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ABSTRACT

The Free Space Optical (FSO) communication i.e. optical communication without
fibers is slowly becoming quite popular as fiber and its installation cost as well as
difficulties involved becomes zero. The FSO communication is already making its
impact in deep space communication and is expected to replace the existing optical
fiber communication systems in the near future. In order to further speed up the
optical communication, the Multiple Input/Multiple Output (MIMO) technology from
microwave MIMO systems is being investigated. The characteristics of the Multiple
Input/Multiple Output Free Space Optical communication systems using APD
receivers have been discussed. The APD-based receivers for MIMO FSO systems
under normal working conditions are designed and the characteristics of the
components, such as InGaAs APDs, GaAs MESFET transimpedance amplifiers, a
matched filter and an equalizer, etc., are considered. The probabilistic analysis of a
FSO channel, APDs and noise in the FSO systems has been carried out.

The main contributions in this dissertation are: obtaining the detailed closed-form
expressions for the upper bounds of the error probabilities, analyzing the impacts of
different parameters in MIMO FSO systems, and thorough analysis of a more
complex model of the MIMO FSO system involving Webb distribution for APD-
based optical receiver, the probabilistic analysis of the detection for pulse position
modulation signaling and the transmitted symbol matrix for MIMO FSO equal gain
combining systems. Using this detailed analysis the average symbol error probability,
average bit error probability and average pairwise probability are also obtained. The

equations have been derived by using the Fourier series analysis method. The
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modified Gauss-Chebyshev method for error probability calculation is also proposed.
Results for average SEP and average BEP under different parameters are obtained and

the impact of these parameters on MIMO FSO systems is also discussed.
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CHAPTER 1

INTRODUCTION

Free Space Optical communication, also known as optical wireless
communication, has emerged as an attractive technology. It has the potential to
bridge the ‘last mile’ gap that separates homes and businesses from high
bandwidth access to the larger wired network or for linking intranets with
corporate campus. At the same time, FSO has received significant attention as a
technology for deep space ground-to-orbit communication and as a supplement to
more conventional radio frequency (RF) or microwave links.

FSO is a method with highly efficient energy usage. It is also cost-effective
and offers high-speed wireless connectivity. It uses very narrow and directional
beams to achieve smaller divergence than a RF signal. The RF spectrum is
becoming increasingly crowded and the demand for available bandwidth is growing
rapidly. Since conventional wireless is a broadcast technology, all subscribers within
a cell must share the available bandwidth and their base station powers must be
limited to allow spectrum reuse in adjacent cells. Thus individual subscribers can
obtain only modest bandwidths, especially in dense urban areas. Optical wireless
provides an attractive way to circumvent such limitations. This line-of-sight
communications technology avoids the wasteful use of both the frequency and spatial
domains inherent in broadcast technologies. FSO provides benefits including ultra
high wireless bandwidth, secure wireless transmission, license free operation and
prompt installation, etc.

However, because the optical wave propagates through the air, which is a

medium with inhomogeneous refractive index, the beam experiences fluctuation in
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amplitude and phase due to the molecular absorption, aerosol scattering and
atmospheric turbulence. This intensity fluctuation, also known as scintillation, is
one of the most important factors that degrade the performance of an FSO
communication link, even under clear sky conditions. This is caused by changes in
signal amplitude known as channel fading. Channel fading causes the attenuation
of the optical signal when it makes its way through the FSO channel to the
receiver.

Currently, the application of FSO for wireless Local Area Network (LAN)
usually has the data rates of 1.5Mb/s to 2.5 Gb/s and covers one or two kilometers.
For deep space optical communication applications, Q-switched lasers typically
are employed. Their peak power can be several giga-watts for overcoming deep
space losses, but this leads to much lower pulse repetition rates, for example,
several megahertz (MHz). Thus, there is a tradeoff between bandwidth and
transmission distance in optical communication.

The FSO communication link model must be analyzed and simulated
accurately, since the choice of a suitable architecture, the optimal algorithms and
the demodulation performance directly depend on the characteristics of the FSO
channel itself and the properties of the optical components to be used. In the
receiver, the discrete time demodulation architecture, which combines the post
detection filtering and slot synchronization, is one of the crucial parts of such
systems [1-3].

For optical wireless communication, direct detection has more advantages than
that of coherent detection. There is no need to detect the signal phase, which has a
greater degree of susceptibility due to atmospheric turbulence. In order to fit for

the infrared communication requirements, one of the direct detection techniques,



known as Pulse Position Modulation (PPM) is an attractive modulation technique
in FSO. In recent years, NASA has been considering optical links for Mars Laser
Communication Demonstration (MLCD), and has proposed the use of PPM and its
different variants as the modulation format for the links along with PPM capacity
formulas [1]. With this coding technique, M bits of information are encoded onto
one of L = 2M PPM symbols by establishing a one-to-one correspondence
between the possible states of M binary digits and the location of an optical pulse
among L possible slots [1-2]. A key requirement for optical communication,
especially deep space optical communication, is a sufficient peak laser power level
for the transmitted signal to survive large deep space losses.

In order to enable transmission under the strong atmospheric attenuation and
turbulence, the use of multiple-input multiple-output is introduced to optical
communication. It is necessary to combat channel fading, improve system
performance and overcome distance limitations [3] [4]. By using the space and
time diversity of MIMO, multiple replicas are provided by channel coding, such as
Space Time Block Code (STBC), Space Time Trellis Code (STTC) and Bell Labs
Layered Space-Time Architecture (BLAST), etc. In theory, by using the multi-
laser multi-detector array, the channel capacity, the bandwidth and the
transmission distance, can all be improved significantly.

In current RF communication, MIMO techniques have already been developed
as practical products and implemented in the market. The IEEE802.16 supports
MIMO and uses the Alamouti-based Space Time Block Coding. Although the
current products utilize simple MIMO schemes due to technique complexity
considerations, MIMO is still a promising technique and is considered as a

revolution in wireless communication. However, in order to make MIMO a
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practical technique in FSO, many aspects need to be investigated. Although the
multi-laser multi-detector array concept is analogous to MIMO in wireless RF
communication, the underlying physics is different and several aspects of the
MIMO approach applied to the optical problems are different than the RF
counterpart.

Firstly, for MIMO FSO communication, PPM is employed and the pulses of
laser beam are used to transmit the information data. The PPM signal is
transmitted through the block fading FSO channels and is detected by direct
detection. The intensities of the received PPM signals are used for detection. Thus
the signals of MIMO FSO systems are non-negative and real, and are not complex.
But the RF communication generally uses QAM, PSK or other modulation
techniques, which require amplitude and phase to transmit the information making
them quite complex. The negative symbols in the STBC schemes for RF systems
cannot be implemented directly in the FSO system and innovative STBCs for FSO
MIMO systems are needed.

Secondly, the PPM is the orthogonal and power-limited signaling technique. In
this equal-energy orthogonal signaling scheme, each PPM symbol includes several
time slots and each time slot is exposed to noise during transmission. Thus each
PPM symbol has the noise impact on different time slots. Whereas in RF
communication, the QAM symbol or the PSK symbol occupies one time slot using
amplitude and phase modulation and is exposed to the noise only in one slot. Thus
the demodulation and the error probability calculations are totally different from
those of PPM. Furthermore, efficient STBC schemes and performance analysis

suitable for MIMO FSO systems are required.



In recent publications, several different multi-laser multi-detector techniques
are studied by using the Chernov bound, the block fading channel and the
simplified optical receiver model [3] [4] [5]. Among the different methods of
MIMO, Space Time Block Coding (STBC) has more advantages because it is
much less complex than others for the same configuration, such as space time
trellis code and Bell Labs Layered Space-Time Architecture scheme. For a fixed
number of transmission antennas, the decoding complexity of a space time trellis
code increases exponentially as a function of the spectral efficiency [6]. The
repetition coding scheme is also a simple coding scheme but does not fully use the
time diversity for MIMO FSO systems [7]. The Alamouti-based Space Time Block
coding is the preferred choice, especially due to its remarkable computational
simplicity and satisfactory performance capability [6, §]. But it uses more energy
for transmitting the PPM symbols when the negative symbols are needed to
transmit, and results in lower energy efficiency on a per bit basis. Enzo Baccarelli
proposed a new family of STBC for MIMO Impulse Radio Ultra-Wideband (IR-
UWB) systems, using the orthogonality of different waveforms of pulse to identify
the different transmission [9, 10]. Chadi Abou-Rjeily and Wissam Fawaz proposed
a STBC scheme for MIMO FSO and IR-UWB systems using the cyclic division
algebra [11]. More research on the STBC for MIMO FSO systems is still required.

For performance analysis, many publications have modeled the MIMO FSO
system and have analyzed the error probability. Neda Cvijetic and Stephen G.
Wilson have obtained the performance analysis for MIMO FSO systems with APD
receivers in atmospheric turbulence [12]. But they only gave a simplified
expression for the equation, and could not obtain a closed-form expression due to

the intractable complexity involved. Ehsan Bayaki and Robert Schober analyzed



the performance of MIMO FSO systems in Gamma—Gamma fading [13]. They
only calculated the error probability for OOK and binary PPM using exact
equations and approximated the equation for the Q-ary PPM scheme [13]. In
Appendix A of [13], the slots in the one Q-ary PPM symbol are treated equally
during the calculation of the error probability resulting in errors [13]. In addition,
they did not consider the impact of the primary photoemission process and the
secondary photo-multiplication process in APD.

The design of coded MIMO FSO configurations for efficient transmission of
information can be divided into two basic approaches: the algebraic approach,
which is primarily concerned with the design of coding and decoding techniques
for specific codes for MIMO FSO systems, and the probabilistic approach, which
deals with the performance analysis of a general class of coded signals or
configurations. The latter approach yields bounds on the error probability that can
be attained for communication over a FSO channel having some specified
characteristic and is very important in designing STBC for MIMO FSO systems.

In this dissertation, the probabilistic approach is adopted for MIMO FSO
systems. The performance of MIMO systems using PPM over different FSO
channels with weak turbulence is analyzed in detail. A detailed method is provided
for calculating the performance measures in order to obtain more exact closed-
form results or a tighter closed-form upper bound. The average bit error
probability, the average symbol error probability and other parameters of the
system performance are first calculated in detail for MIMO FSO systems over the
block fading FSO channel. Then these results are used to obtain the performance

analysis of Single Input Single Output (SISO) FSO system. This is very useful for



analyzing the characteristics of MIMO and SISO FSO systems and for designing a
suitable STBC scheme or a better MIMO configuration for FSO systems.

If the impact of each parameter is not considered for a simple PPM
demodulation scheme and APD receiver, this results in some errors in the
performance analysis. In this dissertation, more detailed models of FSO channels,
PPM demodulation, APD devices and optical receivers are considered for more
accurate results. Closed-form equations of the upper bounds for the average bit
error probability, average symbol error probability and other parameters are
obtained. As the parameters change, the diagrams of the average bit error
probability, the average symbol error probability and other parameters are
obtained and analyzed. The calculation error and truncation error are analyzed in
detail. Future research directions are also suggested.

This dissertation is organized as follows. Chapter 1 reviews MIMO FSO
technology and summarizes the work accomplished in this dissertation. Chapter 2
presents an overview of Free Space Optical communication systems. Chapter 3
discusses multiple-input multiple-output systems with the free space links. Chapter 4
calculates closed-form upper bounds for the average error probabilities for MIMO and
SISO FSO systems. The calculation error and truncation error are discussed in detail.
Chapter 5 analyzes the calculated results and diagrams of the average error
probabilities and other parameters. Chapter 6 concludes the dissertation with a
summary of the contribution of the work in the dissertation and discusses directions

for future research and applications.
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CHAPTER 2

FREE SPACE OPTICAL COMMUNICATION SYSTEMS

2.1 Comparison of FSO, Radio Frequency and Optical Fiber Communication
Free Space Optical Communication is a license-free and cost-effective access
technique, which has attracted significant attention recently due to a variety of
applications. By using laser beams passing through the free space, the information,
such as voice, data and video, is transmitted between the users and the servers. Due to
this reason, the FSO is also called optical wireless communication. FSO has the same
enormous available bandwidth as the optical fiber communication. Optical wireless is
becoming an attractive option for the multi-gigabit-per-second (multi-Gb/s) short
range (up to 2~3 km) links and a complementary or backup plan for the current fiber
or radio frequency network [1]. Through relaying technique, outdoor FSO optical
transceivers can also cover long distances. With its high-data-rate capacity and wide
bandwidth on unregulated spectrum, FSO communication is a promising solution for
the “last mile” problem. However its performance is highly vulnerable to adverse
atmospheric conditions.

FSO inherits the advantages of wireless communications over wire
communication, such as offering the possibility of rapid wireless deployment,
flexibility of establishing temporary communication links, and reducing the cost of
reconfiguration and wire placement. FSO also has more advantages than RF and has
emerged as a commercially preferred choice and a viable alternative to RF and

millimeter wireless communication. It has the following main advantages:
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(1) Bandwidth: From a spectrum management point of view, license-free FSO offers
potentially huge bandwidths that are currently unregulated worldwide and can
therefore support more users compared to RF communication.

(i1)) Beam-width: FSO uses very narrow and directional beams to achieve smaller
divergence than RF signals. The narrow beam-width is on the order of a few milli-
radians. FSO is a method with highly efficient use of energy and it is more secure
than RF communication.

(iii)) Immunity to electromagnetic fields: FSO is immune to -electromagnetic
interference, which is very useful for applications in special environments.

(iv) Infrared (IR) components: Further advantages of FSO over RF include the low
cost, the small size, and the limited power consumption of infrared (IR) components.
FSO communication systems can make use of the same opto-electronic devices that
have been developed and improved over the past decades for optical fiber
communications and other applications.

Comparing with optical fiber communication, the FSO link has the advantages of
easy deployment, quick installation, lower cost and the reduced possibility of
interference or interception, etc. Firstly, optical wireless technologies have the
benefits of mobility for user convenience and flexibility in the placement of terminals.
Secondly, by using optical wireless solutions with reliable and rapid deployment,
significant reductions in cost and time can be achieved in a number of applications.
For instance, reconfiguring computer terminals or microcontroller systems in
laboratories, conference rooms, offices, hospitals, production floors, or educational
institutions, can be done at relatively reduced cost and faster. For short range links
with multi-gigabit bandwidth requirements, laying optical fiber is too expensive or

impractical. Usually the cost of fiber communications per kilometer in the range of
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1.5 km around the switching center is 100,000~200,000 dollars. About 80% of this

cost is used for laying the fibers underneath the ground and equipment installation. On

the other hand, maintaining and reconfiguring wired networks, is usually more

expensive, time-consuming and complicated. Furthermore, cables are susceptible to

damage, which can potentially disrupt network operation. Thirdly, FSO is a good

practical choice for some special conditions, especially in situations where cables are

grounded or installed in inaccessible locations, as in memorial and historical

buildings, hazardous manufacturing plants, temporary and mobile emergency stations

or field tests [1- 4]. Currently it is widely believed that optical wireless can be used

for multi-Gb/s communication [1].

Besides these advantages, FSO also has the following drawbacks [1- 4]:

(1)

(i)

FSO requires line of sight since optical wireless links are susceptible to
blocking by persons and objects, which can result in the attenuation of the
received signal or in the disruption of the link depending on the configuration
of the system.

In addition, FSO systems generally operate in environments where other
sources of illumination are present. This background illumination, such as the
radiation from the sun, the moon or other sources, has part of its energy in the
spectral region used by FSO transmitters and receivers. This introduces noise

in the photo-detector, which limits the range of the system.

(i) FSO systems are also affected by high attenuation due to scattering,

absorption and scintillation when the IR signals are transmitted through air.
Atmospheric phenomena, such as fog, aerosols, snow and rain droplets further
reduce the range of the system and deteriorate the quality of the transmission

when operating outdoors.
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(iv) FSO narrow beam-width also implies the need for careful directional
pointing. Otherwise building vibration or sway can introduce signal strength
fading in the link.

Some of the drawbacks presented by FSO, such as attenuation and background
illumination noise, can be compensated to some extent by increasing the optical
power level at the transmitter. Unfortunately, due to the fact that high emission power
from some emitters can be potentially dangerous to the retina and because of power
budget considerations, there is a limit to the optical power that can be safely and
efficiently emitted by FSO transmitters [1- 4].

An approach using multiple lasers and multiple photo-detectors, also called
MIMO, has recently been proposed and investigated. Due to its complexity,
currently practical MIMO FSO systems adopt comparatively simple schemes.
However MIMO FSO is still a promising technique and is considered as a

revolution in wireless communication.

2.2 Modulation and Detection Scheme for FSO

2.2.1 Wavelength Choice

Many FSO vendors have traditionally used the 780 nm to 850 nm near-infrared
spectrum for cost reasons. But the 1550 nm band, the choice of the fiber-optic
telecommunication industry, is better suited for optical wireless.

The 1550nm band can transmit more power and is safer for human eyes
compared to the 780nm band. Because of the properties of the human eye, the safe or
allowable power density at 1550 nm is nearly 50 times than that at 780 nm [1].
Consequently, significantly more power can be transmitted in the 1550 nm band to

overcome attenuation by fog. The Food and Drug Administration (FDA) considers a
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2 2
power density of about 100 mW/cm at 1550 nm (or | mW/cm at 780 nm) safe to the

unaided eye [1]. Assuming a beam with a Gaussian profile is transmitted with 25 mm

2
1/e diameter, approximately 245 mW at 1550 nm can be transmitted and still be eye-

safe[1].

The second benefit is the higher transmittance of this band. The atmospheric
transmittance for different wavelengths of radiation is shown in the Fig. 2.1. The
commonly used wavelengths close to 850nm or 1550nm have transmittance in the
range of 75% to 80% [5]. The 1550 nm band includes reduced solar background and

scattering (attenuation) in light haze and fog [1].
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Figure 2.1 Atmospheric transmittance for different wavelengths Ref [1]
The third benefit is a wide range of available components because of the heavy
investment in the 1550 nm technology for the telecommunication sector.
The disadvantages of this band are: slightly lower detector sensitivity (by a few

dB), higher price of components and more difficult alignment [1]. However, all of
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these are outweighed by considerably higher available transmitter power. In this

dissertation, the 1550 wavelength is employed.

2.2.2 Direct Detection Modulation

There are two kinds of modulation techniques associated with FSO: direct

detection modulation and coherent detection modulation. According to the

characteristics of FSO communication systems, direct detection modulation has

more advantages compared to RF systems [1, 6].

)

Direct detection systems use the intensity of the light pulse to detect the signal.
They can accept a high-order mode beam or even multimode light beam such
as LED and multimode laser beams as their light sources. Usually these
systems do not require diffraction-limited beams and are easier to sustain
compared to coherent detection systems. The multiple mode beams use the
lasing volume more efficiently than single mode beams and are easier to
generate. Thus they are more electrically efficient and result in better trade-
offs between transmitter efficiency and beam quality [6]. According to the
characteristics of FSO communication in the range of several kilometers, the
main difficulties of FSO transmission are signal attenuation rather than signal
dispersion. This is different from the optical fiber communication, where
dispersion is considered a more serious problem. The energy efficient
multimode beams can provide more energy to combat link fading and signal
attenuation.

Direct detection systems have less complex detection circuits than coherent
detection systems for the high speed optical communication. Coherent

detection systems have phase detection circuits and use a coherent optical
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reference, such as a local oscillator, which can add more problems such as time
synchronization. Usually coherent detection requires the systems to be
diffraction-limited.

ii1) Direct detection systems can use aperture averaging technique to lower the
beam perturbations, reduce the fading impact and increase the signal to noise
ratio (SNR) of the optical signals. Aperture averaging in coherent detection
degrades SNRs.

iv) Direct detection systems are less complex and are susceptible to phase
perturbation due to atmospheric turbulence and surface scatter. Since the
coherent detection systems use the amplitude and phase to detect the signals,
they are more susceptible to the effects of the atmospheric turbulence due to
their sensitivity to phase perturbations across the detector [6]. The impact of
atmospheric turbulence on coherent detection systems is quite different from
that of direct detection systems. The fact that out-of-phase signal components
mixing on a detector surface of heterodyne system can cancel, suggests that the
random spatial phase fluctuations of a scintillating beam could also limit the
sensitivity [6]. There is an upper limit to the size of the receiver aperture, or
equivalently, the range performance of a coherent system operating in a

turbulence atmosphere.

The main disadvantage of direct detection is that for small signals or strong
noise sources, direct detection receivers may not reach the shot noise limit and
consequently may suffer additional performance penalties compared to coherent

receivers.
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2.2.3 Pulse Position Modulation

One suitable direct detection scheme for FSO is Pulse Position Modulation.
PPM is considered as an attractive modulation technique for infrared optical wireless
communications. The research on optical free-space communication dates back to
1960s. Standard pulse position modulation is an average energy strategy. As the
number of slots increases, it also mitigates against the impact of the background
radiation. In recent years, NASA has adopted PPM coding for deep space
communication systems and has been considering optical links for Mars Laser
Communication Demonstration (MLCD). They have proposed the use of PPM and its
variants as the modulation format for the links and have provided some PPM capacity
formulas [7]. There are many PPM schemes proposed, such as differential PPM
and multiple pulses PPM [8, 9]. But these schemes have their drawbacks in some
aspects and have difficulties in practical implementation [9]. Standard PPM is still
considered as the basis of this technique and is implemented in practical systems.

For the standard Q-ary PPM technique, Q bits of information are encoded onto
one of L = 29 PPM symbols by establishing a one-to-one correspondence between
the possible states of @ binary digits and the location of an optical pulse among L
possible slots [10]. In the demodulation section, each PPM symbol can be decoded
into one of Q bits of information, according to the location of an optical pulse among
the L slots in one PPM symbol duration. The time slot duration is Tg;,; and one PPM

symbol duration is Tsympor = Tsior X L . An example of the PPM symbol set is shown

in Figure 2.2.
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Figure 2.2 Example of PPM symbol set

As a high energy incident laser beam will damage the human retina, there is a
limitation of the peak power transmitted by laser pulses in free space applications.
This is the main reason for a limited range of FSO in free space applications [11]. As
a result, a modified and efficient method of PPM communication without increasing
its peak power is of utmost interest.

For deep space applications, the key requirement is a sufficiently large peak
power for lasers to survive space losses. Q-switched lasers are typically employed
resulting in kilowatt or gigawatt peak power to combat the huge deep space
attenuation. A typical Q-switched laser (e.g. a Nd:YAG laser) with a resonator length
of 10 cm can produce light pulses of several tens of nanoseconds duration. Even when
the average power is well below 1 W, the peak power can be many kilowatts [12].

In this dissertation, the main focus is on free space communication with direct
detection, such as standard Q-ary PPM or OOK, which are frequently used in

practical systems.
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2.3  Characteristics of Free Space Optical Channel
2.3.1 Gaussian Beam Propagation

In a FSO system, the laser beams are transmitted through free space and are
scattered by the air medium. When the laser beams pass through the atmospheric
media, there are many aerosol particles in the paths. These particles absorb and scatter
the energy of laser beams and cause the attenuation and dispersion of the optical
signal. For lower dispersion values, the single mode lasers are selected although
multimode lasers can give more power than single mode laser under the same
conditions. However, if single mode lasers are used in MIMO systems, the
disadvantage of less transmitted power per laser can be overcome by using the
multiple lasers to make the total transmitted power sufficiently large. For transmitters
with single mode lasers, the propagation of laser beams in free space can be described

by Gaussian beam theory. The intensity of a Gaussian beam is given as [6]

* ap’wo? %TZ _§r2
I=U*(r,z)-U(r,z) = o2 & @ = [je»*@ (2-1)
The on-axis intensity at the z location [6]:
2P
Iy = |Uo(r,2)|? = _nwzzz) (2-2)

where U(r,z) is the complex wave amplitude of the Gaussian beam, w?(z) is the

beam radius or spot size of Gaussian beam at the z location given as [6]

w?(2) = wy? [1 + ( Az )2] (2-3)

Two2

2

where w,~ is the beam radius of Gaussian beam at the beam waist z = 0 location.

The total transmitted optical power P; of the Gaussian beam is obtained as [6].

2

2
Pt — T aozwo (2_4)
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where a, is a constant, P, is the received optical power of the Gaussian beam at the z
location of the receiver. In a FSO data link, if only the space loss is considered, the
relationship of P, and P. is the ratio of the received aperture area A, to the transmitted

beam area A, given as [6]

2PA, 24y
nw2(z)  Ap

P = I A, = P, (2-5)

where A, is the receiving aperture area of the lens at the receiver and A4, is the half-

power spot size’s area of the transmitted beam at the receiver 4, = Tw?(z).

