Vehicle Identification 

Because the LiDAR sensor would penetrate the window of vehicles, or merely the 

scanning could not cover every corner of the vehicle, the vehicle identification step is to 

identify the location and shape of vehicles accurately. The space center of a cluster is first 

identified to represent the location of vehicles. However, the center of a vehicle shifts 

frames by frame due to the incomplete structure of objects. The LiDAR sensor only able 

to detects part of a vehicle body in a frame, so the detected part changes when the vehicle 

moves.  

Thus, a reconstruction method is used to restore the shape of vehicles before 

identification the actual location of vehicles. It is a problem of finding the minimum-

volume Oriented Bounding Box (OBB) by using the extracted object data points. There 
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are several methods to identify the OBB for a group of points: O’Rourke’s Algorithm, 

Brute-Force Methods, PCA-Based Methods and some other method like (1+ε)-

Approximation(60). In this research, a min-max PCA based OBB method was used to 

identify vehicle boundaries. This method first calculates the principle or eigenvectors, 

and then a reference coordinate system is constructed based on these eigenvectors. The 

original vehicle cluster is translated into this new reference coordinate system, and a 

bounding box is constructed for the vehicle. This bounding box is then translated back to 

the original coordinate system and used as the optimum bounding box for this vehicle. 

The front corner point and back corner point, which are closest to the sensor, are 

identified as a key data pair to represent the location of this vehicle. Figure 19 indicates 

the identified a vehicle boundary and the points used to track a vehicle. 

 

Figure 19 Identified Vehicle Boundary and Key Data Pair 

3.6 Vehicle Tracking 

Finally, an object tracking algorithm was developed to track vehicle trajectories. This 

tracking algorithm utilizes the geometric location information of vehicle key data pair to 

identify key points in different frames belonging to same vehicles. The algorithm tracks 
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the front key point when the vehicle approaching the sensor and tracks the back corner 

key point when the vehicle is leaving the sensor.   

Figure 20 describes the whole data processing procedure. 

 

Figure 20 Flow Chart of Vehicle Speed Tracking with a Roadside LiDAR 
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3.7 Validation of Data Processing Procedure 

The data processing procedures have been tested with data collected at three sites. These 

datasets are considered be able to represent real traffic scenarios.   

To compare the tracking results and actual vehicle speeds, the authors installed a logging 

system in a testing vehicle. The logging system read and stored vehicle speeds from the 

onboard diagnostics (OBD) interface of the vehicle. This dataset was collected at the 

University of Nevada, Reno’s northern parking lot. Figure 21 presents the comparison of 

the extracted speeds from LiDAR data and the logged speeds of the testing vehicle. The 

tracking results of both directions match the OBD speed very well, indicates that this data 

processing procedure is precise and able to track vehicles in both directions. The X-axis 

unit is frame index, Y-axis unit is Mph, blue points indicate tracking result, and the red 

line indicates OBD speed. 

 

 

Figure 21 The Parking Lot Tracking Results  
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Another dataset was collected at the intersection of Evans Street and Enterprise Road in 

Reno, Nevada which is a two-way-stop-sign intersection with four legs. Trajectories of 

two vehicles are shown in Figure 22. The first vehicle stopped at the eastbound 

Enterprises Road, waited for a gap and then crossed the intersection. The follow-up 

vehicle decreased the speed and waited for the leading vehicle to pass the street, as the 

frame index 4000-4500 indicates. The follow-up vehicle then accelerated and approached 

to stop bar.  When there was a gap, it accelerated sharply and crossed the intersection.  

 

 

Figure 22 Evans and Enterprise Stop-Sign Two Vehicles Tracking Results 

The data processing procedure was then applied to the data collected on Kietzke Lane. 

Kietzke Lane is an arterial road with the speed limit of 40 mph in Reno, Nevada. Figure 

23 shows the tracking results. It should be noted that some vehicles slowed down when 

approaching the sensor, this is possibly the data collection attracted drivers’ attention and 

caused the speed reduction.  

