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Abstract

Repetitive Control for Hysteretic Systems:

Theory and Application in Piezo-Based Nanopositioners

by Yingfeng Shan

Chair of Supervisory Committee:

Associate Professor Kam K. Leang

Mechanical Engineering

This dissertation studies the design and analysis of repetitive controllers for hysteretic

systems. An example hysteretic system is a piezoelectric actuator (piezoactuator),

the workhorse of actuators used for positioning and manipulating objects and tools

at the micro and nano scale. For example, in scanning probe microscopes (SPMs) a

piezoactuator is used to raster (back and forth in a repetitive fashion) a probe tool

with sub-nanometer precision relative to a sample surface for imaging, manipulating,

and fabricating organic or inorganic nano-scale features. Likewise, piezoactuators

are used to position optics in space telescopes and tools in micro-machining systems.

Despite their importance, piezoactuators exhibit hysteresis effect, a nonlinear behav-

ior between the applied input voltage and the resulting output displacement of the

piezoactuator. If left uncompensated for, hysteresis (and dynamic effects) cause po-

sitioning error that significantly limits the performance of piezo-based positioning

systems. Repetitive control, a feedback-based approach which exploits the process

of repetition, is commonly applied to track periodic reference trajectories and/or to

reject periodic disturbances. The major challenges in the design of RC are closed-loop
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stability, robustness, and minimizing the steady-state tracking error. For hysteretic

systems such as piezo-based nanopositioners, the nonlinearity can drastically limit

the performance of RC designed around a linear dynamics model. In this work,

the effect of hysteresis on the closed-loop stability of RC is analyzed and the allow-

able size of the hysteresis nonlinearity for a stable RC is quantified. In the stability

analysis, the bounded-input bounded-output (BIBO) stability of the repetitive con-

trolled hysteretic system in the L2-norm sense is shown. Combining this result with

the Small-Gain Theorem, an acceptable size of the hysteresis nonlinearity is deter-

mined that guarantees closed-loop stability. Therefore, one main contribution of this

study is to provide a theoretical framework for analyzing the performance of RC

for hysteretic systems. When the hysteresis effect exceeds the maximum bound, a

new inverse-hysteresis feedforward controller based on the Prandtl-Ishlinskii hysteresis

model is proposed. The control approach is applied to a custom-designed piezoac-

tuator driven nanopositioning stage, and experimental tracking and nanofabrication

results are presented to validate the RC and inverse model design. The tracking re-

sults at 1 kHz show that by adding hysteresis compensation the stability margin and

rate of convergence of RC are improved by 14%. Likewise, the maximum tracking

error is reduced from 13.7% (using industry-standard integral control) to 3.9% (using

RC and hysteresis compensation), a 71% reduction. The RC approach is also applied

to nanofabrication, where it is shown that by using RC with hysteresis compensation

the error during fabrication is substantially reduced.
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Nomenclature

SPM Scanning probe microscope;

AFM Atomic force microscope;

L Length;

d31 Piezoelectric strain coefficient (deflection normal to polarization direction);

Di Inside diameter;

n Number of ceramic layers in piezoelectric stack actuators or the number of play

operators for the Prandtl-Ishlinskii hysteresis model;

d33 Piezoelectric strain coefficient (along the axial direction);

d15 Piezoelectric shear-strain coefficient;

Tp Period;

R(z) Reference trajectory;

Y (z) System output;

G(z) Discrete-time linear dynamics model;

N Number of points per period of a reference trajectory;

Ts Sampling period;

krc Repetitive control gain;

Q(z) Low-pass filter;

P1,2(z) Positive phase-lead compensators;
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θ1,2(ω) Phase lead contributed by positive phase-lead compensators P1,2(z);

m1,2 Non-negative integers for phase-lead compensators;

Gc(z) Feedback controller;

E(z) Tracking error;

S(z) Sensitivity function of the feedback system without a repetitive controller;

Src(z) Sensitivity function of a repetitive control system;

T (z) Complimentary sensitive function of the closed-loop feedback system without a

repetitive controller;

θT (ω) Phase of T (z);

S̃rc(z) Sensitivity function of the closed-loop dual-stage repetitive control system;

Src(z) Sensitivity function of the closed-loop odd-harmonic repetitive control system;

C Set of all complex numbers;

N Set of all natural numbers;

R Set of all real numbers;

Pr[ · ](t) Play operator of the Prandtl-Ishlinskii hysteresis model;

u Input signal;

f(t) Linear function;

g0, g1 Constants for the Prandtl-Ishlinskii hysteresis model;

γ Threshold of the play operator;
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ρ Constant for the Prandtl-Ishlinskii hysteresis model;

j Operator index number;

d(γ) Prandtl-Ishlinskii hysteresis model density function;

v(t) Output signal;

H[ · ](t) Prandtl-Ishlinskii hysteresis function;

H[ · ](k) Discrete-time version of the Prandtl-Ishlinskii hysteresis function;

P r′ [ · ](t) Operator for the inverse Prandtl-Ishlinskii hysteresis model;

h(t) Linear function;

g′0, g
′
1 Constants for the inverse Prandtl-Ishlinskii hysteresis model;

γ′ Threshold of the inverse Prandtl-Ishlinskii hysteresis model operator;

dinv(γ
′) Inverse Prandtl-Ishlinskii hysteresis model density function;

H−1[ · ](t) Inverse Prandtl-Ishlinskii hysteresis function;

H−1[ · ](k) Discrete-time version of the inverse Prandtl-Ishlinskii hysteresis function;

x State vector of the state-space representation of the linear dynamic G(z);

A, B, C, D Matrices for the state space model;

Grp(z) Transfer function for the repetitive controller and the controller Gc(z) in

Fig. 6.1(a);

z State vector of the state-space representation of Grp(z);

Arp, Brp, Crp, Drp Matrices for the state-space model of Grp(z);
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Hp Perturbed system;

Hu Unperturbed system;

AL, B1, B2, CL, D1, D2 Matrices for the state-space model of the unperturbed sys-

tem Hu;

GL(z) Transfer relation between the reference R(z) and the controller output U(z)

of the RC closed-loop linear system in Fig. 3.1(a);

MGL
Gain margin of the RC system in Fig. 3.1(a);

P Force applied to the AFM tip during nanofabrication using force-lithography;

σmax Maximum bending of the AFM cantilever due to force P ;

k Spring constant;

l Length of the AFM cantilever;

E Young’s modulus; and

I Moment of inertia.
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Chapter 1

Introduction

Hysteretic systems, such as piezoelectric actuators (piezoactuators) [1,2], shape mem-

ory alloy actuators [3,4], magnetostrictive actuators [5], and other types of active (or

smart) material actuators used for motion control, are critical in emerging nanotech-

nologies. For example, piezoelectric actuators are used to fabricate, manipulate, and

investigate patterns, structures, and objects at nano or atomic scale [6]. However,

these mechanical systems commonly exhibit hysteresis as well as dynamic effects,

which can cause significant positioning error and consequently limit the performance.

In piezo-based nanopositioners, the hysteresis is range-dependent and the effect alone

can lead to approximately 20% positioning error. Dynamics, on the other hand, in-

crease with input frequency and can contribute another 10% or more in positioning

error. During raster-style scanning, the positioning error caused by the hysteresis

and dynamics can repeat from one operating cycle to the next [7]. The positioning

errors can cause, for example, distortion in AFM imaging and damage to the tip or

the substrate in a number of nano-scale applications. Currently, feedback and model-

based feedforward control have be studied to address the positioning error caused by

hysteresis and dynamics in piezo-based nanopositioners [1]. However, these meth-

ods provide limited performance in terms of reducing the repeating tracking error

for tracking periodic trajectories [8]. Herein, the design and analysis of a repetitive
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controller for a system that exhibits hysteresis behavior between the applied input

and the output response is studied. Such a study has received limited attention in the

past, and one major outcome of this research is a theoretical framework for analyzing

the stability and performance of repetitive controllers for hysteretic systems.

Repetitive control (RC) is a feedback-based approach that is suited for track-

ing periodic reference trajectories and/or for rejecting periodic disturbances. The

control structure essentially exploits the process of repetition to reduce the tracking

error [9, 10]. Although RC has been used in a number of applications, the design of

RC for hysteretic systems has not been rigorously studied. One of the main challenges

is the complex nonlinear behavior of hysteresis. The complexity causes undesirable

effects on the performance of a closed-loop system, especially when the controller is

designed around a linear dynamics model and subsequently applied to control the

nonlinear system. In this study, the hysteresis behavior is treated as a static input

nonlinearity with an output that drives the linear dynamics as shown in Fig. 1.1.

This cascade-model structure is commonly used to model hysteretic systems such as

piezo-based nanopositioners [11, 12]. By exploiting this model structure, the accept-

able size of the hysteresis nonlinearity that ensures the stability of the closed-loop RC

system is determined. If, on the other hand, the hysteresis behavior is unacceptably

large, a feedforward controller is proposed to compensate for the hysteresis behavior

to ensure a stable RC. In the following chapters, the hysteresis effect is modeled using

the Prandtl-Ishlinskii approach, and an inverse hysteresis compensator is developed

based on the structure of the Prandtl-Ishlinskii model. The control approach is ap-

plied to a custom-designed piezo-based nanopositioner to validate the inverse model

and RC design. Finally, the RC approach is applied to nanofabrication example

to demonstrate the feasibility of the control scheme to realize high-speed precision

nanofabrication.
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Figure 1.1: A nonlinear input-output model for a system, such as a piezoelectric
actuator, that exhibits hysteresis and dynamic effects.

1.1 Thesis Goal and Objectives

The main goal of this dissertation is to precisely track periodic motion trajectories

in hysteretic systems for nano-scale applications. Specifically, this work focuses on

designing a repetitive controller to minimize the repeating tracking error, for scanning-

type applications, caused by hysteresis and dynamic effects in a piezo-based nanoposi-

tioner. The research goal is achieved by completing the following two main objectives:

1. Analyze and design a repetitive controller for tracking periodic tra-

jectories for a hysteretic

First, an enhanced repetitive controller is designed based on the linear dynamics

of the system. This first result serves as a starting point for analyzing and

designing an RC for hysteretic systems. This step includes designing an RC

that considers robustness, stability, and tracking performances. The hysteresis

is modeled using the Prandtl-Ishlinskii approach for analysis. Then the stability

of the RC system containing hysteresis is analyzed. Finally, an inverse hysteresis

compensator is designed to compensate for the hysteresis nonlinearity to ensure

good stability and tracking performance.

2. Validate the theory on an experimental nanopositioning system

Second, both the theoretical results and controller designs are applied to track

periodic scanning trajectories in a nanopositioner and experimental AFM. Also,
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patterns of nano-sized holes are created using the AFM which employs the new

control technique. Such holes can be used for ZnO nanowire array growth.

1.2 Contributions

This research has three main contributions. First, this work provides a theoretical

framework for analyzing closed-loop stability for hysteretic systems, which is one of

the first works that offers a tool for quantifying the effect of hysteresis on RC closed-

loop system stability. Second, a new inverse hysteresis compensator is developed to

account for the hysteresis when the size of the hysteresis exceeds a tolerable size. The

advantage of this hysteresis compensator is that it has fewer parameters than other

popular models, making it more computationally tractable for online feedforward

hysteresis compensation. Finally, the proposed control approach is applied to explore

the potential application in AFM-based nanofabrication, where repetitive operation

is required.

1.3 Dissertation Overview

This dissertation is organized as follows. Chapter 2 presents a background of hys-

teretic systems, specifically, the piezo-based nanopositioning systems. The informa-

tion includes the principle and characteristics of piezoelectric materials. The applica-

tions of piezoelectric positioner-based scanning probe microscopy are also discussed,

which focuses on nanofabrication using the AFM. The main challenges associated

with using piezoelectric actuators are also discussed.

In Chapter 3, the repetitive control method for linear dynamics is introduced.

This introduction offers the foundations to study and design repetitive controllers for

hysteretic systems. Topics include robustness issues, stability analysis, and consider-
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ations for good tracking performance.

Chapter 4 presents a dual-stage RC designed for improving the tracking perfor-

mance of the proposed enhanced RC. Also, the challenges with RC for hysteretic

systems are discussed, namely, the effect of the hysteresis on closed-loop system ro-

bustness, stability, and tracking performances.

Chapter 5 provides the key elements for designing RC for hysteretic systems. The

Prandtl-Ishlinskii hysteresis model is introduced and used in the analysis. Chapter 6

dives into the details of quantifying the effect of hysteresis on the performance of RC.

The control approach is applied to an experimental piezo-based nanopositioing

system and the results are discussed in Chapter 7. The chapter also discusses the

system modeling, controller design and implementation, and the stability theorem

verification.

Chapter 8 discusses the AFM-based fabrication of patterns of nano-holes for po-

tential growth of ZnO nanowires. The experimental tracking results compare the

performances of the RC, with and without hysteresis compensation, to the perfor-

mances of a standard PID controller, with and without hysteresis compensator.

Conclusions are presented in Chapter 9, followed by appendices.
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Chapter 2

Background: Hysteretic Systems
and Scanning Probe Microsopy

This chapter provides a background on hysteresis and hysteretic systems, particularly

piezoelectric actuators used in scanning probe microscopes (SPMs). The piezoelectric

actuator serves as an example hysteretic system studied in this work. An overview of

the applications for piezo-based atomic force microscopy is presented. In particular,

AFM-based nanofabrication will be the central focus. Finally, a detailed discussion

of the main challenges with piezoelectric positioners are described. It is noted that

addressing the hysteresis effect is the focus of this dissertation.

2.1 Hysteresis

Hysteretic systems include piezoelectric actuators (piezoactuators) [1], shape memory

alloy actuators [4], magnetostrictive actuators [5], and other types of active (or smart)

material actuators employed for motion control (see Fig. 2.1). These devices can

be activated electrically, that is, an applied electric signal causes the material to

change shape, and as a result these devices can be used as solid-state actuators for

a wide variety of positioning applications. However, one of the main challenges is

that the materials exhibit hysteresis between the applied input signal and output

displacement. Hysteresis significantly limits the performance in terms of actuation,
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and this research specifically focuses on precision motion control of hysteretic systems

such as piezoelectric actuators.

Figure 2.1: Examples of active (smart) material-based actuators for motion control:
(a) piezoelectric actuator [www.noliac.com], (b) shape memory alloy actuator (Miga
Motor Co.) [www.migamotors.com], and magnetostrictive actuator (Nordisk Trans-
ducer Teknik) [www.ntt.dk]. These solid-state actuators exhibit hysteresis.

The word hysteresis comes from the Greek word “to be late” or “come behind”.

An interesting writing on the history of hysteresis can be gleaned from reference [14],

which describes other systems which exhibit this behavior. The mechanism responsi-

ble for hysteresis, for example in piezoactuators, is “internal forces” (such as frictional

forces) between domains of electric dipoles within the material. Similarly, in magnetic

materials tiny elementary magnetic dipoles align to an applied field, and the bound-

aries that separate regions of similarly-oriented dipoles grow or shrink depending on

the nature of the applied field. The non-recoverable interactions between the different

domains is believed to be the main cause of hysteresis in this case [15–17]. Figure 2.2

shows an example input-output response for a hysteretic system. The input-output

behavior is not only nonlinear, but hysteresis “remembers” the effect of the past and

it exhibits non-local memory [18].
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Figure 2.2: Input-output response for a hysteretic system: (a) input vs. time, (b)
output vs. time, and (c) hysteresis curve (plot of output vs. input).

2.2 Piezoelectric Materials and Piezoelectric Ac-

tuators

In 1880, Pierre and Jacques Curie discovered that certain crystals (such as quartz,

sodium chlorate, boracite, calamine, topaz, cane sugar, and Roschelle salt) when

subjected to mechanical stress produce electric charge. One year later, the French

physicist Lippmann predicted, on the basis of thermodynamic analysis, the converse

effect: strain as a result of applied voltage. That same year, the Curie brothers veri-

fied Lippmann’s prediction [19]. The discovery was named the piezoelectric effect from

the greek word piezein, meaning to press or squeeze. For the interested reader, a more

detailed discussion of the history of piezolectricity can be read in references [20, 21].

Also, according to these references, the piezoelectric effect was known prior to the

Curie brothers’s time. Charles Coulomb, in 1815, conjectured that electricity might

be produced by pressure; however, the discovery was undoubtedly made by the Curie

brothers in 1880. The piezoelectric effect is based on the unique characteristic of

certain crystalline lattices to deform under pressure, thereby separating the center

of gravity of the positive and negative charges creating a dipole moment (product of

charge value and their separation). The resulting dipole moment induces an electric

charge which can be measured across the surface of the material. Conversely, an ap-
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plied voltage induces a mechanical strain, and this behavior is exploited for actuation

in positioning systems.

For piezoelectric materials, mechanical stress or applied voltage produce electric

dipoles. Materials which exhibit a spontaneous polarization in the absence of an

applied stress or electric field are referred to as ferroelectric. Some ferroelectrics

exhibit the piezoelectric effect. For example, the microscopic crystallites of lead

zirconate titanate (Pb(Ti,Zr)O3) (PZT) exhibit a spontaneous polarization due to

the arrangement of atoms within the unit cell. However, when manufactured, the

random orientations of the crystallites in this ferrorelectric material produce no net

effect when mechanically stressed or when voltage is applied. However, through a

process called poling, the material can be made to exhibit a considerable piezoelectric

effect. Basically, the poling processes forces the dipoles in the material to align in

a favorable direction as illustrated in Fig. 2.3. The poling process involves heating

the material near its Curie temperature, typically between 100◦ and 300◦ C, then

applying a strong electric field while cooling the material. The heating process allows

movement of the individual crystallites, and application of a strong electric field

causes the dipoles to align with the field, in favor of a net effect [22, 23]. As the

field is maintained during the cooling process, the majority of the dipoles maintain

their alignment. The dimensions of the material after poling permanently changes

as illustrated in Fig. 2.3. In the figure, the poling axis is the dimension between the

poling electrodes. During poling, the material increases its dimensions parallel to

the poling axis and the dimensions along the electrodes decrease. After poling, the

ferroelectric PZT material exhibits considerable piezoelectric effect. Lead zirconate

titanate is one of the most widely used piezoelectric materials and it is manufactured

into a wide variety of shapes and sizes, from tube-shaped actuators to stacks. In

the 1950s, barium titanate (BaTiO3) was the first ferroelectric material used for



10

piezo-based applications, however, lead zirconate titanate has since then replaced

barium titanate because it has nearly twice the piezoelectric effect. For the interested

reader, reference [21] provides an detailed coverage of the theory of piezoelectricity

and constitutive equations.