2.3.2 FSO Channel Model and Turbulence
In FSO communication, when the optical wave propagates through the air, the beam
experiences fluctuations in amplitude and phase due to atmospheric turbulence. This
is due to the fact that air is a medium with inhomogeneous refractive index due to
temperature and pressure variations. This intensity fluctuation, also known as
scintillation, is one of the most important factors that degrade the performance of an
FSO communication link, even under clear sky conditions. This is also known as
channel fading, which changes the signal amplitude and phase for every channel. The
dominant atmospheric effect that impacts optical communication is attenuation of the
signal by scattering and absorption. Molecular scatter and absorption of major
atmospheric constituents is relatively insignificant. Though rain and snow can cause
attenuation up to approximately 40 dB/km and 100 dB/km, respectively, fog is by far
the most serious problem. In extremely heavy fog, attenuation as high as 300 dB/km
has been reported [14].

In the absence of attenuating elements, the atmosphere is best modeled as a

random phase medium that changes with time. To a first order approximation, the
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atmosphere introduces a random beam deflection. For example, on a sunny day the
rising hot air makes the refractive index of air go up with height and in extreme
conditions can result in a mirage[1]. Such an index of refraction change near the
transmitter tends to deflect the beam causing “beam wander” [1]. The same effect
near the receiver, however, causes the beam to appear to have come from a different
place known as angle-of-arrival fluctuations [1]. The magnitudes of these effects are
largely dependent on the index of refraction fluctuations and propagation distance. In
extreme conditions over distances of several kilometers, the atmospheric induced tilt
can vary as much as 100 prad at a rate of tens of Hertz [1].

Second-order effects, i.e. small-scale turbulence, can also play an important role in
disrupting optical communication. Small-scale phase fluctuations introduced at the
source can result in scintillation (speckle pattern) after several hundred meters of
propagation [1]. Depending on the speckle size and receiver aperture, the dynamic
atmosphere causes fades in the received signal. Phase perturbations near the receiver
make the focused spot size on the detector larger than the diffraction limit [1]. When
the detector size is only few tens of microns, this spot size increase reduces minimal
allowable transceiver mispointing further [1]. Thus, high bandwidth tracking is made
necessary by a turbulent atmosphere for high data rate links.

The FSO channel is a slow fading and frequency-nonselective channel. The
characteristics of the channel are treated as flat over the frequency and narrow-band.
As the change in the channel gain is slower than the data rate, the channel variation,
during which the channel is static, is assumed much smaller than the total duration of
the transmission. For example, if the data bandwidth is 1GHz, the slot duration is
10~° second and the symbol duration of Q-ary PPM symbol is 22 x 10~° second.

However the temporal correlation time of the optical wireless channel is on the order
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of several millisecond [6]. Hence, the channel varies very slow compared to the data
speed.

The FSO channel can be modeled as a block fading channel and the channel
gain can be modeled as an ergodic random variable. For different degree of
turbulence, the intensity attenuation of the laser beams can be described by a
lognormal distribution, exponential distribution or gamma-gamma distribution.

Numerous experiments have confirmed that the intensity of laser beams
obeys a lognormal distribution under weak turbulence and obeys negative
exponential distribution under strong turbulence [6]. For moderate turbulence, the
distribution of the intensity fluctuation is not understood and a number of the
distributions have been proposed, such as lognormal-Rice distribution, K-
distribution and gamma-gamma distribution [6].

For the FSO channel with weak turbulence, the probability density function

(PDF) of the laser beam intensity, which is lognormal distribution, is given by

_ (lmc—ml)2

e 2’ x>0 (2-6)

1
p(x) = xoN2m

where m; and o; are the mean and standard deviation, respectively, of the variable’s
natural logarithm. By definition, the logarithm of the variable is normally distributed.
Since most free space optical communication systems operate under weak turbulence,
the error probability analysis in this dissertation focuses on the lognormal distribution.
For a FSO channel with strong turbulence, the PDF of the laser beam intensity,

which is a negative exponential distribution, is
p(x) = de=* x>0 (2-7)

where x is the rate parameter.
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There is a gamma-gamma distribution, which fits the measurement data for a
wide range of turbulence conditions (weak to strong) [15]. The PDF of the

gamma-gamma distribution is given as

(a+B)
2(af) 2z (@+p) _
p(lmn) = FG(:TF(B) Ipn 2 1K(a’—ﬁ)(2\/ aﬁlmn) Ipn >0 (2-8)

where parameters @ > 0 and § > 0 are linked to the so called scintillation index [15]

intillation i 1,1, 1 -
scintillation index = -t 3 + ) (2-9)

The parameters a and f can be adjusted to achieve a good agreement between
p(l,,) and measurement data [15]. Alternatively, assuming spherical wave

propagation, a and f can be directly linked to physical parameters [15]

_ 0.49y? . -1
I (14 0.18d2 + 0.5612/5)7/6

(2-10)

- -1
0.51x2(1 + 0.69x12/5) ™™ )
(1 + 0.9d2 + 0.62d2y12/5)5/6

o

(2-11)
where y2 = 0.5C,%x7/61L1/6, d 2 [kD?/(4L)|Y? ,k 2 2m/A . A, D, C,% and L are
the wavelength, the diameter of the receiver’s aperture, the index of refraction

structure parameter and the link distance, respectively [15].

2.4 Optical Receiver

2.4.1 Avalanche photodetector (APD)-Based Receiver Structure

There are many types of detectors that can be used in optical receivers. The
avalanche photodetector is a popular and widely used detector because of its small

portable size, low cost, good responsivity and high accuracy, etc.
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A typical optical receiver with 1550nm wavelength usually includes a
collecting lens, an InGaAs APD, GaAs MESFET transimpedance amplifiers, a
matched filter and an equalizer, etc. Some receivers also include optical filters, mirror
or other optical components. Occasionally, when the transmission condition is very
good and the transimpedance is used, little or no equalization is required [15]. This
depends on the receiver design and the transmission environment. In this dissertation,
the normal and complicated case including equalizers is considered and analyzed. For
simple and special cases, the results can be obtained by changing the parameters. At
the end of the equalizer, the processed signal is sent to a decision detector, which
implements a Maximum Likelihood (ML) decision to decode or demodulate the data.

The basic architecture of the APD-based optical receiver block diagram is shown in

Fig. 2.3.
FSO channel Receiver
GaAs MESFT Matched Envelope Decoder
InGaAs transimpedance filter and Calculati
> —» > p —p| Calculation > -
APD amplifier equalizer Demodulation
Optical Optical

components components

Figure 2.3 Basic architecture of the APD-based optical receiver

2.4.2 Webb Distribution of Electrons Given Out by APDs

In optical receivers, the incident photons are focused and detected by APDs. Inside
APDs, there are two processes: the primary photon-injection process and the photon-
electron multiplication process. The electron number obtained at the APD obeys the
Webb distribution, also called the WMC approximation. It was proposed by Webb,
Mclntyre and Conradi [6]. The PDF of the electron number mg with the mean primary

photoelectron number k in the APD is obtained as [6]
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exp ( (ms — EM)Z ]
2k M2F [1 L ms— EIIZ%(F — 1)]

Dsw (ms) =

_ 3
2wk M2F [1 + (ms — kM)(F — 1)]2

kMF
(2-12)
This Webb model has the requirement that the emitted electron number is not smaller
than the photon-electron number, i.e. mg = k > 0, and the photon-electron pairs

generated by the first photon-injecting process obey a Poison distribution [6].

2.4.3 Noises in APD-Based Receivers for FSO

When the signal is processed in optical receivers, there are a variety of noise sources
that can affect receiver performance. The uncorrelated noise induced in the receivers
are short noise, background noise, backscatter noise, bulk dark current noise, surface
dark current noise, thermal noise, amplifier noise and equalizer noise. Any one of
these noises induced in receivers can dominate depending on the receiver design and
operating environment. In practice, usually these noises induced in receivers are much
greater than the path-added additive white Gaussian noise (AWGN) and are
considered as dominant factors. Thus the path-added AWGN is negligible for FSO
communication systems and therefore is not considered in this dissertation.

Narrow bandpass spectral filters are typically used to reduce the background
noise in receivers and can be placed in the “optical components” blocks in Fig 2.3.
The filters, as well as lens, mirror, fiber and other optical components in receivers,
can cause the loss of optical signals. However, there are other kinds of noises that can

mix into the signal bandwidth and cannot be removed by the filtering process. We



27

must consider their impacts in detail, especially the thermal noise and the shot noise.

The three main types of amplifiers that can be used in the receivers are
transimpedance, high-impedance and low-impedance amplifiers [15]. Their noise
calculation steps are different. In the multi-Gb/s MIMO systems, the transimpedance
amplifier is usually employed because of its lower noise, higher impedance and
higher data rate. A number of different field effect transistors (FETs) can be used as
the front-end transimpedance amplifier in the receiver design. The typical values of
the various parameters for some FETs are given in the reference [15]. As the signal
frequency reaches about 25-50 MHz, the gain of the silicon FET approaches unity
[15]. Much higher frequencies (4 Gb/s and above) can be achieved with either a GaAs
MESFET or a silicon bipolar transistor [15]. For the gigabit-per-second data links, the
detailed noise expression for GaAs MESFET transimpedance amplifier is calculated
as follows.

The equivalent circuit of a transimpedance receiver design and a simple high-
impedance preamplifier design using FET are discussed in reference [15]. The output
current of the equalizer is sent to the decision detector to perform Equal Gain
Combining (EGC), sampling, maximum likelihood decision, decoding and
demodulation. This normally used receiver design has been considered for noise
analysis in this dissertation.

If iy(t) is the noise current causing the equalizer output current i, (t) to
deviate from the average value (i,,;(t)), the actual current i, (t) is of the form

fout (8) = (loue () + iy (t) = (i5 (1)) + in(t) (2-13)

As the total noise iy(t) obeys a Gaussian distribution with zero mean and

variance o2, the average value (i, (t)) equals the signal value (is(t)). The noises in
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the APD receiver with InGaAs APD, GaAs MESFET amplifier, matched filter,

equalizer, sampling circuit and decision detector can be expressed as
(in®) = (ip™) + (i) +(ic®) + (iap”) + (ias®) + (i) + (%) + (i)

4kyT

= A?Bpqe [ZqR(Pr + Py, + P)M?F + 2q(I4,M?F + I4,) + ] + S;A%Byqe

b

+S;A%B,

= A%1,B 2q(io)M?F + 2qR(P, + P)M?F + 2q(IgyM?F + Ig;) + 22|

Rp

I,B
R2

+§,A21,B + Sy A? [ + (ZnC)ZIZB3]

: 2 2 2
_ (qAB)Z [2(10)M F+2$R(Pb+PCLM F+2(1gpM?F+145) T, + WTZ] (2-14)

where

(iy*) mean-squared total noise current

(ipz) mean-squared photon shot noise current

(i,%) mean-squared background noise current

(i.*) mean-squared backscatter noise current

(izp%) mean-squared bulk dark current noise

(igs>) mean-squared surface dark current noise

(ir?) mean-squared thermal noise (or Johnson noise) current

(i ,2) mean-squared shunt noise current, which results from the amplifier input noise
current source i, (t)

(iz%) mean-squared series noise current, which results from the amplifier input
voltage noise source e, (t)

A amplifier gain

Bp4e noise equivalent bandwidth of the bias circuit, amplifier, equalizer defined for
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the positive frequency. Byge = LB
R responsivity of photodetector

P. incident photon power in a 1 pulse slot is obtained as

P. = b;—” = hvA,B Wor J/s (2-15)

b

P, background noise power in one slot
P. backscatter noise power in one slot
M multiplication factor of APD photodetector
F  excess noise factor given as
F=keppG + (2=2) (1= kepy) = M* (2-16)
The parameter x takes on values of 0.3 for Si, 0.7 for InGaAs and 1.0 for Ge
kesr effective hole/electron ionization rate ratio
I4p bulk dark current
I,;s surface dark current
kg Boltzmann’s constant ky = 1.38054 x 10723 J/K
h Planck’s constant h = 6.6256 X 1073% J.s
T temperature (K)
R}, detector bias resistance

(ip) mean unity gain photocurrent over a bit period T,

B data bandwidth
T, time slot or bit period for a 1 pulse or a 0 pulse T}, = %

I, normalized bandwidth integral [11]

I;  normalized bandwidth integral [11]
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B, is noise equivalent bandwidth of the equalizer defined for the positive frequency
as
B, = I,B + (2nRC)*I,B3 (2-17)
C s the total capacitance of the parallel combination of Cy, Cy, Cys, Cyq for a typical
FET amplifier and a good photodiode given as
C = Cq+ Cyt Cyst Cyq = 10pF = 10 x 10712F (2-18)
C, detector capacitance
C, amplifier input capacitance
Cys FET gate-source capacitance
Cya FET gate-drain capacitance
S, spectral density of the amplifier input noise current source (in A /Hz)
Sg spectral density of the amplifier noise voltage source (in V2 /Hz)

R is the resistance of the parallel combination of Ry, R,, Rr given as

:i+i+i (2-19)

1
R R, Rq Ry
R}, detector bias resistor
R, amplifier input resistance
Ry feedback resistance
W, thermal noise characteristic
For GaAs MESFET transimpedance amplifiers, in practice, the feedback
resistance Ry is much greater than the amplifier input resistance R, [15]. The thermal

noise characteristic for the GaAs MESFET transimpedance amplifier is given as [15]

4k,T  4k,TT. 2mCN\2 4k, TT, T, 4k,T
B + B e)lz ( ) Blle; p Ip *kp

1
Wy, = ——| 291 +
TZ qu< Qlgate R, gm.sz q 3 2 R, 2

m

(2-20)
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where [, is the correlated coefficient of the equalizer.
The detailed noise expression for the GaAs MESFET transimpedance amplifier

1s obtained as

2(i YM?F + 2R(P, + PYM?F + 2(1.;, M2F + 1
(in?) = (qAB)Z[ {ho) G ZI Ua as)p 1

1 4kpT  4kgTT, 2nC\% 4k T, Ty 4kgT
+—(2ql,40e + —— + 1 (—) LB +— I
qu< q gate Rb gm K sz 2 q 3 qz 2

m

4kyT  4kgTT,
= A2 {[Z(iO)MZF + 2R(Py + PIM?F + 2(I1;,M?F + 1;)]qL,B + <2qlgm + —RB +—2 F 2) L
b Im " Kp

4kyTT, 4kyT
+ (@nc)? —L—£,B3 + 2 123}
Im Rf

(2-21)
where P is the signal power for the 1 pulse and P, = B. , b,,, is the energy for a 1
pulse and b,, = hvAd; = hvNAy; = NPy Ty, = BT, (J/bit), n is the quantum
efficiency, v is the frequency of the optical signal v = % ,c=3x%X108m/s, 1 is the

wavelength of the optical signal and y; is the fraction of a 1 pulse energy remaining in
its time slot.

The variances 6,,% and o2 of the equalizer output currents i,,,(t) for a 1
pulse slot and a 0 pulse slot, respectively, are the worst-case values of the total noise
current (iy?) in Eq. (2-17). The impacts on a 1 pulse slot, due to background noise,
backscatter noise, bulk dark current noise, surface dark current noise, thermal noise,
amplifier noise and equalizer noise, are similar as those on a 0 pulse slot. But the
impact of the short noise (ipz) on a 1 pulse slot is different than that on a 0 pulse slot.
In addition, if the dispersion of the pulses happens in the worst case, there is a part of
the pulse energy falling into the adjacent slots and causing the shot noise. As shown in
Reference [15, Fig. 7.3], we still use y to represent the fraction of a 1 pulse energy P

remaining in its slot.
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The worst-case (iy?) in the 1 pulse slot, i.e. 6,2, happens when the continuous
two 1 pulses are transmitted and one pulse is added by the additional energy due to
dispersion of the other 1 pulse. For one 1 pulse slot, ys fraction of the pulse energy Ps
remains in the slot and (1 — y;) fraction of the pulse energy P falls into the adjacent
1 pulse slot. Thus the total photon energy inducing the short noise in the 1 pulse slot is

YsPs + (1 —ys)Ps =P (2-22)

The worst-case of (iy?) in the 0 pulse slot, i.e. 0,42, happens when the
continuous one 1 pulse and one 0 pulse are transmitted and the 0 pulse is added by the
additional energy due to dispersion of the adjacent 1 pulse. The worst-case of (iy?) in
the 0 pulse slot, i.e. oy¢?, happens when a 1 pulses and a 0 pulse are transmitted
continuously. The total energy inducing the short noise in the 0 pulse slot is (1 —
¥s)Fs .

The unity gain mean photocurrents (iy),, in a 1 pulse slot and (ig),s in a 0

pulse slot, respectively, can be represented as

: bon
(lodon = T2 = RP, (2-23a)
, bon
(iodotr = T2 (1~ y5) = RP(1 ) (2-23b)
b

In order to calculate the variance of the noise current in a 1 pulse slot, we
assume the worst cases of the (iy*) for continuous 1 pulses happen. So the average
power concept can be used. For the receiver architecture shown in Fig. 2.3, the
variances of the / th branch for the 1 pulse slot and the 0 pulse slot are calculated as
Oon 12 and o2, respectively and given as

.2
O-onlz = (lN )on
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b
_ 22 {[ "h‘zﬂ‘,’” M2F + 2R (P, + P.)M2F + 2(I 3, M2F + Ids)] ql,B

+(2q1,,, + 28T, 2hsTle LB + (21C)? HegTle | ps 2T p
Qlgate R, gm'Rb 2 g 3 R; 2

m

(2-24a)

.2
Oofr1? = (in" Dot

= A2 {[2 13bon (1 — ys)M?F 4 2R (P, + P)M?F + 2(I5,M*F + Ids)] ql,B

4kgT  4kyTT, TT, 4kyT
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(2-24b)
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CHAPTER 3

OVERVIEW OF MIMO FSO SYSTEMS

3.1 System Model of MIMO Optical Wireless Links

Based on the analysis of FSO communication systems in Chapter 2, we present a
mathematical model for MIMO FSO communication systems. The statistical
characteristics of the FSO channel and MIMO PPM systems are analyzed.
Parameters, such as the link budget, receiver noises and signal to noise ratio, etc. are
discussed in this chapter.

In MIMO FSO transmission, N; laser sources and N, photodetectors (PD) are
employed as an array and a typical MIMO point-to-point system is shown in Fig. 3.1.
The lasers of the transmitters and the photodetectors of the receivers are positioned as
arrays, respectively [1]. The laser beams modulated by the user data are transmitted
through different FSO paths between the transmitters and the receivers. These beams
experience different atmospheric turbulence in the paths. The turbulence causes the

channel fading and impacts the amplitude and phase of the received optical signals.

hl 1 (l)

i
A0

DataSource P MIMO Transmitter [ Data User

MIMO Receiver >

Laser Array FSO Channel Photo-detector Array

Figure 3.1 N, laser sources and N, photodetectors MIMO FSO system
For MIMO FSO systems, one advantage is that the replicas of the coded data

symbols, which are transmitted in the space and time diversity patterns, and combined
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and decoded at the receivers, can overcome the channel fading due to atmospheric
turbulence. The ability of multiple transmitters and receivers in combating fading is
conditioned on reception of uncorrelated copies of signal. The paths in MIMO are
usually required to be uncorrelated and independent of each other. As a result,
transmit and receive apertures must be placed at least one correlation distance apart
[2]. For atmospheric channel this requirement can be easily met since correlation
distance (atmospheric coherence length) is about 20cm under good visibility
conditions and often drops to 2-4 cm under weak turbulence [2]. The second
advantage is that MIMO improves the maximum transmitted power, for the high data

rate, e.g. multi-Gb/s, compared with the single laser transmission. Assuming a
transmitted beam with a Gaussian profile 25 mm eiz diameter, approximately 245mW

at 1550nm can be transmitted and still be eye-safe [3]. A typical high speed 1550nm
laser has a slope efficiency of 0.03~0.2W/A [3]. At present, commercial laser driver
chips are capable of only about 100mA modulation current at 2.5 Gb/s [3]. This may
result in optical output power about 20mW if the laser efficiency is 0.2W/A.
However, there is currently no high speed 1550nm laser with more than 250mW
power available in the market [3]. Such a laser would require 1225mA modulation
current with an efficiency of 0.2W/A [3]. Thus the MIMO would have to be used in

order to achieve the eye-safe maximum power, ie. 245mW of the 1550 nm
wavelength and 25 mm eiz diameter laser beam for multiple-Gb/s data rate. In order to
compare the performance of MIMO, different transmitting schemes from single input
single output scheme or other schemes, the total transmitted energy of MIMO for one

symbol is fixed as E;, the same as that in SISO, during the calculation of this

dissertation. The disadvantage of this MIMO approach is that transmitters would have
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to be synchronized at the higher data rate, such as multiple-Gb/s, and this is not easy
for practical optical and electrical devices.

Optical beams are generally highly directive, and thus isolate themselves spatially
from other potential interference. FSO vendors typically use 6-8 milliradian beam
divergence for their low data rate products. Higher data rates are usually
accomplished by reducing the beam divergence to 2 milliradian [3]. The width of
laser beams is quite narrow, but sufficiently wide to illuminate the entire PD array.
For example, if the half-power beam width, i.e. divergence, is 1 milliradian, the half-
power spot size of the laser beam at a distance of 1 kilometer has 1 meter diameter
[1]. Because of the capacitance, the higher bandwidth detectors are inherently smaller
in size, typically few tens of micrometers diameter for multi-Gb/s data rate [3].
Commercial photodetectors range in size from 30um diameter at 10Gb/s to 70um
diameter at 2.5 Gb/s [3]. The diameter of receiver lens apertures is usually a few tens
of centimeters, such as 7.5cm or 15cm. In order to keep different FSO paths
uncorrelated, the spacing between adjacent receiving antennas of MIMO FSO systems
with wavelengths from 780nm to 1550nm, must be 2-4 cm apart under weak
turbulence or 20cm under good visibility conditions [2]. This can be satisfied by
MIMO FSO systems shown in Fig. 3.1. An optical beam can reach the APD array of
receivers at the same time thus making MIMO schemes possible.

For a practical system, we assume that the MIMO FSO system model works under
the normal conditions: Accordingly the line-of-sight paths exist between the
transmitting laser array and the receiving photo-detector array. The MIMO FSO
channel is a frequency non-selective ergodic random channel and can be treated as the
block fading channel model. The optical signal is a narrowband signal, i.e. the

transmitted signal bandwidth is much smaller than the channel’s coherence
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bandwidth. The coherence bandwidth measures the frequency range over which the
fading process is correlated [4].

To simplify the solution and make it suitable for the normal case, the following
assumptions are made. (i) The receivers can get perfect knowledge of the channel
information, estimate the signal level of the received symbols and predict the channel
condition. (ii) The spatial correlation between the channel paths is negligible, i.e.,
there are sufficient distances between the individual lasers, APDs and apertures. (iii)
There are negligible channel gain estimation errors, negligible synchronization error
and acceptable latency in the system. (iv) The active tracking and pointing system is
used and makes the mispointing allowance of a FSO data link be about 3dB. This
active tracking and pointing scheme ensures that the narrow laser beam is pointed at
the receiver aperture, e.g. 150mm diameter, and tightly focused on the relative small
detector, typically less than 100um diameter [3]. (v) The transmitters and receivers
are synchronized at the high data rates. (vi) The gain amplitudes of different channel
paths can be estimated promptly and correctly for the decoding and demodulation
process at the receivers. (vii) The processing delay is acceptable for the network users
of voice, data and video. The detailed architecture of the MIMO FSO point-to-point

system is shown in Fig 3.2.
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Figure 3.2 The detailed architecture of MIMO point-to-point system

The MIMO system model of Figure 3.2 can be presented by the matrix equation as
Y=ZF.-H-S+N (3-1)
t

where f is the link gain coefficient which makes the mean of the channel gain H
equal to I, E{H} = I, E; is the total energy that transmitted during the 1 pulse slot by
the laser array, N, is the number of lasers in the transmitting array and Y is the

received signal (N, X NL) matrix given as

Y11 V12 - YINL

Y21 Y22 - Y2nNL

Y=[y1 Y2 -Yn]= (3-2)

Y1 Yz YN
where N is the number of the PPM symbol in one transmitted matrix, L is the number
of the slots in one Q-ary PPM symbol, L = 29. There are N PPM symbols in a
transmitted matrix and these N PPM symbols are independent. The matrix can be
coded by the repetition coding scheme or the Space Time Block Coding scheme. In
this chapter, we mainly consider the simple repetition coding. In the receiver, these N
symbols in the receiving matrix are decoded together at the same time and then

demodulated. S is the transmitted symbol (N; X NL) matrix given as
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S11 S12 -+ SINL
S21 S22 -« SoNL

S=[S1 Sz ..Sy]= : : : (3-3)
SNg1 SNg2 - SNGNL

N is the channel noise matrix represented as

N1 Ny - NNL
Na1 MNp2 - NN

N p— [n1 nz nN] p—d . . . (3-4)
nn,.1 Nn2 - NNNL

The channel gain of each path in the MIMO FSO system is impacted by the fading in
this path and the (N, X N;) channel gain matrix represents the base-band FSO
channel impulse response. H = {h;(t), 0<i<N,, 0<[I<N,} is the channel
gain matrix given as

[hll hlZ "'tht “

har  hyy by,

H=[hy h, ..hy]= (3-5)

lf.lzvﬂ f.lzvrz ---.thNtJ
We assume that the FSO channel is the frequency non-selective channel and is perfect
for the block fading channel model. We also assume that the transmitted optical signal
is a narrow bandwidth signal. The basic instantaneous channel equation is the

convolution of the input signal and the channel impulse response as
Es
y(©) =58 - h(®) s +n(t) (3-6)
With the above assumptions about MIMO FSO channels, such as the narrowband

signal assumption, we can replace the convolution in Eq. (3-6) by a simple product

and rewrite as [5]
y(©) =3B - h(®) - s(®) +n(0) (3-7)

The matrix expressions of MIMO point-to-point communication can be represented as
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Vi1 Y12 - YinL hit  hiz tht S11 S12 - SinL N1 Ny - MNL

Yau o Yoo Vo | &lg hay  hyy  hgy, || 521 S22 wSamt N Ny MNyy o Mayg

H H - Nt . . : : . H . H H

Y1 Vw2 =V hy,a o hyo  oohyw SN SNz - SNeNL N1 NNz o TINGNL
(3-8)

In the received signal matrix Y, the element y,(t) is the received signal of the [th

branch and can be represented as

N¢
Es
20 = ) 5B hu(®) 50 + ()
i=1

(3-9)

At the transmitter, the data from the information sources is intensity-modulated
by Q-ary PPM or OOK modulation and is sent to encode the Space Time Block
Coding. The signal data given out by the STBC component is split into N; sub-
streams and is added to the N; lasers array. The data is modulated on the optical
beams and is transmitted to different free space paths experiencing different
atmospheric turbulence.