0

2

4

6

8

10

12

14

16

4300 4350 4400 4450 4500 4550

First Vehicle 

0

2

4

6

8

10

12

4300 4400 4500 4600 4700

Following Vehicle



49 

 

 

 

 

Figure 23 Kietzke Lane Tracking Results  

Another finding from this research is that the tracking speed of the vehicle passing the 

sensor using this data processing procedure might suddenly drop or increase. The 

scanning shape of the vehicle may not be complete when the vehicle is close to the 

sensor, so when tracking the vehicles, the front key point would be cut short, this would 

cause the drop of the tracking speed.  The sudden increase in speed is also possible 

because the sensor saves next frames vehicle data into current frame, which would cause 

a sudden extension of the front tracking point. Both situations are not likely to happen 

when there is a distance, preferably three meters, between the sensor and vehicles. 

Although these scenarios do not happen a lot, they should be identified, smoothed and 

reported before generating the actual tracking speed profiles in practice. 
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4. Object Recognition from a Roadside LiDAR Sensor 

How to differentiate pedestrians/bicyclists and vehicle/bus is another crucial task in this 

research. In general, the object recognition contains three significant steps. First, feature 

extraction needs to be conducted. Secondly, appropriate classifier needs to be selected. 

Thirdly, the objects need to be classified accordingly.  

4.1 Literature Review 

Himmelsbach et al.  (43) proposed using feature vectors to describe LiDAR scanned 

objects. The feature vectors contained object-level features and histograms of point level 

features. The object level features included the largest object intensity, average object 

intensity, object intensity variance and object volume. The point level features included 

Lalonde features which could describe the scatter-ness, linear-ness and surface-ness, and 

Anguelov feature which could capture the distribution of data clouds. A kD-tree was 

constructed to do a fast search. A support vector machine (SVM) was trained on a already 

labeled training data-set. The target of classification was to tell the difference between 

vehicle and non-vehicle. In the paper, there were 176 out of 182 objects correctly 

classified, yield 96.7% accuracy. This research used a Velodyne HDL- 64 LiDAR. 

Teichman et al. (61) proposed using Holistic descriptors and Segment Descriptors to 

describe objects. Holistic descriptors included the highest speed, average speed, highest 

acceleration, average acceleration, highest angular velocity and some segment 

descriptors. The segment descriptors included oriented bounding box size, spin images, a 

histogram of oriented gradients. An augmented discrete Bayes filter classifier was 
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developed to classify objects fast. In this paper, the researcher of Stanford University 

could achieve 98.5% accuracy on a 1.3 million labeled point clouds dataset. The task of 

classification was to classify between car, pedestrian, bicyclist, and background classes. 

This research used a Velodyne HDL-64E LiDAR sensor, which could generate about 1 

million data points within one second. 

Maturana et al. (62) proposed VoxNet, a new 3D convolutional neural network (CNN) 

for real-time object recognition. This system majorly addressed the problem of how to 

efficiently calculating along with huge amounts of point cloud data. The proposed system 

has two parts; one was a volumetric grid to represent the estimation of occupancy, the 

other one was a Convolutional Neural Network (CNN) would predict the class directly 

from the occupancy grid. The authors claimed that volumetric grid have more 

information than typical point clouds representation, and this representation would be 

very efficient. The authors argued that there were three motivations for them to choose 

CNN. The first reason was CNN could directly input volumetric grid information; this 

would make the classification task easier. The second reason was by stacking multiple 

layers this type of neural network could represent larger spaces. The third reason was that 

the commercial graphics hardware could easily support that. The proposed CNN 

consisted of Input Layer, Convolutional Layers, Pooling Layers, and Fully Connected 

Layer. The whole data processing framework was tested on Sydney Urban Objects 

Dataset, which contained labeled Velodyne HDL-64E LiDAR scans in 26 categories, for 

example 4WDs, cars, buses, trees, pedestrians, and buildings. 
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Lai et al.(63) proposed a way to using Google’s 3D warehouse to train and classify 

objects. In this paper, they optimized a technique for shape feature-based recognition and 

introduced a probabilistic, exemplar-based classification method. They also displayed 

how to use Google’s 3D warehouse to increase the performance of object recognition in 

another domain. In this research, they used a smaller set of spin image signature for each 

point as well as segment’s minimum height as feature descriptors. A domain for 

exemplar-based learning approach was applied afterward. The results suggested that this 

domain adaption-based classifier outperformed LogitBosst and Multi-class SVM in 

accuracy and robustness. 