Piezoelectric materials are available in many shapes and forms. In addition to

their traditional application in microphones, accelerometers, ultrasonic transducers

and spark generators, piezoelectric transducers are now used in applications such as

structural vibration control, precision positioning, aerospace systems and nanotech-

nology. Figure 2.4 shows the basic modes of deformation for a piezoelectric element

that can be exploited for nanopositioning. Based on these deformation modes, uni-

morph, bimorph, stack, and tube piezoelectric actuators have been developed.

a

b

a

b

Before poling After poling

(b’ > b; a’ < a)

= domains with similarly oriented dipoles
+

-

V

+

-

a

b

During poling

Figure 2.3: The poling process.

Unimorphs and bimorphs are bender style actuators with large range of motion,

but low force. Sawyer in 1931 developed the first bender actuator using Rochelle salt

bars [24]. Bimorph actuators consist of two ceramic elements bonded together, and

can be configured serially or in parallel. The parallel configuration in Fig. 2.5 shows

an electrode sandwiched between two piezo plates. For this configuration, the static
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(a) Thickness expansion

(b) Thickness shear

(c) Face shear

Figure 2.4: Basic modes of piezoelectric element deformation.

deflection at the end can be estimated by [25]

∆x =
3d31L

2V

t2
, (2.1)

where L and t are the bender’s length and thickness, respectively, and d31 is the

strain coefficient (displacement normal to the polarization direction). On the contrary,

unimorph actuators employ only one piezoceramic element that is bonded to an elastic

shim, such as aluminum, brass, or steel. Bending motion for both unimorph and

bimorph actuators is due to the difference in expansion and/or contraction between

the opposing plates.

Quarter-sectored tube-shaped piezoelectric actuators were developed for 2- and
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Figure 2.5: Piezoelectric bimorph actuator.

3-D positioning and they are used extensively in scanning probe microscopes [12].

The tube-shaped PZT ceramic is poled radially and the electrodes are deposited on

the inner and outer circumferential surfaces of the tube as shown in Fig. 2.6. If the

inner electrode is held at ground and the two opposing electrodes are driven by ±V,

then the resulting static deflection of the tube’s distal end can be estimated by [26],

∆x ≈ 2
√
2d31L

2V

πDit
, (2.2)

where L, t, and Di are the tube’s length, thickness, and inside diameter, respectively.

Compared to the bender style actuators discussed above, tube-shaped actuators are

stiffer because of their cylindrical geometry.

Piezoelectric stack actuators emerged after the development of poled ceramic

transducers of PZT [27]. A stack actuator is made by bonding thin layers of piezoelec-

tric materials between electrodes such that the polarization direction is aligned with
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Figure 2.6: Quarter-sectored piezoelectric tube actuator.

the direction of stroke and blocking force. All the elements are connected in parallel

as depicted in Fig. 2.7(a). The thin ceramic layers (100 µm thick) wired in parallel

enables the stack to be operated at 100 V or less, with an achievable stroke of 0.2% of

the stack height [25]. Due to their high stiffness and force output, stack actuators are

used extensively in high-speed nanopositioning designs [28–30]. Because the ceramic

layers are connected in parallel, the overall capacitance of stacks is high compared to

tubes and bender actuators, and thus power requirements must be carefully consid-

ered, in particular for dynamic applications. The static axial elongation of a stack

actuator is given by

∆x = nd33V, (2.3)

where n is the number of ceramic layers and d33 is the strain coefficient along the

axial direction of the stack.
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(a) (b) (c)

Figure 2.7: Piezoelectric stack actuators. (a) Electrode configuration; (b) Monolithic
stack actuator; and (c) Multilayer stack actuator.

Shear actuators make use of the shear-strain coefficient d15, whereby an electric

field is applied perpendicular to the polarization direction to induce shape change

(see Fig. 2.4). The strain due to shear can be has much as twice the deformation

of a comparable size material based on d33. Some advantages include high force

output and bipolar operation. When thin shear actuators are used for high-speed

nanopositioning applications, the range is relatively small [31].

In the past few decades, piezo-based sensors and actuators have been developed

for a wide variety of applications [32]. For example, piezo-based actuators are used

in bioengineering systems [33], disk drives [34], micropumps [35], and scanning probe

microscopy-based imaging and manipulation of nanoscale surface processes [6, 36].

2.3 Scanning Probe Microscopy

A popular application of piezo-based nanopositioning stages is scanning probe mi-

croscopy (SPM). In an SPM, a piezo-positioning stage is used to position a small

SPM probe relative to a specimen for nano-scale imaging, surface modification and

interrogation [37]. Unlike a traditional optical microscope which uses light for imag-

ing, in SPM an image is formed by rastering a small (typically micron-size) probe

over a sample surface and then plotting the probe’s interaction as a function of its
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Figure 2.8: An example SPM, the atomic force microscope.

position [6]. For example, consider the AFM shown in Fig. 2.8, a type of SPM. This

instrument is one of the most versatile SPMs because of its ability to work with con-

ducting and nonconducting samples, as well as operate in a vacuum, air, or in water.

The AFM was invented in the mid-1980s [38]. In AFM, a micro-machined cantilever

with sharp probe tip protruding from its bottom is positioned relative to a sample

surface as shown in Fig. 2.8. When the probe tip is rastered over a sample’s sur-

face, tip-to-sample interaction causes the cantilever to deflect vertically with respect

to the sample topology. The deflection is then measured and used to construct an

image of the sample surface. In this case, the AFM essentially ‘feels’ the surface with

a tiny, finger-like cantilever. In a vacuum an AFM’s resolution is on the order of

0.01 nm. With such high resolution, an AFM can generate topographical images of

atoms, as well as to control, manipulate, and alter the properties of matter at the

nano-scale [37].

The positioning of the SPM probe tip relative to the sample is achieved with two
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Figure 2.9: Two positioning schemes for SPMs: (a) scan-by-sample and (b) scan-by-
probe.

basic configurations: (a) scan-by-sample or (b) scan-by-probe as shown in Fig. 2.9.

In the scan-by-sample configuration, the nanopositioner, such as the flexure-based

design shown equipped with three piezo stacks, moves the sample relative to a fixed

SPM probe. The x and y axis piezos position the sample along the lateral direction

(parallel to the sample surface); a z axis stack moves the sample vertically. The

deflection of the cantilever is measured optically, by reflecting a laser beam off the

end of the cantilever onto a nearby photodetector. In the scan-by-probe arrangement

[Fig. 2.9(b)], a nanopositioner, such as the sectored tube-shaped piezoactuator, is

used to move the probe relative to a fixed sample laterally and vertically. Typically,

in scan-by-probe system the laser and photodector are required to move with the

cantilever; however, this can be avoided by incorporating sensing elements into the

cantilever itself, such as using piezoresistive, piezoelectric, and capacitive elements.

In general, the mechanical resonances of scan-by-sample systems are lower compared

to the scan-by-probe systems due to the fact that more mass is being displaced in the

former configuration.

There are three basic operating modes of AFM: contact, noncontact, and tapping

mode. Contact mode is the most common and the AFM probe interacts with the
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sample surface at a very close range where the dominate force on the tip is repulsive.

In this mode, the deflection of the AFM cantilever is sensed and a feedback controller

is used to maintain a desired deflection. The spring constant of a contact mode AFM

cantilever varies between 0.001 to hundreds of N/m. Although contact-mode AFM is

the simplest, electrostatic charge on surfaces of certain samples can present additional

challenges by heavily influencing the total force acting on the tip.

For samples in which contact mode AFM can affect or alter the surface of a spec-

imen, noncontact mode avoids this problem by exploiting attractive Van der Waals

forces. In this mode, the AFM tip is hovered above the surface (at approximately 50

to 150 Angstroms) such that the attractive forces act to deflect the cantilever. Be-

cause the attractive forces are significantly weaker than the repulsive forces in contact

mode, the tip is given a small oscillation and the small forces are detected by moni-

toring the change in amplitude, phase, or frequency of the oscillating cantilever. In

general, noncontact mode AFM provides low resolution and the cantilever’s oscillation

can be affected by surface contaminants.

For high-resolution imaging of soft samples, tapping mode AFM is preferred. In

this mode, the AFM cantilever is oscillated with large amplitude near its resonance

(at 50,000 to 500,000 cycles per second) using a piezoelectric crystal. The AFM tip is

not in contact with the surface as it’s being oscillated, but then slowly brought close

to the surface until the tip lightly touches or taps the surface. When the cantilever

intermittently contacts the surface, the oscillating behavior is altered by the energy

loss during the tip-to-sample interaction. The change in energy is monitored and

used, for example, to construct an image of the surface.
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2.4 Nanofabrication using the AFM

The atomic force microscope is an important and versatile tool to study insulators and

semiconductors, as well as conductors [39]. As mentioned before, the AFM has been

used to visualize the sample surface (imaging). Also, the AFM can provide details

of the surface properties for research in physics, chemistry, biology, biochemistry,

engineering, and other disciplines [40]. The AFM can also be used to physically

or chemically modify surfaces to create nanometer scale structures/features and to

perform manipulation at the level of molecules or atoms [41].

Recently, the AFM has become a promising tool for nanofabrication. Other ap-

proaches include photolithography using short wavelength light [42], self-assembly [43],

and nanoimprint [44]. Compared to these other approaches, the AFM allows both

fabrication and visualization of the nanostructure using the same tool. Compared to a

scanning tunneling microscope (STM) and near-field scanning optical microscope, the

AFM is more flexible and can be applied to metal, semiconductor, polymer, bio/or-

ganic materials, and inorganic samples [45]. AFM-based nanofabrication technolo-

gies mainly include nanomanipulation [46], forcelithography [47], nanografting [48],

nanooxidation [49], and dip-pen nanolithography [50].

2.4.1 AFM Tip Manipulation

An AFM tip can be used to position or manipulate nanoclusters or nanoparticles that

are deposited on substrate surface [46]. The capability of the AFM for nanomanip-

ulation was discovered during the early days of the instrument when using the tool

to visualize surfaces in contact mode. It was found that the nanoparticles that were

weakly adsorbed on the sample surface could be displaced to a new position using the

tip [51, 52]. The AFM was normally treated as the main tool for imaging; however,

some researchers realized that they could construct nano-scale features on surfaces
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by carefully manipulating the AFM probe tip.

In nanomanipulation, the displacement of the desired nanocluster or nanoparticle

is achieved by pushing with an AFM tip. In this process, the AFM tip can be

used in contact mode or non-contact mode. In contact mode, the nanoclusters or

nanoparticles are moved by applying higher loads to the AFM cantilever than for

imaging. In non-contact mode, there are two approaches to relocate nanoclusters or

nanoparticles. The first approach is to turn off the z-axis feedback controller on the

AFM cantilever when the tip approaches a desired object or feature. This results in

a contact of the tip and the object, and the force caused by the contact between the

tip and particle forces the particle to move with the tip to a desired location. The

other approach is to adjust the setpoint of the static load applied on the cantilever

for manipulation.

A significant amount of research has been done on AFM-based nanomanipulation.

For example, nanocrystals and nanoclusters such as C60, Ag, Au, Pd, GaAs, and Cu

were manipulated [53–58]. Baur’s group used an AFM tip to manipulate 15 nm

Au nanocrystals, which were randomly deposited on the silicon surface, to form a

‘USC’ pattern after a series of pushing operations of the Au nanoparticles [55]. The

comparison between the random pattern of Au particles with the manipulated Au

pattern is shown in Fig. 2.10 [55]. More complex 2-dimensional and 3-dimensional

structures were also fabricated by properly controlling the manipulation process [59,

60].

2.4.2 Polarizing Materials and Electrostatic Nanolithogra-
phy with AFM

Apart from visualizing the ferroelectric material topological information, AFM can

also polarize ferroelectric materials [61–67]. Compared with conventional polarizing

methods, which can only polarize a large area of the sample, AFM based polarization
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Figure 2.10: An nanomanipulation example for Au nano particles from reference [Baur
et al. (1997)]. (a) The random Au pattern before nanomanipulation. (b) The Au
pattern in structure of ‘USC’ after AFM-based nanomanipulation.

allows the polarization of ferroelectric materials locally to create a ferroelectric domain

on the sample at the nanometer or micrometer scale. Moreover, the AFM can also

detect and visualize the ferroelectric domain after polarizing for analysis. A schematic

diagram in Fig. 2.11 shows the AFM system for polarization and detection of the

ferroelectric domain. From the diagram, it can be seen the polarization and detection

require the ferroelectric material to be located on an electrode base, and the AFM

tip to be conductive. During polarization, the conductive AFM tip approaches the

ferroelectric material in contact mode, and a certain DC voltage is applied between

the tip and the electrode base to form an electric field. The ferroelectric domain is

generated on ferroelectric material by scanning the AFM tip relative to the material.

For detecting, a small AC voltage is applied between the tip and the electrode base

to simulate the ferroelectric variation, which is reflected by the vibration of the AFM

cantilever. Then the vibration information of the cantilever is input to a lock in

amplifier, which outputs ferroelectric information of the surface. In the past decade,
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Figure 2.11: A schematic diagram for AFM based polarizing and detecting ferroelec-
tric domain on a sample.

studies have been undertaken on the polarization and detection of micro- to nano-

scale ferroelectric domains using AFM [61–64]. An example result from Paruch et

al., is shown in Fig. 2.12. The figure shows a close-view of nano-sized ferroelectric

domain fabricated by AFM polarization with 10 V pulses applied for 3 ms.

Furthermore, the AFM system in Fig. 2.11 can also be used to do electrostatic

nanolithography on polymer samples by replacing the ferroelectric material sample

with a polymer sample [68]. In this process, a polymer sample with thickness of

20 ∼ 100 nm is rested on the electron base, and a voltage is applied between the

tip and the electron base similar to polarization process. Then nanopatterns can

be fabricated on the polymer by positioning the AFM tip. The configuration of the

nanopatterns are affected by the applied bias voltage, which is determined by the

writing conditions, polymer compositions, and film thickness. An example result of

AFM-based electrostatic nanolithography is from [68], and is shown in Fig. 2.13 [68].

A pattern is created in spun-cast, vacuum-annealed 100 k PS films. The capability of

AFM on electrostatic nanolithography gives it a potential application for developing
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Figure 2.12: Piezoelectric image of an 11×11 array, written at 4 Gbit/cm2 information
density with 10 V pulses applied for 3 ms [Paruch et al. (2001)].

data storage devices with polymers.

2.4.3 Force Lithography or Mechanical Scratching

Another convenient nanofabrication method to physically modify a sample surface

using AFM is called force lithography or mechanical scratching. In force lithography,

a rigid AFM tip is used to mechanically modify the surface of a soft sample by applying

a certain load on the cantilever. The load depends on the condition of the substrate,

such as the hardness. Force lithography can be conducted in contact mode or semi-

contact mode. The disadvantages of contact mode are that the contact force not only

causes difficulties in the tip moving direction, but can also create undesired features

on the sample surface, especially for soft materials, as well as causes damages to the

AFM tip. Therefore, in implementation, semi-contact mode is a better option for

operating force lithography. A schematic illustration of force lithography is presented

in Fig. 2.14(a). Nano-hole arrays are fabricated on a photoresist PMMA thin film by

an AFM tip through force lithography. The thickness of the PMMA thin film is about

28 nm. The fabrication is operated in semi-contact mode by loading a static force
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Figure 2.13: An example of electrostatic nanolithography-patterned structures on a
spun-casted polymer films (100 k PS) with AFM. (a) The surface of sutstrate before
fabrication. (b) Electrostatic nanolithography-patterned letters with width of 450 nm
and height of 1.2 nm with average current of 13 nA (20 V at 0.1 µs−1) [Lyuksyutov
et al. (2003)].

on the AFM tip and driving the z-axis positioner with a periodic motion to expend

and contract in the z direction. The fabrication results are shown in Fig. 2.14(b) to

(d). The 2-D and 3-D images in plots (b) and (c) show the configuration of fabricated

holes. Plot (d) is the depth of the depth profile of the holes in the 3rd row, which shows

the holes have nearly the same depth as the thickness of the polymer, demonstrating

that the substrate is exposed. It is noted that the applied load, lithography speed,

and lithography cycles affect the pattern height and surface roughness.