In order to analyze the performance of MIMO FSO systems, we first focus on
the standard Q-ary PPM, which is the most frequently used modulation scheme, and
the repetition coding scheme, which is one of the simplest MIMO coding schemes.

The other modulation schemes including on-off keying (OOK), multiple pulse
position modulation (Multiple PPM) and differential PPM, have their own
characteristics and advantages but also have their performance or implementation
limitations [6,7]. There are other STBC schemes, such as the modified Alamouti-

based STBC, BLAST-based coding and STBC provided by algebraic method [4, 7-
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10]. The different STBC schemes can have different coding gains or different
diversity gains.

Since PPM is an equal-energy orthogonal technique which requires the non-
coherent detection, it is difficult to track the phase of the received signal. In this case,
it is practical to use the envelope or square-law detection of PPM in conjunction with
post-detection Equal Gain Combining. The EGC receiver processes the N, received
replicas from the branches, equally weights them, and then sums them to produce the
decision statistic. EGC is suboptimum and has acceptable performance and reduced
complexity [2, 4]. Although maximum ratio combining (MRC) is optimum and has a
better performance but it is more complex and requires the estimation of phase of the
received signals [2, 4]. In case of PPM non-coherent modulation, the signal phase is
not generally detected. Therefore MRC is not suitable for PPM scheme. There are
some other combing methods for the receivers, such as selection combing (SC) and
switched combing, but they do not result into optimum implementations and have
worse performance than EGC and MRC even though they are less complex than EGC
and MRC [2, 4]. In this chapter, the post-detection EGC with the envelope detection
is used and its demodulator decision is based on the sum of the envelopes of the PPM
symbols.

In the receiver, there are N, receiving branches and each branch includes a
collecting lens, an InGaAs APD, GaAs MESFET transimpedance amplifiers, a
matched filter and an equalizer, etc. Some receivers also include optical filters,
mirrors or other optical components. If the transmission condition is very good and
the transimpedance is used, little or no equalization is required [11]. In this
dissertation, normal cases including equalizers are considered and calculated. For

simple and special cases, the results can be obtained by changing the parameters
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setting. At the end of these branches, the processed signals are sent to a decision
detector, which implements the post-detection EGC with the envelope or square-law
detection, maximum likelihood decision, STBC decoding and pulse position
demodulation. Then the recovered data is sent to the data destination and the
performance analysis is processed. A simple MIMO point-to-point receiver system is

shown in Fig. 3.2 and Fig. 3.3.

Transmitter FSO channel Receiver

GaAs MESFT Matched Envelope
| [nGaAs | ] transimpedance lp| filter and Calculation
APD amplifier equalizer

Laser

EGC
ML
GaAs MESFT Matched Envelope Decision

InGaAs : i ~ulati detector,

| transimpedance lp| filter and Sampler Calculation
Laser APD amplifier equalizer Decoder
Demodu

-lation

Laser GaAs MESFT Matched
InGaAs

Envelope
l| trans%n{lpedance ~ ﬁlterfind Calculation
APD amplifier equalizer
Optical Optical

components components

Figure 3.3 Receiver structure of MIMO point-to-point systems
The detection of the transmitted data symbols is implemented by the maximum
likelihood algorithm. For different types of detection algorithms for MIMO systems,
the maximum likelihood detector is optimum detector and has a better performance
than the other detectors, such as Minimum Mean Square Error detector (MMSE),
Inverse channel detector (ICD), successive cancellation, sphere detection and lattice
reduction [12]. However, the computational complexity of the ML detector grows
exponentially as LNt | where L is the number of points in the signal constellation and
N; is the number of the transmitting lasers. For a small number of transmitting
antennas and signal points, the computational complexity of the ML detector is not

too high [12].
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3.2 Mathematical Model of MIMO FSO Point-to-Point Communication Systems

The inhomogeneity of the atmosphere due to temperature and pressure changes, like

rising hot air and the moving aerosol particles, the refractive index of the atmospheric

media also changes. This causes the amplitude and phase changes of transmitted
optical signals.

According to the system model given in Section 3.1, the corresponding

mathematical model for MIMO FSO systems is discussed in this section in detail.

3.2.1 Assumptions for MIMO FSO Point-to-Point Communications

In order to make the research model as close to the practical one as possible and

simple for analysis, the following basic assumptions and notations are made.

(i) At the transmitter, the transmitted signal is a (N, X NL) matrix. If the total
transmitted power for a 1 pulse in one slot is E; and the N; lasers in the

transmitter array distribute the power equally, the power transmitted by each laser

. . E .
at the transmitter is N—s . The laser beams from the transmitter array can be
t

described as Gaussian beams and the transmitted signals have narrow bandwidth.
The single mode lasers with the 1550nm wavelength are used in the transmitter.
(ii)) The FSO channel is the slow fading and frequency-nonselective MIMO channel.
FSO channels can be modeled as block fading channels and are independently,
identically distributed (i.i.d) ergodic channels. In this case, the channel is
assumed to be constant during one block or several blocks, each of which has a
fixed number of PPM symbols. The channel is assumed to change very little
between a number of consecutive blocks compared to the symbol rate, which is

assumed to change at a fast space. The channel variation is assumed much
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smaller than the total duration of the transmission. For different degrees of
turbulence, the intensity of the laser beams can be modeled as lognormal
distribution.

(iii) At the receiver, the received signal is a (N, X NL) matrix. There are N, receiving
branches and each branch includes a collecting lens, an InGaAs APD, GaAs
metal semiconductor field-effect transistor (MESFET) transimpedance amplifiers,
a matched filter and an equalizer, etc. The InGaAs APD is selected due to higher
responsivity ( R = 0.95~0.98 at 1550nm ) [11], its best performance at 1550nm
wavelength [11], and the improved sensitivity [3]. For a 1 pulse slot in the APD,
the number of the photon-electron pairs emitted by the first photon-injecting
process of APDs obeys the Poisson distribution. For the 1 pulse slot, the number
of the electrons emitted by the second photon-electron multiplication process of
APDs obeys the Webb distribution and is not smaller than the photon-electron
number. The GaAs transimpedance amplifier works in the linear amplifying
region and the mean signal current is amplified by the amplifier gain A in a linear
fashion. EGC is implemented in the receiver for improving SNR.

(iv) At each branch of the receiver, the total noise current transmitted to the decision
detector is the i.i.d additive white Gaussian noise. This includes the FSO path
AWGN noise, short noise, background noise, backscatter noise, bulk dark current
noise, surface dark current noise, thermal noise and amplifier noise, etc. Since
there are many independent noise sources in the FSO paths and receivers,
according to the Central Limit Theorem, the total noise of each branch at the
decision detector obeys the Gaussian distribution.

Usually the transimpedance amplifier is employed because of its low noise,

high impedance and high data rate although the transimpedance amplifier is less
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sensitive than the highimpedance amplifier. This difference is usually only about 2-3
dB lower sensitivity for most practical wideband designs [11]. In this dissertation,
GaAs MESFET transimpedance amplifiers are employed and the equivalent circuits
of a transimpedance receiver are selected according to Ref. [11].

The average symbol error probability, average bit error probability and average
pairwise error probability are the performance criterions that exhibit the nature of the
system behavior and most often are illustrated in the documents containing system
performance evaluations. These are more difficult to compute compared to the signal
to noise ratio and the outage probability. For the MIMO FSO system, the PPM
symbols are transmitted as a coded matrix by the laser array. In the analysis, we
obtain the equations of the average symbol error probability P;(E) for one transmitted
PPM symbol. Next, we calculate the average symbol error probability P, ,a¢rix (E)
for one transmitted PPM matrix. Finally the average bit error probability P, (E) and
the average pairwise error probability P,,(E) can be calculated by using
P. matrix(E). Numerical analysis is used in order to obtain the detailed closed-form
upper bound expressions of the above error probabilities. The impacts of each
parameter of MIMO systems on the error probabilities can be obtained in detail and
can be represented by figures. The analysis process results in the system performance,

system design, coding and modulation design, etc., for MIMO FSO systems.

3.2.2 Laser Beam Transmission and Link Budget
An optical wireless link of MIMO FSO system typically consists of
transceivers separated by the distance z. Each transceiver is made up of a laser array

(transmitter) and a photodetector array (receiver). The optical components, such as
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telescope, lenses and mirror, shape the transmitted laser beam and focus the received
signal on the photodetector. The transmitter transmits enough power P; to overcome
loss in the path, space, optical components and mispointing resulting in the sufficient
received power in the receiver so that the ones and zeros can be distinguished with
negligible error. The received power P, is given by

B- =M Npe Na N5 - N Npr* Py (3-10)
where 71, and 7, are the optics loss of the transmitter and receiver, respectively, 1,
and 7, are the mispointing allowances of the transmitter and receiver, respectively,
7N, is the path loss impacted by the weather and 7, is the space loss, which is the
fraction of the transmitted power collected by the receiver. The 7, can be calculated
by “Beer’s law” and 7, is calculated by using Gaussian beam theory. Depending on
the complexity of the optical train in the transmitter and the receiver, the optics loss
can vary between 2~5dB [3]. With the active tracking system, 1, and 7,, can be

about 3dB [3]. The link budget can be calculated as

Link margin =P; 45 — ¢ ap — Npt.aB — Na_dap — Ns.aB — Nr.aB — Npr.das — Sr_daB

(3-11)
where Py g, Nt ap: Npt_ag> Na_das Ns.as Nryg Mpr.ap are the variable expressions in
dB of Py, N, Npts Na» Ms» Mrs Mpr» TESPeECtively, Sy gp 1s the sensitivity of the receiver
in dB. It is desirable to have as much excess link margin as possible to mitigate
atmospheric effects, such as fog, etc. On a sunny day, the atmosphere is clear and the
link margin is useful to overcome fades caused by turbulence. On a foggy day, the
link margin is used to overcome signal attenuation. Thus the link distance or link

availability has to be compromised according to weather conditions. It is obvious that



49
more link margin can be allotted to the atmospheric attenuation, for better
compromise. In the presence of severe atmospheric attenuation, an optical link with
narrow beam and tracking has an advantage over a link without tracking.

In a FSO data link, when only the space loss 7, is considered, the relationship of P,
and P, are the ratio of the received aperture area A, to the transmitted beam area A4,
and is given by [13]

2P A, 24,
P = A, = 22tr _ 24
r 0% ™ nw2(z) Ap

P, (3-12)
where A, is the receiving aperture area of the lens at the receiver and A, is the half-

power spot size’s area of the transmitted beam at the receiver 4, = mw?(z). The

space loss is obtained as

n, = A (3-13)

s =2,

When the laser beams pass through the atmospheric media, there are many
aerosol particles in the paths. These particles absorb and scatter the energy of laser
beams and cause the attenuation and dispersion of the optical signal. In the optical
link, the signal attenuation due to path loss can be calculated as the difference
between the “clear air” signal level and the current air signal level. The first has been
evaluated as —11dBm [14].

The total path attenuation is then divided by the link’s length to obtain the path
attenuation a, gp in dB/km. The measured visibility is converted into the path

attenuation by applying “Beer’s law” [14].

(3-14)

171380 2\ Pa
Qq ap =

Vs
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where a, 45 is the path attenuation (dB/km), Vg is the visibility (km), A is the
wavelength and Dy, is the distribution of particulate with size, which is in the case of
low visibility (less than 6 km) as [14]

D, = 0.585(V;)*/3 (3-15)

From the above, the path loss can be calculated as

<_ “a_dBXDS)
Ne = 10 10 (3-16)
According to Eq. (3-16), if the visibility V; = 2 km and the wavelength

A =1550nm, the path attenuation is a4 gp = 3.99dB/km. If the transmission

Qg dB XDg

distance Dg = 1km, the path loss is , = 10(_ 10 ) = 0.3990.
In practice, the optics loss can vary in the range of 2~5dB [3]. n; 45 (1 in dB)
and 71, 45 (n,1n dB) can be about 3dB [3]. The mispointing allowance in dB,

expressed as M, g and 7y qp , can be about 3dB [3]. The total loss between the

T

. . 24, .
transmitter power and the received power, except the space loss g = s
b

(_ adBXDS‘HIL'_dB+77r_dB+77pt_dB+77pr_dB)
a=7]t'71pt'77a'77r'77pr=10 10

[ -0.585(V % ]

i 17.138(L) 585(Vs) XDSi

_ Vs \550

10

| I (_ 7’t_dB+77r_dB+77pt_dB+77pr_dB)

=10l l10 10

(3-17)

If the loss nt_dB = 3dB, TIT_dB S 3dB, npt_dB S 3dB B r]pr_dB = 3dB B A = 1550nm 5
Ve=2km, Dg = 1km and n5 = % , the total loss in one FSO path can be obtained
b

as

aqpXDstnt_qB+Nr_ aptMpt_dB*Mpr_dB

@1 = %10(‘ 10 ) — 0.025177 = (3-18)
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The received power of one APD branch from the i/th FSO path for a 1 pulse at the

receiver is

_ ZATPt ia

P =2 1<i<N,,1<I<N, (3-19a)

The transmitted power of one laser to the i/th FSO path for a 1 pulse at the transmitter
is

Py = 22t (3-19b)

24,
The total energy transmitted by the N, lasers array for a 1 pulse at the transmitter is

A, P..;T, N,
E; = NPT, _biril’b Tt

2A,a

[ 3 ]

17.138( A | 585(Vs)3

| 7 (5%0) *Ds

o

. Nt_dB+Nr_ dB+Npt_ dB+Npr.d
=Ab hv Ag; N, Lol JlO( t.b*1r_ap* Npt.ab *+pr B)
24,

(3-20)
where P, T, = hv Ag;; , Agj; 1s the average number of the incident signal photons for a

1 pulse from the i/th path and it can be expressed as

_ 2AaEg
Ao = rtie (3-21)

The average number A; of the incident signal photons in a 1 pulse slot is A; =
Z?’:fl Asir - The received power B, in a 1 pulse slot is B. = Zlivztl P .

During the entire data transmission of the FSO block fading channel, in weak

I

turbulence, the log intensity £ = In ( m

) of laser beams obeys Gaussian distribution

with the mean m, and variance 6,2 [13]. I is the intensity of the laser beam and obeys
lognormal distribution [13]. (I) is the expected value of the laser beam intensity. The
symbol ( ) denotes an ensemble average. It is proved in the Appendix A that in the i/th

path transmission, the laser beam intensity /, the received power P,.;; in a 1 pulse slot
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and the average number Ay ; of the incident signal photons in a 1 pulse slot are related

as

(L) = in(Z2) =t (22) = ) - n(T)  (-22)

where (P,;) and A, are the expected value of the receiver power P,; and the
average number A ; of the incident signal photons for a 1 pulse, respectively.

The probability density function of the log intensity € is

1 _mmgy?
PO === ¢
V2T - 0,
(3-23)
2
where the mean m, = —% and the variance o,2. By noting that (e?) = (é) =1, it

can be proved by using Eq. (3-23) and Eq. (3-25a) that the mean of the log intensity ¢

2 2
is equal to —a; L, i.e. my = —%. The average optical field amplitude is neither

2
attenuated nor amplified if the mean value of log intensity is set to — % [13]. During

the transmission of a number of blocks or in the whole transmission duration, the
intensity I of laser beam obeys lognormal distribution [13]. Usually a slot is chosen as
the time interval. For the ilth path of the FSO link, the average number Ag;; of the
incident signal photon for a 1 pulse obeys lognormal distribution with the following
PDF as calculated in Appendix B,

— L d(f) _ 1 _ (ln/lsil-zl:’;@—mg)z
plSil(As il) B pg(e)llenlsil_lnASLZ d(l 'l) B t
Ssi

21 - O'ZZAS il
(3-24)

. . Asi . .
where the mean and variance of the random variable ;—” are calculated in Appendix
sl

B as
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2

E{/‘{s il} = A llem[+% (3-252)
VAR{Z) = 75, e?metar’ (e — 1) (3-25b)
sul
2 2
where m, = —%. If m,= —%, the average optical field amplitude is neither

attenuated nor amplified. The mean value E{A ;;} of A ;; is

——  2A,@Es
E{Adsu} = Asu = Abh—:z/Nt (3-25¢)
In the reference [13], the variance 6,2 of log intensity is given as
, 7 1
o2 = 40)(2 _ 1.23C, K76 le plane  wave
049 C,° k6 R6 spherical wave
(3-26)

where Kk = 27” and axz is the variance of the log amplitude. C,* is assumed to be

2
uniform over the propagation path and typically ranges from 1071°m™3 (weak

turbulence) to 10712 m_g (strong turbulence). The transition from weak to strong
turbulence has been found to occur in the range 1 < 6,2 < 2 . The “scintillation
index” is used to characterize the degree of fading and given as [1]

Y=g’ —1=e%" —1

(3-27)

3.2.3 Statistical Characteristics of Signals in APD-based Receivers
FSO channels can be modeled as an ergodic, frequency non-selective and block

fading channel. The instantaneous channel equation is shown in Eq. (3-7) and Eq. (3-
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9), and the matrix channel equations are shown in Eq. (3-1) and Eq. (3-8). The
important considerations are:

(a) During the transmission of one block or several blocks, which includes
several PPM symbols, the channel gain matrix H and the transmitted symbol matrix S
are deterministic if the transmitted symbols are decided and chosen from the Q-ary
PPM symbol set. 8 is the deterministic parameter in order to make the mean of H
equal to |, E{H} = I. E and N, are also deterministic parameters. As there are many
noise sources in the systems as discussed in Chapter 2, according to the Central Limit
Theorem, the channel noise matrix N obeys Gaussian distribution. ¥ is the received
signal matrix at the equalizer output current and obeys a Gaussian distribution.

Assuming the time interval in a slot, the instantaneous received signals for a 1

pulse and a 0 pulse in the /th branch are given as

Yilton) = Zity 3B - hu(ton) - Si(ton) + Mu(ton) (3-282)
Yi(torr) = ny(tosr) (3-28b)

where n;(t,y) is the total noise in the /th branch and it obeys the Gaussian distribution
with the mean u,, = 0 and the variance 6,,2, n;(tog) is the total noise in the /th
branch and it obeys a zero-mean Gaussian distribution and with variance c,g”.
For the one-slot interval, the instantaneous incident photon numbers of APD for
a 1 pulse and a 0 pulse in the receiver with InGaAs APD, GaAs MESFET
transimpedance amplifier, equalizer and decision detector, etc., are
Feri(ton) = ks (ton) + kpi(ton) = Tity ksit(ton) + kpj(ton)  (3-292)
kri(tos) = kpi(tosr) (3-29b)
where k,;(ton), kg (ton) and kp;(t,,) are the instantaneous numbers of the total

received photon, signal part photon and background noise photon, in a 1 pulse slot for
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the /th branch, respectively. k,;(tor) and kp;(tog) are the instantaneous number of
the total received photon and background noise photon, in a 0 pulse slot for the /th
branch, respectively.

For the 1 pulse slot, the incident signal photons kg (t,,) with the average
number Ag; contribute to the signal part of the equalizer output current. The incident
background noise photons kj;(t,,) with the average number A, of a 1 pulse
contribute to the background noise part of the total Gaussian-distributed noise in
receivers. For the 0 pulse slot, the incident signal photon number is zero, kg (tof) =0.
But the incident background noise photons ky; (tof) with the average number A, ; still
exists and contributes to the background noise part of the total Gaussian-distributed
noise in a 0 pulse slot.

In this analysis of the transmission of one block or several blocks, the average

number Ag; can be treated as a deterministic value.

(b) During the transmission of a number of consecutive blocks, the channel
gain matrix H shown in Eq. (3-1) is a random variable and its distribution is
calculated in the following section. The noise matrix N is the Gaussian-distributed
random variable. The transmitted symbol matrix S is deterministic if the transmitted
symbols are decided and chosen from the Q-ary PPM symbol set. §, E; and N; are
deterministic.

The instantaneous received signal for a 0 pulse in one branch is the same as Eq.
(3-28b). It obeys a zero-mean Gaussian distribution with variance og,¢%. The
instantaneous received signal for a 1 pulse in one branch y;(t,,) is the same as the
one in Eq. (3-28a) and it is impacted by three factors. One factor is the lognormal-

distributed intensity of laser beams, which pass through the different FSO paths. The
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second factor is the Webb-distributed electron count given out by the ADP. The third
is the total noise current added to the equalizer output current and it is a zero-mean
Gaussian-distributed with variance a,,,2.

The instantaneous incident photon numbers of the APD in a 1 pulse slot and in
a 0 pulse are also be expressed as Eq. (3-29a) and Eq. (3-29b), respectively.

For the APD-based PPM MIMO systems, in each path with the channel gain
h;;, the laser beam is exposed to the atmospheric impacts and has attenuation and
dispersion. During the transmission of a number of consecutive blocks, in the one-slot
interval, the incident signal photon number kg;;(t,,) of a 1 pulse from the i/th path is
a random variable. The average number of the incident signal photons is Ag; and for

the h;; path, the probability distribution function (PDF) of A, ; is

_(nag i~ InZgy-mp)?

1
PagyAs i) = Tomorhn© 20,° (3-30)

In receivers, the incident photons are focused to the receiving area of the APD
and detected by the APD. Inside the APD, there are two processes shown in Fig 3-4.
The first is the primary photon-injecting process and the second is the photon-electron

multiplication process.

APD
Incident photons : Emitted photonelectron
number kg;; with the | number kg, with the Photonelectron Emitted electron,
' I /
average number Ay E Photon-injecting | average number 45 ', multiplication number m, ;

v
A
v

process in APDs process in APDs

Figure 3.4 Two processes in APDs
For the first process, kg 'il is the total photon-electron number of a 1 pulse

emitted by the first photon-injecting process during the one-slot interval. The main
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relationship of the incident signal photon number kg ;; arriving at the APD and the
emitted photoelectron number k; /il in the APD can be expressed by the quantum
efficiency i as [11]

ks 'y =1 ks (3-31)
According to semiclassical radiation theory, in one slot T}, the mean average rate of

the emission of the photoelectrons with the received average power P, and intensity |

of the laser beam is [13]

2. =D1Pr_ nlrAr (3-32)

Sl hv hv
where I, is the received laser beam intensity. The emitted photoelectron number kg 'il

obeys a Poisson distribution and the PDF of k; ’u is [13]

As ks iw-e~ds it
ks !

Co (
q(ks ;s ) = (3-33)

We can calculate the PDF of the incident photon number k; ; at the receivers as

qes ) = q(ks 'il)lks ke ‘;((’;ss;ilz)) N ’il)((:; ’;ssiizl)).f—/ls il (3-34)
and the relationship of A /il and A ;; is given as
As'y =1 Asu (3-35)
The relationship of the average number of A 'il and A ; is
1= As'y _ Py _ Tr ATy _ 24rPTh@ _ 2A:@Es (3-36)
n nhv nhv nhvAp,  Aphv Ng

For the second process, mg ;; is the total electron number in a 1 pulse slot given

out by the APD. p,,, . (ms i | ks, A5 1) is the probability distribution function of the

S v

electron number mg; given out by the APD, on condition of the primary
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photoelectron number kg 'l.l in the ADP and the incident photon number k; ; arriving

at the APD. The PDF p,,_, (m, ;) of the electron count m, ;; is given by

pmsil(mS il) = f [ Z qs(ms il | ks i /15 il) q(ks ilMs il) ' p/lsil(/ls il) ' d/ls il
e VA=

(3-37)
The PDF of the electron number m, with the mean primary photoelectron number k

in the APD is proposed as the Webb distribution in Chapter 2 [13]

ox (mg — kM)®
(ms — kM)(F — 1)
2&JﬂF[1+ TG ]J

Dsw (ms) =

kMF

_ 3
N [1+ (ims = kM )(F - ”]2
(3-38)

This Webb model has the requirement that the emitted electron number should not be
smaller than the photon-electron number, i.e. mg > k = 0, and the photon-electron
pairs generated by the first photon-injecting process obey a Poison distribution [13].
For 1 pulse slots in the APD-based receiver, the requirements of mg;; = kg 'l.l >0
and the Poisson distribution of kg 'il can be satisfied for APDs that work normally.