4.2 Support Vector Machine 

A support vector machine seeks to create a hyperplane in a very high dimensional space, 

and originally designed for the solving of two-class classification problems. To put it in 

another way, the SVM seeks the optimum hyperplane which would allow the maximum 

geometrical separation between two classes. The points on the hyperplane are called 

support vectors. Due to the nature of the dataset, sometimes it is impossible to achieve a 

perfect separation. Hence SVM could use slack variables to allow some of the points 

located in the opposite class.  SVM seeks to optimize its primal problem to find the most 

significant margin in the dataset. Figure 25 depicts a two-class classification case using 

SVM. 
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Figure 24 A SVM Classification Example 

Given the training vectors Xi, I =1…,n, in two classes, and a vector y, SVM aims at 

solving the following primal problem (64; 65): 

 

The kernel is a way of mapping the vectors in another higher feature space. A kernel is a 

function kk that corresponds to this dot product, 

 i.e., k(x,y) = φ (x) Tφ(y) k(x,y) = φ(x) Tφ(y).  

If some objects are not linearly separable in a lower feature space, mapping in higher 

feature space may allow it become linear separable.  
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4.3 Object Recognition Study 

Selecting great features is the key for correctly identify objects. From the literature 

review, we could learn that the features fall into three types. Point features use a 

histogram to describe its features. Local features define a small area to describe the 

features. Global features adapt the whole data cloud geometric information. In this 

research, the shape of cloud points keeps changing, so it is very unstable to use local 

features or global features to describe the clouds. Three eigenvectors, as well as the cloud 

point’s number, are used as features to achieve this discriminative task. Several different 

Support Vector Machine classifier (66) was then tested on those features to assign class 

labels. 

Table 6 Part of Training Table, Identification Zero Indicate Pedestrian/Bicyclist, 

Identification One Indicate Cars/Buses 

Identification Eigenvector1 Eigenvector2 Eigenvector3 Point numbers 

0 1.6086 1.37415 0.508575 80 

0 1.6487 1.37721 0.377087 67 

0 1.62817 1.38084 0.404202 60 

0 1.61167 1.207 0.401193 62 

0 1.61415 1.23093 0.457184 59 

0 1.49094 1.23088 0.576513 61 

0 1.39088 0.74139 0.373193 15 

0 1.36448 0.583993 0.342423 14 

0 1.39329 0.68799 0.651142 19 

0 1.39027 0.767213 0.582005 19 

0 1.37912 0.814165 0.649501 21 

0 1.36489 0.687317 0.552423 18 

0 1.34833 0.539579 0.476426 15 

0 1.32924 0.695193 0.417093 18 

1 3.70775 1.83262 1.24179 68 

1 3.88347 1.84832 1.77437 102 
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1 3.94735 1.86505 1.71187 106 

1 3.93755 1.91298 1.66293 109 

1 3.91298 1.76556 1.59001 109 

1 3.96283 1.77208 1.10843 109 

1 4.0024 1.80707 1.3942 120 

1 3.87637 1.88138 1.49816 148 

1 11.0421 2.98472 2.28897 118 

1 11.1075 2.99588 2.16623 114 

1 11.1406 2.90252 2.22607 108 

1 10.8162 3.04487 2.04528 192 

1 10.9052 3.03547 2.12502 186 

1 10.1597 4.61755 3.13038 323 

1 10.3946 4.7539 3.11835 335 

 

 

Different type of SVM classifier was tested using the same training dataset. Table 7 

contained the test result. 