Research on fabricating nano-scale patterns on different materials using the AFM-

based force lithography has been conducted by several groups [69–76]. Generally,

nanopatterns on soft materials were fabricated directly with force lithography. Yan

et al. [69] applied the AFM-based force lithography directly to copper film to study

the application of AFM as a micro/nano-CNC machining system. Brandow et al. [57]

fabricated patterns on Au and Pd nanocluster films. For direct fabrication of patterns

on polymer, silicon, and titanium film readers are referred to [73,76,77]. Fabrication
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Figure 2.14: (a) A schematic diagram for AFM based Force lithography on 15kg/mol
PMMA thin film with thickness of 28 nm to create nano-hole arrays. (b) 2-D AFM
image of the fabricated nano-hole arrays. (c) 3-D AFM image of (b). (d) The depth
of the holes at 3rd row.
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of nanopatterns on hard materials is generally produced indirectly with force lithog-

raphy, since the direct fabrication method makes the silicon AFM tip degrade rapidly,

and often results in defects around the patterned structure. Therefore, fabrication

of patterns on hard materials with the combination of a sacrificial layer and various

selective etching techniques is often done [71,72,78]. The sacrificial layer is normally

one or two thin films of soft materials coated on the target substrate with a thick-

ness of several nanometers. The soft sacrificial material could be a polymer, III-V

semiconductors (10 nm thick), or a soft metal (Al, Ti) [47,71,73–75]. In the fabrica-

tion of hard materials, patterns are first fabricated on the soft sacrificial layer. Then

the desired nanostructures on the substrate can finally be obtained through selective

etching and removing of the sacrificial layer [71,72,74,78]. Other than using selective

etching, nanopatterns are first fabricated on the sacrificial layer via force lithography,

and gold is then deposited on exposed portions of the substrate (Ge) through elec-

troless deposition. Subsequently, the desired metallic features are obtained through

removing the resist layer [70].

Force lithography is very useful for fabricating nanodevices, especially on noncon-

ducting substrate that cannot be oxidized with AFM tip-directed nanooxidation. For

example, semiconductor quantum point contacts [79], nanoscale transistor [80], and

single electron transistor (SET) [81] were fabricated with the combination of force

lithography and selective etching. In this study, force lithography is used to fabri-

cate nano-hole array pattern for potential ZnO nanowire arrays growth via selective

etching.

2.4.4 Nanografting using AFM

Nanografting has evolved from force lithography, and was developed by Liu et al.

in 1997 [82]. Basically, the process replaces the need for self-assembled monolayers

(SAMs) on a substrate by another material using force lithography to chemically mod-
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Figure 2.15: Schematic diagram of nanografting using AFM.

ify the substrate to form desired nanopatterns. A schematic diagram of AFM-based

nanografting is shown in Fig. 2.15. From the figure, it can be seen that nanografting

is conducted in a solution. The solution contains the desired molecules used to replace

the component of the SAMs. The sample for nanografting is a substrate of interest

with a self-assembled monolayer. The sample is usually a thiol-gold system [83]. An

AFM tip is used to scratch the SAMs at the desired location, and then substrate is

exposed to the desired molecules for absorption.

From nanografting, another fabrication method called nanopen reader and writer

was developed by Liu’s group [84]. Unlike nanografting, where the desired molecules

are in the solution, in the nanopen reader and writer approach, the desired molecules

are coated on the AFM tip. In the nanofabrication process, the AFM tip coated

with desired molecules acts like a pen. The process removes the SAMs from the

desired location of the substrate and leaves the desired molecules behind to form

nanostructures. The nanopen reader and writer method has been conducted in air
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Figure 2.16: Schematic diagram of nanopen reader and writer with AFM.

with improved resolution [84]. A schematic diagram of it is shown in Fig. 2.16. The 2D

and 3D nanostructures of thiols with different chain length or/and different terminal

groups have been constructed [85–87]. An example result of nanografting is shown in

Fig. 2.17 [87]. A cell size of octadecanethiol 20× 20 nm surrounded by decanethiol is

fabricated by nanografting.

2.4.5 Nanooxidation with AFM

Nanooxidation is another AFM-based nanofabrication technique. In this approach,

the surface of a semiconductor or metal sample is modified through oxidization by

applying a bias voltage between the conductive AFM tip and the substrate. By

making the voltage level on the tip lower than the substrate, a protruded oxide

feature can be formed on the sample surface. The reaction in the nanooxidation is

called an anodic oxidation. A schematic diagram of AFM tip directed nanooxidation

is shown in Fig. 2.18. The nanooxidation process can be conducted in contact mode,

semi-contact mode, or non-contact mode. In these three operating modes, the semi-

contact mode and non-contact mode cause less wear to the conductive layer of the

AFM tip compared to contact mode. This happens because only the contact mode

requires a constant physical contact between the tip and the sample. However, the
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Figure 2.17: Alternating nanostructures of octadecanethiol and decanethiol: (a) Cell
size of octadecanethiol 20×20 nm. (b) Closed-view of (a). (c) Cross-sectional analysis
of (b) [Liu et al. (1994)].

non-contact mode requires a threshold voltage for oxidizing a sample due to a larger

gap between the tip and sample than that in contact mode and semi-contact mode.

Also semi-contact mode has higher resolution than non-contact mode.

The experimental implementation of nanooxidation is complex, because the oxi-

dation results can be affected significantly by a lot of parameters, such as the bias

voltage, substrate, separation between tip and sample surface, duration, and ambient

humidity [41]. Several research groups have studied the mechanism of the oxidation

and the effect of these parameters on the oxidation results [88–92]. These results illus-

trate the effect of, for example, electric field, humidity and oxygen of the environment

on the dimension of oxide feature.

AFM tip-directed anodic nanooxidation approach has applications in electric nan-

odevices of metals or semiconductors. Oxide nanostructures as small as several

nanometers to tens of nanometers were fabricated directly on poly(methylmethacrylate)
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Figure 2.18: Schematic diagram of nanooxidation with AFM.

(PMMA) [93], Si [94], Ti, Si3N4 [95, 96], and etc. 2-dimensional and 3-dimensional

nanostructures were constructed with the combination of anodic oxidation and selec-

tively chemical etching [97,98].

2.4.6 Dip-Pen Nanolithography using AFM

Dip-Pen nanolithography (DPN) is a nanofabrication method to create features on the

surface of a substrate by depositing chemical molecules to the substrate surface using

an AFM tip. This method was developed by Mirkin et al. in 1999 [99]. In dip-pen

nanolithography, the AFM tip is coated with a thin film of chemical of interest, which

could be organic materials, bio-molecules or inorganic salt. During the scanning of the

AFM tip relative to the substrate surface, the chemical molecules transfer from the tip

to the substrate surface and deposit on the surface to form chemical nanostructures.

A schematic diagram of DPN is described in Fig. 2.19. From the figure, it can been

easily seen that the DPN process is similar to a writing process with a fountain pen,

where the coated tip works as a pen, the chemical is as ink, and the substrate is as the

paper to write on. Therefore, it is named as dip-pen nanolithography. Usually, a soft

AFM tip with a small spring constant, such as 1 N/m, is selected as the pen [100],

and thiols are frequently used as DPN inks to be coated on the AFM tip [101, 102].
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Figure 2.19: Schematic diagram of Dip-Pen nanolithography using AFM.

In the lithography process, the AFM tip is conducted in a contact mode or a tapping

mode [100].

Nanostructures of various materials were fabricated via DPN [101,103–105]. Com-

bined with wet chemical etching, DPN had fabricated 3-dimensional multilayered

nanostructures, which implies potential applications of DPN in electronic nanode-

vices [106]. For example, a small nano gap of 12 nm is fabricated by DPN and

subsequent chemical etching [106], as shown in Fig. 2.20. Apart from electronic

nanodevices fabrication, the DPN can be applied to biomolecules, organic, mag-

netic, and inorganic material nanostructures fabrication. Nanostructures contain-

ing biomolecules, such as protein or DNA, were fabricated directly or indirectly via

DPN [105, 107–109]. In direct methods, biomolecules containing sulfur or thiolated

biomolecules were coated to an Si or Si3N4 AFM tip as DPN ink to directly create

biomolecule patterns on protein or DNA to modify the property [107, 108]. In indi-

rect methods, a selective template containing nanopatterns is created via DPN, and

biomolecules are selectively adsorbed on the template, resulting in nanopatterns of

biomolecules [105,109]. Nanostructures of organic materials [103,110,111], and poly-

mers [104, 112, 113] with special properties were fabricated via DPN. This method
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Figure 2.20: TMAFM topographic images of etched MHA/Au/Ti/SiOx/Si nanogaps
fabricated by DPN and subsequent chemical etching [Zhang et al. (2003)].

can be used to study chemical reaction. The nanostructures composed of organic

materials such as dye and conductive polymer have potential applications in elec-

trical, optical and sensing devices. Nanostructures of magnetic materials have po-

tential technological applications in molecular electronics, high-density recording and

biosensors. Magnetic nanopatterns were constructed via DPN using sol-based mag-

netic inks [114]. Furthermore, nanopatterns of inorganic materials can be created by

an AFM tip coated with DPN ink, such as metal nanoclusters [115] and inorganic

salt [100,110,116–118].

In these applications of AFM, precision positioning is needed. In particular, pre-

cise position control in both the lateral and vertical directions is needed to hold the

probe at a desired location or to track a desired motion trajectory. For instance,

when the AFM is used to indent nanofeatures on a semiconductor surface to cre-

ate quantum dots (2-80 nm in size), accurate position control of the indenter tip is

needed because the probe position error directly affects the size, spacing, and dis-

tribution of the nanofeatures. Even 2-4 nanometers variation in size and spacing of

the nanofeatures can drastically alter their properties [119]. Additionally, high-speed

control of the probe’s movement is needed for high throughput fabrication, imag-
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Figure 2.21: Experimentally measured response of a piezoactuator showing hysteresis,
creep, and vibration effects.

ing, and metrology. Without accurate motion control along a specific trajectory at

high speed, oscillations can cause the tip to collide with nearby features, which leads

to excessive tip-to-sample forces. The large forces can damage the tool tip or soft

specimens such as cells.

2.5 Challenges with Piezoelectric Positioners

It is usually assumed that piezoelectric actuators expand and contract proportionally

to applied voltage. Unfortunately this assumption is not accurate and is particularly

erroneous when considering moderate or high electric fields, and when the frequency of

operation becomes high. There are three significant sources of error that degrade and

complicate the response of piezoelectric positioners: hysteresis, creep, and vibration,

as illustrated in the measured response shown in Fig. 2.21.

Hysteresis, which is a nonlinear behavior between the applied electric field and
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the mechanical displacement of a piezoelectric actuator, is believed to be caused by

irreversible losses that occur when similarly oriented electric dipoles interact upon

application of an electric field [15]. The effect of hysteresis on the displacement of

a piezoelectric actuator is more pronounced over large-range motion [120, 121]. In

Fig. 2.21, the curve depicts the nonlinearity that arises due to hysteresis. In addition

to poor positioning accuracy, hysteresis causes poor repeatability and the mixing

of harmonic content into the displacement response. Hysteresis can be avoided by

operating in the linear range, i.e., over short range displacements; however, this limits

the achievable positioning range. Controlling the charge delivered to the piezoelectric

transducer, rather than the voltage, helps to minimize hysteresis [122].

When a piezoelectric transducer is commanded by a step change in voltage, the

response consists of high-frequency transients followed by low frequency drift known as

creep. The time constant for creep is typically a few minutes. Creep severely degrades

the low-frequency and static positioning ability of piezoelectric actuators [123–125].

In mechanics, creep is a rate-dependent deformation of the material when subjected

to a constant load or stress [126]. Similarly, creep in piezoelectric materials is a

rate-dependent deformation due to a constant electric field. Creep manifests itself

as the remnant polarization slowly increases after the onset of a constant field. One

method to avoid creep is to operate fast enough so that the creep effect becomes

negligible [12]; however, such effort prevents the use of piezo positioners in slow and

static applications. For example, because of drift, it is difficult to precisely fabricate

nanofeatures using AFMs when the process time-scale is on the order of minutes, e.g.,

see [123]. Methods to compensate for creep have been well studied in the past and

some examples include the use of feedback control, e.g., [120, 127–129], and model-

based feedforward control, e.g., [12, 125,130–133].

Vibration (or actuator) dynamics, such as structural resonances, limits the operat-
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ing bandwidth of piezo-based positioning systems. The effect is caused by command

signals exciting the flexible modes of the structure [134, 135]. For example, the fre-

quency response of a piezo-based positioner typically reveals sharp resonant peaks.

These peaks can easily be excited by certain command signals like triangular inputs

applied to control the positioner. Figure 2.21 clearly illustrate the effect of vibration,

where oscillations cause significant tracking error in the displacement versus time

response. Such effects cause distortion in the SPM-based imaging, for example the

rippling effect in the AFM images. Typically, scan rates (i.e., scan frequencies) are

restricted to less than 1/10th to 1/100th of the first resonant frequency, thus limiting

the bandwidth of piezo-based systems because the achievable scan rate is lower for

increased resolution in positioning. However, higher operating speed can be achieved

by using stiffer piezoactuators with higher resonant frequencies [29, 30, 136], for ex-

ample, Ando et al. [28] used a stiff piezo with a resonant frequency of 260 kHz in an

AFM to image biological macromolecules in action. In general, these stiff piezos have

shorter effective displacement ranges. Therefore, the use of stiffer piezos to increase

bandwidth also leads to reduction of positioning range.

In summary, hysteresis and dynamics (creep and vibration) effects significantly

limit the performance and application of piezo-based nanopositioners. Therefore, this

research addresses these effects to enhance the performance of piezo-based systems

for tracking periodic trajectories.

2.6 Summary

This chapter introduced hysteresis and hysteretic systems such as the piezoelectric

actuator and applications in scanning probe microscopy. A discussion of various ap-

plications of piezo-based AFM in the area of nanofabrication was presented and the

adverse effects of hysteresis and dynamics (creep and vibration) were discussed in
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detail. It is noted that the effects lead to significant loss in positioning precision.

Furthermore, it is noted that the focus of this dissertation is to address the effect of

hysteresis on the stability of closed-loop systems for designing repetitive controllers

(RCs) to achieve high-precision positioning for hysteretic systems. In the next chap-

ter, the concept and design of RC for linear dynamics is discussed. Afterwards, the

analysis of the effect of hysteresis on closed-loop system stability is discussed in detail.
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Chapter 3

Repetitive Control for Tracking
Periodic Trajectories

This chapter describes the repetitive control (RC) approach design for reducing the

repeating tracking error for precise positioning in piezo-based nanopositioners. The

objective is to achieve high-precision positioning by adding an RC to an existing

closed-loop feedback system (such as a PID feedback controller) to improve perfor-

mance. In this chapter, an enhanced RC is designed. The enhanced repetitive con-

troller is formed by incorporating a low-pass filter and two phase lead compensators

to improve robustness and stability.

3.1 Challenges and Motivation

Mechanical systems that exhibit hysteresis and dynamic effects are challenging to

control [137]. Particularly, hysteresis is range-dependent and the effect alone can lead

to significant tracking error, approximately 20% in piezo-based positioners [138] and

SMA actuators [139]. Without compensation, hysteresis can affect the stability and

tracking performance of a closed-loop controller, especially when the controller is de-

signed around a linear dynamic model [140]. While hysteresis is typically regarded

as a range-dependent effect, dynamics, on the other hand, increases with input fre-

quency. For example the structural vibrations in piezoactuators become significant
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when the input frequency approaches the dominant resonant frequency, where high

frequency inputs excite lightly-damped structural modes causing severe oscillations

in the output response. The total tracking error can exceed 30% [138], and therefore

hysteresis and dynamic effects limit both the range as well as the bandwidth of oper-

ation. This is especially true in a piezo-based atomic force microscopy (AFM), a type

of scanning probe microscope (SPM), where hysteresis and dynamics dominate the

response of the piezo positioner, preventing the tool from precisely tracking a desired

motion trajectory, such as the scanning trajectory for AFM imaging or probe-based

nanofabrication [1, 141]. Moreover, the large tracking error causes the SPM probe

tip to experience large tip-to-sample forces that can damage, for example, the SPM

probe or soft specimens such as live cells. Precision positioning of the SPM tool tip

relative to a sample surface is needed to obtain high-resolution topographical images,

measure various properties of a specimen, and investigate nano-scale dynamic inter-

actions in real time [37, 142]. Therefore, control of hysteresis and dynamic effects is

critical in nanopositioning systems.

Often, piezoactuators are required to track a desired motion trajectory that is

periodic in time, for example, the raster pattern used in the piezo-based SPMs [11].

During the scanning operation, hysteresis and dynamic effects in the actuator cause

significant positioning error, and the error repeats itself with the operating cycle,

thus limiting the performance of the tool [1]. In the past, other feedback-based con-

trollers and feedforward controllers have been developed to handle the hysteresis and

dynamic effects [1, 141]. For instance, PID, H∞, and adaptive control, are robust

and used extensively, but often bandwidth limited [127, 129, 143]. Charge control is

a viable approach to minimize hysteresis [122], but it requires a complex charge con-

trol circuit. Model-based feedforward control provides excellent tracking performance

when accurate models are used, but in general the open-loop nature of the control
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scheme lacks robustness [1, 12]. Hysteresis models such as the Preisach model have

been used extensively for feedforward control [144, 145]. However, for applications

such as AFM imaging or nanowire array fabrication where the reference trajectory is

periodic in time, the residual tracking error of these methods repeats from one oper-

ating period to the next. To address this issue and exploit the process of repetition

for precision control, repetitive control (RC) has recently been considered for nanopo-

sitioning systems [7]. The RC approach is based on the Internal Model Principle [146]

and is specifically tailored to track periodic reference trajectories. A RC consists of

a signal generator that provides high gain at the harmonics of the reference trajec-

tory. The controller can easily be implemented digitally using a pure delay inside

of a positive feedback loop [9]. Compared to traditional feedback and feedforward

controllers, the tracking error of RC diminishes as the number of operating periods

increases. The controller generally requires only the period of the reference trajectory

to be known [9]. In many motion control applications, such as SPM-based imaging

and patterning, the reference signal’s period is known in advance which makes RC

attractive. Compared to iterative learning control (ILC) [147–149], a repetitive feed-

forward control approach effective at reducing the repeating tracking error, RC does

not require resetting the initial conditions at the start of each iteration step. It is

pointed out that ILC for hysteretic systems requires a cycling process to reset the

initial conditions at the beginning of each iteration [149]. For convenience, RC can

be plugged into an existing feedback loop to enhance the system performance.