Hence, for MIMO FSO systems, the PDF of the electron number m,;; emitted by

APD can be expressed as

Psw (Mg ulAs ) = Z QS(ms i | ks ,il'As il) q(ks ,ilMs il)

!
ks =1

(3-39)
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During the transmission of a number of consecutive blocks, the incident photon
average number A ;; arriving at the APD is a random variable with the PDF in Eq. (3-

30). Since the average values of k', and kg are A", and Ay, respectively, and
they have the relationships of ky', =nks; and A", =1 A5y, the PDF of the
electron number my ;; on condition of A ;; is

Psw (M itlAs i) 12,20 = Psw(Ms i, As " ;|4 iz)hs’”:n A iwAp=0

= Dsw (Mg 1,1 As 1| As il)lAbzo

(Mg —n Ag yM)?

M2 (ms ir—n /15 ilM)(F — 1)]
20 Ay yM F[1+ T

exp { —

3
M2 (ms it — 1N As ilM)(F — 1)]7
V21 Ag  M?F [1+ 1 A  MF
(3-40)
Then, the probability distribution function of the electron count my ;; emitted by the

APD can be represented on condition of Ay ; arriving at the APD
pmsil(ms il) = fjooo psw(ms il | As il) : p/lsil(/ls il) ’ dls il (3'41)

As Ag; = 0 and the lower limit of the above integral is zero, the PDF of mg ;; is

[o0]

pmsil(ms i) = f Psw(Ms iy | Asip) - pAsil(As ) - dAs g
0

(ms ii—1n /15 ilIVI)2

00 2n Ag yM2F [1+(msil —U/{lsuM)(F—l)]
Sl MF

=f N Asi - 'plsil(/lsil)'dlsil
0

] 2 (msil_nlsilM)(F_l) 2
\ 21 Ag yM?F [1 + 1 Ay MF

exp § —

(mgy —n As yuM)(F — 1)]_ %

*© 1
- 1+
J;) J2mn Ag M2F [ nAsuMF
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(m .l—nﬂ .lM)z 1 _ (nasy=ndsy-mp)?
exp { — Sl(m Sln DI ) e 20, disy
iP — il — . .
2n AgyM?F [1 + =t n’lssi;MF ] T-0p°As il
_3
_foo 1 1 [1+(msij_77/1silM)(F—1) 2
0 2mn Ay yM2F /21 - 0,224y n AsuMF
exp (ms i =0 AsqM)? (s = Indsyy —my)? dA. -
M2 (msy —n AsyM)(F — 1)] 20,° st
2n Ag M F[1+ Ty
(3-42)
where A, = % . With some parts of the detailed derivation in Appendix C,
b t

Pm, ; (Ms ;1) can be expressed as

3
(7 nF [ msu(F—l)]‘ 2
pmsil(ms ll) - fo 21T O'gM n /15 il + M
(ms it =1 As ilM)z (ln /15 ir ln/ls i mt’)z
exp 31— - > dAs
ZMZT'] )'S il + ZMmS il(F - 1) 20'{)

3
nF j“’[ msu(F—l)]‘E
Nisy+———=
o S il

T 2no,M M
S\ 2
(7715 it~ m,\s,,ll) (In A 1—Inlg y—my)?
exp {_ 2[17/1 ; +msil(F—1)] - 207 dAs i (3-43)
Sl M

In Eq. (3-43), the following substitution is made

_ InAgy — Indg, —my

\/ia'g

X

(3-44a)

Asyy = e(V2o,x +indsy +me)

(3-44b)
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sy =S dx=e(V2or ¥ + ks + e )\ g,
(3-44c¢)
Since A;;; = 0, we can get the range of x - —o0 < x < oo . The upper limit and lower
limit of the integral p,_, (mg;) are infinity and negative infinity. The PFD can be

expressed as

nF *
2T O'[M —o

3
e—x* [7] e(V2opx +inds +mp) 4 ms y(F — 1)] 2

pms il (mS il) = M

— 2
[ne(\/fagx+ Indg +mp) _ Ms il]

exp { — M e(V2o,x +ndsy +my )\/fagdx
2 [77 e(V2op x +1nds +my) + ms il(]\Z - 1)]

3
=,/—nF f e"‘z[ ewzwwg—wwuw] ?
n
2n M J_o o

_ 2
(V2opx +nAgy +mp) _ Msil
ex - [ne M ] (V2o x + Inds +m{))d
p e X
2[77 e(V2o,x +indsy +me) 4 mSil(]\Z_l)]

(3-45)
According to the Gaussian Hermite quadrature rule [16], the integral can be given by

the following expression

[2 e dx = Tat_y wuf () (3-46a)

u#0
where {x,} and {w,} (u=-N,, N, +1,..—1,1,2..N, —1,N,) are the zeros and
the weight factors of the Hermite polynomial [4], respectively. This estimation
process yields fairly accurate results for values of N, < 10. Since {x,} and {w,,} are
well-tabulated in reference [4], the tractable means of estimating performance can be

obtained. By selecting the suitable N,,, the calculating error can be very small. Let

f(x) be
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3
f(x) — TIF [n e(\/fagx+lnm +myp) +M] 2

V2 M M
_ 2
(V2opx +Indgy +myp) _ Msil
exp —_ I:r}e M ] e(\/EG'[X'FlTLm +mg)

VEoyx +Inds +m msy(F—1)
Z[ne( ot L ) 4+ M

(3-46b)
Hence, we have
S F-Dy 2
F y- mg i (F — 2
(mgy) ~ w [ e(\/fchu+lnlsu+mg)+—]
Pmg ;M5 i1 yan v o M n M
u#0
[ne(\/fagxu+lnm +mp) _ Msig z
exp { — A/éF 5 n e(\/EO'[ Xy +1ndgy +my)
V20, %y +1ndgy +m ms i\ —
2 [n e(V2or p+me) 4 M ]
(3-47)
F
Let KWu =W, m
(3-48a)
K, =17 e(V2o,xy +1nd5y +my)
(3-48b)
53— _ 2AraEg
where A¢,; = ey
pms ”(ms il)
Ny 3 . 2
(F-1) (-2 (Ft-ky,)
~ Z Kwu Kxu [Tms i+ Kxu] exp [ — F =1
u=—N. 2 mey + K
[+, |

(3-48¢)
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3.2.4 Receiver Noises in MIMO FSO Systems
For MIMO FSO systems, in each transmission path, the optical signal is
impacted by the turbulence-induced fading and the additive white Gaussian noise of
the free space optical path is added. The AWGN in each FSO path obeys Gaussian
distribution N(y;, 0;2) 1 <i < N,. At each receiver shown in Fig. 3.3, the N, laser
beams from the transmitter array are received by the APDs simultaneously. The total

path AWGN at each APD obeys Gaussian distribution N (,upath, O'pathz) with mean

Hpatn = Z?]:tl p; and variance 0pqep* = Z?]:tl 0;2 . The power spectral density of the

path AWGN is Spaen = apathz and the power of the path AWGN is P, =

O'patth . But the sum of the noise is much smaller compared to the noise induced in
the receiver and it is negligible for the calculation of the error probability.

In MIMO FSO systems, when the post-detection Equal Gain Combining with

the envelope detection is implemented, the noise currents in the different branches are

assumed as 1.i.d Gaussian-distributed random variables and the expression equation is

given as

Nr NT' Nt N.r.
RMAEg
y= Z}’z :ZZT hi - s; +an
- t
=1 =1 i=1 =1

(3-49)
According to the discussion of the noise components in Chapter 2, the variances of
the noise currents at the decision detector for a 1 pulse and a 0 pulse in MIMO FSO

systems are represented as 0,,2 and 0,2 With
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Ny

1 Z
2 — 2
Oon _BZ Oon1

=1

=2t p {[Z%MZF + 2R (P, + POM?F + 2(I;,M?F + Ids)] ql,B +
b

(2algace —4’;";T+;’;B"e)123+(2 C)24KBTF"I B3 + 4kBTIZB}

NTAZ {[2 nqboanF + ZR(Pb + P )MZF + Z(IdbMZF + Ids)] q[zB + q BZWTZ}

(3-50a)

2

Rp gm'Rp q Im
NT‘
1
2 2
Ooff = B2 E Ooff 1

=1

=242 {[2 B (1 — Y )MF + 2R(Py + PIMF + 2(IapM?F + las)| a1,B +

(2qlgate + —4';‘1’;T + ;"3”‘3) LB + (2rC)? 2keTle ‘”‘B”e I3 + 22T IZB}
_ NT 2 rlqbon 2 2 2
=~ 222 T00n (1 YM2F 4 2R (P, + P.YM2F + 2(I,M2F + 1) | ql,B
BZ hVTb
+ quZWTZ}

(3-50b)

If we assume that the receiver is ideal and linear, and it changes the input

optical power to the electrical current with the coefficients (RMAB) linearly, we can

calculate the unity gain equivalent variances of the equivalent input power to the
receiver in the 1 pulse slot and in the 0 pulse slot as

.2
o 2 — M
eq.on T (pMAB )2

Ny o [2 (o)1 M2F+2R(Pp+PIM2F+2(1gpM2F+145)
(RMAB)Z( AB) [ q Tolz +WTZ]
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= (,7) 2 (324 Py + B FTy L + 2T, (’db’zz+’d)+%] (3-51a)

o 2 _ Nelin®ott
eqoff — (rmaB)2

( AB)Z [2 {igyo MPF+2R(Pp+Po)M?F+2(1apM?F+145) T,I,

; + W]

(RMAB )2

:(’;Tv) [EZ(bon(l V) + Py + B.) FTyl + 2Ty, MT%M+%]

(3-51b)

3.2.5 Signal to Noise Ratio Calculation

For the 1 pulse slots, because the transmitted signal energy is not zero, the
signal to noise ratio is not zero, which is very important for the PPM demodulation
and the performance analysis. For the 0 pulse slots, the transmitted signal is zero and
the signal to noise ratio is zero. As the PPM demodulator detects each slot in one
symbol, the values and impacts of SNRs in 1 pulse slots and 0 pulse slots are
different. The instantaneous SNR is referred to the one in the 1 pulse slot.

The detailed mean-square signal currents (is),, and (is*)o in the equalizer

output current at the APD receiver for a 1 pulse slot and a 0 pulse, respectively, are

2
(i57)on = (22 MA) " = (RP,MA)? (3-52a)
bon z
(i57Yoir = | o2t MA(L = )| = [RBMA(L = 7)) (3-52b)

The signal to noise ratio of the equalizer output current is

P2
l
SNR,, = s Jon )°;‘

Ooni

(RPMA)?

A? [[Z%MZF + 2R(Py + P.)M?F + 2(I 4, M?F + ldg)] ql,B + (qugm + 4],? 4k57;{ >1 B + (2rC)? 4k‘?m’I B3 + —£— 4k5 IZB}
b Im Ry
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(RPM)?

4ky 4kBTI" )

{[2 %MZF + 2R (P, + BIM?F + 2(1gy M2F + Ids)] ql,B + (zngm + RbT o LB+ (2nC)2 228 te 4k5 e1,B3 + 4k5TIZB}

(3-53)
The signal to noise ratio after the post-detection EGC with the envelop detection at

the decision circuit is

2 2
SNR (ls )onN
on_EGC = N
Oon1 r
B N (RP,MA)?
A? {[2 N9bon op o 2R (P, + P)M2F + 2(IqpM2F + lds)] ql,B + <2ql R ‘“‘BE ) I,B+ (2nC)2 —B—¢ 4kB €13B3 + 4]1(22T IZB}
gm

N, (RP,M)?

{[Z”qb"" M2F + 2R(P, + P)M2F + 2(Ig,MF + lds)] ql,B + <2qlgat

4kB;F )1 B + (2mC)2 4kBTFEI B3 +4kB 2B}
g

R

(3-54)
The unity gain equivalent signal currents for a 1 pulse slot and a 0 pulse slot are

ﬂqbonMA

.2 _ (isz)on _(hVTb ) _ 2
(lo_s )on - (RMAB )2 - (RMAB )2 - bon (3'553)

2
nqbon _
(isz>off _ [hVTb MAQ YS)]

(RMAB)Z (RMAB )2

(io_sz)off = = [bon(l - Vs)]z (3-55b)

The unity gain equivalent SNR for a 1 pulse slot can be expressed as

2

. 2
SNReq_on — (ig s )on — bon

Oon? hv bon ) M Wrz
(n) [m( +Pb+Pe JFTplo+2Tp 190 Ly

(3-56)

3.3 Probability Density Function Calculation of Channel Gains

For the mathematical model of MIMO FSO systems with block fading given in
Section 3.2, the channel gain is a very important parameter for analyzing the system
performance. The probabilistic characteristics of the channel gain and received signal
are discussed in this section and the equation for the PDF of the channel gain is

presented in detail.
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At the receiver, the instantaneous signal received from the FSO paths, are

expressed in Eq. (3-28a) and (3-28b). We assume that the amplifiers in the receiver

work in the linear range and can be treated as a model amplifying the signal A times

and adding the amplifier noise at the same time. In the transmission of MIMO FSO

system, the transmitted signals pass through the channels with random channel gains
and are added to the Gaussian noise.

The equalizer output current y,; of the [th branch of the APD-based receiver can

be represented by the function of the transmitted symbol s; and the channel gain h ;

as
Yi=) ——=—hy-s; +n

(3-57)
where g represents the link gain coefficient of the FSO communication channels,
which makes the mean channel gain h;; unity, E{h;;} = 1. During the processing of
the APD-based receiver, the equalizer output current y,,; for one slot can also be

represented by the function of the electron count mg ;; as

Ny A
}’mz=2i=t1T—stiz'Si +n, (3-58)

The signal parts of Eq. (3-57) and Eq. (3-58) equal to each other:

N¢ Aq R RMAEgqg
2i=1T_b Mgy = Zi=1 NeTh hil * Sy (3'59)

For each path of the FSO links, we obtain

A RMAE;

Mgy NeT T hi s (3-60)
R M Eg

M=% s (3-61)

The PDF of the channel gain h;; is obtained from Eq. (3-48c¢) and is given as
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Pra() = P, s D), i, T
hi \Itit mgg NS il m5i1=qT:ghil dhy

(REsg hy Kxu)z

exp (F ql\llt)RE
Ny - )
RME. g z[—s P+ K|
KWquu th 3
=—Ny F — 1)RE 2
uuil(;l [M hll + Kxu

(3-62)
where K, and K, are given in Eq. (3-48a) and Eq. (3-48b). The mean expression of
the current in Eq. (3-57) and Eq. (3-58) for FSO links are assumed as

E{ymi} = E{y.} (3-63)

A RMAE;
E{fima}+En) = E {5 Eh}Es 3 + E(n} - (3-64)
Since Tims g and MRP, ;;h;; (where P,.;; = %) are both the expressions of the
b tih

APD output current, we can get

E{Tibms il} = E{MRP; yh 1} (3-65)
Substitute Eq. (3-65) for the E { mg ll} in Eq. (3-64), we obtain

(A 5 £ (B0458) b ) B (560

AsEf{h;} =1,E{s;} =1land E{n;} = 0, Eq. (3-66) can be given as

(e - p ot s

P, ;; and E are random variables. The other parameters, such as M, A, R, Ty, N;, are

deterministic. The equation can be expressed as

=— _ RMAEsg
MARP,, ===
tib

(3-68)

g= PruNeTp (3-69)

Es
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where Ej is the average total transmitting power for a 1 pulse by the laser array, P,

is the average incident power received by one APD-based branch from one path.

According to Eq. (3-68), it can be obtained that

E = A—bﬁr’zf T (3-70)
Hence, the link gain coefficient is
PruNeTp _ 24y
9= Abﬁluléthb T 4 (3-71)
2Ara
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CHAPTER 4

ERROR PROBABILITY CALCULATION OF MIMO FSO SYSTEMS

4.1 Symbol Error Probability Calculation of MIMO FSO Systems
In practice, the optical signal emitted by a transmitter deviates from the ideal 1 and 0
bit stream. It can be degraded by channel fading during its transmission through free
space and by the noise in the optical receiver. Thus the performance of optical
receivers is severely limited. MIMO techniques can overcome channel fading and
improve the system performance. Based on the analysis of FSO communication
systems in Chapter 2 and Chapter 3, we have built up the mathematical model to
discuss MIMO FSO communication systems and have derived the closed-form upper
bound expressions of the average symbol error probability (SEP), average bit error
probability (BEP) and average pairwise error probability (PEP) for MIMO FSO
systems with Equal Gain Combining in this chapter. The error analysis for this
calculation is given in this chapter.
4.1.1 Symbol Detection of One Q-ary PPM Symbol

The PPM signaling is the orthogonal and power-limit signaling, which is more
power efficient but less bandwidth efficient. In the PPM optical receiver, the integrals
of the output signal over each time slot are implemented and then the slot of the
largest value is chosen as the slot that contains the received light pulse. The Q-ary

PPM equal energy orthogonal signaling scheme can be represented as [1]:

s, =(0,0,0, ... Ey) (4-1)
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The signaling vector representation of the PPM signals can be represented as

S, =(0,0,0, .... S (4-2)
where L = 29 and Q is Q-ary PPM signal, E; is the total energy of a 1 pulse slot that
are transmitted by the laser array, 1, S5 ... S are the symbols in the PPM symbol set
and their S;, S, or S, slots represent the 1 pulses, respectively, such as (0,0,0,
...... 1). E can also be represented by the energy after including the total number
A of photons in a 1 pulse slot and E; = hvA,.

In optical receivers, the post-detection EGC with envelope detection is used in
MIMO FSO communication systems shown in Fig. 3.1 and Fig. 3.3. For one PPM
symbol transmission, the received symbols, which are transmitted to the decision

detector of the APD-based receiver, have the following vector expression

y="220 h.S, +n (4-3)
t

and the matrix expression is given as

Y. Y1z YL hyy hyp N IS Siz eSw Nyp Ngp el

.yZl ?’22 - Yoo | RMAEsg|h,y  hy, .. hyn, || S22 S22z --SaL + Ny; Ny ...Dy

Y1 YNz o YNGL hya bz ohygndDSNet SNz oSNl N1 0Nz - DONGL
(4-4)

where y is the N, X L received signal vector for one PPM symbol, which is sent to the
decision detector of the APD receiver, h is the N, X N, channel gain vector with the
mean of its element equal to 1, E{h;} = 1, n is the N, X L added white Gaussian
noise vector in the APD-based receiver, S,, is the N, X N; transmitted signal vector

which is one of the L possible signals in PPM symbol set and 1 <m < L. For
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example S, = (0,5,,0,0...0) and S, = 1. y,h,S,, and n are all the real variable
vectors. The signal for the /th branch before the EGC can be represented by the scalar

equation as

RMAEg
)’I—E—Shu'si +n,

o N
(4-5)
The signal after the post-detection EGC with envelope detection is obtained as
Ny
RMAE g
ZYL ZZ hy - 5i+znz
=1
& RMAE e
=ZZ—Sg hi s +an
: N¢
=1 i=1 =1
RMAE,g
= Tsh *Sq + 00n2
(4-6)
where h is the channel gain h = ngl Iivztl hi; , Gon? is the variance of the 1 pulse slot

and is given in Eq. (3-50a) in Chapter 3.

For equi-probable, equal-energy orthogonal PPM signals, the maximum likelihood
detector selects the signal resulting in the largest cross-correlation between the
received vector y and each of the L possible transmitted signal vector S,, (1 <m <
L) as[1]

m=arg max y - Sm 4-7)

lsms
Due to the symmetry of the constellation and by observing that the distances between
any pair of signals in the constellation are equal to V2E, , we can conclude that the

symbol error probability of one PPM symbol is independent of the transmitted
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signal [1]. Therefore, for evaluating the symbol error probability P,(E), we can
assume that the signal §; = (51,0,0...0) is transmitted and can calculate the
conditional symbol error probability Pgsq, which is equal to the symbol error

probability of this Q-ary PPM. The symbol error probability of the Q-ary PPM can be

represented as [1]

L
1
P(E) = Z PmPs|m =1L Z Ps|51 = Ps|51
m=1

(4-8)
where P, is the probability that the mth PPM symbol S,, is transmitted. As the PPM
symbols are equi-probable, P, equal to %, P51 is the symbol error probability on

condition that the §; is transmitted. When §; = (51, 0, 0...... 0) is transmitted, the

received signal vector is

EsRMAg

y = hS; +ny, n,, n3, .....ny ) (4-9)
Ny, Ny, Ny ... .. n; are independent identically distributed zero-mean Gaussian random
variables, n, is the noise in a 1 pulse slot with the variance 6,,2, ny,ng, ... ... n; are

the noises in the 0 pulse slots with the variance 6,¢2. The PDF of n; and n,, random

variables are given as p,_ (on) and py . (ofr), respectively, as[1]

2

Non
1

pTLOn (non) = \/Fonz ‘ e_ Zo'onz (4'103)

2
1 _ Moff

Pnoff(noff) = m-e 200¢f° (4-10b)

Let us define the real decision variable R,,, 1 <m < L, as [1]
Rn=y Sn (4-11)

With the definition of Eq. (4-11), we can have the following decision variables
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Ry = =220 RS, S 4y, (4-12a)

t

Ry, =npSm 2<m<L (4-12b)
where h is the random variable given as h = Z;\Zl iv=t1 h ;j if the post-detection EGC
with envelope detection is implemented, nq,n,,n;3 ... ... n; are Gaussian random
variables, R; and R,, are also random variables. The random variables R, are still
Gaussian-distributed with zero mean and variance 042, i.€. Ry, ~N( 0, 046 ). The

PDF of Ry, is pp (1) shown in Eq. (4-10b). The random variable R, is the sum of

. R . . .
the random variable 252249 AI]VIAg hS;S; and the Gaussian-distributed variable n,S; where
t

S; and S, are deterministic and §; = 1, S;;, = 1. Then the decision variable can be

simplified as

Ry =" h 4y (4-13a)

t
Ry, =1y, 2<m<L (4-13b)

EsRMA . ) I EsRMA
=229 and using the variable substitution t, = SN—g h = k.h.
t t

We assume k; =

Then the decision variable R, is Ry = tg + n,, where t; = k;h and h has the PDF

pn(h). The PDF of the random variable ¢t is
_ an _ 1 o (sY=1. ,
pe,(6) = Pt 3 =3 P @) =5m® @19

The PDF of the random variable R;, which is the sum of t; and n,,, is the

convolution of the PDFs of t5 and n,, as

Pr,(11) = D¢, (E5) * Pn,, (Mon)

= f pts(tS) ' Pnon(rl - ts) - dtg

= f pts(rl — Non) pnon(non) * dngp
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(4-15)

where the upper limit and lower limit of the integration are decided by the range of

the random wvariables t; and n,,. We assume that the PPM symbol §; =

(1,0,0...... 0) (where S; =1,5,=0,5; =0,...... S, = 0) is transmitted, and the ML

detector makes a correct decision if Ry = R,, for m=2, 3,......L. Therefore, the
probability of a correct decision for one PPM symbol is given by

P, =P[Ry = Ry, Ry = Rs, ... ... Ry 2 R,| Sy sent]

E,RMAg E,RMAg
= P[—hslsl + Tl151 2 nzsm,—hslsl + Tll.sl 2 TL3Sm,
N¢ N¢
E,RMAg
...... Thslsl + nlsl = nLSm|Sl Sent]
t
E.RMA E.RMA
= P[S—gh +n1 = nz,s—gh +Tl1 = ns,
N¢ N¢
E;RMAg
...... ————h +n; = n;|Sq sent]
N¢
(4-16)
Events —ESRZMA‘Q h+ny; >n,, ESRI\IIWA‘Q h+n; =n,, .. .. —ESRAIIWAQ h+n; >n,;, are not
t t t

independent due to the existence of the random variables h and n, = n,, in all of
them. We can assume the condition on h and n; =n,, to make these events
independent. Since the n,,’s are i.i.d random variables for m=2,3,...... M , and by
using Eq. (4-15) and Eq. (4-16) , we can obtain

. E;RGMAg E,;RGMAg
Pclhzf P["zSTh+Tl1,n3 STh+n1, ...... n;
—00 t t

_ EsRGMAg

N h+mny,| Sy sent,ng = nyy, h]pnon (non) dn,n
t

0 E;RGMAg (-1
= f {P [nz < N h+n, |8 sent,n; = ny,, h]} Pn,,, (Mon) dNon
— 0 t
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(-1

(00 + oo
= f 1- J; RGMAg pnoff(noff) - dnfe P,y (Mon) dnoy
— 00 STh"'nOn

L-1)

(00 [ee] + oo
= f f 1- .L RGMAg pnoff(noff) - dnggs Pngyy, (Mon)dNon
—00 /-0 SN—th+non

(4-17)

The integral of fE_{;;}QolgMAgh_’_non Py (Motr) * AN is calculated in Appendix D and it is
t

: . EsRMA n : EsRMA n .
a Q function of the variable =—2h 4+ 2 je. Q (s—gh +ﬂ). Using the
Nioofe Ooff Neoose Ooff

definition of the probability density function, it can be obtained

f ] 1 Pngn (Mon) * dngy - pts(ts) ~dtg =1

(4-18)
Using Eq. (4-15), Eq. (4-17), dr; = dn,y, , Appendix D and Appendix E, the symbol
error probability P,(E) is
P(E) =Pgs, =1—P,

[s1

I E;RMAg = ny,\1¢ Y
= 1 - f ] {[1 —_ Q (_S —h + ﬁ):l . pnon(non) . dnon . pts(ts) . dts

oo NG Ooff
(4-19)
In optical wireless communication, the channel gain h is nonnegative and
0 < h < oo. Using the calculation in Appendix E, the error probability P;(E) can also

be represented as an integral of the channel gain h

) { f_ O; {1 - [1 -Q (% h+ M)](H)} pno,,(non)dnon} pr(R)dh

Noosr Ooff

P@ = |

0

(4-20)
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where the upper limit and lower limit of the integration are decided by the range of
the random variables n,, and h. According to the reference [2] and Appendix F, the

scalar expression of the symbol error probability can also be represented as

oo

P(E) = f P(EWY) - p, ) - dy

0

- ] PL(EIR) - pu(h) - dh

(4-21)
where ¥ is the signal to noise ratio, 0 < y < oo, and h is the channel gain, 0 < h < oo.
By comparing Eq. (4-20) and Eq. (4-21), the symbol error probability on condition

of h is obtained as

@ E.RMAg N\
Ps(Elh) = f 1- [I_Q( h + )] 'pnon(non)'dnon
—oo NiOoff Ooff

(4-22)

In optical wireless communication, the channel gain h is nonnegative and

0 <h<o0<t; <oo. The noise in the 1 and 0 pulse slots is Gaussian random
variables n,, and n.g , respectively, and they can be positive or negative. For the
photodiode current generated in response to an optical signal, its sampled value I,(t)
fluctuates from bit to bit around an average value I; or I, [11]. I; and I, correspond to

the average values of 1 and 0 bit, respectively. In the decision circuit, the real decision

. EsRMA . .
variables r; = SN—gh + n,, and 7, = nys are the random variables representing
t

the difference between the sampled value I;(t) and the average value I,. They can be

positive or negative. For the optical receivers under the normal working condition, the
. . . . R 2 .
signal to noise ratio y is far above y = 0dB, i.e. (EsNﬂ E {h}) > 0,,°. In practice,
t

the noise powers 0,,%2 and oy? are normally smaller than the signal power



80

(ESRN#E{h})Z, ie. (‘ﬂ#]i{h})z > 0,2 and (ﬂ#]g{h})z > 0%, 0<h <
0. According to the Eq. (3-50a) and Eq. (3-50b) in Chapter 3, it can be proved that
Oon’ = Oog2. In this dissertation, the equal gain combining with the envelop detection
1s used.