 

Table 7 Different SVM Classifier Testing Result Table 

SVM Type Bus Car Pedestrians Bicyclist Accuracy 

Linear 

Kernel 

2 for 

2 
29 for 34 2 for 2 0 for 0 0.86842 

RBF 

Kernel 

2 for 

2 
31 for 34 2 for 2 0 for 0 0.92105 

Poly Kernel 
2 for 

2 
28 for 34 2 for 2 0 for 0 0.84211 
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5. Case Study 

The proposed data processing procedure in this research could be used to identify how 

many vehicles and pedestrians are passing through an intersection. 1000 frames of 

LiDAR data at the intersection of 15th Street and Virginia Street near the University of 

Nevada; Reno was selected as the case study data source. The red five-pointed star in 

Figure 25 indicated the location of the LiDAR sensor. This intersection was selected for 

several reasons. First, the research objects, such as different type of vehicle, bicyclist, and 

pedestrians at this intersection were abundant. The Virginia Street was considered as one 

of the most important arterial roads in Reno, and 15th street provided direct access 

entering the campus. This intersection was usually busy and especially crowded at peak 

hours. Secondly, this intersection was a two way stop sign intersection. This type of 

intersection was not researched in the validation process; hence research on this 

intersection would provide more insight for two-way stop sign intersections. Thirdly, the 

LiDAR was mounted at a signal pole, rather than on a tripod at this intersection. It was 

believed that the LiDAR sensor would be mounted on a signal pole in practice for 

LiDAR safety concerns. Whether the data processing procedure still works well when the 

latitude of LiDAR was adjusted should be tested. In sum, this intersection was considered 

as the best location for a case study from the research group.  
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Figure 25 Google Map for Case Study Site 

The datasets collected at this intersection contains hours of traffic data. A portion of this 

dataset was chosen to study the detailed tracking results. The criteria for choosing such a 

portion were followed: 

1) This portion has abundant vehicle data, both buses and vehicles data should exist; 

2) This portion has both stop-go and free flow traffic scenario, so both scenarios 

could be researched; 

3) This portion has pedestrians crossing so the pedestrian tracking capabilities could 

be researched; 

4) This portion has left turn vehicle, so the speed profile of left-turn vehicle would 

be researched. 
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Frame number 11000-12000 was considered meet the selection criteria defined above. A 

sample frame was presented in the Figure 26.

 

Figure 26 An Example Frame from Case Study Data Sources 

1) Red symbols suggest target objects, such as pedestrians, buses or small vehicles; 

2) Purple symbols suggest the moving directions; 

3) Grey symbols suggest the LiDAR location; 

4) Yellow symbols suggest irrelevant parking vehicles. 
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5.1 Tracking Results 

Figure 27 is an example of bus tracking data. The tracking result suggests the data processing 

procedure stably track the bus with as many as 694 frames (69.4 seconds). 

 

Figure 27 A Bus Tracking Example 

Figure 28 is an example of small vehicle tracking data. This small vehicle tracking data 

made a full stop at the intersection. The tracking result suggests the data processing 

procedure stably track the vehicle with as many as 284 frames (28.4 seconds). 

 

Figure 28 A Small Vehicle Tracking Example 
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Figure 29 is another example of small vehicle tracking data. This small vehicle tracking 

data did not make a full stop at the intersection. The tracking result suggests the data 

processing procedure stably track the vehicle with 98 frames (9.8 seconds). 

 

Figure 29 A Small Vehicle without Entirely Stop at Intersection 

The Figure 30 suggest these small vehicles were passing the intersections with free flow 

traffic. 

 

Figure 30 Small Vehicles with Free Flow Traffic 
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Figure 31 are examples of pedestrian tracking data. The tracking result suggests the data 

processing procedure stably track the pedestrian with 100 frames (10.0 seconds). 