3.2 Enhanced Repetitive Control for Linear Dy-

namics

Repetitive control is a direct application of the internal model principle, where high-

accuracy tracking of a desired periodic trajectory, with period Tp, is achieved if the
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controller consists of the transfer function of the reference trajectory. One such con-

troller is a signal generator with period Tp.

In this study, an enhanced discrete-time RC is designed for a linear dynamic model

of the piezoactuator to serve as a starting point for designing RC for hysteretic sys-

tems. This linear RC system is shown in Fig. 3.1, where R(z) is a given periodic

reference trajectory with period Tp, and Y (z) is the output. The piezoactuator dy-

namics, assumed to be linear, are represented by G(z), where z = ejωTs , ω ∈ (0, π/Ts).

The RC is created by wrapping a pure delay, z−N , inside of a positive-feedback loop

to create a signal generator with period Tp, where Ts is the sampling period and

N = Tp/Ts ∈ N is the number of points per period of the reference trajectory. A low

pass filter Q(z) is added to lower the high gain of the RC at high frequencies to ensure

stability and robustness [150, 151]. However, a tradeoff is made between robustness

and high-frequency tracking when such filters are used. To compensate the tradeoff,

a RC gain, krc, and two positive phase-lead compensators, P1,2(z) = zm1,2 , where

m1, m2 are non-negative integers, are added to improve tracking performance [7].

Notably, P1(z) compensates for the phase lag of the low-pass filter Q(z) while P2(z)

compensates for the phase lag of the closed-loop system. It is emphasized that both

phase-lead compensators contribute a linear phase lead angle of

θi(ω) = miTsω, i = 1, 2 (3.1)

and in units of radians. A typical feedback controller, such as a PID, is represented by

Gc(z) and it is assumed that the feedback controller is part of the forward path. The

performance of the RC closed-loop system on tracking periodic reference trajectories

is analyzed and presented below.

By inspection, the transfer function of the signal generator that relates E(z) to
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A(z) in Fig. 3.1(a) is given by

A(z)

E(z)
=

Q(z)P1(z)z
−N

1−Q(z)P1(z)z−N
=

Q(z)z(−N+m1)

1−Q(z)z(−N+m1)
. (3.2)

In the absence of the low-pass filter Q(z) and positive phase lead P1(z) = zm1 , the

poles of the signal generator are 1 − z−N = 0, which implies infinite gain at the

harmonics of the periodic reference trajectory (ω = 2nπ/Tp, where n = 1, 2, 3, ....) as

shown in Fig. 3.2. Such large gain is what gives the RC its ability to track periodic

trajectories. As a result, RC is a useful control method for SPM in which the scanning

motion is repetitive, such as the lateral probe motion during AFM imaging and

fabricating the patterns for nanowire array growth.

Practical RC design incorporates a low-pass filter Q(z) because the large gain

at high frequencies can lead to instability of the closed-loop system. For simplicity,
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Figure 3.1: (a) The block diagram of repetitive control system consisting of two
linear phase-lead compensators, P1(z) and P2(z), to enhance performance. (b) An
equivalent block diagram of (a) for stability analysis, where E(z) is the error.
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a standard low-pass filter of the form Q(z) = a
z+b

, where |a| + |b| = 1, is chosen.

Alternatively, a zero-phase filter can also be used [152].

3.2.1 Stability Analysis

For the RC implementation, the main issue will be the balance between the tracking

performance and the stability of the RC closed-loop system. The issue will be ad-

dressed through choosing the RC gain krc, along with the values of m1,2 for the phase

lead compensators P1(z) and P2(z) by analyzing the stability of the closed-loop RC

system shown in Fig. 3.1(a). The stability analysis of the RC system is presented as

follows. Let H(z) = Q(z)z(−N+m1) and G0(z) = Gc(z)G(z). Consider the following

assumptions:

Assumption 1 The reference trajectory R(z) is periodic.

Figure 3.2: Magnitude and phase versus frequency for signal generator z−N

1−z−N , where

z = ejωTs .
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Assumption 2 The closed-loop system without the RC loop is asymptotically stable,

i.e., 1 + Gc(z)G(z) = 0 has no roots outside of the unit circle in the z-plane, and

Gc(z)G(z) has no pole-zero cancelation.

Theorem 1 (Stability of RC) Let Assumption 1 and 2 hold. If |Q(ejωTs)|≤1 for

ω ϵ (0, π/Ts), 1−H(z) is bounded input, bounded output stable, and

0 < krc <
2 cos[θT (ω) + θ2(ω)]

|T (ω)|
, (3.3)

−π/2 < [θT (ω) + θ2(ω)] < π/2, (3.4)

then the RC feedback system shown in Fig. 3.1(a) is asymptotically stable.

Proof: The stability is shown by applying the Small Gain Theorem [153]. First, the

transfer function relating the reference trajectory R(z) and the tracking error E(z) is

E(z)

R(z)
=

[1−H(z)]

1−H(z) + [(krcP2(z)− 1)H(z) + 1]G0(z)
, (3.5)

where H(z) = Q(z)z(−N+m1) and G0(z) = Gc(z)G(z). Multiplying the numerator

and denominator of Eq. 3.5 by the sensitivity function S(z) = 1/(1 + G0(z)) of the

feedback system without the repetitive controller, the following expression is obtained,

Src(z) =
E(z)

R(z)
=

[1−H(z)]S(z)

1−H(z)[1− krcP2(z)G0(z)S(z)]
, (3.6)

where Src(z) shown above is referred to as the sensitivity function of the closed-loop

RC system. Using Eq. (3.6), the RC block diagram in Fig. 3.1(a) is simplified to the

equivalent interconnected system shown in Fig. 3.1(b). Referring to Fig. 3.1(b), by

Assumption 2, S(z) has no poles outside the unit circle in the z-plane, so it is stable.

Replacing z = ejωTs , and since 1 − H(z) stable, the positive feedback closed-loop
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system in Fig. 3.1(b) is asymptotically stable when

|H(z)[1− krcP2(z)G0(z)S(z)]|

= |H(ejωTs)[1− krce
jθ2(ω)G0(e

jωTs)S(ejωTs)]| < 1, (3.7)

for all ω ϵ (0, π/Ts), where the phase lead θ2(ω) = m2Ts. From this equation, it can

be observed that both the RC gain krc and the phase lead θ2(ω) affect the stability

and robustness of RC as well as the rate of convergence of the tracking error. In the

following, condition in Eq. (3.7) is used to determine explicitly the range of acceptable

krc for a given Q(z) and G0(z). The effects of the phase lead θ2(ω) on robustness and

the phase lead θ1(ω) on the tracking performance are discussed.

Let T (z) represent the complimentary sensitive function of the closed-loop feed-

back system without RC, that is, T (z) = G0(z)S(z). Noting that |Q(ejωTs)|≤1 and

replacing the complimentary sensitive function of the closed-loop system without RC

with

T (ejωTs) = G0(e
jωTs)S(ejωTs) =

G0(e
jωTs)

1 +G0(ejωTs)
= |T (ω)|ejθT (ω), (3.8)

where |T (ω)| > 0 and θT (ω) are the magnitude and phase of T (ejωTs), respectively,

Eq. (3.7) can be simplified to

|1− krc|T (ω)|ej[θT (ω)+θ2(ω)]| < 1. (3.9)

Observing that ejθ = cos(θ) + j sin(θ) and krc > 0, Eq. (3.9) gives

−2krc|T (ω)|cos[θT (ω) + θ2(ω)] + k2
rc|T (ω)|2 < 0, (3.10)
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hence the Eq. (3.10) is satisfied if

0 < krc <
2 cos[θT (ω) + θ2(ω)]

|T (ω)|
and

−π/2 < [θT (ω) + θ2(ω)] < π/2.

This completes the proof.

Remark 1 Based on the Eq. (3.9), if the pre-exist feedback control system without

RC is stable, it can guarantee the stability of the RC system for any plug-in repetitive

controller with the RC gain krc and the phase lead θ2(ω) satisfying Eq. (3.10), because

the repetitive controller H(z) does not appear in the stability conditions. More gen-

erally, if the krc and p2(z) are treated as a part of the pre-exist feedback system, then

the repetitive controller is no need to be designed to ensure the robust stability of the

RC system, as long as the pre-exist feedback system is robust stable.

Remark 2 In general, both the RC gain krc and the phase lead θ1(ω) can enhance

the robust stability of feedback control system as well as affect the rate of convergence

of the tracking error RC system. In particular, P (z) enhances the robustness of the

closed-loop RC system by increasing the frequency at which the phase angle crosses

±90◦.

Remark 3 With a stable RC system, its tracking performance is determined by the

sensitivity function Eq. (3.6) at multiples of the fundamental frequency within the

bandpass of the low-pass filter Q(z). The filter Q(z) reduces the effects of high-

frequency dynamics; however, it also shifts the point of maximum gain of the signal

generator created by the pure delay z−N [154]. Such a shift inadvertently lowers the

RC gain at the harmonics and thus negatively effects the tracking performance of the

RC system. But much of the phase lag can be compensated using the linear phase lead
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θ1(ω) in the RC loop to improve the tracking performance [155]. Because N >> m1,

the modified delay z(−N+m1) is causal and can be easily implemented digitally.

3.3 Summary

A discrete time enhanced RC is designed to plug into an existing feedback loop to

track periodic reference trajectories. The RC is designed around a linear dynamics

to serve as a starting point for designing RC for a hysteretic system. The major

challenges with designing RC are ensuring stability and good tracking performance.
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Chapter 4

Dual-Stage RC Design

The positioning performance of piezo-based nanopositioning systems is limited by

dynamic and hysteresis effects in the piezoactuator. The RC system described in the

previous chapter has been applied to track periodic trajectories in piezo-based SPMs.

However, the tracking performance is limited by the low-pass filterQ(z) [8]. Herein, to

further improve the performance of the enhanced RC, a high-performance, dual-stage

repetitive controller (dual-RC) is proposed for tracking periodic trajectories, such as

the scanning-type motion SPM applications. Specifically, a discrete-time dual-RC is

created by cascading a conventional RC with an odd-harmonic RC. The favorable

gain characteristics of the dual-RC coincide with the odd harmonics of the scanning-

type periodic reference trajectory. The result is better robustness and lower tracking

error compared to the enhanced RC proposed in the previous chapter.
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4.1 The Dual-RC Concept

The tracking performance of the conventional RC system shown in Fig. 3.1 is governed

by the sensitivity function

Src(z) ,
E(z)

R(z)
=

[1−H1(z)]S(z)

1−H1(z)[1− krcG0(z)S(z)]
, (4.1)

where H1(z) = Q(z)z−N+m1 and S(z) = 1/[1 + G0(z)] is the sensitivity function of

the feedback system without the repetitive controller. One approach to improve the

tracking performance of the conventional RC is to reduce the magnitude of Src by

cascading two signal generators together, effectively producing a squaring effect [156].

However, noting that the reference trajectories used in the scanning operation in

SPMs are generally odd-harmonic signals (e.g., triangular trajectories), it is preferred

that an odd-harmonic RC as depicted in Fig. 4.1(a) be cascaded with a conventional

RC as shown in Fig. 4.2(a) instead of cascading two conventional RCs. The resultant

sensitivity function is

S̃rc(z) =
[1−H1(z)][1−H2(z)]

W (z) + [1−H1(z)(1− k1)][1−H2(z)(1− k2)]G0(z)
, (4.2)

where W (z) = [1 − H1(z)][1 − H2(z)] and H2(z) = −z−
N
2
+m2Q(z). The advantage

of the enhanced dual-RC design over cascading two conventional RCs together is a

more robust system. Cascading two conventional RCs together result in excessive

gain at the even harmonics which can degrade the system’s performance for tracking

odd-harmonic reference trajectories [157]. The performance of the enhanced dual-RC

is illustrated by comparing the magnitude response of the sensitivity function S̃rc(z)

of the enhanced dual-RC in Eq. (4.2) to the magnitude response of the sensitivity

function Src(z) of the conventional RC in Eq. (4.1) and the sensitivity function Src(z)
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of the odd-harmonic RC in Fig. 4.1(a), given by

Src(z) =
[1−H2(z)]S(z)

1−H2(z)[1− krcG0(z)S(z)]
. (4.3)

The comparison of the three RC configurations is shown in Fig. 4.3, where the fre-

quency response functions are generated in Matlab using the ‘margin’ command with

N = 100, m1 = m2 = 0, Q(z) = 1, and Ts = 10 µs as an illustrative example.

The results reveal that the odd-harmonic RC has less affect on the even-harmonics

than the conventional RC (gain at first even harmonic: -13.7 dB for conventional RC,

4.49 dB for odd-harmonic RC, and -8.69 dB for dual-RC). However, the magnitude

of the sensitivity function for the dual-RC is significantly lower than the conventional

RC at the odd-harmonics (-24.4 dB for conventional RC vs. -47.1 dB for dual-RC at

the first odd harmonic). This implies that (1) the odd-harmonic RC has the same

tracking performance as the conventional RC for tracking odd-harmonic trajectories

but it provides the system with more robustness by reducing the gain at the even

harmonics, which effectively minimizes the amplification of signals, such as noise and

disturbances, outside of the desired frequency range; and (2) the dual-RC provides

higher gain than the conventional RC at the odd-harmonics; therefore, the dual-RC

will improve the tracking performance of trajectories with odd-harmonics. The sta-

bility analysis of the odd-harmonic RC and enhanced dual-RC is discussed in the

following.

4.2 Stability Analysis

The stability of the RC system is analyzed using the Small Gain Theorem [153].
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zm2 and a RC gain krc to enhance performance. (b) An equivalent block diagram of
(a) for stability analysis.
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4.2.1 Stability Analysis of the Odd-Harmonic RC

Let Ts be the sampling time. Consider the odd-harmonic RC shown in Fig. 4.1(a)

and the following assumptions:

Assumption 3 The reference trajectory R(z) is periodic in time with period Tp.

Assumption 4 The closed-loop system without the RC is asymptotically stable, i.e.,
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RC (dash-dot line).

1 + G0(z) = 0 has no roots outside of the unit circle in the z-plane and no pole-zero

cancelation.

The main result for the stability conditions for the odd-harmonic RC is provided

in the following theorem.

Theorem 2 (Stability of odd-harmonic RC) Let Assumptions 3 and 4 hold. If

|Q(ejωTs)|≤1 and

0 < krc <
2 cos[θT (ω)]

|T (ω)|
and − π/2 < θT (ω) < π/2 (4.4)

for ω ∈ (0, π/Ts), then the RC feedback system shown in Fig. 4.1(a) is asymptotically

stable.

Proof: First, the RC block diagram in Fig. 4.1(a) is simplified to the equivalent

interconnected system shown in Fig. 4.1(b). Since 1−H2(z) and S(z) are stable, then
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the RC system in Fig. 4.1(a) is asymptotically stable when

|z−
N
2
+m2Q(z)[krcG0(z)S(z)− 1]| < 1. (4.5)

Noting that z = ejωTs , |Q(ejωTs)|≤1, and the complimentary sensitivity function of

the closed-loop system without the RC is given by Eq. (3.8), Eq. (4.5) is satisfied if

|krc|T (ω)|ejθT (ω) − 1| < 1. (4.6)

With ejθ = cos(θ) + j sin(θ) and krc > 0, Eq. (4.6) gives

−2krc|T (ω)|cos[θT (ω)] + k2
rc|T (ω)|2 < 0, (4.7)

hence

0 < krc <
2 cos[θT (ω)]

|T (ω)|
and− π/2 < θT(ω) < π/2.

This completes the proof.

Theorem 2 states that within an acceptable operating frequency range, there exists

a sufficiently small RC gain krc such that the closed-loop RC system is stable. Next,

the stability conditions for the dual-RC, created by cascading an odd-harmonic RC

with the conventional RC, is presented.

4.2.2 Stability Analysis of the Enhanced Dual-RC

Consider the enhanced dual-RC system shown in Fig. 4.2(a) and Assumptions 3 and 4

from Section 4.2.1. The stability conditions are summarized in the following theorem.

Theorem 3 (Stability of enhanced dual-RC) Let Assumptions 3 and 4 hold. If
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|Q(ejωTs)|≤1 and

3 cos[θT (ω)]−∆

3|T (ω)|
< k1, k2 < 1 +

√
1 +

3 cos[θT (ω)] + ∆

3|T (ω)|
,

−π/9 ≤ θT (ω) ≤ π/9, (4.8)

with ∆ =
√

9 cos2[θT (ω)]− 8 for ω ∈ (0, π/Ts), then the closed-loop system in

Fig. 4.2(a) is asymptotically stable.

Proof: First, recall that if a, b, c, d ∈ C, where C is the set of all complex

numbers, and |a| ≤ 1, |c| ≤ 1 and |b| + |d| ≤ 1, then |a||b| + |c||d| ≤ 1. Now the

sensitivity function in Eq. (4.2) is modified to

S̃rc(z) =
[1−H1(z)][1−H2(z)]S(z)

1− [H1(z)λ1(z) +H2(z)λ2(z)−H1(z)H2(z)λ3(z)]S(z)
, (4.9)

where λ1(z) = 1+(1−k1)G0(z), λ2(z) = 1+(1−k2)G0(z), and λ3(z) = 1+(1−k1)(1−

k2)G0(z). The RC system in Fig. 4.2(a) is converted to the equivalent interconnected

system in Fig. 4.2(b).