Using the Chernov Bound [1] for the AWGN system and Appendix G, the

following inequalities are given as

E;RGMAg
P [nz <——h+n
Ny

S, sent,ny =n,y,, h]

—ESRZ’t”Aghmon 1 1,2
= e 2 -dn,
|zemas, ., | V2m
E.RMA n
=1—2Q(s—gh+ "”)
N 0o Ooff
EsRMAg,  Mon\®
_ (Hoai o)
>1—e 2
(4-23)
and
(L-1)
EsRMA on |
ERMAg — mngn\1%& P _ (Wgertoom)
0< 1—[1—2Q<—h+—)] <<1-|1-e¢ 2 <1
NiOor Ooff
(4-24)

Using the calculation in Appendix G, the symbol error probability P;(E) of this Q-ary
PPM in Eq. (4-20) is given as

P(E) =Pgs, =1—F,

[s1

<ALl

E,RMAg b4 Non
NiO ot Ooff

)] (L_l)} Pron (non)dnon} pr(R)dh




27(L-1)

ESRMAg non)

o *® _ ( NtOoff  Ooff
< f f 1-[1-e 2 Pron (Mon)dnon p Pr(R)dh
0 —00

According to Appendix H, the symbol error probability P, (E) is

EsRMAg)?h?k
CL 1 (=D g ( 9

f 2N 2 (koon 2 +00ff2) pr(h)dh

P (E) <

The conditional symbol probability is obtained as

k(EsRMAg)?h?

=1 g k+1 _
Ps(Elh) < Z CL_l(_l) O-Offe 2N¢*(kgon*+00f?)

2
=1 1/ko-on +Goff2

k(EsRMAg)?

Letting k; = 2N (koon 2+ 0052

, Eq. (4-27) can be represented as

L=l o aNk+1
P <y D Sl e

/ 2 2
=1 ko_on + Oofr

4.1.2 Symbol Detection of Transmitted Matrices
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(4-25)

(4-26)

(4-27)

(4-28)

When the MIMO PPM symbol matrices are transmitted, the transmission is

implemented as the one shown in Fig. 3.3 of Chapter 3. The matrix expressions of the

transmission can be represented as

y =" HoS 4N

t

(4-29)
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Y1 Y12 --YiNL hip hyp hgy - SINL Ny Ngz .MgNL
I}’n }’22 YonL | RMAEsg| hy;  hy, tht l l .. S2NL + .r121 .nzz NyNL
: : : N, : . : : : :
YNt YNz YN [thl hN 2 hN Nt SNl SNtZ -+ SN,NL 0N DNz - INGNL
(4-30)

There are N PPM symbols included in a transmitted matrix and these N PPM symbols
are independent. For the calculations of this chapter, the matrix is coded by simple
repetition coding and post-detection EGC with envelope detection is implemented at
the receiver. These N PPM symbols in the receiving matrix at the receiver are
decoded together at the same time and then demodulated. The average symbol error
probability of one PPM matrix P, ;;4¢7ix(E) can be averaged on the condition of the
receiver SNR matrix I'. In Appendix F, it is proved that P, 41 (E) can also be
averaged on the condition of the channel gain matrix H.

At the APD-based receiver, the post-detection EGC with envelope detection is
used to process the received PPM matrices. For each received PPM symbol in the
matrix, the EGC receiver processes the N, received replicas from the branches,
equally weights them, and then sums them for the decision detection. Hence for the L-

branch receiver, the fading SNR for one branch takes the form [2]

(2%
(4-31)

In this case, it is more convenient to deal with the square root of the fading SNR for

one branch [2]

(4-32)
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If the channels are assumed independent, this characteristic function (CHF) takes on a

product form, namely [2]

(o) = ﬁF ()

(4-33)
Hence for each PPM symbol, the instantaneous received signal y of a 1 pulse slot

after the envelope post-detection EGC is

Ny

RMAE, g
y= ZJ’J ZZ ll'Si+an

=1

(4-34)

where n; (1 < [ < N,) is the i.i.d Gaussian-distributed random variables with the zero

mean and the variance o, 2, i.e. n;~N(0, d,,,%). The signal to noise ratio for a 1
pulse after the post-detection EGC can be represented as

Ny Ng

R2M?A% E? g? Z Z
YEGce = Nt o, 2 il

(4-35)
where 0,, 2 is given in Eq. (3-50a). For the MIMO FSO systems using the post-
detection EGC with the envelope detection, I'z;. is the SNR matrix for one received
matrix, Tgge = [V, V2 - Vm - ¥Yn] (1 <m < N). If §; PPM symbol is transmitted,

¥Ym 1s the SNR vector given as

RZM2A%E g
s2 h2

Yo = [ 0,0.. 0] (4-36)

Nt Jon
where h is the channel gain vector and can be represented as
h S [h 11 hlZ thr; h21 h22 h'ZNr; ...... thl hNtZ hNtNT‘]

(4-37)
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The instantaneous channel gain h for one 1 pulse is
Ny Nt
h=> > hy
1=1 i=1
(4-38)
where h;; is the channel gain of the ilth path, y is the SNR for one 1 pulse given as
RZMZAZ ESZ 92

2
Ny N¢ .
Ntz (Z[:l i=1 hLl ) _ :RZMZAZ E52 gZhZ

2 2
Oon N¢* 0pp ?

’]/:

(4-39)

2

where g,, © is given in Eq. (3-50a). For one received PPM symbol with L slots, the

decision variable r; is

& o B, RMA &
gsi
=m0 ) T bk )
- t
=1 =1 i=1 =1
E.RMAGS, o o &
S.
_ S—glz Z hy + Z n,
N :
=1 i=1 =1
Ny
= kh+ Z n
=1
(4-40)
where k; = EsRMAT and s;=1.

t

For the block fading channel assumption of the MIMO FSO systems, the channel
gain vector h for one PPM symbol is nearly constant. For one receiving matrix, the
signals of N received PPM symbols are i.i.d random variables and their symbol error
probabilities are independent. For one (N, X NL) received PPM matrix, the symbol
error probability for the matrix P, pqerix (E) can be represented on condition of the

SNR matrix I' = [yl, | yN]
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Pe_matrix(E) = Prop [e < eth]

- | " Ple < eI - pr(I) - dT

= J. {Pel le1| v1lP.,[ez]y2] ... ... P, len] ywl}pr(I) - dr

[o¢] [oe] [o9]

- j Pel[elwl]ph(yl)dylf P, [e2] Yalpy, (72)d¥s o f P, len] ¥ulpy, (a)d¥n

[T utentrt-pyr)-

~TT|J alemt - puct - a

(4-41)
where e = (eq, e, ... €,, ... €y) is the error matrix for the transmitted matrix with the
N PPM symbols, eq,e;,...€,,... ey are iid random variable vectors and e,
(1<m<N) is the error vector for one PPM symbol. For the optical wireless
communication with PPM, the channel gain h is nonnegative in the range of 0 < h <
oo, The signal to noise ratio y is nonnegative in the range of 0 < y < oo,

For one PPM symbol detection, the simplified decision variables are shown in Eq.
(4-13a) and Eq. (4-13b). The channel gain h only impacts the 1 pulse slot and the
decision variable R; in Eq. (4-13a). In mathematical terms, letting R,|h denotes the
decision variable on the condition of the channel gain h. The decision variable R, |h
can take on positive or negative values whereas the instantaneous channel gain h is
restricted to only nonnegative values. Since h = Z?Zl ?’;1 hy and h; =20, h is
nonnegative h = 0. In addition, the PPM symbols are the positive data bits. In

practice, the channel gain should be nonnegative in order to ensure the correct
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transmission. The PDF of py,, (h;;) is real and nonnegative and is given in Eq. (3-62).
The PDF pj, (h) of h can be calculated by using py, (h;;). The conditional probability
P, (en| h) for one PPM symbol can be represented on the condition of the
instantaneous channel gain h for one 1 pulse as shown in Eq. (4-41). The integral
limit of h is from zero to infinity. The symbol error probability for one PPM symbol
is given in Eq. (4-20) and the conditional symbol error probability for one PPM
symbol is given in Eq. (4-22). By using the binomial expansion and Appendix H, Eq.
(4-41) can be represented as

Pe_matrix (E)

ﬂ [ f f {LZ e (-4 o (EA‘ZS fog h+ ZZ;)]k}pnon(non)dnon pu(h)dh

(4-42)

As there is a power function of the Gaussian Q-function in Eq. (4-42), it is difficult to
express Eq. (4-42) exactly. By using the Chernov Bound [1] for the AWGN system,

and the calculation in Appendix H, Eq. (4- 42) can be represented as

N [ -1 Ck (_1)k+10. o _ _ k(EsRMAg)?h? ]
Peomarrix(B) < | || A0 | & 2elkoon™ v py, ()
m=1k=1 kO'(mZ + aoffz °

L—

=

Cra (=D oy

N
m=1 k=1 1’ko-on2 + Goffz

k(EsRMAg)?
ZNtz(k00n2+O'0ff2)

f e~ ki"* p. (h)dh
0

(4-43)

where k; = and h is given in Eq. (4-38). By using the variable

substitution t = —h, Eq. (4-43) is modified as
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N L k(EsRMAg)? t?

2Nt2(k°'on2+0'off2) ph(—t)dt

(= 1)k+1ffofff

Pe_matrix (E) 1_[
m=11k=1 1/ko-on +Uoff

(4-44)
4.1.3 Symbol Error Probability Calculation of Transmitted Matrices
We use the function f(t) to represent the following part in Eq. (4-44)
E;RMAg)? t?
fO=ew |- leg(;ionz?ﬁszz)
(4-45a)

The function f(t) is an even function for . The integral in Eq. (4-44) is an integral of

the function f(t)p,(—t) given as

0 _ _ k(EsRMAg)?t?
I — f e ZNtZ(kGonZ‘l'coffz) . ph(_t)dt
—o00

(4-45b)
Since the integral limit is from negative infinity to zero, this integral I can also be

considered as a probability of the variable t, evaluated at t;;, = 0 as

tth

= Popleo <t < tul = | F@pa(-de = f (O pa(=0)dt

(4-45c¢)

The PDF of t is

dh
Pe©) = p(Wjn= e [ 75| = pa(=0) = u®)

(4-46)

Substituting Eq. (4-46) into Eq. (4-45b), the integral [ is

0
= f £ [pe(D]dt

(4-47)
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According to Appendix F, the PDF py, (h) is real and nonnegative, p,(h) = 0,h > 0.
As shown in Eq. (3-62), the PDF of phl.].(hl-j) is real and nonnegative and the
characteristic function of the PDF phij(hij) exists. The PDF pj(h) of h can be
calculated by using the characteristic function of py,(hy). F,(w) represents the
characteristic function of pj,(h) and F,, (w) represents the characteristic function of
Pr, (hy). The characteristic function of p,(h) and the inverse integral can be

represented as [3]

R = | " pu(h) eon dh

(4-482)
1 (® .
pr(h) = ﬁf_wFp(w) e /" dw
(4-48b)
eJoh = gjo(=t) (0Sh<ow, —0<t<0)
(4-48c¢)
pe(®) = P (11—t [5] = Pa (-0 = a0
(4-48d)

Further the integral in Eq. (4-47) can be represented as

0
I = f £(O) [po(Odt
0
- f —F O ON d(=0)
- ] £ () pr(h)dh
0

SN .
:fo f(h)[ﬁf_me(w)e‘J“’h do| dh
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- if: Fy(w) Uooof(h)e‘j‘“h dh] dw

2T

1

= E,f {Real[Fp(w)Ff(w)] +jImag[Fp(w)Ff(w)]} dow

(4-49)
where Real[Fp (w)Ff(w)] is the real part of F,(w)F;(w) and Imag [Fp(a))Ff (w)] is
the imaginary part of F,(w)Fs(w). For Eq. (4-49), the integral of the real part,
Real[Fp (w)Ff(a))], is the error probability and the integral of the imaginary part,
Imag|E,(w)Fr(w)], is zero. If Fr(w) = fomf(h)e‘j“’h dh is integrated directly as

shown in Appendix I, it can be obtained as
—w?2 .
—et Lol
R =em [Xo(L)
(4-50)

k(EsRMAg)?
2Nt2(k0'0n2+0'0ff2)

where k; = . There is a Gaussian probability function, i.e. Q

function, with the complex variable in Eq. (4-50). This causes the difficulty in
obtaining further integration of w directly from negative infinity to infinity in the
complex domain. The indirect complex integration method for the integral [ is
employed here. As the symbol error probability in Eq. (4-43) and Eq. (4-44) is real
and nonnegative, the integral I in Eq. (4-49) is a part of the error probability and can

be represented as

1 [ee]
I = Real [% [ B dw]

1

= f _Real[F,(@)Fy ()] do

= %f {Real[Fp (a))]Real[Ff(w)] — Imag [Fp (w)]Imag [Ff(a))]} dw
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(4-51)
where Fr(w) = [° f(R)e /" dh = [* e~ lh® g=Joh g,
Real[F;(w)] = foof(h) cos(wh) dh = foo[e‘ kih? cos(wh)| dh
0 0
(4-52a)
Imag[Ff(a))] = foof(h)sin (wh)dh = foo[—e‘klhz sin(a)h)] dh
0 0
(4-52b)
b -

For MIMO FSO systems, the N, lasers transmit the PPM symbol streams through
the N; X N, different paths as shown in Fig. 3.1. From each path, the received laser
intensity and the average received photon number Ag; are lognormal-distributed
random variables. We have obtained the PDF pj,, (h;;) of the ilth path channel gain
h;; in Eq. (3-62). The PPM symbols are the positive data bits. The signal to noise ratio
y;; is restricted to only nonnegative values. The channel gain h;; of each path is also a

nonnegative value. The decision variable r; for a slot can take on positive or negative

values, where 1 = Esjjv—MAgh +n,, and h = Z;V:l ?]:tlh”. For each h;, the PDF
t

Ph;, (hy) is given in Eq. (3-62)

(BEelp, -x,,)

exp — qN;
Ny 2[(F—1)fREsgh‘+K
_ RMES g th il Xy
ph il (h’ il) - KWquu N 3
uE=h, e (F — 1)REs g P
u%0 Th it Ky,

(4-53a)

In the above equation, the variable substitution is made
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— REs g — REg 2Aya

T ane T aNeAp (4-53b)
Then the equation is
2
N exp|— (Kkh ii — Kxu)
- 2[(F—DKyhy+ Ky |

phil(h il) = Z KWquuKkM 3

u="my [(F = DKxhy + Ky, |2
(4-54)

The channel gain h;; > 0 is real and in the range from zero to infinity, the variable

Es2Ara

K, =
u hVAbNt

eMeV29rxu > 0 and % hy+Ky, =20. pyp,(hy) is real

and nonnegative. The PDF pp, (h;) is real and nonnegative pj,(h) = 0. The
characteristic function F,, (w) of py, ,,(h ;) exists when h;; > 0 and the characteristic

function F, (w) of pp,(h) exists as

[oe]

), (w) =f Pny(hy) e/Midh

: o et
X o 2[(F —DKyhy+ Ky |
= Z Ky, K, KM f e/@Nhu 3 i
u==Ny 0 [(F - DKhy+ K, |?

u%0
(4-55)

According to the calculation in Appendix J, Eq. (4-55) can be modified to

Ny,
%) 3
F,, (w) = Z KWquuKka e hi [(F—l)Kkhil+Kxu]( )
U==Ny 0
u#0
2
Kk(h'il - emf’eﬁ‘”’xu)
exp <hy + jwhy dhy

T 2[(F = Dhy + emeeVZoen]

(4-56a)
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where

Ko = wi () (4-56b)

AthN
Ky, =nexp[\/§agxu—ln<m>+ m{;]

. E24r® o 3o,
hv Ab Nt
= Ke™e V2orxu (4-560)
__ REsg — RE 2Aya _
k= qN¢ qNtAp (4-56d)
I = it (4-56e)

ST Aphv N
According to the Gaussian Laguerre Integration rule [4], the integral can be given by
the following expression

Jy e g dx ~ T2, wog(x,) (4-57)
where {x,} and {w,} (v =1,2..N, — 1, N,,) are the zeros and the weight factors of
the Laguerre polynomial [4], respectively. This estimation process yields fairly
accurate results for values of N, = 15. Since {x,} and {w,} are well-tabulated in
reference [4], a tractable means of estimating performance can be obtained. By
selecting the suitable N,,, the calculating error can be very small. Eq. (4-55) can be
calculated by the Gaussian Laguerre Integration rule and g(x) represents the

following part in Eq. (4-58).

w
~—

gthy) =[(F—DKhy + Kxu](_ 2

Kk(h ii— € mge\/idgxu)z
2[(F = Dhy + e meeV2oe ]

exp s hy + jwh

(4-58)
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The characteristic function is

Ny Ny

Fy,(w) = Z Z Ky, K KM wy[(F — DK x, + Kxu](_ 2

u=—Nu v=1
u+0

Kk(xv — eMegV2oy xu)z
2[(F —Dx, +e me V2 oy xu]

exp {x, — + jwx,

(4-59)

Because the real nonnegative random variable h is the sum of the real random

variables h; (h;; = 0), the PDF p,(h) is the convolution of the PDFs of each path,
PryChy) (1 <i <Ny, 1<1=<N,).py(h) is real and nonnegative (Appendix G).

Pr(h) = pp,, (ha) * Pry, (hi) o Py, (ha) * Pry, (i) o Pry . (Rip)

(4-60)

Now the characteristic function F,(w) of pp(h) is the product of the characteristic

function F,, (w) of pp,(hy) . After the detailed calculation in Appendix K, F,(w)

can be represented as

Fy(w) =f pn(h)el®rit dh

NAY S i | Fe™ RE A, .«
T o o
T gNAp

v1=1v,=1 thNr=1

z z z Wy W, - WUN Ny Wy, Wy, - WVNtNT

U==Ny U=-Ny  UNN,.=—
uq,#0 u#0

N¢Ny

uNtNrio

exp [ \/Eag (xu1 + Xy, ot xuNtNr) + (x,,1 + Xy, ot vatNr)]

-3
J

_3
[(F - Dx,, +e™e ﬁ"”ﬂl]( 2 [(F - Dx,, +e™e V2o xu,
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-3)

[(F B l)xVNtNr +e™e V2o xuNtNT]

exp (_ ﬁ)lr (xv1 —eMee ﬁaexul)z . (xvz e ﬁwxuz)z
“(F - 1)x + e Mee \/—O'{IXul] [(F — 1)951;2 + e Mee \/Ea{;xuz]

V20px
—e™ UN Ny
(xVNtN e e t

[(F 1)va Ny +e Mmyo ‘/_o_l’ xuN Ny J

(4-61)

where
Fe™ \/m
KO =
n qN:Ap

K = 2 Z : : Wu Wy o Wuy n, Wo Wy o Woy o,

ul__N‘u. uZ—_Nu uNtNr
ulio uzio

N¢Ny

(4-62)

uNtNrio
exp [ \/EO'{) (xu1 + Xy, Tt xuNtNr) + (xvl T Xy, +or x”NtNr)]

-3
]

[ V2o, x (_%)
(F = Dy, + e e Pora]

=)

[(F — Dx,, +e™e V2 opxy,

[(F - 1)x17NtNr +e™e V2o XuNtNr:|
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2 2
(xv1_emge \/fafxul) (xvz_emge \/fagxuz)
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l( )

F —————

2
V2apx
(¥ UN¢N
(x,,NtNr eMee r

+
[(F = Dxyy,y, +e™Me Vzor xuNtNr]J

Kg =xp, + 2y, +- + X0 NN,

o = RE;g REs2A.a
T qN, qN;Ap

In Eq. (4-61), the complex F,(w) can be represented as

Ny Ny Ny

Real[Fp(a))] = Z Z Z Ky Krcos (Kqw)

v1=1v,=1 thNr=1

Ny Ny

Ny
Imag[Fp(a))] = Z Z z Ko Krsin (Kqw)

V1=1 V2=1 thNT=1

The integral in Eq. (4-51) is

I = %f_oo{Real[Fp(a))]Real[Ff(w)] - Imag[Fp(w)]Imag[Ff(w)]]da)

[(F - Dx,, +e™e ‘/E‘”’xul] [(F — Dx,, +e™e ‘/E‘”’qu]

(4-63)

(4-64)

(4-65)

(4-66)

(4-67)
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i Z Z K, K¢cos (de)f [e kih? Cos(a)h)] dh

Ul— V= 1 thNT
Ny, Ny
+ Z Z Z Ko K¢sin (de)f kih sin(wh)] dh;dw
v1=1v,=1 thNT_l
(4-68)
Because the integral I is real, the integrand in the above Eq. (4-68) is even,
Real[Fp(—a))]Real[Ff(—w)] — Imag [Fp(—a))]lmag [Ff(—a))]

N K, Krcos (—K w) e kh* cos(—wh)| dh
EODEY [ |

V1= 1172 1 thNT_l

Z Ko Krsin (— Kda))f [e ki sin(—a)h)]dh

V1= 1172 1 vaNT_l

i 2 z KOKfcos(de)f [e kih Cos(wh)]dh

v1=1v,=1 UNeNyp=1
+ Ky Kesin (Kyw) [e kih sin(wh)] dh
= Real[Fp(a))]Real[Ff(w)] — Imag [Fp(a))]lmag[Ff(w)]

(4-69)

k(EsRMAg)?
ZNtZ(kU0n2+O'0ff2) '

I = Z Z Koty {f [Cos(de) J:O(e‘klhz cos(a)h)) dh

v1=1 thNT

where k; = Eq. (4-68) can be represented as

+ sin(K w) foo(e—kmz sin(wh)) dh] dw}
0

(4-70)
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According to the reference [5] (P480 3.896), the following integrals are

foo[ B cos(b)]dh = = |- ( bz) Real B> 0
e coS == —ex _— ea
0 2 B\ "4
(4-71a)
fw[e-ahz sin(bh)]dh = ii; —ﬁ Y Reala >0
o _Zak_l(Zk—l)!! 2a
(4-71b)
Then

«© 1 |« w?
—kih? wh)|dh == |—exp|——
J;) [e cos( )] > kle D s

(4-72)

o w *® 1 w2 (p-1)
e " sin(wh)| dh = —Z —<— _>

(4-73)

If the variable ZL is in the range of small values, computing large number of terms in

N

the above series representation can obtain the value of the integral in Eq. (4-73). But

if the variable —= is in the range of large values, the computing result of Eq. (4-73)

2K
becomes oscillated very severely. As the % increases and k; = 82.161, the results are
l

shown in Fig. 4.1
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Figure 4.1 Computing result of the series expression in Eq. (4-73)
The following integral in Eq. (4-73) can also be represented by Dawson’s integral

Fp(w) as

fw[e‘klhz sin(wh)| dh =

Jlk—lFD (2 3E>

(4-74)
where F,(x) denotes Dawson’s integral [6],
Fp(x) = (- )j et = x (1,5, -x?) = Z 1)”( 2x2) )
(4-75)

Dawson’s integral can be computed more efficiently by using the remarkable

approximation due to Rybicki [7]

e~ (x— zhg)?
FD (X) B hlcli—>0\/_ Z

(4-76)
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The approximation equation for computing can be represented as [7]

N 2
Fox') ~ = i L
x') = — —_—
P Vr . z' + z
Z =—Np
z' odd

(4-77)

. . X
where z, is the even integer nearest to X0 = Zohg , x' =x —xy and z' = z — z,,.
d

The approximate equality is accurate when h, is sufficiently small and Nj is
sufficiently large [7]. The computation of this formula in Eq. (4-77) can be greatly
speeded up if we note that [7]

e (' -2'ha)’ = o= g=('na)" (g2¥'ha )’ (4-78)
The first factor is computed once, the second is an array of constants to be stored, and
the third can be computed recursively. Thus only two exponentials must be evaluated
[7]. Advantage is also taken of the symmetry of the coefficients by breaking the
summation up into positive and negative values of z’ separately [7]. In order to
maintain relative accuracy at values near x = 0 in the calculation of error probability,
Dawson’s integral is computed by the series in Eq. (4-73) for |x| < 0.2 and by Eq. (4-

77) for |x| = 0.2.