 

Figure 31 Pedestrians Tracking Data 

Figure 32 is an example of left-turn vehicle tracking data. The tracking result suggests the 

data processing procedure stably track the left-turn vehicle with 177 frames (17.7 

seconds). 

 

Figure 32 A Left Turn Vehicle Yield Pedestrians at Intersection 
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5.2 Curse of Blockage 

From the manual counting, a total of 38 objects existed in this portion of the dataset. 

Among them, there are two pedestrians, five left turn vehicles (One of them is a bus), and 

three buses. Among 36 vehicles, 14 vehicles travel southbound at Virginia Street, 17 

vehicles traveling northbound on Virginia Street, two Vehicles traveling eastbound on 

15th street, and three vehicles traveling westbound on 15th street.  

From the detection result, 39 tracking speed profiles were generated.  Two southbound 

vehicles are counted twice; one northbound vehicle was not detected. The errors were 

majorly coming from blockage. There are two scenarios for miscounting errors. 

First, the count of vehicles may increase because of blockage. The vehicles would stop in 

parallel behind the stop lines; the vehicle which is near to the sensor will block the 

vehicles far from the sensor, as the Figure 33 suggests. When the vehicle has been 

blocked is no longer blocked, this vehicle will show up again causing a double count. In 

this case study, two vehicles were counted twice because of this type of blockage. 
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Figure 33 A Double-Count Example 
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Secondly, if the far-sensor vehicle was blocked by the near-sensor vehicles, the object 

points for the far-sensor vehicle would be much less than they should be.  This would 

cause counting fewer vehicles in practice. In this case study, one vehicle in the lane far 

away from the sensor was lost by this type of blockage, as Figure 34 suggested. 

 

Figure 34 A Missing-Count Example 
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Additionally, even with potential blockage, two pedestrians are well tracked.  

 

Figure 35 A Pedestrian Tracking Example 

In sum, 37 objects were identified and tracked. Although two vehicles were counted 

twice, they are still correctly detected. This gives us an accuracy of tracking rate of 37/38 

= 97.4% on objects on the roads for this case study. 
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5.3 The trade-off of Clustering Size 

Another finding from this case study is the definition of clustering size is very critical. 

The minimum number of points belongs to a cloud point cluster has to be carefully 

chosen. If the clustering size is defined too small, a single vehicle would be identified as 

multiple objects. The scanned lines of the vehicle body are not always continuous. If the 

clustering size is defined too large, several vehicles would be aggregated into one giant 

object. In this case study, experimenting method was chosen to select an appropriate 

value. However, the threshold chosen by this way is still could not achieve a 100% 

accuracy. Figure 36 suggests an example scenario when two pedestrians are walking 

together or passing each other in a crosswalk. This would cause two pedestrians to be 

identified as single pedestrian and causing tracking errors by inappropriate clustering 

size. 

 

Figure 36 A Tracking Error Example 

 

 

 



67 

 

 

5.4 Object Recognition Results 

Figure 37 contains the correctly identified small cars. 

 

 

Figure 37 Some Correctly Identified Cars 
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Figure 38 contains the correctly identified pedestrians.

 

Figure 38 Both Pedestrians are Correctly Identified 

 

Figure 39 contains the correctly identified buses. 

 

Figure 39 Both Buses are Correctly Identified 

Among 38 objects, 35 objects were correctly classified. As the statistic suggests, the 

object recognition is not perfect. Figure 40 contains a group of wrong identified objects. 
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All these wrongly identification results are from the same scenario. The far-sensor 

vehicles are blocked by near-sensor vehicles; hence the shapes of these far-sensor 

vehicles are incomplete. Although these incomplete vehicles could still be tracked, the 

object recognition algorithm could not differentiate well when those incomplete vehicle’s 

feature vectors are similar to bicyclist’s feature vectors, as Figure 41 suggested.  This 

problem could be solved by using additional features such as point features or local 

features in the future or just adding another LiDAR sensor to have a better shape of 

vehicles. 