Then, according to Fig. 4.2(b) and the Small Gain Theorem, the dual-RC system

is internally stable when

∣∣[H1(z)λ1(z) +H2(z)λ2(z)−H1(z)H2(z)λ3(z)]S(z)
∣∣ < 1 (4.10)

with 1−H1(z) and 1−H2(z) designed stable. Applying the triangular inequality and

noting that |H1(z)| ≤ 1 and |H2(z)| ≤ 1 give

|[H1(z)λ1(z) +H2(z)λ2(z)−H1(z)H2(z)λ3(z)]S(z)| ≤

|λ1(z)S(z)|+ |λ2(z)S(z)|+ |λ3(z)S(z)|. (4.11)
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Then Eq. (4.10) is satisfied if

|λ1(z)S(z)|+ |λ2(z)S(z)|+ |λ3(z)S(z)| < 1. (4.12)

Noting T (z) = G0(z)S(z) and replacing z = ejωTs , the gains ki with i = 1, 2 can be

determined from Eq. (4.12) as follows:

Case 1: If |λ3(z)| ≤ |λi(z)|, Eq. (4.12) can be simplified to

|λ1(z)S(z)|+ |λ2(z)S(z)|+ |λi(z)S(z)| <

3|λ1(z)S(z)| < 1, ∀ k1 ≤ k2

3|λ2(z)S(z)| < 1, ∀ k2 ≤ k1

,

thus

3|1− kiT (e
jωTs)| < 1, ki = max(k1, k2). (4.13)

Case 2: If |λ3(z)| ≥ |λi(z)|, then

3|1− (2ki − k2
i )T (e

jωTs)| < 1. (4.14)

Case 3: If |λj(z)| ≤ |λ3(z)| ≤ |λi(z)|, j ̸= i, j ∈ {1, 2}, i ∈ {1, 2}, Eq. (4.12) can

also be simplified to

|λ1(z)S(z)|+ |λ2(z)S(z)|+ |λi(z)S(z)| <

3|λ1(z)S(z)| < 1, ∀ k1 ≤ k2

3|λ2(z)S(z)| < 1, ∀ k2 ≤ k1

,
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thus

3|1− kiT (e
jωTs)| < 1, ki = max(k1, k2). (4.15)

Therefore, the gains are found by solving Eq. (4.13), (4.14) and (4.15), i.e.,

3 cos[θT (ω)]−∆

3|T (ω)|
< k1, k2 < 1 +

√
1 +

3 cos[θT (ω)] + ∆

3|T (ω)|
,

−π/9 ≤ θT (ω) ≤ π/9

with ∆ =
√

9 cos2[θT (ω)]− 8. This completes the proof.

By satisfying the conditions in Theorem 3, that is, by picking appropriate val-

ues for the RC gains, k1 and k2, within a particular operating frequency range, the

stability of the dual-RC is guaranteed.

4.3 Challenges with RC for Hysteretic Systems

The RC system described above assumes the system is linear, that is, no hysteresis

behavior. So when the RC is applied to a hysteretic system, there is no guarantee

that the closed-loop RC system is stable. In fact, hysteresis can drastically affect the

stability of a closed-loop system if not accounted for. An example to indicate the effect

of hysteresis is shown in Fig. 4.4. Plot (a) of Fig. 4.4 is the tracking performance of a

stable RC system designed for linear dynamics G(z) in simulation. The result shows

tracking error is reduced by RC with the operating cycle increasing. However, direct

implementation of this RC to the experimental piezoactuator system causes high

frequency oscillations in the output of the closed-loop system, as the black line shown

in plot (b) of Fig. 4.4. The amplitude of the oscillations enlarges while the operating

cycle increases. By adding an inverse hysteresis compensator to the RC system, the
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Figure 4.4: Example simulation and experimental results show the effect of hysteresis
on closed-loop system stability and tracking performances.

oscillations in the output disappear [the red line in Fig. 4.4 (b)]. Therefore, it is

important to quantify the effect of hysteresis on the performance of an RC system

because of the wide range of applications for RC in many emerging active-material

based motion control systems. These systems commonly exhibit hysteresis.

Although the design of RC for nonlinear systems has been studied in the past [158–

161], there are no results on quantifying the effect of hysteresis on the stability of

an RC system. Instead, the nonlinearity is commonly handled through an internal

feedback loop, such as PID [143], to linearize the system dynamics. Additionally,

feedforward control using an inverse hysteresis model has been considered [145,162].

This research addresses RC design for hysteretic systems by quantifying the effect of

hysteresis on RC stability. The approach considers the stability of the system in the L2

sense, followed by a stability analysis using the Small-Gain Theorem. In the analysis,

the hysteresis effect is modeled by the Prandtl-Ishlinskii (P-I) approach [163–165].
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The P-I model is a rate-independent phenomenological model and is chosen over

other models such as the polynomial model, the BoucWen model, the Duhem model,

the Maxwell slip model, and the Preisach model [121,166–171] because it has a smaller

parameter space and is suitable for online implementation. Using the P-I model, the

effect of hysteresis on the RC closed-loop system stability is analyzed to determine the

tolerable size of the hysteresis nonlinearity for a stable RC system. If the hysteresis

behavior in a system is unacceptably large, a new feedforward controller based on

the structure of the P-I model is proposed to compensate for the hysteresis behavior.

The Prandtl-Ishlinskii and its inverse are introduced next.

4.4 Summary

A dual-stage repetitive controller was described to help improve tracking performance.

The dual-stage RC consists of a signal generator designed to provide high gains at the

fundamental and the harmonics of the reference trajectory and another that offers

high gain at the odd harmonics of the desired reference trajectory. The dual-RC offers

is better robustness and lower tracking error compared to the enhanced RC proposed

in the previous chapter.
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Chapter 5

The Prandtl-Ishlinskii Hysteresis
Model

This chapter focuses on modeling the hysteresis behavior of piezoactuators for RC

design and analysis. Specifically, the Prandtl-Ishlinskii hysteresis model is studied

in detail. The developed model will be used in the following chapters to analyze the

stability of the RC system. The model is also exploited to develop a new model-based

feedforward controller to compensate for the hysteresis effect.

5.1 The Prandtl-Ishlinskii Model

There are many models that exist for hysteresis. Models include approximated poly-

nomial model, the BoucWen model, the Duhem model, the Maxwell slip model and

the Preisach model [121,166–171]. For example, the approximated polynomial model

represents the hysteresis behavior using two 5th-order polynomial functions with 24

parameters to describe the hysteresis behavior [166]. The BoucWen model is a nonlin-

ear differential model that can be exploited for inverse feedforward control [167,168].

The Preisach model is one of the most popular models, where the output is a super-

position of the elementary hysteresis operators [171]. In comparison, the proposed P-I

model involves a smaller number of parameters for identification and can be inverted
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analytically for real-time implementation [165].

The Prandtl-Ishlinskii model is an operator-type model which has recently been

investigated to model hysteresis in piezoactuators [163–165]. In this model, the output

is characterized by the play operator shown in Fig. 5.1 [163]. Let the input u be

continuous and monotone over the interval ti ∈ Ti , [ti, ti+n], for n = 1, 2, · · · , N .

Herein, the play operator Pr is defined by an analytic mathematic function as

Pr[u](0) = pr(f(0), 0) = 0, (5.1)

Pr[u](t) = pr(f(t), pr[f ](t)), (5.2)

with

pr(f(t), pr[f ](ti)) = max(f − γ,min(f + γ, pr[f ](ti−1))), (5.3)

where f(t) = g0u(t) + g1 is a linear function of the input u(t), and g0 and g1 are

constants. In the play operator functions, g0 represents the DC gain between the

input u(t) and the output of the hysteresis behavior. The g1 determines the offset of

the output of the hysteresis behavior relative to the input u(t). The square bracket

of the operator (Pr[·]) means that the operator is dependent on the input function.

The γ in Eq. 5.3 is called threshold of the play operator, which is defined as γ = ρj

with ρ being a constant and j = 1, 2, 3, .... being the number of the operators. The

threshold γ determines the width of the play operator curves though deciding where

the operator should be turned on, which means the play operator curve is wider when

the value of the γ is larger. Therefore, when ρ is a constant and j = 1, 2, ..., n and

n > 1, with different γ the operator maps the input to output in different curves as

shown in Fig. 5.1(a), and the number of γ will affect the smoothness and the shape

of the hysteresis curve created by this P-I model. The effect of the number of the γ
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on the smoothness and shape of the hysteresis curve is shown in Fig. 5.2.

u

r1 r2 r3

(a) (b)
r H[u]

u

P [u]

 P-I model
Measured 

Figure 5.1: (a) The play operator with threshold γ. (b) The output of the Prandtl-
Ishlinskii hysteresis model for a piezoactuator v.s. the measured hysteresis.

From Fig. 5.1(a), it can be seen the play operator generates the main blocks of

the hysteresis curve. In order to form the hysteresis curve shown in Fig. 5.1(b), these

operators are firstly superposed through the weighted integral of the play operators:

∫ R

0

d(γ)Pr[u](t)dγ,

where the weight d(γ) is called the density function, which is added to affect the shape

and the size of the curve of the superposition of the operators. This weighted integral

transfers the main blocks formed by play operators to the curve feature of hysteresis

as shown in Fig. 5.2. The Figure shows that when integrating one P-I operator, one

of the main block of the hysteresis curve is formed. However, when more operators

are integrated, the curve feature of hysteresis can be formed. Then by adding the

weighted integral of the play operator to the linear function of input f(t) as shown

in the following equation:

v(t) = H[u](t) , f(t) +

∫ R

0

d(γ)Pr[u](t)dγ, (5.4)
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the hysteresis curve of the piezo-based nanopositioner is generated. Compared to

the Preisach hysteresis model, the P-I model is less computationally demanding to

implement and invert for feedforward control. An example hysteresis curve generated

from the P-I model for a piezoactuator is shown in Fig. 5.1(b).

Figure 5.2: The effect of the number of the γ on the smoothness and the shape of
the hysteresis curve. Integral result of (a) one play operator, (b) two play operators,
(c) three play operators, (d) four play operators, (e) six play operators, and (f) eight
play operators.

The discrete-time version of the continuous-time hysteresis model in Eq. (5.4) can

be expressed as [172]

v(k) = H[u](k) , f(k) +
n∑

j=1

d(γ)Pr[u](k), (5.5)

where f(k) = g0u(k) + g1, k is the time step, and n denotes the number of play

operators.
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5.2 An Inverse Prandtl-Ishlinskii Hysteresis Com-

pensator

A new inverse Prandtl-Ishlinskii model is developed here to handle the hysteresis

nonlinearity for RC design. This hysteresis compensator takes the same structure

as the forward P-I model. The characteristics of the inverse model is based on the

shape of the inverse hysteresis curve, that is, the input versus output curve shown

in Fig. 5.3(a) (u versus v plot). Noted that as the output v increases, the input

u increases but traverses onto an upper branch of the inverse-hysteresis curve. In

contrast, this behavior is opposite to that observed in the hysteresis curve (v versus u

plot) where the output climbs up on a lower branch as shown in Fig. 5.1(b). Therefore,

a candidate new play-type operator for the inverse-hysteresis model is chosen as shown

in Fig. 5.3(b). Figure 5.4 compares the time responses between the desired output

(solid line), output from a hysteretic system (dash-dot line), and the output from

the proposed inverse-hysteresis model (dash line). Using this new operator offers the

advantage that the structure of the forward model can be used directly to map the

desired output to the hysteresis-compensating feedforward input. In other words, the

P-I output equation (5.4) becomes the inverse map simply by setting the output equal

to the input and vice versa.

The inverse hysteresis model takes the following form:

H−1[v](t) , f(t) +

∫ R

0

−d(γ)Pr[u](t)dγ. (5.6)

The input-output response for the inverse model shown in Fig. 5.3(a) is a reflection of

Fig. 5.1(b) about the axis u = v. Therefore, the inverse operator shown in Fig. 5.3(b)
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is defined as

P r′ [v](0) = pr′(h(0), 0) = 0,

P r′ [v](t) = pr′(h(t), P r′ [h](t)), (5.7)

with

pr′(h(ti), P r′ [h](ti)) = max(−h(ti)− γ′,min(−h(ti) + γ′, P r′ [h](ti−1))), (5.8)

where h(t) = g′0v(t) + g′1 with constants g′0 and g′1, and v(t) is the output of the

hysteresis behavior. γ′ denotes the threshold of the inverse play operator, which has

a representation of γ′ = ρ′j with ρ′ a constant, j = 1, 2, 3, ..... Then the output of the

inverse hysteresis model is given by

H−1[v](t) , h(t) +

∫ R

0

dinv(γ
′)P r′ [v](t)dγ

′, (5.9)

where dinv(γ
′) is the density function of the inverse P-I model. For convenience,

the parameters [g′0, g
′
1, γ

′, dinv(γ
′)] of the inverse P-I model share the same concept

as the parameters in the forward P-I model. For the digital implementation of the

compensator, the discrete-time version of the continuous-time compensator (5.9) is

H−1[v](k) , h(k) +
n∑

j=1

dinv(γ
′)P r′ [v](k), (5.10)

where h(k) = g′0u(k) + g′1, k is the time step, and n denotes the number of inverse

play operators.
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5.3 Summary

This chapter introduced the Prandtl-Ishlinskii hysteresis model and an inverse model.

In the following chapters, the P-I model will be used as a tool to represent the

hysteresis behavior to analyze the effect of hysteresis on closed-loop system stability.
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Chapter 6

Repetitive Control for Hysteretic
Systems: Theory

In this chapter, an analysis on the effect of hysteresis on closed-loop RC system

stability is presented. In this analysis, the Prandtl-Ishlinskii hysteresis model is used

to characterize the nonlinear behavior of a piezo positioner. Using this model and the

Small Gain Theorem, the effect of the hysteresis on the closed-loop system stability

is quantified.

6.1 Stability of RC for Hysteretic Systems

6.1.1 Past Works and Challenges

The major challenges for RC design are the stability and good steady-state tracking

performance, especially for a system that exhibits hysteresis behavior. Many efforts

have been made to linearize piezoactuator systems for RC implementation rather than

quantifying the effect of hysteresis on the RC system. The schemes include using feed-

forward hysteresis compensators, for example Prandtl-Ishlinskii model [173] or Dahl

model [162] based compensator; and using internal feedback linearization loop, such

as an internal PID [143] or a pole-zero cancelation system [174]. However, because the

hysteresis phenomenon is so prevalent, it is important to predict its effect on the RC
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system. There have been research efforts to formulate the stability of the closed-loop

system with hysteresis and the stability of RC system with certain nonlinearities. It

has been shown that a stability formulation for a linear control system with Preisach

hysteretic nonlinearity was studied in [175], where the passivity theorem was applied

to a feedback hysteresis system to analyze the stability. This study provided an ap-

proach for analyzing the stability of a closed-loop system where the hysteresis can

be defined as a bounded passive operator, but no applicable stability conditions were

generated. Likewise, a framework for the L2 stability of systems, containing a class

of passive hysteresis, was given in [176] without quantifying the effect of the size of

hysteresis on closed-loop system. Other recent works, for example the works in [177],

studied the stability of an adaptive control of a class of nonlinear system preceded

by Pranditl-Ishlinskii hysteresis nonlinearities. In the study, the Prandtl-Ishlinskii

model was fused with an adaptive controller design to mitigate the effects of the

hysteresis without an inverse hysteresis compensator, and a control law was achieved

to ensure the global stability of the adaptive control system using Lyapunov stabil-

ity theory and adaptation laws. This stability analysis approach was specified for

adaptive controller design. On the topic of RC for nonlinear systems, there has been

limited researches [158–161]. Most of the work was on robust analysis and tracking

error convergence and is not applicable to systems with hysteresis nonlinearities. In

light of the previous work, this dissertation addresses the RC design for hysteretic

systems, such as piezoactuators, and quantification of the effect of hysteresis on RC

stability. The L2 stability of the system is certified using the Small-Gain Theorem

and the properties of the input-output stability. The main stability theorem leads to

an applicable bound on the size of the hysteresis to guarantee the stability of the RC

system.



67

Gc(z)

Q(z)

krc

+

+

+-

++

Repetitive controller (RC)

z -N P
1
(z)

P
2
(z)

G(z)H
r e yu v

Piezoactuator

+

-

+

+

u1
Hp

Hu

e1 y1

u2e2y2

η+

+

r

(a)

(b) (c)

u2

u1 u

G
rp
 (z)

Hp[u]

G2

G1

Figure 6.1: (a) The nonlinear RC system, where Grp(z) represents the RC and PID
controllers. (b) The feedback connection for stability analysis and application of
the Small-Gain Theorem. (c) An equivalent feedback connection of (a) for stability
analysis.

6.1.2 Outline of Analysis

The effect of hysteresis on the RC system is analyzed by applying the following steps:

1. The nonlinear control system in Fig. 6.1(a) is converted to the feedback connec-

tion shown in Fig. 6.1(b), where Hp and Hu represent the perturbed (hysteretic

system) and unperturbed (RC system without hysteresis) dynamics, respec-

tively.

2. The perturbed and unperturbed dynamics are shown to be stable in the finite-

gain L2 sense [178].

3. Based on the finite L2 gains for the perturbed and unperturbed dynamics, the

Small-Gain Theorem is applied to determine stability conditions for the nonlin-

ear RC system. This final step quantifies bounds on the hysteresis nonlinearity

in terms of the P-I model parameters for a stable RC.
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6.1.3 The Effect of Hysteresis on RC Stability

Step 1: Consider the linear discrete-time SISO dynamic system G(z) with the fol-

lowing controllable canonical form

x(k + 1) = Ax(k) +Bv(k),

y(k) = Cx(k) +Dv(k), (6.1)

where x = [x1, x2, .., xn]
T ∈ Rn is the state vector, v, y ∈ R are the input and output,

respectively, and A, B, C, D are of compatible dimensions. The RC controller and

the controller Gc(z) shown in Fig. 6.1(a) are lumped into Grp(z), and it is assumed

to have the following discrete-time state-space representation:

z(k + 1) = Arpz(k) +Brpe(k),

u(k) = Crpz(k) +Drpe(k), (6.2)

where z = [z1, z2, .., zp]
T ∈ Rp is the controller state vector, e = r − y ∈ R is the

tracking error, u ∈ R is the controller output, and Arp, Brp, Crp, and Drp are of

compatible dimensions.