N -
(W ZS 1 < w2>(p Vo <02
2 k&=t @p = DU 2k 2k

F ( @ ) . ’
D = _ w
2 \ky 1 AL e (2 \/?l) ‘ hd] w
N Z z' +z = 0.2
VI e 0 2.k
\ z' odd

(4-79)
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. . w Wy _ o _

where z, is the even integer nearest to raafi  hazyi Zohg, W = w—wq, ,

z' =z—12zy , Ng and Np are the truncating term numbers. As the % increases and
l

k, = 82.161, the computing result of Eq. (4-79) by Dawson’s integral is shown in Fig.

4.2. The computing result of Eq. (4-79) converges as the w increases.
ol |
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Figure 4.2 Computing result of Eq. (4-73) by Dawson’s integral

4.1.4 Fourier Series Method for Calculating the Average SEP
According to reference [3], [6], [8], [9] and Appendix L, the average symbol error

probability P;(E) for one PPM symbol can be represented by the Fourier series

1 oo
R(E) =1 D Real{®, (n09) G (n0)}

n=—oo

w 20 <
= 22 Real{®, (0)G (0)} + 2 ) Real{, (100G ()
nn;dld

(4-80)
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where w, = i—n, @, (w) is the characteristic function of P,(x) and x > 0 , ®,(w) =
F

fooo P, (x)e/**dx, G,(w) is the Fourier transform of the function f(x) with the

random variable x, G, (w) = fooo f(x)e 7** dx [9]. P,(x)denotes the symbol or bit

error probability on an additive white Gaussian noise channel conditioned by the
signal-to-noise ration or the combining output envelope [9]. By using Eq. (4-80) in
MIMO FSO systems and truncating the infinite summation, a detailed derivation of
Eq. (4-80) is given in Appendix L. The average symbol error probability P;(E) for

one PPM symbol is

N, Ny
k+1
Wo 2 2 CL 1(=1) Uoff 1 n
P.(E) <— K K —
s( )— 2T 0 f kl
v1=1  VNN,=1 ko—on + Uoff

N,
Za)
2Wo f I Z KoKy cos(Kqw)

v1=1 UN,N,=1
nodd ! e

]
Ck (-1 e kh* cos(wh) |d
lf Z (kaon + Oofe®) J ’

L-1 ]

ck 1)k+1g,
1 CD 00 e sm(a)h)dhlda)

[
I )
{L k=1 (ko-on + Ooff ) J

L—- ( 1)k+ Ny J
L_
K K,
Syt s $ ol 2
Gon +aoff) =1 Uneny _1 k
{
1 |rm (nwy)?
cos(Kdnwo)E \/k:lexp — ak,

Np
4 2% Z
n n=1
(nw0>
2k
Vi

Ny

Ny
Z Z KoKf sin(Kqw)

v1=1 thNT::l

(oo}
J‘
0

nodd

+ sin(Kyjhwy) ————
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N
i 2 [t [ G52« Comisanrs (35|
- cos(Kgnwgy) exp | — —ssin(Kgnwoy)Fp | ——
4 ~ 4kl \/E 2\/?1
nodd
(4-81)
where
NNy
, Ot (Femf’>NtNr (IRESAra>(T‘1)
V2rMA\r \[q NeAy,
(4-82a)
k(E;RMAg)?
l =
ZNtZ(kO'OHZ + O'Offz)
(4-82b)
Wy = ;_’: (4-82¢)
= 22 (4-82d)
Ap
.
nwg 2 [ (nwo)] oy _ oo
(2p—1)” 2k, 2
F < nwy ) .y 2
"o m e
Z >0.2
\/_ ’=—ND z'+ z, 2\/?1
\ z' odd
(4-821)

Ny Ny Ny

Ky = E E E Wy Wy, e Wy Wop, Wy oo Wy
u1=—Nu u2=—Nu uNtN‘r=_Nu
uq#0 U #0 uNtNr:‘tO

exp [ V2 a, (xu1 + Xy, ot XuNtNr) + (xv1 FHp, o xvzvfzvr)]

_3
[(F — Dx,, +e™e ‘/Eaf’xul]( 2) [(F — Dx,, +e™e VZoexu, |* %
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-3

[(F - l)XthNr + e e V2o xuNtNr]

exp (— ﬁ)Ir (xvl —eme ﬁaexul)z N (xvz —e™e ﬁ”fxuz)z
“(F - 1)x + e Mee \/EU{’Xul] [(F — 1)951;2 + e Mee \/Ea{;xuz]

V2o0px
—eMe UN¢Ny
(xVNtN e’e ¢

[~ Dy e f J

(4-82g)
Kg =2, + 2, + -+ X0 NN,
(4-82h)
RE;g RE 2A,a
Kk = =
qN¢ qNAp
(4-821)
Ny is the truncating term number, T = KO , K¢, K4 and Fp ( \/k_) are given in Eq.
_ k(EsRMAg)? _2n
(4-82a), Eq. (4-82g), Eq. (4-82h) and Eq. (4-82f), k; = 2N (koonZ+ oo and wy, = ™

. T is selected such that P,(t > T) < ¢, € can be set to a very small value and Ty is
also selected as the suitable integer times of K;, Tr = nyK;. N can be selected as the
suitable integer times of 2nn;, Np = np2nny . hy is selected sufficiently small, and
nr, ng, Np, Ns, N, and N,, are sufficiently large such that the calculation error € can
be set to a very small value and the accuracy can meet the practical requirement. The
computing result of Eq. (4-73) by Dawson’s integral is shown in Fig. 4.2 .

The average symbol error probability P, ;4¢rix (E) of one transmitted matrix is

Pe_matrix (E) =P (E)N
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. Cloa(— 1)k+1K0 <
SHZ Z v Z Krwq

m=1k=1 U1=1 UNterl
1 < (hwy)?] 2
nw, ) nw,
-+ Z [cos(K nwy) exp [— ]+—sm(K nwy)F, ( )]
S = o T N A OV
nodd

(4-83)
where N is the number of the PPM symbols that are in one transmitted matrix.
Similarly, the average bit error probability P, (E) has the following relationship

with the average symbol error probability P, (E)

L 0-1
Py(E) = mPS(E) =501 5E)

Np

1 (nw)? 2 nWo

-+ Z [cos(K nw,) ex [— + —sin(Kynwy)Fp | —

4 - d 0 4 4kl \/E d 0/'D 2\/E
nodd

(4-84)
The average pairwise error probability P, (E) for one PPM symbol in the

MIMO FSO systems can be represented as

Ps—»s'(E) = Ps(E)

1
(L-1

Ny
—(L—1)ZCL ) j)—k o Z Z Ky wo

v1=1 UNL'N‘r':l

Np

1
1 + ; [cos(Kdnwo) exp [ (n :;{Ol) ] + \/—ESLn(KdnwO)FD <2n\7kil>]
nodd

(4-85)
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where L is the number of the slot in one Q-ary PPM symbol, L = 2€.

4.1.5 Modified Gauss-Chebyshev Method for Calculating the Average SEP
The Gauss-Chebyshev quadrature-based numerical technique is used to calculate the
average error probability in communication systems [4]. In this dissertation, a
modified Gauss-Chebyshev method, the “extended Gauss-Chebyshev quadrature-
based technique”, is proposed and employed in the calculation of the average SEP and
BEP efficiently.

The following variable substitution is proposed and used for calculating the
second integral in Eq. (4-70)

w= = =1, (4-86)

1-x

In Appendix M, a detailed derivation of the expressions for w and x is given. Since

the variable w is in the range from zero to infinity, the variable x = —— is in the
w?

range from zero to one. According to Appendix M, dw is given as

1-x 2x(1-x) Al 1-x

dw=d< i): Ve | % gy (4-87)

According to reference [4] (P889, 25.4.42), we have

Ng
j:f(X)\/g dx = ;wqf(xq)+Rn

(4-88a)

= cos’| (e 51)3)
¥a = €05 |\on, + 1)2

(4-88b)

_ 2T
Y= N, + D)
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(4-88c¢)
- [l
faT 1ok, T N, +1)2
(4-88d)
The integrals in Eq. (4-70) are calculated in Appendix N and represented as
f sin(de)j [e‘klh2 sin(wh)| dh dw
0 0
Z Vesin(Kqtg) ( T, )
2Ng +1 2 Zq —1
SN )‘/_ 1Sin 2NG+1) 2l
(4-89a)
o] [o¢] Tl_
f cos(Kda))f [e=*"* cos(wh)] dh dw = Eexp(—ledz)
0 0
(4-89b)
_ ﬂ _ 2q-1
where 7, = /1_xq = +/ccot [(ZNc+1) ] and Fj ( \/k_) is given as
( ) 27(@-1)
q Uq
<0.2
Z(Zp—l)” 2k; 2\/?1
o]
D -z hd]
2 %) .
z n >0.2
\/_Z =—ND 7'+ 7o 2 \/E
z' odd
(4-90)

The integral in Eq. (4-70) is
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Ny Ny
—kK4*
1=Z... Z KoK; —exp(zl <)

v1=1 thN‘r=1

Z Ve sin(Kqt,) . ( Tq>
(2NG+1)\/_qlsm 2q—1)] 2.k,

ZNG +1
(4-91)
The average symbol error probability P;(E) of one PPM symbol is
L-1 Ny Ny
CE L (—1)** o, K, exp(—k; Ky
Ps(E)SZ 1—1(=1) off o ) z K; p(zld)
k=1 \](kgonz +Joff2) 1=l VNN, =1
Z Ve sin(Kyt,) F, ( T, >
(2NG+1)\/_ 2q—1 2.k
g=1sin® ZNG ¥ 1) ]
(4-92)

where Ko, Kf, Ky and F ( are given in Eq. (4-62), Eq. (4-63), Eq. (4-64) and

)

2
Eq. (4-90), k; = k(ESRMfg) T ’1 = +/ccot [( 24-1 ) 2] h, is selected

2N¢%(koon+0oge2) a= 2Ng+1
sufficiently small, and ng, Np, N, Ng, N,, and N,, are sufficiently large such that the
calculation error € can be set to a very small value and the accuracy can meet the
practical requirement. The parameter v/c is selected as the suitable integer times of
Ky, Ne=1/ (ngKy) , and Vc is also selected by making the integral of the imaginary
part in Eq. (4-49) equal to zero, %ffooo Imag|F,(w)F;(w)] dw = 0.
The average symbol error probability P, ;47 (E) of one matrix is

Pematrix (E) = PS (E)N
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L-1 Ny Ny

Cr (D" au K K exp(—k,K;*)
)y 2

]

2
m=1k=1 \](ko-on +0'0ff2) vi=1  vyN,=1

Z Ve sin(Kqty) F, ( ‘L'q>
(2NG+1)\/_qlsm 2q—1)] 2.k

2NG+1

(4-93)
The average bit error probability P,(E) has the following relationship with the

average symbol error probability P;(E)
L ZQ_1
Pb(E)_Z(L——)P(E) P(E)

Ny Ny

Z F CEL (1) gy Ky Z Z X exp(—kK;*)
= 20 —1 f 2

\](kO’on +O—off2) v1=1 UNtNr—l

Z Vesin(Kyty) 7 ( T, >
2g—1
T G
(4-94)

The average pairwise error probability P._,./(E) for one PPM symbol in the

S§—S

MIMO FSO systems can be represented as

1
Ps—>s’(E) (L )P(E)

Ny Ny

CLk 1(—1)k+10 fr Ko exp(—ledZ)
=20- 12 Z Z Ky 2
\/(kO'on + O'offz) v1=1 VN.N,=1

Z Vesin(Kyty) r ( T, )
(ZNG+1)\/_q 1sin? 2q—1) ] 2k

2NG+1
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(4-95)

where L is the number of the slot in one Q-ary PPM symbol, L = 2€.

4.2 Symbol Error Probability Calculation of SISO FSO Systems
The average error probabilities of MIMO systems with lognormal fading channels are
analyzed in Section 4.1. By using these equations given for MIMO system, the

average error probabilities for SISO have been obtained.

4.2.1 SEP Calculation of SISO FSO Systems By Fourier Series Method
For the SISO FSO system with lognormal fading channel, the average symbol error

probability of one PPM symbol is

L1 Ck (—1)k+1K ! Ny
PS(E)SZ L1 20 ZKSf‘”O
k=1 VGE v1=1
Np

i+ 2 st e |- S| sntiamanes (32
- cos(Kynwg) exp |— —sin(Kynwy)Fp | —
4 ~ 4kl \/E 2\/E

nodd

(4-96)
where

‘

N
nwg : 1 (nwy)? @-1 nw,
1l <oz
2 kl p=1 (Zp - 1)” Zkl 2 kl
2

nw
-, e e
\/EZ,:_ND z' + z, 2\/?1
z' odd

(4-97a)
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. ot (Fe mf) (RES Ara>(-%)

K., =
0 V2TMA \® \/E Ap
(4-97b)
< -9
KSf - Z Wy, Wy, exp( V2 OpXy, + xvl) [(F N 1)X‘Jl +ee Vo xu1] 2
u1=—Nu
u#0
2
Kk (xvl —eMee ﬁa#xul)
exp (— —)
2 [(F — Dx,, +e™e ﬁ"fxul]
(4-97¢)
Kd = xvl
(4-97d)
RE;g RE;2A,a
Kk = =
qN¢ qNAp
(4-97¢)
. . 2T ’ nw . .
Ny is the truncating term number, Tr = o0 Ky, Ksf, Kq and Fp (?kiz) are given in
2
Eq. (4-97b), Eq. (4-97¢), Eq. (4-97d) and Eq. (4-97a), k, = ZN’Q((iSfM;“f; — and
t on o

Wy = . T is selected such that P,(t > T) < €, € can be set to a very small value.
Tr

Tk is also selected as the suitable integer times of K;, Tr = nyK;. N can be selected
as the suitable integer times of 2nny, Np = np2nny. hy is selected sufficiently small,
and ny, ng, Np, Ng, N, and N,, are sufficiently large such that the calculation error &
can be set to a very small value and the accuracy can meet the practical requirement.
The average symbol error probability P, ;q¢rix (E) of one transmitted matrix for

SISO FSO systems is

Pe_matrix (E) =F (E)N
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N L-1
C (1)k+1K
sr = Z Kyrwo
m=1 k=1 v1=1
( Np
[+ 2 [t e |- S| o ()
- cos(Kynwg) exp |— —sin(Kynwy)Fp | —=
k4 n=1 4l i 2k,
nodd

(4-98)
where N is the number of the PPM symbols in one transmitted matrix.
The average bit error probability P,(E) for SISO FSO systems has the

following relationship with the average symbol error probability P, (E)

L zQ-1
Pb(E)=mP(E) P(E)

20-1 L1 ck (—1)k+1K » Mo
L-1 S0

=20-1 2 N Z Kspwo
k=1 v1=1

Np

1 (nw)? 2 nWo

-+ Z [cos(K nwy,) ex [— + —sin(Kynwy)Fp | —

4 - d 0 4 4kl \/E d 0/'D 2\/E
nodd

(4-99)
The average pairwise error probability P,_, . (E) for one PPM symbol in the

SISO FSO systems can be represented as

1
_ N,
1N CEL (DR
ST-D 2 Z Ksrao
( k=1 \/E U1=1
1 < (nw)?] | 2
nwg ) nwg
-+ Z [cos(K nwy) exp [— ]+—sm(K nwy)F, (—)]
4 n=1 d 0 4‘kl \/E d 0 D 2\/E

n odd

(4-100)
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where L is the number of the slot in one Q-ary PPM symbol, L = 2€.

4.2.2 SEP Calculation of SISO FSO Systems By Modified Gauss-Chebyshev
Method
The computing equations in Section 4.1.5 by the modified Gauss-Chebyshev method
can be used to calculate the average SEP of SISO systemas N, = 1, N, = 1.

The average symbol error probability P;(E) of one PPM symbol for SISO

systems is

L-1 Ny
ck (=Dkg ¢ K exp(—k,K,;*
PS(E)SZ F (D ooy cosz M
\/(ko_onz + aoffz)

Z Vesin(Kqt,) . ( ‘L'q>
(ZNG+1)\/_qlsm 2q—1)] 2.k

ZNG 1
(4-101)
where
Fe™ |RE;A,a
Koo =
T qNAp
(4-102a)
S -3
Kyf = Z Wy, Wy, exp( \/Eagxul + x,,l) [(F — Dx,, +e™e ‘/E‘”’xul] 2
u1=—Nu
u,#0

2
Kk (xv1 _ emge \/Eﬂgxul)
exp <— —)
2 [(F — Dx,, +e™e V2oy xul]

(4-102b)
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Kd = xvl
(4-102¢)
RE;g RE;2A,«x
Kk = =
qN¢ qN:Ap
(4-1024)

where Ko, K, Kq and FD< ) are given in Eq. (4-102a), Eq. (4-102b), Eq. (4-

2k

102¢) and Eq. (4-90), k; = KERMAG)” qu =+/ccot [(ZN +1) ] hg is
G

2N 2 (koon®+0of2) a=
selected sufficiently small, Tr is the suitable integer times of Ky, and ng, Np, Ns,
N;, N, and N,, are sufficiently large such that the calculation error € can be set to a
very small value and the accuracy can meet the practical requirement. The parameter
Ve is selected as a suitable integer times of Ky, Ve = 1/(n,K,) and Ve is also
selected by making the integral of the imaginary part in Eq. (4-49) equal to zero,
% [ Imag|F,(w)Fy(w)] do = 0.
The average symbol error probability P, ,q¢rix (E) of one matrix is

Pepaerix (E) = P{(E)Y

L-1

N
HZCL (D006 Koo Z X exp(—k;K4*)
f 2

m=1k=1 \/(kaon + Ooff )

Z Ve sin(Kqt,) 7 ( T, >
(2NG+1)\/_ ! gin? 2q—1)2] 2.k

2NG+1

(4-103)
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The average bit error probability P,(E) has the following relationship with the

average symbol error probability P,(E) as

0-1

SR

P,(E) = > 50

L
(L -1

k+1 Ny 2
CL 1( 1) Toft Kco K exp(_led )
= 20 —14 Z ! 2
\/(ko_on + aoffz)

PS(E) =

Ve sin(Kqty) T,
(2N0+1)\/_;sm q_l)]F <2\/_>

2NG+1

(4-104)
The average pairwise error probability P_,.(E) for one PPM symbol in the

SISO FSO systems can be represented as

1
Ps—»s’(E) (L )P(E)

Ny
ZC},{ 1(—1)k+100ff Ko Z K exp(—ledz)
20 —1 ! 2
\/(kO'on + Ooff ) V=1

Z Ve sin(Kyt,) . ( Tq>
(2NG+1)\/_qlsm 2q—1)] 2.k,

2NG+1

(4-105)

where L is the number of the slots in one Q-ary PPM symbol, L = 2€.
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4.3 Error Analysis for SEP and BEP Calculations
The average error probabilities of MIMO and SISO systems with lognormal fading
channels are calculated in Section 4.1 and Section 4.2. The errors introduced by

numerical calculations and truncations are analyzed in this section in detail.

4.3.1 Error Analysis for the Average SEP and BEP Calculation
As the complexity of MIMO transmissions, the calculation employs the Chernov
Bound, Gaussian Hermite numerical integration, Gaussian Laguerre numerical
integration, Gauss Chebyshev numerical integration, Fourier series and Dawson
integral approximation. These calculations employ the summation of infinite series
and numerical calculation. In order to make the calculation tractable, the infinite
summations are truncated. Thus, the discretization error and truncation error are
introduced. If the discretization step is sufficiently small and the number of terms in
the truncated summation is sufficiently large, the discretization error and truncation
error are negligible. If the calculation of the error probabilities employs the Fourier
series method, the total error E (e) can be represented as
E(e) = Ec(8) + Egu(Ny,) + Eg,(Nyy) + Eps(Ng) + Erps(Ng) + Ep(Np) + Erp(Np)
(4-1006)
If the calculation employs the Gaussian Chebyshev method, the total error E(e) can
be represented as
E(e) = Ecg(8) + Egy(Ny,) + EgL(Ny) + Egc(Ng) + Ep(Np) + Erp(Np)
(4-107)
Where  Ecp(8), Egu(Ny), Eg (Ny), Eps(Np), Egc(Ng), Ep(Np)  are  the
calculation errors of the Chernov bound, Gaussian Hermite numerical integration,

Gaussian Laguerre numerical integration, Fourier series technique, Gauss Chebyshev
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numerical integration and Dawson integral approximation, respectively. Erps(Ng) and
E;p(Np) are the truncation error of the Fourier series method and Dawson’s Integral
approximation.

For Dawson’s integral approximation in Eq. (4-76), Eq. (4-77), (4-78) and Eq.
(4-79), if the choices of the step h; = 0.4 and the term number Np = 11 are made,
the accuracy of the result is about 2 X 1077[7]. This is small enough for the error
probability calculation of MIMO FSO systems.

For Gaussian Hermite numerical integration, Gaussian Laguerre numerical
integration and Gaussian Chebyshev numerical integration, the computation error is
given in the reference [4]. From Eq. (3-45), the error of the Gaussian Hermite

numerical integration is [4]

\/—

EGH(Nu)_zN (ZN )'f(ZNu)(x) —o<x<®
(4-108)
The function f(x) in Eq. (3-45) is
_3
fx) = nk [776( V2o, x + Inksy, +m[)+msij(F_1)] 2
V2 M M
(Ue(\/fafxﬂnm +mp) _ Ms ij)2
exps — M +V20,x + Inly,, + my,
e mg ;i (F—1) J
2 [77 e(V2Zopx +ndsy +mp) 4 SUT
(4-109)

Figure 4.3 shows the plot of f(x) with A;,, = 800, mg;; = 32000 , o, = 0.4458,

2
m, = — %, n=78%, M =40, F =M% for InGaAs APD. If the parameters

change, the plot of f(x) changes from that in Fig 4.3, but it still converges in the

similar manner.
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Figure 4.3 Plot of f(x) in Eq. (4-109)
The first order derivative of the function f(x) is calculated in Appendix O and can

be represented as

3

d[f (x)] nF [ ( V2o, x + Indg +mg) my;(F — 1)]_ 2
= ne +
dx V2 M M

[ne(\/zaex+lnm +me) _ msi]]z
M —_—
expy — +\/§a€x + Indg; + my
2 [peles i ome) . P2 1)
M

I_ Tle(\/fagx+lnm +mg)\/§o.€{3+2[ne(ﬁagx+lnm +my) _ mﬂg/[if]}
l 2[7]9(‘/765’"+mm +mg)+m5ij$_1)]

[ 2 J—
[ne(\/?agx+ln/ls g +me) _ %] n e(\/fagx+lnlsij +myp )\/?O.[
+

7 + 20'{J¥
Z[Ue(\/fa{;x+lnm+m{;)+ W] J

(4-110)
. afe)l .. o _ _ —
Figure 4.4 shows the plot of with Ag,, =800, m,;; = 32000, o, = 0.4458,

dx

2
mp, = — 2 n = 78%, M = 40, F = M%7 for InGaAs APD.
¢ |
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Figure 4.4 Plot of “L%%in Eq. (4-110)

[f( )]

The first order derivative of f(x) is the slope of the curve of f(x) in Fig.