 

 

 

Figure 40 A Group of Wrongly Identified Vehicles 
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Figure 41 The Pink Vehicle Was Wrongly Identified as a Bicycle 

In sum, in this research, with the global features and RBF kernel SVM classifier, the 

accuracy of identification is 35/38 = 92.1%. It should also be noted that using decision 

tree classifier would yield the same accuracy. 
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6. Possible Applications of Trajectory Data from a Roadside LiDAR 

6.1 Connected Vehicles Research 

The near future traffic would be mixed traffic between connected vehicles, and 

unconnected vehicles. The unconnected vehicles or pedestrians at the intersection can 

benefit from the high-frequency, real-time traffic data generated by this data processing 

framework directly. Figure 42 describes an example of this data processing framework. 

First, the roadside unit would detect the pedestrians. Then the detected location, speed, 

and direction would be sent to vehicles which might have a collision with the pedestrians. 

After the alert is received, the possible distracted driver would notice the pedestrians and 

pay attention to the pedestrians. Hence the pedestrians could be better protected. This 

communication procedure would not require every vehicle or pedestrian to be connected. 

Both unconnected vehicle and pedestrians could be perceived and protected. 

 

Figure 42 Connected Vehicle Application Example 
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6.2 Traffic Safety 

The Rectangular Rapid Flash Beacon (RRFB) is widely used in Reno, NV (Figure 43) to 

reduce crashes between vehicles. RRFB was designed to protect the pedestrians at un-

signalized intersections or mid-block pedestrian crossings. These types of crossing are 

common in Reno, NV. The pedestrians need to push a button to activate the flash beacon, 

to notify the upcoming traffics their intention to cross the street. A report published by 

FHWA suggests that RRFB would increase the yield rate for drivers to pedestrians at St. 

Petersburg, Florida. However, some pedestrians are reluctant to push them when they are 

crossing the street. This behavior is especially dangerous at night time.  The reason is that 

some drivers expect to see the flash beacon if pedestrians are crossing the street. If they 

do not see flash beacon, they will not slow down in middle block road segment. The 

RRFB could be upgraded to detect pedestrians if a LiDAR component was integrated 

automatically. The developed data processing procedure could also be applied here to 

improve traffic safety. 

 

Figure 43 Currently Installed RRFB in Sutro Street, Reno, NV 
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The wildlife crossings signs could also be upgraded to a system similar to automatically 

RRFB.  First LiDAR will detect the crossing wild animals; then the flashing beacon 

would notify the upcoming traffic (which is usually at high speed during rural highways), 

so the drivers would have more response time, and take necessary actions. 

6.3 Mobility 

In most cities, signal timing is revised every few years based on count data collected over 

two to three days. However, there are areas that traffic fluctuates tremendously because 

of concerts, sports games or growing communities. The fixed signal timing plan would 

not provide the ideal service for the intersections in those areas.  

Traffic varies from month to month, week to week even within the same day of the week. 

A traffic plan that could make use of continuous detection vehicles would provide better 

performance. The data processing procedure developed in this research could be applied 

to this problem. The LiDAR could be installed at the intersection, and automatically 

perceive the vehicles on the road. The data processing procedure developed in this 

research has the capabilities to track how many vehicles turn left, how many vehicles go 

straight, how many vehicles turn right, and how many pedestrians crossing the street by 

days, hours, minutes even seconds. All of this real-time micro information could be 

adopted by traffic management agencies to provide a full picture of traffic management 

decisions.  
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6.4 Driving Cycle Development 

Before conducting the LiDAR research, the author was involved in a driving cycle 

developed project based on Naturalistic Driving Study (NDS) data. Second-by-second 

speed data of different vehicles and different road conditions is required for driving cycle 

development. If a group of LiDAR sensors could be deployed along the road, the data 

processing procedure developed from this dissertation could directly retrieve speed 

profiles for every vehicle on the road. These speed profiles would significantly enhance 

the variety and accuracy of driving cycle development.  By the time of this research was 

written, multiple LiDAR sensor deployments and data integration have already been 

tested. However, those LiDAR sensors are usually set up near the intersection, rather than 

along the road segment. It is possible that after integration of multiple roadside sensors 

data, we could generate more accurate driving cycles in particular road segment. 
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7. Summary and Future Research 

The current connected-vehicle system relies on information broadcasted by each vehicle. 