Next, the system in Fig. 6.1(a) is converted to an equivalent feedback connection

depicted in Fig. 6.1(b) for stability analysis. To do this, the perturbed system Hp is

defined as

η(k) = Hp[u](k) , v(k)− g0u(k), (6.3)

where v(k) is the output of the discrete-time P-I model defined by Eq. (5.5), u(k) is

the output of the controller (6.2), and g0 is a constants as used in Eq. (5.5).

The unperturbed system Hu is defined as follows. First, solving for v(k) in
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Eq. (6.3) and substituting it into Eq. (6.1), the following system is obtained

x(k + 1) = Ax(k) +B[η(k) + g0u(k)],

y(k) = Cx(k) +D[η(k) + g0u(k)]. (6.4)

Recalling the expression for u(k), Eq. (6.2), e(k) = r(k)− y(k), and D, Drp are finite

scalars, the output y(k) can be written as

y(k) = Cx(k) +D[η(k) + g0u(k)],

=
1

1 + g0DDrp

[g0DCrp C]

z(k)
x(k)


+

D

1 + g0DDrp

[η(k) + g0Drpr(k)]. (6.5)

Then, using Eq. (6.2) and (6.5), the system’s closed-loop dynamics excluding hystere-

sis can be represented as an unperturbed system Hu, i.e.,z(k + 1)

x(k + 1)

 = AL

z(k)
x(k)

+B1r(k) +B2η(k),

u(k) = CL

z(k)
x(k)

+D1r(k) +D2η(k), (6.6)

where AL =

Arp − g0BrpDCrp

1+g0DDrp
− BrpC

1+g0DDrp

g0BCrp

1+g0DDrp
A− g0BDrpC

1+g0DDrp

 ;

B1 =

 Brp

1+g0DDrp

g0BDrp

1+g0DDrp

 ; B2 =

 −BrpD

1+g0DDrp

B
1+g0DDrp

;
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CL =

[
Crp

1+g0DDrp
− DrpC

1+g0DDrp

]
;

D1 =
Drp

1+g0DDrp
; D2 =

−DDrp

1+g0DDrp
.

The transfer relation for the unperturbed dynamics Hu from inputs r(k) and η(k)

to output u(k) can be represented in the following input/output form:

U(z) = [CL(zI −AL)
−1B1 +D1]R(z) + [CL(zI −AL)

−1B2 +D2]η(z),

= G1(z)R(z) +G2(z)η(z). (6.7)

Therefore, the nonlinear RC system in Fig. 6.1(a) is converted to the equivalent

structure shown in Fig. 6.1(c), which is associated with Eq. (6.3) (perturbed system

Hp) and Eq. (6.7) (unperturbed system Hu).

Step 2: In the following, the finite-gain L2 stability of the unperturbed (Hu) and

perturbed (Hp) dynamics is shown. To do so, it is required to show that (a) G1(z) is

BIBO stable; (b) G2(z) is finite-gain L2 stable; and (c) Hp is finite-gain L2 stable.

(a) First, the RC closed-loop linear system in Fig. 3.1(a) is assumed to be designed

internally stable where the closed-loop poles are located in the open unit disc. By

inspection when g0 = 1, G1(z) = GL(z), where

GL(z) =
U(z)

R(z)
= CL(zI −AL)

−1B1 +D1,

and GL(z) is the transfer relation between the reference R(z) and the controller

output U(z) of the RC closed-loop linear system in Fig. 3.1(a). Therefore with the

closed-loop linear system in Fig. 3.1(a) designed stable, G1(z) is BIBO stable, that
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is g0 ≤ MGL
, where MGL

represents the gain margin of the RC system in Fig. 3.1(a).

Then what is left to show is the nonlinear system in Fig. 6.1(a) is stable if the finite

gains of G2(z) and Hp[u](k) satisfy the Small-Gain Theorem [178].

(b) Let ||h||2 represent the L2-norm of a discrete-time function h(k), i.e.,

||h||2 =

(
∞∑
k=0

|h(k)|2
)1/2

.

The finite L2 gain of G2(z) in Fig. 6.1(c) is determined using Parseval’s theorem [178,

179]. Specifically,

∥u2∥22 =
∞∑
k=0

uT
2 (k)u2(k),

=
1

2πj

∮
C

z−1U2(−z)U2(z)dz,

=
1

2πj

∮
C

z−1η(−z)GT
2 (−z)G2(z)η(z)dz,

≤
(
sup
ω∈S

∥G2(z)∥2
)2

1

2πj

∮
C

z−1η(−z)η(z)dz,

≤
(
sup
ω∈S

∥G2(z)∥2
)2

∥η∥22, (6.8)

where z = ejωTs , S ⊂ (0, π/Ts) and C is a contour. Thus, the L2-gain of G2(z) is

λ1 ≤ sup
ω∈S

∥G2(z)∥2. (6.9)

In other words, the unperturbed systemHu [Eq. (6.7)] is finite-gain L2 stable provided

that

sup
ω∈S

∥G2(z)∥2 < ∞
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and

g0 ≤ MGL
. (6.10)

(c) The finite L2 gain for the perturbed system Hp is determined as follows. First,

Eq. (6.3) is rewritten as

η(k) = H[u](k)− g0u(k),

= f(k) +
n∑

j=1

d(γ)Pr[u](k)− g0u(k), (6.11)

where u(k) is piecewise continuous function in k. It is pointed out that the P-I

hysteresis model H[u] is continuous in u [163, 172]; therefore, the perturbed system

Hp[u](k) is piecewise continuous in k and continuous in u(k). Next, the output of the

perturbed system η(k) is shown to be bounded in the following form:

||ητ ||2 ≤ λ2||uτ ||2 + α, ∀ τ ∈ [0,∞),

where α is a nonnegative constant [178].

Recall that the play operator has the following form:

Pr[u](k) = max(f(ki)− γ,min(f(ki) + γ,Pr[f ](ki−1))), ∀ i ≥ 1. (6.12)

and the range property of the play operator [163,172], the play operator of Eq. (6.12)

is bounded above and below as

f(k)− γ ≤ Pr[u](k) ≤ f(k) + γ,
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hence

|Pr[u](k)| ≤ |f(k)|+ |γ|

and

∣∣∣∣∣
n∑

j=1

d(γ)Pr[u](k)

∣∣∣∣∣ ≤
n∑

j=1

|d(γ)||Pr[u](k)|

≤
n∑

j=1

|d(γ)||f(k)|+
n∑

j=1

|d(γ)γ|. (6.13)

With f(k) = g0u(k) + g1,∣∣∣∣∣
n∑

j=1

d(γ)Pr[u](k)

∣∣∣∣∣ ≤
n∑

j=1

|d(γ)||f(k)|+
n∑

j=1

|d(γ)γ|

≤
n∑

j=1

|d(γ)||g0u(k)|+
n∑

j=1

|d(γ)|(|g1|+ |γ|).

By the Minkowski inequality [180], Eq. (6.11) is bounded as follows

∥η(k)∥2 ≤ ∥
n∑

j=1

d(γ)g0u(k)∥2 + ∥
n∑

j=1

|d(γ)|(|g1|+ |r|) + g1∥2

≤
(
|g0| sup

1≤j≤n
∥d(γ)∥1

)
∥u(k)∥2 + α, (6.14)

where α =
∥∥∥∑n

j=1 |d(γ)|(|g1|+ |r|) + g1

∥∥∥
2
is a nonnegative constant. Therefore, the

finite gain for the perturbed system Hp such that it is L2 stable is

λ2 ≤ |g0| sup
1≤j≤n

∥d(γ)∥1, (6.15)

where ∥ · ∥1 is the L1 norm. The finite gain λ2 is proportional to the size of the P-I

model’s density function.
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Step 3: Finally, according to the Small-Gain Theorem, the nonlinear RC system

is finite-gain L2 stable if λ1λ2 < 1, hence the nonlinear closed-loop RC system is

input-output stable provided that g0 ≤ MGL
[Eq. (6.10)] and

sup
1≤j≤n

∥d(γ)∥1 <
1

|g0| supω∈S ∥G2(z)∥2
. (6.16)

As long as the conditions given by Eq. (6.16) and (6.10) are satisfied, the RC sys-

tem is stable. In addition, Eq. (6.16) also bounds the size of the hysteresis nonlinearity

for a stable RC.

6.2 Summary

In summary, this chapter discussed the stability analysis for the closed-loop RC system

containing hysteresis. The analysis exploited the properties of the Prandtl-Ishlinskii

hysteresis model and the Small Gain Theorem. A bound on the hysteresis behavior

for RC stability was quantified. Next, the developed stability conditions are experi-

mentally validated.
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Chapter 7

Experimental Tracking Results and
Discussion

This chapter discusses the evaluation of the repetitive control method and the stability

conditions developed in the previous chapters. Experiments were performed on a

custom designed high-speed piezo-based nanopositioner. The first section describes

the experimental nanopositioning system, followed by a discussion on the modeling

of the dynamics and the hysteresis behavior. This modeling process also includes

the parameter optimization for an inverse hysteresis compensator. Afterwards, the

repetitive control is designed based on the linear dynamics. Then, the developed

stability conditions are validated. Finally, simulation and experimental results are

presented.

7.1 Experimental Nanopositioning Systems

The control approach was evaluated on a custom-made nanopositioning system. The

experimental setup is shown in Fig. 7.3, which includes a piezo amplifier, an analog

PID control circuit, an FPGA system for implementing the controllers (on the fast-

scanning direction, x-axis, of the nanopositioner), and a desktop computer with a data

acquisition hardware (NI-PCI-6221, 16-bit resolution, maximum sampling frequency

of 250 kHz) for sending and collecting data. The nanopositioning system is a custom-
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design two-axes serial-kinematic nanopositioner [see Fig. 7.2(a)].

Figure 7.1: The experimental system configuration.
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The experimental nanopositioning stage is created specifically for scanning-type

applications [181]. For scanning-type applications, such as the rastering movements

in AFM imaging, one lateral axis moves much faster (>100-times) than the other

axis. Because of this, one axis is designed to have a significantly higher mechanical

resonance [142,182]. The lateral range of the positioner is approximately 10×10 µm.

Figure 7.2(a) is a photograph of the nanopositioner, where plate-stack piezoactuators

(5 × 5 × 10 mm Noliac SCMAP07) are used to drive the sample platform in x and

y directions with a nearly unlimited resolution, and the lateral displacement of the

platform is measured by inductive sensors (Kaman SMU9000-15N) with a resolution

smaller than 0.5 nm and a bandwidth of 10 kHz. The resonance frequency in the x-

axis is about 18 kHz since its small size and low mass, and it is just 4.7 kHz for y-axis

because of the larger size and mass. The x-axis is the fast scanning axis because the

probe tip moves back and forth at least 100 times faster than the up and down motion

in the y-direction during imaging. The PI, RC and H−1 controllers are applied to the

fast scanning axis.

The analog PID circuit is custom-designed for PI control in this experiment. The

main functions of the circuit include: (1) the sensor output process, (2) tracking error

generation and (3) PID control. The sensor output process function is used to filter

the noise, amplify and bias the sensor output. The tracking error generator takes the

reference signal r(t) to subtract the sensor output y(t) to generate tracking error e(t).

The PID control function allows P, I, PI, or PID control.

The FPGA system is from National Instruments for RC and H−1 implementation.

This FPGA system is combined by a real-time controller (cRIO-9002 controller) and

plug-in AI (Analog Input) and AO (Analog Output) modules. The cRIO-9002 con-

troller contains a FPGA module and is used to store and implement controller VHDL

codes. The AI/AO modules are used for data acquisition with a maximum sampling
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Figure 7.2: (a) Custom-made experimental serial-kinematic piezo-based nanoposi-
tioner. (b) The frequency response along the x-direction, where the solid-line is the
measured frequency response of the x-direction piezoactuator, and the dash-line is
the model for the x-direction piezoactuator.
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Figure 7.3: (a) An example PID circuit block diagram. (b) A custom designed PID
circuit for 1) sensor output process; 2) Tracking error generation [reference minus
sensor output]; 3) PID control.

frequency of 100 kHz and a resolution of 16-bit. The FPGA system is programmed

using NI-LabVIEW FPGA Toolkits. The programming environment is 16 and 32-

bit integer mathematics and logics. Toolkits generates VHDL code for controllers,

then the code is downloaded to cRIO-9002 through an ethernet cable. The coding

and downloading process is presented in Fig. 7.4. In implementation, the controllers

are executed independently from computers with a maximum closed-loop sampling
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frequency of 100 kHz.

Figure 7.4: The FPGA coding process: the VHDL code is generated using LabVIEW
FPGA Toolkit, then downloaded to the real-time controller through an ethernet cable.

7.2 System Modeling

The linear dynamics and hysteresis behavior of the piezoactuator in x-direction of

the nanopositioner are modeled respectively for controller design and control system

stability analysis.

7.2.1 Linear Dynamics Modeling

A linear dynamic model G(z) is estimated from the measured frequency response,

as shown in Fig. 7.2(b). The modeling process is briefly described in Fig. 7.5. The

frequency response is measured using a dynamic signal analyzer (DSA) over a small

displacement range of the piezoactuator to minimize the hysteresis and above 10 Hz

with the creep avoided, since the scanning rate in the experiments is higher than
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10 Hz. The measured frequency response is presented in Fig. 7.2(b) as the solid

line. A linear 9th-order transfer function model G(s) is developed by curve-fitting

method, and then is converted to a discrete-time model G(z) using the c2d command

in Matlab with a sampling frequency of 100 kHz. The model is the dashed line shown

in Fig. 7.2(b).

Figure 7.5: Linear dynamics modeling process, which includes (1) obtaining frequency
response using dynamic signal analyzer to create the continues-time dynamic model
G(s) in Matlab, and (2) converting the continues-time dynamics model to discrete-
time model G(z).

7.2.2 Hysteresis Modeling

The hysteresis is modeled using P-I model and curve fitting the measured hysteresis,

and the major task is to determine the parameters for the model in Eq. (5.4), such

as the real constants g0 and g1 for f(t) = g0u(t) + g1, and λ, δ, ρ for d(γ) = λe−δγ

and γ = ρj, j = 1, 2, · · · , n. First, the hysteresis response is measured by driving the

piezoactuator to move up to a full range displacement of 10 µm using a triangular

trajectory at 1 Hz. The measured response is shown in Fig. 7.6 as the solid line.

Then the driving voltage u(t) and the response y(t) are imported to the least-square

optimization program for parameters calculation. The process for the parameter
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Figure 7.6: Comparison of measured hysteresis behavior and the output of the P-I
hysteresis model. (a) The measured and modeled hysteresis behavior in time domain.
(b) The hysteresis curves.

calculation is briefly shown in Fig. 7.7. Finally, the parameters of the hysteresis

model are optimized to: g0 = 0.8331, g1 = 0.0677, λ = 0.0211, δ = −5.0194 and

ρ = 0.1079.

The performance of the P-I model with the optimized parameters is verified by

comparing with the measured output in Fig. 7.6. The results show the modeled

hysteresis matches the measured output well with maximum error less than 2.1%. The

further test on the cascade model (hysteresis + dynamics) of the piezoactuator is done

by comparing the open-loop experimental responses with the simulation responses for

±5 µm rang of motion at 10 Hz, 100 Hz, 1 kHz. The results in Fig. 7.8 show the

maximum matching error is less than 2.05% for up to 1 kHz triangular responses

[plot (a1) to (c2)]. The accuracy of the cascade model for a 2 kHz sinusoidal scanning

motion is shown in Fig. 7.8(d1) and (d2), where the maximum error is less than

2.12%.
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Figure 7.7: The flow diagram for calculating the parameters of the P-I hysteresis
model.
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Figure 7.8: Experimental validation of cascade model [H[·] + G(z)]. (a1) and (a2)
Displacement and error vs. time between measured (solid line) and model output
(dash line) at 10 Hz (triangular trajectory); (b1) and (b2) the comparison for 100 Hz
scanning; (c1) and (c2) the comparison for 1 kHz scanning; and (d1) and (d2) the
comparison of sinusoidal scanning at 2 kHz.
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ator with (solid line) and without (dash line) feedforward compensation.

7.3 Inverse Hysteresis Modeling

The parameters of the inverse hysteresis model of Eq. (5.9) is obtained using the

measured input-output data from the forward model. For convenience, the density

function is chosen as dinv(γ
′) = λ′e−δ′γ′

, where γ′ = ρ′j is the threshold of the inverse

hysteresis operator with j = 1, 2, · · · , 8, and the parameters λ′, δ′, ρ′ are real constants.

To determine the value of the parameters for the inverse model, we use measured

input-output data as for the hysteresis modeling and a custom modified nonlinear

least-square optimization toolbox with the analytic inverse P-I function. Finally the

parameters are computed as g′0 = 1.1354, g′1 = −0.3109, λ′ = 0.0211, δ′ = −1.813

and ρ′ = 0.527.

The performance of H−1 to minimize hysteresis and subsequently linearize the

piezoactuator’s response is shown in Fig. 7.9(b), where H−1 minimizes the hysteresis

curve as shown as the solid line. The compensated response shows that the hysteresis

nonlinearity is significantly reduced. To further validate the inverse compensator,

the H−1 is applied to the piezoactuator in experiments to compensate the hysteresis

behavior over different frequency ranges. By compensating for hysteresis, the output
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response is dominated by the dynamic effects G(z) [see Fig. 7.10]. Figure 7.10 shows

the measured and simulated outputs versus input plots for a triangular scanning

motion at 10 Hz, 100 Hz, 1 kHz and a 2 kHz sinusoidal trajectory. It is pointed out

that as the frequency increases, the resulting loop-like appearance is due to the phase

shift between the input and output, and not the hysteresis effect. Comparison is made

between the measured response and the simulated response from just the dynamics

model shows that the maximum error is less than 1.17% and 1.3% for 1 kHz and

2 kHz, respectively. The results show that the hysteresis effect can be compensated

for using the proposed inverse model, leaving behind only the dynamics.