4.3. According to the calculation in Appendix O and the plots of f(x) and —— f (x)] in

Fig. 4.3 and Fig. 4.4, the curves of f(x) and % have upper bounds. The high

order derivatives of f(x) also have the upper bounds. It can be assumed that the N,,-

order derivative of f(x) has the upper bound f(x) < Cgzy, for —0 < x < co0. If

N,, = 20, the value OfWZ\/N_)' part in Eq. (4-108) is 5.0403 x 10736, The value of

the error in Eq. (4-108) has the upper bound 5.0403 X 10736C,y . The error value
can be sufficiently small if N,, is sufficiently large.

In the calculation of Eq. (4-57), the error equation of the Gaussian Laguerre
integral is [4]

(N,D?

G W 0<x<a

EqL (Nv) =

(4-111)

The function f(x) in Eq. (4-57) is
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[(F—l)h i+e MeeVZor xu]

-3 Kp(hy—e™e \/Ea[xuz
g(hil)=[(F—1)Kkhiz+Kxu]( Z)Bxp {hil_ » fnuzemee ) +jwhil}

2
Kk(h ii—e m[eﬁo-f Xu

_3
= [(F - 1)Kkhil + Kxu]( 2)exp {h ir 2[(F—1)hil+emf€ﬁo—€xl"]

}cos(wh i)

2
K k(h y—eMeeVZor xu)

[(F—l)h iite mpgV2 oy xU]

+j[(F —1K;h; + Kxu](_ g)exp {h i3 }sin(a)h”)

=g1(hy) +jg2(hy) (4-112)
where 0 < h;; < oo . According to the values of the parameters in Eq. (4-112), the
plots of g, (h ;) and g,(h ;) vary as h; = 0 and h; increases but the forms of these

plots are similar. For example, plots of g, (h ;) and g,(h ;) are shown in Fig. 4.5 and

Fig. 4.6.
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Figure 4.5 Plot of g, (h ;) in Eq. (4-112)



120

Figure 1 o e S

Eile Edit View Insert Tools Deskiop Window Help k]
Ddde |k RADDEL- (2|08 |eO

&

hil

Figure 4.6 Plot of g,(h ;) in Eq. (4-112)
According to the example plots in Fig. 4.5 and Fig. 4.6, the functions g,(h ;) and
g2(h ;) have the upper bounds. The calculations of the first order derivative of
g1(h ;) and g,(h;;) are similar to the calculations for f(x) in Appendix O and they

are bounded above. It can be assumed that the high order derivatives of g, (h;;) and

g (h ;) have also the upper bound Cg; . If N, = 15, the value of

2
EN"!) part in Eq. (4-

2N,)!
111) is 6.4467 x 1072 . According to the calculation of the derivatives, the
computation errors in g;(h;) and g,(h;) in Eq. (4-112) have the upper bound
6.4467 X 107° X Cg;,. The error value can be sufficiently small if N,, is large enough.

For the Fourier series of Eq. (4-80) and Eq. (4-81), the calculation result turns out

to be a trapezoidal rule approximation. The error usually associated with the

trapezoidal rule is simply determined by the step size Tr = i—n . The discretization
0

error can be made sufficiently small by choosing the step size Ty sufficiently small.
To obtain a specified numerical accuracy, we must contend with the error due to the

truncation of the Fourier series. In all practical problems, the series is usually
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truncated after N terms. It is the well-known that the partial sum of the Fourier series

truncated after (N + 1) term is given by [12]

@ =2 [ F@GuG-ax

(4-113)

where the kernel is defined as [12]

Cy(x) =sin [(N +23)x] [sin(N + ’2—“)]_1 (4-114)
A more practical determination is found by using the fact that for an oscillating series,
the error in truncating the series is approximately the value of the term at which the
truncation is made [12]. The computational time of the Fourier series can be reduced
significantly by using the Fast Fourier Transforms [12].

In the analysis of MIMO FSO systems, the average error probability for the
conditions of either the fading channel gain h or the received signal to noise ratio y is
employed [2,3]. The conditional error probability for L-ary PPM signaling employing
the noncoherent detection scheme includes the Gaussian probability integral Q(.)
function. Thus, there is a tradeoff between the accuracy and the simplicity of the error
probability calculation. The Chernov bound is a very tight and useful bound
frequently employed in communication systems. In this dissertation, the Chernov
bound for the AWGN channel is used to calculate the error probability.

For optical receivers under normal working condition, the signal to noise ratio y

2 2
is much bigger than y = 0dB, (Esjjv—n:’AgE{h}) > Oon” (Esjjv—ﬂngE{h}) > 0of” and

EsRMAg W+

Oon” = Oog”. Assuming E{h} = 1, the mean value M, of the variable o
o

n .
Ooff
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E;RMAg non}

M, = E{ h+
r N¢ 0off Ooff.

E;RMAg E{non}
=—FE{h} +
Nt 0otf Ooff

_E;RMAg
Nt 0off

=1
(4-115)
The calculations in Appendix G employ the inequality of Eq. (4-23) to obtain the

computation error.

E;RGMAg
P [le < Th +ny

)

S1sent,ny =ng,y,, h]

n
=1-2Q (|My1h +0ﬂ
off

2
Non
_ (My1h+00ff)
>1-—e 2

(4-116)

When the signal to noise ratio y is zero, y = 0dB, the value of M, is around 1,

ie. M, = 1. Under most working conditions, the signal to noise ratio is far above
0dB, as y = 10dB and M, > 1. Letting x = % and y; = M, h, the functions are

Non

fi

2 (M h+—
Q Y1 Ooff

) = 200My, + D

(4-117)

e 2 =

2
Non 2
(Myl h+00ff) _ (My;+x)
e 2

(4-118)
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2
h+""—”)
Ooff

(M,

with

My, =1 (y = 0dB)and My, = 6 (y = 7.7815dB) are shown in Fig. 4.7 and Fig.

4.8, respectively.
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Figure 4.7 Plot of the functions in Eq. (4-117) and Eq. (4-118) with My; =1
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Figure 4.8 Plot of the functions in Eq. (4-117) and Eq. (4-118) with My, = 6

where x = =2 and flx)=2
Ooff

_ (Mylh+x)2

Q(|My i+ ]) or [e :

] . At My; = 1 and the

signal to noise ratio around 0dB, the calculation error using the inequality in Eq. (4-
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117) is about 0.3. As the variant My, changes, the calculation error changes as shown
in Fig. 4.7 and Fig. 4.8. The Chernov bound provides an upper bound on the error
probability and makes the calculation simpler.

The error of Gauss Chebyshev numerical integration is [4]

V1
(ZNG)!24NG+1

E;c(Ng) = f@Ne) (x) 0<x<1 (4-119)

The function f(x) for the Eq. (4-89a) is

_ cx \ 1 1 cx N
9 =Sm<Kd‘11—X>\/EFD (2\/E 1—x)2x(1—x) Osx=1

(4-120)

The diagram of g(x) in Eq. (4-120) as 0 < x < 1 and x increases is shown in Fig. 4.9

r — — ————
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Figure 4.9 Plot of g(x) in Eq. (4-120)
In Fig. 4.9, as x reaches near to 1, the diagram of Eq. (4-120) becomes highly

oscillatory and does not converge. The derivative of g(x) is the slope of the curve. If

N = 20, the value of m part in Eq. (4-119) is 1.5925 x 10772, 1t is
G):

difficult to obtain the value of Eq. (4-120). Thus it is difficult to calculate the value or
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the upper bound of the error value in Eq. (4-119), but the error value can be small if

N;; is larger.
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CHAPTER 5

SYSTEM MODEL AND ANALYTICAL RESULTS

5.1 MIMO FSO System Model and Results

According to average error probability calculations in Chapter 4, the system
performance has been obtained from the given SEP and BEP equations. In this
chapter, the model used for the analysis is designed and the parameters are set as

shown in Table 5-1.

5.1.1 Model Used for Analysis
The structure of a MIMO FSO system is shown in Fig. 3.1 and Fig. 3.3 and a detailed
description and analysis were presented in Chapter 3 and Chapter 4. At the receivers,
N, receiving branches are included and each branch includes the InGaAs APD, GaAs
MESFET amplifier, matched filter and equalizer, sampling circuit and decision
detector, etc. All these components are suitable for practical multi-gigabit-per-second
(multi-Gb/s) short range (up to 2~3 km) links in MIMO FSO systems. Typical values
of the parameters generally used in optical devices are given in Table 5-1. Analytical
results of the average error probabilities for MIMO FSO systems are presented in this
section, emphasizing the role of parameters such as N;, N,., M, A, L and a,, etc.
Lognormal fading channels describe FSO communication under weak

turbulence, which are the most common working conditions for FSO. By noting that

o 2 .
(ef) = ((j—>) = 1 and Eq. (3-25a), the mean of the log intensity £ is equal to —%, ie.

2 . . . .
m;, = —%, and the average optical field amplitude is neither attenuated nor

amplified. The research and analysis in this dissertation focus on the lognormal fading
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channel. At the receivers, InGaAs APD working at 1550nm wavelength is employed
and GaAs MESFETs are used as the preamplifier and main amplifier working in the
linear region of their characteristics. During the transmission in free space, laser
beams are scattered and bent along the paths and the PPM pulses suffer attenuation
and dispersion. The parameter y, representes the percentage of the energy that is kept
in the 1 pulse slot. In practice, the sampling time of the optical receiver fluctuates
from bit to bit due to the nature of the noise in the input to the clock-recovery circuit.
Such fluctuations are called timing jitter and this can also cause the pulse energy to
fall out of the 1 pulse slot. The matched filter and equalizer are used in the receivers.
EGC with envelope detection and maximum likelihood detection are implemented in
the decision parts. It is assumed that the lasers operate on a peak-power constraint and
the total transmitting power for one 1 pulse by the laser array is constrained as Ej.
Thus the performance of SISO and MIMO systems can be easily compared. The
Fourier series for the SEP and BEP calculation is mainly used in the calculation and

analysis.

5.1.2 Parameters of MIMO FSO Systems

The parameters used in the analysis of this chapter are set according to Table 5-1,
unless otherwise specified. The parameters for the InGaAs APD are set as the values
of the generic operating parameters given in Ref [1, pp267, Table 6-1]. The
parameters of GaAs MEFETs are set as the typical values given in Ref [1, pp308,
Table 7-2], Ref [1, pp301, Fig. 7-13] and Ref [1, pp302, Fig. 7-14]. The parameters of
the free space optical channel are given in Ref [2]. The parameters for the link budget

are given by Ref [3].



Table 5-1

Parameters of MIMO FSO systems

Parameter Value Unit
N, 2
N; 2
L 4
A 1550 nm
T 293 K
C,2 1x 10714 m(=3)
n 75%
M 40
A 40
X 0.7 For InGaAs
Ry 1000 Q
R¢ 106 Q
Im 30x 1073 mS
c 10 pF
B 1x10° bit/s
P, 1x 10720 A
P, 3x 10720 A
Iap 50 x 107° A
Iys 2x107° A
Te 1.1
Lyate 50 x 107° nA
Ys 0.95

129
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I 0.45
I3 0.0855
d, 0.075 m
dp 1 m
A, 4.4156 x 1073 d, 2
. dr = ()
A 0.785 A = (%f
Ve 2 km
Dy 1 km
Qa_dB 3.99 dB/km
Nt ap 3 dB
Nr_aB 3 aB
Npt_dB 3 dB
Npr_dB 3 dB
hg 04
Np 11

5.2 Results and Analysis of the Average Error Probability

The system models for the analysis of MIMO FSO system are designed and discussed
in Chapters 2, 3, 4 and Section 5.1. The components with the corresponding
probabilistic characteristics in these models are analyzed. Different parameters of
these components are set in Section 5.2. The analytical results are represented through

various plots and the results have been discussed in this section in detail.
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5.2.1 SISO and MIMO Comparison

In SISO wireless optical communication systems, link performance can be
seriously impaired by adverse atmospheric conditions. In particular, one important
atmospheric effect is the attenuation due to scattering and absorption. Another
important effect is scintillation due to turbulence and the free space channel is
modeled as the lognormal fading channel. One method to reduce these impacts is to
use the MIMO technique to transmit the redundant symbols to overcome channel
fading.

A detailed calculation of the error probabilities for SISO and MIMO systems has
been discussed in Chapter 4. The parameter setting is given in Subsection 5.1.2. The
equation of average SEP and BEP are obtained in Eq. (4-81), Eq. (4-84), Eq. (4-92)

and Eq. (4-94). Under atmospheric turbulence with ¢,% = 0.19877,C,* =

10_14m(_ %) and the pulse dispersion as ys = 0.95, the plots of the average SEP
corresponding to average SNR for SISO and MIMO systems are shown in Fig. 5.1(a)
and Fig. 5.1(b). The numbers of the transmitting laser and the receiving APDs in the
MIMO systems are N; = 2 and N,, = 2 and the length of the transmitted PPM symbol
is L = 2. In the SISO systems, the average SEP of L = 2 PPM symbols is about 0.71
at SNR = 0dB. MIMO systems result in lower average SEP and BEP than SISO
systems under similar conditions and the same average SNR. Thus MIMO systems
have a better performance than SISO systems. For different services, like voice, data
and video, the required BEP of communication links are different. For SEP = 107

which is in the range of common working conditions for normal services, the required
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SNR of MIMO systems is about 23.13dB , which is about 9dB lower than the

required 32d.01B SNR of SISO systems.
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Figure 5.1 (a) Average SEP of SISO FSO systems with L = 2 PPM symbols

(b) Average SEP of MIMO FSO systems with L = 2 PPM symbols
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The relationship between the average BEP and the received optical energy is analyzed for
FSO communication systems. The received optical energy for free space PPM transmission is

given by

J-(aB)) = 10l0g (s )

(5-1a)
where J,(dB]) is the received optical energy in dBJ, ], is the energy for one 1 pulse in J, B is
the data rate and L is the number of the slots in one Q-ary PPM symbol, L = 2€.

The average BEP corresponding to the received optical power for free space PPM

transmission is given by
_ B
P.(dBm) = 10log (Py; f)

(5-1b)
where P.(dBm) is the received optical power in dBm, P, is the power for one 1 pulse in Watt,
B is the data rate and L is the number of the slots in one Q-ary PPM symbol, L = 29.

For the parameter values of Table 5-1 and with the bandwidth of B = 1Gb/s, the SEPs of
SISO and MIMO systems corresponding to the received optical energy are shown in Fig. 5.2(a)
and Fig. 5.2(b). At average SEP = 107°, the received optical energy required for MIMO
systems is about -153.24dBJ, which is about 6.5dBJ lower than the -147.75dBJ of SISO systems.
The average SEPs of SISO and MIMO systems corresponding to the received optical power are
shown in Fig. 5.2(c) and Fig. 5.2(d). At average SEP = 107°, the received optical power
required for MIMO systems is about -33.3dBm, which is lower than -27.75dBm of SISO
systems. These results show that MIMO can improve the system performance, especially in the

normal working range of the average SEP = 1073~107".
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5.2.2 Optical Device Impact
(a) Performance Comparison of APDs

In Chapter 2, the wavelength choice is discussed and 1550nm is considered as the suitable
wavelength in FSO. There are different types of commercial lasers available at 1550 nm
wavelength. For photodetectors, there are three widely used materials, silicon (Si), germanium
(Ge) and indium gallium arsenide (InGaAs). For short distance applications, Si devices operating
around 850nm provide relatively inexpensive solutions for most links and longer links usually
require operation in the 1300nm and 1550nm [10]. Ge APDs and InGaAs APDs both work at
1550nm and can be considered for a multi-gigabit-per-second (multi-Gb/s) bandwidth. The
generic operating parameters of commercial Si, Ge and InGaAs avalanche photodiodes are given
in Ref [1, pp267, Table 6-1]. For Ge APDs, the product of APD gain and bandwidth, i.e. M X B,
is fixed in the range of 20~40 GHz. As the avalanche gain M of Ge APDs is in the range of
50~200, there is a tradeoff between the APD gain and the bandwidth of Ge APDs. PD-LD, Inc.
provides one Ge APD “PDGAJ1001FCA-0-0-01" working at 1550nm with 1.5GHz bandwidth
[5]. But the APD gain is not provided in the data sheet. Hamamatsu, Inc. provides one InGaAs
APD “G8931-04” working at 1550nm with 2.5GHz bandwidth and the cutoff bandwidth of
3GHz at M = 10 [6]. For the multi-gigabit-per-second (multi-Gb/s) bandwidth FSO systems, the
InGaAs APD is the preferred choice in the receivers. The generic operating parameters of Ge and
InGaAs APDs are given in the reference [1] and are shown in Table 5-2. According to the
parameters provided by the reference [1] and the data sheets of the APD products online, the

values of the parameter used in the analysis are shown in Table 5-2.



138

Table 5-2

Generic operating parameters of Ge and InGaAs APDs

Ge InGaAs
Parameter Symbol | Unit
range value range value
Wavelength
A 800~1650 | 1550 | 1100~1700 | 1550
range nm
Responsivity R A/W | 0.4~0.5 0.5 | 0.75~0.95 | 0.95
Avalanche gain M _ 50~200 70 10~40 40
Dark current Ip nA 50~500 500 10~50 50
Rise time T, ns 0.5~0.8 0.5 0.1~0.5 0.5
Gain*Bandwidth M-B | GHz 2~10 10 20~250 40
Bandwidth B GHz 0.143 1
Bias voltage Vg A% 20~40 40 20~30 30
Parameter x in the 1.0 1.0 0.7 0.7
excess noise factor
F =M~*

Ge APD has lower responsivity R, bigger dark current I, and lower bandwidth B
compared to the InGaAs APD. But the APD gain M of Ge APDs can be much higher than
InGaAs APDs. The average BEP curves corresponding to the received optical energy for the Ge
APD and the InGaAs APD are shown in Fig. 5.3(a). The parameter values are set according to
Table 5-2. In Fig. 5.3(a), it is evident that the Ge APD required more received optical energy

than that of the InGaAs APD for the specified average BEP. This can limit the distance that Ge
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APD system can transmit. Thus the InGaAs APD is the normal choice for the multi-gigabit-per-

second (multi-Gb/s) bandwidth FSO systems.
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The average BEP curves of the InGaAs APD with different responsivity corresponding to the
received optical power are shown in Fig. 5.3(b). It is clear that at the specified BEP, as the

responsivity increases, the required received optical power becomes lower.

(b) APD Gain Impact
The APD gain M plays an important role in the calculation of the average SEP and BEP in

Eq. (4-81) and Eq. (4-84). First, M has an impact on the excess noise factor of APDs as F = M*

[1]. F is in the KO' function in Eq. (4-82a) and KOI can be represented as

N¢Ny
K _ MXNtN -1 O-Off <em{’ >NtNr (RESAra>(tT—1)
V2rA\r /q N.A,

NeNy
= M18 Ooff < e™ >NtNr (RES Ara>( 2 )
V2mA\r \/E N Ay

(5-2)
where x = 0.7 for InGaAs APDs, N, = 2, N, = 2 for MIMO ,

19bon
hvT,

Ooff> = —A2 {[2 (1 — yg)M?F + 2R(P, + P.)M?F + 2(I4,M*F + Ids)] ql,B + qZBZWTZ}

(5-3)
As M increases and M > 1, o, becomes larger and thus K, also increases. F also appeares in
the function Ky in Eq. (4-82g). As the excess noise factor F increases, the exponential part of K
increases and the factional part of Ky decreases. Thus, the trend of Ky is uncertain. M also

impacts 0,,2 and 6,2 in Eq. (3-50a) and Eq. (3-50b) . As the APD gain M increases, the noise

variances 0,,2 and o, increase. k; in Eq. (4-82b) can be represented as
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I = k(E;RAg)?
L= 2
2N,? <_kaon + Uoff2>
t M2
(5-4a)
where
2
kOon” + O
MZ
k nq 21,45q1,B + q>B2W.
HZh;ZMX+2RG%+P)M”+HQMW)qQB+ L1z B Tz
i nqb 2145q1,B + q2B*W.
+Br¥{Pzﬁ%(1—nMﬂ+2RU$+EMN+ZUMMULWB+ e L
(5-4b)

As M increases and M > 1, the trend of k; is uncertain and thus Fp <:\7ki> in Eq. (4-82f) is
l

uncertain. As the gain M of the InGaAs APD increases from 10 to 40 and the FSO channel is
under weak turbulence with a,2 = 0.19877, the average BEP curves corresponding to the
average SNR are shown in Fig. 5.4. The different gains M have varied impacts on the average
BEP curves during normal working condition with BEP = 1073~1077. Thermal noise

characteristic is represented as

AkgT  4kgTI, 2nC\? 4kgTT, T, 4kzT

1
Wery = ——=\2ql
TZ qu( q gate + Rb G - sz q Im 3 qz Rf
(5-5)
Thermal noise has no relationship with the APD gain and it is part of the total noise at the

decision circuit. As the APD gain decreases, more optical power at the APDs is needed in order

to overcome the noise and to achieve the desired signal level or SNR in the decision circuit. This
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higher received optical power Py; induces more noise and makes the total noise in Eq. (3-50a)

and Eq. (3-50b) larger.
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The average BEP curves corresponding to the received optical energy (dBJ) or the received
optical power (dBm) with different APD gains are shown in Fig. 5.5(a) and Fig. 5.5(b). At
BEP = 107°, the received optical energy under the small APD gain M = 10 is about -
156.15dBJ, which is 0.7dBJ higher than the -156.85dBJ receiver energy at M = 40. At BEP =
1078, the received optical power for small APD gain M = 10 is about -36.18dBm, which is
more than the -36.91dBm receiver power for M = 40.

To determine the impact of gain under different turbulence, a plot of average BEP
corresponding to the APD gain is shown in Fig. 5.6. The degree of the turbulence is represented
by variance ¢,? of the log intensity. As the turbulence increases, the BEP becomes larger but the
change of BEP is not exactly proportional to that of g,2. At around the fixed receiver optical

energy -157.74dBJ, BEP = 107> and with turbulence and dispersion, the average BEP of the
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APD gains M at around 40 is smaller than those of the other gains.
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Figure 5.6 Average BEP with different APD gains M and different turbulence

5.2.3 Electrical Device Impact
(a) Amplifier Impact
It 1s assumed that the amplifiers in the optical receiver work in the linear range and
provide a gain A. The input signal is amplified by A times and it also adds the noise to the signal.
The noise added by the amplifier is included in the total noise equations of Eq. (3-50a) and Eq.