However, not all the vehicles on the road will be connected. Therefore, supplemental data 

to help connected-vehicle to identify unconnected vehicles, pedestrians, bicyclists even 

skateboarders need to be considered and incorporated in such a system.  

This research developed a data processing procedure for detection and tracking of multi-

lane multi-vehicle speed trajectories with a roadside Light Detection and Ranging 

(LiDAR) sensor. Different from existing perception methods for the autonomous vehicle 

system, this procedure was explicitly developed to extract trajectories from a roadside 

LiDAR sensor. This procedure includes six steps. They are preprocessing of the raw data, 

statistical outlier removal, least median of squares-based ground estimation method to 

accurately remove the ground points, vehicle data clouds clustering, principal 

component-based oriented bounding box method to estimate the location of the vehicles 

and geometrically based tracking algorithm.  

The developed procedure has been tested against the intersection of Evans Street and 

Enterprise Road; a two way stops sign intersection; and Kietzke lane, an arterial road 

with 40 mph speed limit at Reno, Nevada. Then, the data extraction procedure has been 

validated by comparing tracking results and speeds logged from a testing vehicle through 

the onboard diagnostics interface (OBD-I), at a parking lot of University of Nevada, 

Reno. The validation results suggest that the tracking speed matches real driving speed 

accurately. 
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A case study was conducted to examine the accuracy of tracking multiple objects on the 

roads. 1000 data frames from the intersection of 15th Street and Virginia Street at Reno, 

Nevada, was used as source data frames. The proposed data processing framework 

successfully tracked 37 objects out of 38 objects on the road, which gives an accuracy of 

97.4%. Then a support vector machine based algorithm was developed to differentiate 

pedestrians/bicyclists and cars/buses. With Radial Basis Function (RBF) kernel, this 

algorithm correctly classifies 35 objects among 38 objects, which gives an accuracy of 

92.1%. The result of this case study indicates that the proposed data processing 

framework has a satisfactory tracking and clustering accuracy which could be used for 

traffic micro information extraction. 

This data processing procedure not only could be applied to extract high-resolution 

trajectories for connected-vehicle applications, but it could also be valuable to practices 

in traffic safety, traffic mobility, and fuel efficiency estimation. The ordinary Rectangular 

Rapid Flash Beacon (RRFB) could be upgraded to detect pedestrians automatically; this 

is especially important during night time.  An adaptive traffic signal plan which could 

adapt to special events or economic changes also becomes feasible from this research. 

Driving cycle developments, which used to rely on sampling vehicles mainly, could 

become much more accurate because this research enables the possibilities to extract 

every vehicle’s speed profile. The driving cycle development procedures based on 

Naturalistic Driving Study (NDS) data is included as an essential reference for future 

driving cycle development based on NDS data. In sum, this research result provides a 

reliable way to extract high-resolution traffic data from a roadside LiDAR, and it would 
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benefit research in connected vehicles, traffic safety, traffic mobility and fuel 

consumption estimation. 

Future research first will investigate how to integrate multiple LiDAR sensors to extend 

the detection range. The extension of detection range requires additional algorithms to 

fuse multiple datasets into a single larger dataset. This larger dataset could provide 

tracking information in a large road segment. Another challenge is how to address rain or 

snow interference. The heavy rain or snow will introduce noises to the dataset. In 

extremely situation, it is even possible for them to make sensor detection range much 

smaller than pleasant weather. How to address this problem would be essential for 

deployment this system in areas regularly having these weather conditions. Finally, how 

to deliver the system output in real-time is also a key challenge. This is especially 

important if the future connected vehicles system requires limited response time.   
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