7.4 Controller Design and Implementation

In the controller block diagram shown in Fig. 6.1(a), Gc(s) is chosen as a proportional-

integral (PI) controller, with transfer function

Gc(s) = Kp +
Ki

s
. (7.1)

The gains are tuned using the linear dynamics model to Kp = 1.3 and Ki = 40000,

where Ziegler-Nichols method is used to provide the starting points for tuning the

gains. The proportional-integral controller is implemented in both continuous-time

domain using the custom-design analog PID circuit (see Fig. 7.3) for experimental

implementation, and digitally with a sampling frequency of 100 kHz for RC controller

design. The digital controller Gc(z) has a transfer function of

Gc(z) = Kp +Ki
Tsz

z − 1
, (7.2)
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and is created by converting the continuous-time controller Gc(s) to the discrete-

time domain using Matlab’s c2d command for RC design with Ts = 100 kHz. The

performance of the proportional-integral controller to a step reference is shown in

Fig. 7.11. It can be observed that without proportional-integral control, the open-loop

response shows significant overshoot. Also, after 3 ms creep effect becomes noticeable.

Creep is a slow behavior and after several minutes the tracking error can be in excess

of 20% [149]. On the other hand, the proportional-integral controller minimized the

overshoot and creep effect. The performance of the controller for tracking a triangular

trajectory at 10 Hz, 100 Hz, and 1 kHz is validated and presented in Section 7.6.2.

Then RC is designed with G(z) and Gc(z). The block-diagram of the system for

RC design is as indicated in Fig. 3.1(a). The process includes designing a low-pass

filter Q(z) and phase lead compensator zm2 via m2 to satisfy the stability conditions

in Eqs. (3.3) and (4.4) for stability and robustness; then tuning the RC gain krc

and zm1 for tracking performance and closed-loop stability [Eqs. (3.3)]. The low-pass
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filter used in the RC loop is in form of

Q(z) =
a

z + b
with |a|+ |b| = 1.

The selection of the cutoff frequency ωct is limited by the lowest frequency that makes

θT (ω) + θ2(ω) = ±90◦ [Eq. 4.4] [7]. Also, the cutoff frequency limits the achievable

scan rate to about one-tenth of the cutoff frequency, i.e., ωct/10.

The phase response for θT (ω) of the closed-loop feedback system without RC and

with different phase lead θ2(ω) is in Fig. 7.12. The figure shows, for example, without

the phase lead compensator (m2 = 0) the lowest frequency making θT (ω) + θ2(ω) =

±90◦ is about 7.3 kHz. This value determines the maximum cutoff frequency for the

low-pass filter and the maximum scan rate. By considering the maximum scanning

rate in this study is 1 kHz and the hardware limitation of the FPGA system, the phase

lead compensator is selected as m2 = 0 to have the cutoff frequency to be 7 kHz. It is

noted that the scan rate can be improved by increasing the ±90◦ crossover frequency

adding phase lead through the parameter m2. For example, with the addition of

phase lead, such as m2 = 1, the ±90◦ crossover frequency is increased to above

30 kHz. Therefore, the cutoff frequency of the low-pass filter can be improved up to

above 30 kHz to raise the RC’s bandwidth permitting for a scanning rate at 3 kHz

or even higher. Subsequently, the RC gain [Eq. (3.3)] can be increased.

Simulations are done to demonstrate the stability condition in Eq. (4.4) and to

validate the stability of the closed-loop system with RC for different low-pass filter

cutoff frequencies and values of m2. The validation is achieved through observing:

1) whether the chosen cutoff frequency ωct = 7 kHz and the phase lead parameter

m2 = 0 following the stability condition in Eq. (4.4) can ensure the stability of the

closed-loop system; and 2) whether the RC closed-loop system with m2 = 0 and ωct

above the crossover frequency 7.3 kHz becomes unstable. The results regarding to the
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above 2 tasks are summarized in Table 7.1. According to the summary in Table 7.1,

when the cutoff frequency is below the crossover frequency of 7.3 kHz with m2 = 0,

the closed-loop RC system is stable. As the cutoff frequency increases, for example

8 kHz and above, the RC system is unstable. But the stability can be achieved by

adding phase lead through m2 as shown by the results in Table 7.1.

Table 7.1: Stability of RC system for different low-pass filter cutoff frequencies and
phase lead zm2 .

Low-pass filter Q(z)’s cutoff frequency (Hz)

Phase lead m2 5 k 7 k 9 k 10 k 30 k

0 Stable Stable Unstable Unstable Unstable

1 Stable Stable Stable Stable Stable

3 Stable Stable Stable Stable Unstable

5 Stable Stable Stable Unstable Unstable

Next, the RC gain krc and zm1 are determined in simulation. The chosen cutoff
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frequency ωct = 7 kHz for the low-pass filter Q(z) and zero phase lead (m2 = 0) are

used in the RC loop in the simulation. The reference trajectory used is the triangular

trajectory at 1 kHz for ±5 µm range scanning. The RC gain krc = 0.8 is tuned

in the rang of Eq. (3.3) by assuming the m1 = 0 for system stability and tracking

performance. Example simulated tracking results of RC system with different krc and

with m1 = 0 are shown in Fig. 7.13. The results indicate that increasing the value

of krc can cause instability, as shown in plots (c1) and (c2). Reducing the RC gain,

however, slows the convergence rate of the tracking error, which can be observed by

comparing the plot (b2) to plot (a2). The steady-state tracking error is minimally

affected by the RC gain and the phase lead through m2.

Finally, the m1 = 6 is tuned with krc = 0.8, m2 = 0, and ωct = 7 kHz by looking at

the maximum tracking error versus different m1 values for tracking 1 kHz triangular

trajectory for 10 µm displacement. The maximum tracking error is defined as:

emax(%) =
max(|y − r|)

max(r)−min(r)
× 100% (7.3)

where r and y are the reference and measured outputs, respectively. The emax v.s.

m1 plot is shown in Fig. 7.14, where the simulation results are plotted along with

experimental results. It can be seen from the results the smallest maximum tracking

error is achieved at m1 = 6. Therefore, the parameters for the RC controller are

chosen as m1 = 6, m2 = 0, krc = 0.8 and the cutoff frequency of Q(z) as 7 kHz. In

experiments, the RC and H−1 are implemented on FPGA with a closed-loop sampling

frequency of 100 kHz.
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7.5 Quantifying the Effect of Hysteresis

The effect of hysteresis on RC stability is quantified using the stability conditions

given in Eq. (6.10) and (6.16). First, the gain margin of the linear RC system is

found from the frequency response of the RC system shown in Fig. 7.15, where the

sampling frequency is 100 kHz. From the frequency response, the gain margin is

MGL
= 20.1 dB (magnitude of 10.12), and compared to the constant g0 from the

forward P-I model, g0 = 0.8331 < MGL
= 10.12. Therefore the first part of the

stability conditions, Eq. (6.10), is satisfied.

Now for the second part of the stability conditions, Eq. (6.16). To determine

G2(z), first Grp(z) is written as

Grp(z) =

[
krcz

−N+m1Q(z)

1− z−N+m1Q(z)
+ 1

]
Gc(z),

=
Gc(z)

1− z−N+m1Q(z)
, (7.4)
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.

where

Q(z) =
0.3558

z − 0.6442
,

Gc = 1.3 +
0.4z

z − 1
,

krc = 0.8, and z−N+m1 = z−94 with sampling frequency Fs = 100 kHz. Then G2(z)

is developed from the state space representations of G(z) and Grp(z), where it is

determined that supω∈S ∥G2(z)∥2 = 5.31, which implies that

1

|g0| supω∈S ∥G2(z)∥2
= 0.222.

Compared to the sup1≤j≤n ∥d(γ)∥1 = 0.409, there is:

sup
1≤j≤n

∥d(γ)∥1 ≮
1

|g0| supω∈S ∥G2(z)∥2
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which means the second part of the stability condition, Eq. (6.16), is not satisfied.

Therefore, direct implementation of the RC system designed around the linear dy-

namics model will cause the closed-loop system to be unstable, and thus hysteresis

compensation is required. This conclusion is further verified in simulation and exper-

iments, and the results are shown next.

7.6 Simulation and Experimental Tracking Results

7.6.1 The Effects of Hysteresis

The simulations and experiments are implemented to show the effect of hysteresis

on RC stability. The simulative evaluation is achieved in Matlab using the RC,

Gc(z), G(z) and the P-I hysteresis model. The experimental evaluation is using the

same controllers but implemented in analog (proportional-integral controller) and

on FPGA (RC). Finally, the H−1 is implemented in simulation and experiment to

further validate the effect of hysteresis on system stability. The verification is applied

for tracking a 1 kHz triangular trajectory for approximately 10 µm displacement.

First, the hysteresis of piezoactuator in the x-axis of the nanopositioner modeled

by the P-I model is shown in Fig. 7.16 (a1), where it’s size is 0.409 [Eq. (6.16)]. Using

this model, the simulated response of the RC control system is shown in Fig. 7.16(b1)

and an expanded view of one period of the scanning response is shown in (b2). It can

be readily seen that the size of the nonlinearity causes the simulated response to ex-

hibit excessive oscillation, indicating impending instability. The experimental results

of the same controller confirms that the controller becomes unstable as illustrated in

Fig. 7.16(c1) and the expanded view in (c2). The RC system becomes unstable at

approximately 4.5 ms, indicating that the hysteresis effect if significant reduces the

stability margin of the closed-loop system. However, the simulated response of the
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Figure 7.16: The effect of hysteresis on RC stability for tracking 1 kHz triangular tra-
jectory: (a1) The hysteresis of piezoactuator in the x-axis of the nanopositioner, size
of 0.409. (a2) The P-I model hysteresis with size of 0.203. (b1) and (b2) Simulation
results using hysteresis in (a1). (c1) and (c2) Experimental results for hysteresis in
(a1). (d) Simulation result using hysteresis in (a2).
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RC controller where the hysteresis nonlinearity is smaller (0.203), such as that shown

in Fig. 7.16 (a2), is stable [see Fig. 7.16(d)]. Therefore, the size of the nonlinearity

can drastically affect the stability of the RC.

7.6.2 The Performance of RC with/without the Inverse Hys-
teresis Compensator

Besides using the inverse hysteresis compensator to stabilize the closed-loop system,

another option is to reduce the size of the controller to satisfy the stability conditions

in Eq. (6.10) and Eq. (6.16). The size of the controller is reduced by re-designing the

proportional-integral controller gains from kp = 1.3 and ki = 40000 to kp = 1.1 and

ki = 40000 to satisfy the stability conditions and for good tracking performances.

Experiments are done to validate this by evaluating the tracking performance for

standard proportional-integral control and RC with and without hysteresis compen-

sation H−1. Experiments are run to track triangular trajectories at 10 Hz, 100 Hz

and 1 kHz for full range (10 µm) displacement of the piezoactuator and comparing

with the performances of the regular proportional-integral and RC without H−1.

One example of the tracking results, 1 kHz tracking, is shown in Fig. 7.17. The

plots (a), (b) and (c) are the tracking error results of the controllers. The plot (d)

shows the measured tracking results of the overall closed-loop systems at steady-state

stage. The detail of the controller performances for tracking reference trajectories at

10 Hz, 100 Hz and 1 kHz is in Table 7.2. The table compares the maximum tracking

error [emax(%)] and root-mean-square error [erms(%)]. The root-mean-square error is

given by:

erms(%) =

√
1
Ts

∫ T

0
[|y(t)| − |r(t)|]2dt

max(r)−min(r)
× 100% (7.5)

where Ts is the signal period time. The tracking results show that, with the size of the
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control system reduced (kp = 1.3 reduce to kp = 1.1) and the stability condition sat-

isfied, the closed-loop system with hysteresis is stabilized, which results in the remove

of the distortion shown in Fig. 7.16(c2). It can also be seen the maximum tracking

error of the proportional-integral controller is reduced from 13.7% to 12.0% at 1 kHz

by combining the H−1 to the proportional-integral controller. By adding just the RC

to PI controller, the repeating tracking error of the PI control system is reduced with

the operating cycle increase as shown in Fig. 7.17. Also, the tracking error is reduced

to 4.5% at 1 kHz. Finally, the addition of H−1 lowers the maximum tracking error to

3.9%. Beside reducing the tracking errors of PI and RC, the hysteresis compensator

also increases the converge rate of the tracking error of the RC system by about 14%

from 4.2 ms to 3.6 ms as shown in Fig. 7.17(c), where the converge rate is defined as

the rate of the tracking error arrives the steady-sate value.

Table 7.2: Tracking error at last two periods of the tracking results.

Controller 10 Hz 100 Hz 1 kHz

emax erms emax erms emax erms

PI 2.37 1.36 5.52 4.04 13.7 11.42

PI+H−1 1.73 1.1 3.99 2.46 12.0 9.46

PI+RC 0.99 0.42 1.77 0.69 4.5 1.6

PI+RC+H−1 0.72 0.28 1.26 0.46 3.9 1.38

Therefore, the stability of the closed-loop system for hysteresis can be certified

by following the stability conditions defined in Eq. (6.10) and Eq. (6.16). According

to the stability conditions, there are two approaches to stabilize the system when

the size of the hysteresis is over the tolerance of the closed-loop system robustness:

Approach one is to reduce the size of the controller to make the stability conditions

satisfied; approach two is to use the hysteresis compensator H−1 to stabilize the sys-
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tem. Comparing these two approaches, the advantages of the hysteresis compensator

are it can enhance the tracking performances of the control system, and increase the

converge rate of the tracking error.

7.7 Summary

This chapter discussed the implementation of the RC control system, as well as vali-

dating the stability conditions developed in previous chapter. The hysteresis behavior

is modeled to quantify the system stability and an inverse hysteresis compensator was

determined for hysteresis compensation. Based on the simulation and experimental

results, the conclusion is made that the stability theory developed can quantify the

effect of hysteresis on the closed-loop system stability effectively; and the proposed

RC approach can achieve high-precision positioning in tracking periodic reference mo-

tion. Additionally, when compared to existing feedback control approaches, such as

proportion-integral controller, the approach reduces the repeating tracking error with

the operating cycle increases. Furthermore, the performance of the RC is validated in

the nano-hole arrays pattern fabrication for ZnO nanowire growth to test its potential

application in AFM-based nanofabrication.
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Chapter 8

Nanofabrication Results and
Quantification

To illustrate the application of the research, the RC is applied to AFM-based fabri-

cation of a nano-sized holes array pattern. Such holes array can be used to create

ZnO nanowire arrays. The experiments will investigate the potential for using a

piezo-based AFM as a tool to fabricate platforms/templates for controlled growth of

ZnO nanowire arrays. The advantage of AFM compared to traditional fabrication

methods are, for example, nanoscale precision, lower power consumption, potentially

higher throughput and lower costs. The performance of the RC can also be compared

to other control methods for nanofabrication, such as traditional PID control.

Nanofabrication involves making structures with dimension at nanometer level

(100 nm or less). To do this, there are photolithography, nanoimprint, self-assembly,

scanning probe microscopy (STM, AFM, near-field scanning optical microscopy)-

based nanothecnologies, etc. Recently, the AFM tool has attracted great attention as

a viable option for fabricating a wide range of nanostructures. The benefits include:

(1) the ability to simultaneously fabricate and visualize the nanostructures with the

same equipment, (2) operation in a standard room environment, (3) capable of nano-

precision operation, and (4) applicable to different materials (e.g., metal, semicon-

ductor, polymer, bio-molecules, organic materials and inorganic salts). AFM-based
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nanofabrication technologies such as nanomanipulation, force-lithography, nanograft-

ing, nanoaxidation and dip-pen nanolithgraphy, were developed to physically or chem-

ically modify surfaces and perform manipulation at nanometer scale, which have the

potential applications in nanoelectronics, bioanalysis, biosensors, actuators, and high-

density data storage devices. In this study, the force-lithography is chosen over other

AFM-based nanofabrication approaches due to its simplicity.

Zinc oxide (ZnO) nanostructures, particularly nanoscale ZnO nanowires, are promis-

ing oxide semiconductors and have attracted much attention due to their versatile

properties and potential applications in optoelectronic, sensing, energy, and piezo-

electronic devices. However, to create such devices, precise control of the morphol-

ogy, alignment, and position of the nanoscale structures is need to fabricate the ZnO

nanowires [183–186]. For example, in the design of the ZnO nanowire based nano-

generator, ZnO nanowire array needs to be well-aligned in spacing and shaping, since

the density of the ZnO nanowire array, the spaces between the ZnO nanowires, and

the size and the shape of the ZnO nanowires affect the efficiency of the voltage gen-

eration [187]. In this study, the pattern fabrication for selectively controlled growth

of ZnO nanorod arrays on the desired areas of substrates is investigated to validate

the performance of the designed RC system. At current stage, the nanogenerator is

designed in a square shape with equal spaced ZnO nanowires as shown in Fig. 8.1(a).

To achieve the structure, the required tracking signal in x-axis of the AFM-based

nanofabrication system is periodic as shown in Fig. 8.1(c). The performance of the

RC for tracking this type of periodic signal is validated experimentally. Further

more, the performance of the controllers is tested in nanofabricating the patterns in

Fig. 8.1(a) for ZnO nanowire array growth by using the periodic signal in Fig. 8.1(c)

as a reference trajectory in x-axis. It is noted, in the nanofabrication, the repetitive

control system is applied to the x-axis of the AFM-based nanofabrication system; and
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a regular PID controller is applied to the y-axis.

Figure 8.1: (a) An example nano-hole arrays pattern for ZnO nanowire array growth.
The signals for fabricating nano-hole arrays for ZnO nanowire array in (b) z-axis; (c)
x-axis (periodic trajectory); (d) y-axis.