(3-50b). The amplifier gain A has impacts on the K, in Eq. (4-82a), k; in Eq. (4-82b) and
Fp (;JL%) in Eq. (4-82f). The signal to noise ratio after the post-detection EGC with the envelop
l

detection at the decision circuit is given in Eq. (3-54) as

N, (RP;M)?
R = ((RRM)

b 4kgT , 4kgTT, 4kgTT, 4kgT
{[z’m’—T‘:lMZF+2R(Pb+PC)M2F+2(1dbM2F+lds)]q123+<2qlgate+ R+ BR9>12B+(211C)2%13B3+ R IZB}

2
8m " Rp

(5-6)
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The SNR of the input signal in the amplifier is similar to the SNR of the output signal. The
amplifier gain A does not impact the SNR shown in Eq. (5-6). The plots of the average SEP with
different amplifier gains are shown in Fig. 5-7. As the amplifier gain increases, the curves with
the different amplifier gains overlap. Since the amplifiers amplify the noise as well as the
signals, the increase of the amplifier gain does not improve the system performance. At the same
time, the noise added by the amplifiers is small and the variation in the noise due to the increase
in the amplifier gain is small. The change of the amplifier gain A in the electrical part does not

impact the average BEP performance.
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Figure 5.7 Average BEP with the different amplifier gains
(b) Temperature Impact
In optical wireless communication, the receiver should be able to operate over a wide
temperature range, for example —40~85°C. In the noise variances of Eq. (3-50a) and Eq. (3-
50b), the temperature T is included in the numerator of the thermal noise part. Thus T influences

the noise of the receivers and the system performance. In the average bit error probability of Eq.
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(4-81), the temperature T impacts the noise variances 0,2 and g,¢? in the factor K, in Eq. (4-
82a) and the k; of the Dawson’s integral in Eq. (4-82b) and Eq. (4-82f). As the temperature T
increases, the noise variances 0,2 and g,¢? increase. On the other hand, the gain mechanism of
an ADP is very temperature-sensitive at higher bias voltage, where small changes in temperature
can cause large variation in gain [1]. A compensation circuit is usually incorporated in the
receiver and it adjusts the applied bias voltage on the photodetector when temperature changes
[1]. Thus the impact of the temperature can be reduced and becomes negligible. In this section, it
is assumed that the temperature impact on APD gain using the compensation circuit is negligible
and the temperature impact on the thermal noise is mainly considered in this dissertation. Under
different temperatures 243K ~333K and as the BEP is around 10~>, the curves corresponding to
the different APD gains are shown in Fig. 5.8. As the temperature increases, the BEP increases.
This is because the noise variances in Eq. (3-50a) and Eq. (3-50b) increase as the temperature
increases and the increased noise power makes the BEP larger.
The curves under different temperatures 70K~400K corresponding to different APD
gains are shown in Fig. 5.9. The received optical power in Fig. 5.9 is about -157.74 dBJ at
BEP = 107>, From Fig. 5.8 and Fig. 5.9, as the temperature T increases, the average BEP

increases and the system performance deteriorates.
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(c) Average BER Comparison of Systems with the different y,, I, and I3
In order to consider the clear sky condition and bad weather condition completely, the added
noise and pulse dispersion of the PPM symbols are considered and analyzed in Section 3.2.3.
The parameters, associated with the pulse dispersion and the added noise, are included in the
noise variances of Eq. (3-50a) and Eq. (3-50b). The parameters, v, I, and I3 , which are related
to the bias circuit, the amplifier and equalizer and impact the sensitivity of the receivers, are
discussed in Ref [1] in detail. The values of the parameters are given in Ref [1, pp308, Table 7-
2], Ref [1, pp301, Fig. 7-13] and Ref [1, pp302, Fig. 7-14]. The average BEP curves for different
dispersions are shown in Fig. 5.10 and the related parameters are set in Table 5-3. As the energy
fraction y in one 1 pulse slot decreases, more received optical power is required.

Table 5-3

Values of the parameters v, I, and I3 for MIMO FSO systems

Parameter Value Value Value Value
Ys 1 0.95 0.9 0.85
I, 0.375 0.45 0.57 0.65
I3 0.03001 0.0855 0.0905 0.13
a 0 0.25 0.3 0.35
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(d) Bias Resistance Impact
The noise in the optical receiver is discussed in Section 3.2.3 of Chapter 3 and the noise
variances are given in Eq. (3-50a) and Eq. (3-50b). In practice, typical FET amplifiers have very
large input resistance R, , ususally greater than 10°Q [1]. For the transimpedance amplifier, the
feedback resistance Ry is much greater than the amplifer input resistance R, [1]. In the
equivalent circuit of a typical optical receiver in Ref [1, pp279, Fig. 7-4], the parallel
combination of R, and R, reduces to the value of the detector bias resistor R, [1]. The detector
bias resistor R; impacts the thermal characteristics, and thus impacts the thermal noise in the
optical receiver. As the detector bias resistor R, increases, the thermal characteristic decreases
and the noise variances 0,,% and o,¢* decrease. The thermal noise characteristic is represented

as

2

4kpT  4kgTT, 2mC\* 4kpTT, T, 4kgT
= + L+(2) -

1
Wr, = <=1 291 +
TZ CIZ ( qgate Rb gm.sz q 3

Im q* Ry

(5-7)
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The average BEP curves with different detector bias resistances R, are shown in Fig. 5.11. The
change in the noise variances due to changes in R, is very small, and thus changes in BEP due to

changes in R, are very small. R}, impacts the average BEP but the change is very limited.
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Figure 5.11 Average BEP with the different bias resistances R,

5.2.4 PPM Symbol Length and MIMO Diversity Impact

For orthogonal PPM signaling with repetition coding, the order of diversity is equal to the
number of times that a symbol is repeated in the block orthogonal coding. The length of PPM
symbols L impacts the summation terms in Eq. (4-81). The numbers of the transmitting lasers
and the receiving APDs, N, and N,, have impact on the summation terms, K,," in Eq. (4-82a), K
in Eq. (4-82¢g) and K, in Eq. (4-82h). The BEP curves of different PPM lengths are plotted as a
function of SNR per bit in Fig. 5-12(a) and Fig. 5-12(b). It is apparent from these figures that the

BEP becomes lower and the receiver performance improves as N;, N, and L = 29 increases for a
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specified SNR. The average BEP decreases and performance increases much more drastically by

increasing N; and N, compared to a corresponding increase in L.
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Figure 5.12 (a) Average BEP with the different L and different N; and N, for SISO

(b) Average BEP with the different L and different N; and N,- for MIMO
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5.2.5 Turbulence Impact

Atmospheric turbulence has a large impact on the system performance, especially on the average
BEP. The atmospheric impact of the FSO channel is analyzed in Section 2.3 and Section 3.2.2.
Channel fading is modeled as the lognormal distribution of Eq. (3-23) and Eq. (3-24). The
average error probabilities are calculated in Section 4.1. The equations for the average SEP and

BEP are given in Eq. (4-81) and Eq. (4-84). The parameters m; and o, are the mean and the
2
variance of the log intensity ¥, respectively. The mean m, can be set as — % for the normal

working condition. The variance o2, which is associated with the scintillation index ¥ in Eq. (3-
27), represents the degree of fading of FSO channels. The 6,2 has impacts on K, in Eq. (4-82a)
and Ky in Eq. (4-81) is given as

Ny Ny Ny

Ky = E Wy Wy, o Way e W, Wy oo Wy

Ug==Ny Uu=-Ny  Un.N,=Ny

u1¢0 u2¢0 uN,_»Nr*O

exp [\/E Oy (xu1 + Xy, + ot xuNtNr) + (x,,1 + Xy, o+ x,,NtNT)]

(-3)

_3
[(F —Dx,, +e me V2 ""xul]( 2 [(F —Dx,, +e me V2 0 xu2] ......

_3
[(F — 1)vatNr +e m{,e\/‘fﬂe xuNtNr]( 2)

2 2
Loy e (o emni)
expy |- =) |/—/—m——"— 77— .. ...
2 [(F - Dx,, + emf’e‘/i‘”’xul] [(F - Dx,, + emf’e‘/i‘”’qu]
m ﬁagxuNN 2
+ (x”NtNr —e’e ‘ T)

(7 1y, + emee 7 en]

(5-8)
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The average BEP curves under weak turbulence with o, = 1071% ¢, = 0.05 , o, = 0.4458
and o, = 0.8 are shown in Fig. 5.13(a) and Fig. 5.13(b). The curve with g, = 1071° | shows the
performance under very small turbulence. For the specified SNR, as o, increases, the average
BER becomes larger and the system performance deteriorates. The changes in BEP are not

exactly proportional to changes in the variance o,2.
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Figure 5.13 Average BEP with the different variance of the log intensity
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CHAPTER 6

CONCLUSION AND FUTURE RESEARCH DIRECTIONS

A comprehensive study of Free Space Optical communication using MIMO techniques
has been presented. The modulation and wavelength suitable for MIMO FSO systems are
discussed. The characteristics of FSO channels and the impact of FSO channels on the optical
signal are analyzed by modeling the optical beams as Gaussian beams. The APD-based receiver
for MIMO FSO systems under normal working conditions has been designed. At the same time
the characteristics of its components, such as InGaAs APDs, GaAs MESFET transimpedance
amplifiers, a matched filter and an equalizer, etc., have been discussed. A probabilistic analysis
of FSO channel, APDs and noise in the FSO systems has been carried out. The FSO channel
fading obeys the lognormal distribution while electrons emitted by APDs obey the Webb
distribution. The noise in the optical receivers obeys a Gaussian distribution. The distributions of
the received signals and channel gains are analyzed.

The main contributions in this dissertation are: obtaining the detailed closed-form
expressions for the upper bounds of the error probabilities, analyzing the impacts of different
parameters in MIMO FSO systems, and thorough analysis of a more complex model of the
MIMO FSO system involving Webb distribution for APD-based optical receiver, the
probabilistic analysis of the detection for PPM signaling and transmitted symbol matrix for
MIMO FSO equal gain combining systems.

Detailed expressions of the closed-form upper bounds for the average symbol error
probability, average bit error probability and average pairwise probability have been obtained.

The equations for the error probabilities have been obtained by using Fourier series analysis
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method in Chapter 4. The modified Gauss-Chebyshev method for calculating average SEP,
average BEP and average PEP are proposed and corresponding equations have been derived. The
results for average SEP and average BEP under different parameters are obtained in Chapter 5.
The impact of the parameters in the MIMO FSO systems is also discussed and plotted. The error
analysis of the calculations of error probabilities is given in Chapter 5.

According to the analyses in Chapter 4 and Chapter 5, it is observed that the MIMO
technique can improve the performance of optical wireless communication systems remarkably.
For numerical method used in the error probability expressions of the closed-form upper bound,
if suitable computing parameters are selected, the computation error and the truncation errors can
be sufficiently small.

MIMO FSO systems are very complicated systems and still there are several aspects that
must be investigated further.

The following areas can be addressed in future research works:

1. Closed-form expressions or closed-form upper bound expressions of the error
probabilities for MIMO FSO systems with negative exponential distributed channel
fading and Gamma-Gamma distributed channel fading. These analyses would provide
the results for strong and weak/strong turbulences in the air medium, respectively.

2. Exploring the closed-form expressions or the closed-form upper bound expressions of
the error probabilities for MIMO FSO systems with the square-law equal gain
combining. This would improve the performance results of the system,

3. Design of the STBC schemes suitable for MIMO FSO systems using PPM, which

would reduce the error probability and improve the system performance. At the same



157

time comparison among various proposed STBC schemes would help in the selection
of the most suitable one.
Lognormal channel estimation using Kalman filtering for improved channel gain

estimation and accurate demodulation.
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APPENDIX A

This is the derivation for Eq. (3-22).

The log intensity £ = In (é—)) of laser beams obeys Gaussian distribution with the mean m, and

variance 0,2 [13]. According to Eq. (4-8), Eq. (4-9), Eq. (4-18) and P,;T, = hv Ag;; , the
intensity of a Gaussian beam in the ilth path is

-2 e . —2r? ' _or2
I = lyew™@ = 2Pty - _Avbrt oAbtV A Gy

Tw?(z) " nw?(2)Ara " nw?(2)A,aT,

The mean values of I, P,;;, Ag;; are

' _or2 ] —2r? , —2r?
_ 2P S APi) S A () s
tw?(z)A,a nw?(z)AraT)

(I

T nw?(z)
Then the following ratios exist

I P s
(I> (Pril> </15il)

Where (A¢;;) = Agy

The log intensity ¢ is

in () = i ) = 1 () = 10 = 07

APPENDIX B

This is the derivation for Eq. (3-24).

The log intensity ¢ = In ( ? ) of laser beams obeys Gaussian distribution with the mean m,

sil

and variance 0,2 [13].

_(-mp)?

p.(0) = e 20

\ 2mo,?
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The probability density function of Ag;; is

dt

Pa, Asit) = Pt(f)llen( % )m
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e 2 1. 3
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stl
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The second moment of A;; is
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APPENDIX C
This is the derivation for Eq. (3-43).
3
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APPENDIX D

This is the derivation of Eq. (4-19).
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. +00 . . .
The integral of fEsjlevMAgh_l_non Prge(Mofr) - ANogr 1s a function of n,, and its value can be
t

represented as
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In the above equation, the variable substitution t = 0°ff is made resulting in
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APPENDIX E
This is the derivation for Eq. (4-19).

EsRMAg
N¢

1

. (L-1)
h 4+ nyyuin Eq. (4-19), the integral [ {1 — [1 -Q (—)] } Dy, (1 —

Ooff

Letting r, =

ts) - dry is a function of t; and we assume that the function f (t,) is the following part in Eq. (4-

19)

£t = f i {1 ~[1-¢ (r—l)]“_l)} Py (11— £5) - dry

Goff

Hence
@) = | £ b dt,

EsRMAg | ts
———= h=—=and

By using the variable substitution t; = k;h (0 < t; < 0,0 < h < ), k; = - -
t t

e, (ts) = kl - pp,(h), it can be obtained
t

f &) - pts(ts) dts = [f(ts) ) pts(ts) ) dts]

[ts=k¢h

= f(k¢h) - pe,(keh) - d(kch)

k¢h

= flkeh) - pn () - ke - dh

= f(kch) - pp(h) - dh
For the optical wireless communication, the channel gain h is nonnegative and 0 < t;, < 00,0 <
h < co. In the Eq. (4-19), using the above equation and the variable substitution t; = k.h, the

symbol error probability P,(E) for one PPM symbol can be obtained as

p@ = [ {[ {1-[t- ()] o = e an |- e

or



164

0= [ 10 (G20 2] o

Ooff

where the upper limit and lower limit of the integration are decided by the range of the random

. ERMA
variables r; = =—2

h + 22 and h.

tOoff Ooff

APPENDIX F
This is the derivation for Eq. (4-21).

The error probability P,(E) of the FSO MIMO systems can be expressed as the error probability

integral on condition of the signal to noise ratio y for a 1 pulse as

P,(E) =f PIE | ] p, () - dy
0

—j P[n <ng |yl p,(y) - dy
0

- fooo fw Pny(n,y)dn - p,(y) - dy

Nth

By using the variable substitution of

y=f()

dh
py(y) = py(h)|h=f(y) : d_y

Hence
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0 nep 14
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Nth
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Using the variable substitution p, (h) = p, [f(h)]

0

P.(E) :f P[n < n.p| h] - pp(h) - dh
0

=f P(E | 1) - pa(h) - dh
0

Where p, (h) = p,[f(h)] is a PDF function of the channel gain random variable h for a 1 pulse.

P(E | h) is the error probability on the condition of the random variable vector h.

APPENDIX G
This is the derivation for Eq. (4-23).

By using the Chernov Bound [12], for the AWGN system (0 < x < o), we can get

® 1 _t 1 _x

OSJ —e 2-dt<ze 2<1
« V21 2

In practice, for the optical receiver under the normally working condition, the unified noise

ERMAG -
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t t
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In Eq. (4-20), the following Q function inequality equation exists
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The PDF of p, (n,,) is nonnegative p,_ (non) = 0 and the following inequality equation

exists
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If this inequality is integrated on both sides from negative infinity to infinity, this inequality is

also satisfied as

0 E.RGMAgh n,\1¢™P
0< j 1— [1—0( a g ”)] Png, (Mon) * Aoy
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where k;, = E“'Nﬂ. As the integrand of the above integral is real, r; is real and the integral in
t

Eq. (4-20) is a probability, the integration result is real.
In Eq. (3-62), the channel gain h;; > 0 is real, the variable

Kx — Es2Ara
u hv Ap N¢

eMeeV20exu > 0 and (F_:)% hy+Ky =20. py,(hy) is real and
t

nonnegative and has a singularity of h;; = 0. Since h = Zivzrl Zivztl hi; , pr(h) is the convolution

of pp,(hy) (0<i<N,0=<1=<N,). According to the properties of the convolution of the

real and nonnegative functions, the PDF p,(h) is real and nonnegative. The inequality is

satisfied when the two sides of the above inequality are multiplied by p;(h) (p,(h) = 0) and

integrated on both sides as
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o ~ 1<ESRGMAg non)z (-1
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The symbol error probability P;(E) of this Q-ary PPM in Eq. (4-20) is
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APPENDIX H

This is the derivation for Eq. (4-26).
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Since the function \/%e_ 2 is the PDF of the Gaussian distribution, its integral from negative

t2

infinity to infinity equal to 1, i.e. f \/_ ~ 2 dt =1. The symbol error probability is obtained

as
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APPENDIX 1
This is the derivation for Eq. (4-50).

The function Fy(w) is calculated as
Fr(w) = f f(h)e /@M dh
0
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where k; =

APPENDIX J
This is the derivation for Eq. (4-56a).

In Eq. (4-55), the numerator part of the variable in the exponential function can be calculated as
2
(Kxhy —Ky,) =K *hy® —2KyhyK, + K, °

= (=2[(F = DK hy+ Ky Jha} + (K ehy = K )* +2[(F = DK chg? + K hy]

K 2
={-2[(F = DKyhy+ Ky |hu}l+ K2 <h = K’Z) +2[(F — DK hy® + Kbl

2
= {—2[(F - 1)Kkhil + Kxu]hil} + Kk2 (h ii—qe mie\/zo-f xu) + 2[(F - 1)Kkh”2 + Kxuhil]
In Eq. (4-55), the denominator part of the variable in the exponential function can be calculated

as
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Xy

K
2[(F = DKyhy+ K, | = 2K, [(F —Dhy + =

k

= 2K | (F — Dhy + e MeV2 005

Then the part in Eq. (4-55) is

p | (Kl = Ky)
2[(F = DKyhy + K, |
Kk(hil —qe mfeﬁa"x”)z
=e . exp

h. —
“T2[(F = Dhy + qemeeVZoe ]

Eq. (4-55) can be represented as

Ny

*© 3
B, (w) = z Ky Ky, KM .f el [(F — DK hy + Kxu](— 7)
0

u=—Ny
u+0

2
Kk(hil - emf’e‘/i"fxu)
hil - vz
2[(F = Dhy + emeeV2oexu]

exp + jwh; pdhy

APPENDIX K
This is the derivation for Eq. (4-61).

Then the characteristic function F,(w) of p,(h) can be represented as

o]

Fy(w) = f p (RSt it dh

(o8] (o8]

:f Phll(hn)ejwh“dhuf phlz(hlz)ejwhlzdhlz ......

f Ph (hNtNr)e JORN Ny dhy,w,
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_ nn > z Ku K KM [ (F = Do, + K ]2

=1 i=1 u=—Ny v=
u%0

|w
\_/

Kk(xv — eMeeV2or xu)Z
2[(F — Dx, + emeeVZorxu]

I_H_] Zu: Z K K v KieMwy [(F = DK ex, + K ]( 2

=1 i=1 u=—Ny v=
u#+0

exp § Xy, — + jwx,

2
Kk(x _emge\f—agxu)
2[(F — Dx, + e ™meV2orxu

‘U 17 -
Z Z Z Z Z Z Fe™ [ |RE A,
U1=—Ny Uy=—N, u =—N. thAb
1=—Ny U=—Ny N¢Ny uv1v1=1v,=1 UNeN,=1
u1¢0 u2¢0 uNtNﬁtO

exp { X, — ] exp{jwx,}

N¢Ny

Wy, Wy e Wy W, W, oo Wy

exp [\/E Op (xu1 + Xy, t et xuNtNT) + (xvl + Xy, + 0 F vatNT)]

3

_3 _3
[(F - Dx,, + emf’e‘/f”f’xlll]( 2 [(F —Dx,, t+e mf’e‘/z‘”qu]( )

_3
[(F — 1)vatNr +e meeﬁo—[xuNtNr]( 2)
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exp (_ ﬁ) (xv1 — emfe\/faexul)z ) (xvz B emfeﬁafxuz)z
[(F — 1)xv1 + emfe\/faexm] [(F — 1)xv2 + emgeﬁagxuz]

(x —emegV?2 x”NrN
UN:N
+ tNr xv1+x,,2+ vatNT)]
\/_O'{x
F—1 mee UN¢Ny ]
[( )X,,NtNT +e

N¢Ny

Z Z Z x,,1+xv2+~~~vatNT)jw Fe™t RE; A, a
T qNAp

v1=1v,=1 UNtNT'_l

Z g Z s Wty =+ Wuy y, Wo, Wo, oWy

ul——Nu uz——Nu uNtNT
u1¢0 u2=/:0 uNtNr;to

exp [\/2 Oy (xu1 + Xy, ot xuNtNr) + (xvl + Xy, ot vatNr)]

_3 _3
[(F_l)xvl+em[e\/fagxu1]( 2) [(F_l)xvz_}_emge\/fagxuz]( 2)

_3
[(F — 1)xUNL‘Nr +e mee\/iaf xuNtNr]( 2)

Ky (le e mi’e\/— oy xu1)2 (xvz e mge\f— o xuz)2
exp <_ _) [(F _ 1)xv + em{,e\/—agxul] [(F 1)9(,; + eml’e\/—af’xuz] ......
N (XthNT —e m"e\/E 7 xul\’tl"r)2

[(F - 1)xUNtNT +e Tn{’e\/E ot xuNtNT]

Ny Ny Ny
= Z Z Z KO Kf edew

‘U1=1 V2=1 UNtN‘I":l
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APPENDIX L
This is the derivation for Eq. (4-80).
By using the Fourier series expression in the reference [6] in Chapter 4, the average symbol error
probability for one PPM symbol in Eq. (4-80) can be represented as [6]

P =2 ) Real{G(nwg)®,(nwy))

n=-—oo

=% Z Real{G(nwO)q)x(leo)}

n=—oo

= %Real{G(O)cbx(O)} + %; Real{G (nwy) P, (nwy)}

2 [ee]
= 22 Real{G(0)0,(0)} +—° ; Real{G (nw,) . (nw,)}

nodd

where w, = 2?7{, ®,(w) is the characteristic function of P,(x) and x >0 , ®,(w) =
fooo P, (x)e/®*dx, G, (w) is the Fourier transform of the function f(x) with the random variable
x, Gy(w) = fooo f(x)e 7% dx [9]. P,(x)denotes the symbol or bit error probability on an
additive white Gaussian noise channel conditioned by the signal-to-noise ration or the combiner
output envelope [9]. By using Eq. (4-80) in For the MIMO FSO system, the
Real{G(nwy) P, (nwy)} part is

Real{G(nwgy)®, (nwy)}

Ny

Ny
:fo [Z Z KoKf cos(Kqw)

U1=1 UNtNT'=1

L-1

J-c>o Z Cllf_l(—l)k-l—lo-Off e—klhz
0 k=1\/(ko_on2 + Uoffz)

cos(wh) dh|dw
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f 2 CL 1( 1) O-Off _kth Sln(a)h) dh“ da)
\/(ko-on + Ooff )

< CF (—DF g g ® kn?
= 2 Z Z KoK¢ {f cos(Kyw) U(-) e~ cos(wh) dh] dw

kzl\/(kO'on2 + O'offz) v1=1 vy.N, =1

+ Loosin(l(dw) Uoooe‘klhz sin(wh)dh] dw}
2

L-1 Ny Ny _
Ck  (—1)Ft1g g ® 1 |m L w

= KK K - —|d

e St Fo(- 2

2
=1\/(kaon + 0o ) V=1 VNN, =1

Kf sin(Kyw)

1=1 thNT_l

+f°°'(1< — <L>d
Osm dw\/k—lDZ\/kj w

Real{G(0)®,(0)} = cos(K,0) % j T exp <_0_2> + sin(K,0)

k, 4,
1 |m
2 |k

The average symbol error probability for one PPM symbol is

P(E)—ZCL 1ED e Z Z KoK;

\/(kO'on + O'Offz) V1= UNNp=1

wp 1 ;+2w0 i
2m2 |k, T
n=1
nodd

=)

(nw,) nwg

1 [m 1
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Z CE (=D gy z z KK
0 f
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)
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COS(Kdnwo)%\]kzl exp [— (n:;;) ] + sin(Kynwg) \/1_ (;\71)]

n=1
nodd
where
_\ N¢Ng
Fe™: \[RESAra
KO =
T qN:Ap
k(E;RMAg)?

L 2Nt2(k00n2 + O'offz)

_ 21

Wy = T,
_ 24,

g = 4,

The equation of the error probability can be simplified further as

LD o X0 N KoKyw
P(E) < L1 off Z 0oty Wo
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| 4l Vi 2.k
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= S I 2k,
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e
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Nf
1 (nwy)? 2 nwo
-+ Z Icos(KdnwO) exp |— + —sin(Kgnwy)Fp | —=
4 =i 4k, Vr ZJE
nodd

where
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APPENDIX M

This is the derivation for Eq. (4-87).

_\[cx
©w= 1—x

w? — w?x =cx

w? = (c + w?)x

If w tends to infinity, the value of x is unity. If w is zero, the value of x is also zero.



c —cx(—1)

[1—x + x]

[ (1 —x)2 |

1 — x + x]

[ (1 —x)? ]

1—x

_1—x+ (1—-x)2

dx

dx

This is the derivation for Eq. (4-89a).
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APPENDIX N
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j cos(de)j [e=*t"* cos(wh)] dh dw
0 0

1 [m [ w?
ZE\/k_lj; {exp <_4_kl> cos (de)} dw

APPENDIX O

This is the derivation for Eq. (4-110).
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