The process to create the ZnO array includes three main steps as shown in Fig. 8.2,

where Step 1 and 2 are performed to demonstrate feasibility of the control approach.

More specifically, the process includes:

1. Coating the ZnO buffer layer onto the substrates, such as Si, as the seed for
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Step 1: Preparation of substrate

Step 2: Pattern design with AFM

Step 3: ZnO nanowire growth

Figure 8.2: The steps for fabricating ZnO nanowire array. The steps 1 and 2 are
processed in this study, and the step 3 is left as a future work due to the laboratory
condition we have.

nanowire growth;

2. Spin coating the resist layer, such as polymethylmethacrylate (PMMA), onto

the ZnO layer for patterning;

3. Patterning the resist layer using the AFM (scratching);

4. Growing the ZnO nanowires through chemical reaction in solution; and

5. Removing the resist layer away through chemical etching.

The following three steps are typically carried out for ZnO nanowire growth:

Step 1: Preparation of Substrates for Nanofabrication The preparation step

involves two different sub-tasks, which are coating ZnO layer onto substrates and spin

coating the resist layers. The ZnO layer serves as the seeds for nanowire growth. The

PMMA layer is used as a sacrificial layer for AFM to create pattern for further nano

feature growth.
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Figure 8.3: The patterns to be created on PMMA using an AFM, where the piezo-
based nanopositioning stage positions the substrate in x, y, and z directions, the
nano-hole arrays are created by a AFM tip.

Step 2: Mechanical Scratching with AFM for Pattern Design on PMMA

Layer In this step, the AFM is used as a tool to create desired patterns on the

PMMA layer, such as the hole array with equal space and size for the controlled

growth of ZnO nanowire arrays. These holes are created though a mechanical method,

which means to use the tip at the end of the cantilever of the AFM to directly scratch

nano-scale holes on the PMMA layer, as shown in Fig. 8.3. The spacing and sizing

of the holes are controlled trough the designed RC system. For effective fabrication

of the nanowire array, preliminary tests are carried out first, for example, the force

test to determine the force required to remove the selected PMMA layer with certain

thickness and the thickness test to determine the thickness of the PMMA thin film.

Finally, nano-hole arrays are fabricated with RC and inverse hysteresis compensator

at different speeds to validate the performance of RC at high-speed nanofabrications,

and the results are compared with the results from PID with hysteresis compensator

control and open-loop fabrication.
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Step 3: ZnO Nanowire Growth This step involves the ZnO nanowire growth

and the resistant layer remove. The ZnO nanowire is grown using a chemical methods.

After that, the PMMA layer is removed from the substrate through chemical etching

as the steps 4 and 5 shown in Fig. 8.2 to complete the nanofabrication process.

It is noted that the first two steps of the nanofabrication process have been com-

pleted and the last step is left for future work whichs need to be processed in a clean

room.

8.1 Experimental System for Nanofabrication

The experimental nanofabrication system is built around a custom-designed piezo-

based long-range 3-axis nanopositioner and a commercial AFM scanner. The system

configuration is shown in Fig. 8.4. In the configuration, there are also a Matlab

xPC Target system formed by a host computer with a target computer for controller

implementation and data communication with a maximum closed-loop sampling fre-

quency of 25 kHz; as well as a custom-designed high-bandwidth piezo amplifier to

drive the high-speed x and z axes piezoactuator systems of the nanopositioner, and a

commercial piezo amplifier (TRek PZD350A) to drive the y axis piezo system. The

commercial AFM system is Nanosurf easyScan 2 from NanoSurf. It is combined by

a scanning head and a controller, and is operated using a desktop computer with a

operating software (Nanosurf easyScan 2 Control Software).

The nanopositioner positions the PMMA coated ZnO/Si substrate in x, y, and

z directions for nano-hole arrays pattern fabrication. The long-range stage, shown

in Fig. 8.6(a), couples 5 × 5 × 12 mm Naliac SCMAP07 plate stack actuators (total

6 stacks) with free stroke of 14.7 µm with a mechanical displacement amplifier to

provide a final stage displacement of approximately 40 µm in x and y directions,

and couples 1 plate stack actuator in z direction to provide approximately 2.5 µm
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Figure 8.4: (a) Experimental nanofabrication system. (b) A closed-view of the inter-
action section of the nanofabrication system: AFM cantilever, tip, and the substrate
for fabrication.
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Figure 8.5: A photograph of experimental nanofabrication system setup.

displacement. The stock ceramic end caps of the actuators are replaced with alumina

plates to increase the actuator stiffness as described in [188]. In the x and y directions,

the lever arm of the mechanical amplifier has an ideal mechanical displacement ampli-

fication of 5.82 (Kmech = uout/uin) and a practical amplification under 4 times. This

is due to compliance in the lever and associated flexures. The stage bodies are guided

linearly with compliant flexures. Compound flexures are attached to the corners to

keep the stage compact while maintaining low actuation stiffness. Beam flexures are

added to the fore and aft ends of the stage bodies to increase rotational stiffness,

thus reducing the effects of parasitic motion and dynamic cross coupling. Parabolic

fillets are used instead of constant radius corner fillets in areas subject to high-strain,

to decrees stress concentration values. The stage is outfitted with inductive sensors

(Kaman SMU9000-15N) to measure displacement in the lateral x and y directions.
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The final stage displacement is determined to be 41.76 µm and 43.25 µm for the x-

and y-axis. The first mechanical resonance modes for the x- and y-stages are shown

in Figs. 8.6(b) and (c) to occur at 718.5 Hz and 532.2 Hz respectively; both in their

corresponding actuation directions.

The xPC Target is a real-time system that enables to execute the digital controller

on a target computer for hardware-in-the-loop (HIL) simulation and real-time control

applications. A standard xPC Target control system normally contains two comput-

ers. One is called the host computer, and the other is called the Target computer.

The host computer is a standard personal computer with Matlab, Simulink, and xPC

Target Toolbox installed. This computer is used to create Simulink model of the

control system, to compile the Simulink model to C-code for Target computer imple-

mentation, and to store and process input and output data. The Target computer

is used to execute the Simulink model created on the host computer, and to send

and collect experimental data. This computer has a real-time operator system and a

data-acquisition hardware (DAQ). In the implementation, the real-time operator sys-

tem on the Target computer is driven by a Bootdisk created by xPC Target Explorer

on the host computer to run the complied C-code of the Simulink model. The DAQ

(NI PCI-6040E, 12-bit resolution, maximum sampling rate of 500 kS/s) is used to in-

terface with physical components in the experiment system for data communication.

The host computer communicates with target computer through a crossover cable.

It is noted that the Simulink model for xPC Target implementation is different from

the Simulink model for Matlab simulation. For example, in Matlab simulation, the

Simulink model for a PID feedback closed-loop system is formed by a PID controller

with a system model of the experimental plant, such as a linear dynamics G(z) of a

piezoactuator. However, in the Simulink model for xPC Target, G(z) is replaced by

the input/output modules of DAQ to communicate with the real experimental plant,
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Figure 8.6: (a) The piezo-based long-range stage for nanofabrication, which includes
a photo of the stage and solid model images of x, z-axes stages and y-axis stage.
(b) The frequency response of the x-axis of the nanopositioning system. (c) The
frequency response of the y-axis of the nanopositioning system.
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as shown in Fig. 8.16.

The Nanosurf easyScan 2 AFM system is used for nano-hole arrays fabrication

and imaging of the fabricated results. The hardware for the AFM system involved

in the experiments includes a scan head and a controller operated by a desktop

computer with the easyScan 2 software. In the scanning head, there are scanning

cantilever holder and positioner to position the cantilever in x, y, and z directions

for nanometer scale resolution measurements of topography or nanofabrication of a

sample surface. The highest drive resolution in x and y-axis is approximately 0.15 nm

and is about 0.027 nm in z-axis. The maximum scanning range is 110 µm in x, y-axis

and 22 µm in z-axis. A video module allows the user to monitor the approach of the

AFM tip to the sample surface and observe the sample surface in 4×4 µm (top view)/

5× 3 µm (side view) range, and a signal module sends and receives signals form the

controller. The controller controls the scan head, for example to apply PID control

to the cantilever in the z-axis and to approach the AFM tip to a sample surface,

through a DAQ (16 bit, ±10 V). It also processes the video/control and operating

signal communicating between the scan head and the computer, and shows the status

of the scan head. The easyScan 2 software provides a friendly interface for users to

operate the scan head and to process the data.

This AFM scan head can be operated in, for example, static force and dynamic

modes, and allows the scan speed up to 60 ms/line at 128 data points/line. The

maximum achievable data point is 2048×2048 points. In experiments, the AFM scan

head is operated in static force mode with a constant force loaded on the cantilever

for nanofabrication and imaging; and only the z-axis of the AFM scanner is used to

hold the cantilever to have a static load using the z-axis PID controller while the x

and y-axes of the AFM scan head are disabled. The static load is chosen as 10 nN

for imaging, and the load for nanofabrication is determined in Section 8.3.2. The
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z-axis maximum measurement noise level is approximately 0.8 nm. Compared to the

maximum scanning range of 22 µm, the noise is less than 0.01% of the scanning range.

8.1.1 System Modeling

x-axis System Modeling

The x-axis piezo-actuator system of the long range nanopositioner is modeled for

controller design and implementation.

First, the linear dynamic model of the x-axis piezo-actuator system is estimated

using the same method as discussed in Section 7.2.1. The frequency response is

measured from 0.5 Hz to 3 kHz to cover the main resonances of the system. The

measured frequency response is shown by the solid line in Fig. 8.6(b). A linear 3rd-

order dynamic modelG(s) generated by curve fitting the measured frequency response

has the following representation:

G(s) =
3.391× 1010

s3 + 3759s2 + 2.063× 107s+ 7.514× 1010
. (8.1)

The discrete-time version of the dynamics model is converted in Matlab using the c2d

command and zoh method with a sampling frequency of 10 kHz to:

G(z) =
0.001304z3 + 0.01319z2 + 0.01224z + 0.001041

z3 − 2.485z2 + 2.233z − 0.6867
. (8.2)

The frequency response of the dynamics model is compared to the measured frequency

response in Fig. 8.6(b).

The hysteresis of the x-axis piezo-actuator system is modeled using the P-I hys-

teresis modeling approach. The parameters for the P-I model are optimized to:

g0 = 0.658, g1 = 0.0606, λ = 0.6684, δ = 0.6859 and ρ = 0.3569. The perfor-

mance of the P-I model with these optimized parameters is validated by comparing
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Figure 8.7: The P-I hysteresis model v.s. the measured hysteresis. (a) The hysteresis
curve. (b) The matching error between the model and the measured hysteresis.

with the measured hysteresis behavior for tracking triangular trajectory at 1 Hz as

shown in Fig. 8.7. From Fig. 8.7(b), the maximum matching error at steady state

is no more than 1.15%, which reveals the accuracy of the optimized P-I hysteresis

approach on modeling hysteresis behavior of the x-axis piezo system.

With the modeled dynamics and hysteresis, the cascade model of the x-axis piezo

system is also validated. The validation is achieved through comparing the simulation

output of the cascade model with the open-loop output of the experimental system.

The driving signals for the open-loop response are two types: triangular trajectories

and signals for nano-hole arrays fabrication for 38 µm rang of motion at 1 Hz, 10 Hz,

and 50 Hz. The results are shown in Fig. 8.8 and Fig. 8.9. It can be seen that the

maximum matching error is less than 1.9% for up to 50 Hz triangular response [plot

(a1) to (c2) in Fig. 8.8]. The maximum matching error for nanofabrication signal

response up to 50 Hz [plot (a1) to (c2) in Fig. 8.9] is less than 1.7%. Therefore,

the dynamics and hysteresis models can represent the experimental system well for

controller design.
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y-axis System Modeling

A 4th-order linear dynamic model is developed for y-axis of the nanopositioning system

for PI controller design. The transfer function of the model is:

G(s) =
1.313× 106s2 + 1.899× 108s+ 1.282× 1013

s4 + 196s3 + 2.042× 107s2 + 2.049× 109s+ 1.035× 1014
, (8.3)

and its discrete-time version is developed in Matlab using the c2d command with zoh

method and a sampling frequency of 10 kHz:

G(s) =
0.002174z4 + 0.004532z3 − 0.01201z2 + 0.004418z + 0.002138

z4 − 3.779z3 + 5.551z2 − 3.742z + 0.9806
. (8.4)

The frequency response of the dynamics model is compared to the measured fre-

quency response in Fig. 8.6(c). The PI controller design according to this model is

discussed in Section 8.1.4.

8.1.2 Inverse Hysteresis Compensator

An inverse hysteresis compensator is designed for the high-speed x-axis of the nanopo-

sitioner. The parameters of the inverse hysteresis compensator are calculated using

the method of Section 7.3, and the parameters are determined as follows: g′0 = 1.4188,

g′1 = −0.1582, λ′ = 0.2873, δ′ = 0.5769 and ρ′ = 0.7521. The behavior of the hys-

teresis compensator with the optimized parameters is presented in Fig. 8.10(a) and

(b). Figure 8.10(a) shows the inverse hysteresis curve between the output of the com-

pensator (uPI) and the desired output response (vd) imported to the compensator.

Figure 8.10(b) compares the responses of experimental hysteresis output, inverse hys-

teresis compensator output and the desired output, and shows that the designed P-I

inverse hysteresis compensator achieves the desired behavior of the expected inverse

hysteresis compensator in Fig. 5.4. The performance of the inverse P-I hysteresis
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compensator on minimizing the hysteresis for system linearization is highlighted in

Fig. 8.10(c) and (d). Plot (c) compares the output curve of the linearized system

(linearized system output [v] versus reference [vd]) with the hysteresis curve of the

system without hysteresis compensation (hysteresis output v.s. reference [vd]). The

maximum tracking error of the inverse hysteresis compensator is shown in plot (d).

The tracking error at steady-state stage is less than 1.3%, which reveals the perfor-

mance of the inverse hysteresis compensator on minimizing the hysteresis for system

linearization.

Next, the inverse compensator is validated in experiments to the x-axis piezo sys-

tem to compensate hysteresis behavior over different frequency ranges. The reference

trajectories for the validation are triangular trajectories and nanofabrication trajecto-

ries at 1 Hz, 10 Hz, and 50 Hz. The tracking results are compared with the simulation

output of the linear dynamics G(z) in Fig. 8.11 [triangular trajectories tracking re-

sults] and Fig. 8.12 [nanofabrication trajectories tracking results]. The maximum

tracking error for tracking triangular trajectories is less than 2.0% for frequencies up

to 50 Hz. The maximum error for tracking nanofabrication trajectories is less than

2.2%. The results show the hysteresis compensator can compensate for the hysteresis

well and leave behind only the dynamics.

8.1.3 Controller Implementation for x-axis of the Nanoposi-
tioner

A PID controller is designed for the linear dynamics G(z) to represent the Gc(z) in

the block-diagram of the linear control system in Fig. 3.1(a). The transfer function

of the PID controller is:

Gc(z) = kp + ki
Tsz

z − 1
+ kd

z − 1

Tsz
, (8.5)
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Figure 8.10: (a) The inverse hysteresis compensator response. (b) The comparison
between the hysteresis response (blue line), the inverse hysteresis response and the
desired reference. (c) The hysteresis curves for the piezoactuator with (solid line) and
without (dash line) feedforward compensation. (d) The tracking error between the
compensation system output and the reference.

where Ts = 10 kHz is the sampling frequency, the controller parameters are tuned

following the process discussed in Section 7.4 to kp = 0.02, ki = 1000, kd = 0.0001.

The performance of the PID controller to a step reference is shown in Fig. 8.13.

The result shows the open-loop response without controller has significant overshoot
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Figure 8.11: Validating cascade model by compensating for hysteresis with triangular
trajectories as inputs. Comparison of output and error vs. time plots for: (a1) and
(a2) 1 Hz; (b1) and (b2) 10 Hz; (c1) and (c2) 50 Hz.

and noticeable creep. By applying the PID control, the overshoot and creep effect are

minimized. The performance of the PID controller for tracking a triangular trajectory

and a nanofabrication trajectory is discussed in Section 8.2.
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Figure 8.12: Validating cascade model by compensating for hysteresis with input
signals used for nanofabrication. Comparison of output and error vs. time plots for:
(a1) and (a2) 1 Hz; (b1) and (b2) 10 Hz; (c1) and (c2) 50 Hz.

The RC is designed with Gc(z) for the linear dynamics G(z). The design pro-

cess follows the procedure in Section 7.4 and the stability conditions provided in
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Figure 8.13: Performance of the PID controller for tracking step response.

Section 3.2. The low-pass filter is chosen as

Q(z) =
a

z + b
, with a = 0.2696 and b = −0.7304

for cutoff frequency of 500 Hz with sampling frequency of Ts = 10 kHz. The selection

of the cutoff frequency ωQ uses the phase response of the θT (ω) with different θ2(ω) as

shown in Fig. 8.14. The inset in Fig. 8.14 shows the ±90◦ crossover frequency versus

the phase lead parameter m2. From the phase response and the inset plot, when

there is no phase lead θ2(ω) contributed by the phase lead compensator P2(z) = zm2

(m2 = 0), the ±90◦ crossover frequency for θT (ω) + θ2(ω) is approximately 380 Hz.

This value sets the maximum cutoff frequency for the low-pass filter to be no higher

than 380 Hz and the relative maximum scan rate. However, when m2 = 1, the

maximum cutoff frequency of Q(z) can be about 800 Hz. Also the inset plot indicates

that, when the m2 > 1, the higher values of m2 show no improvement in the crossover

frequency. In the nanofabrication implementations, the chosen cutoff frequency for

Q(z) is 500 Hz and phase lead of m2 = 1 is used. Therefore, the maximum fabrication
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rate in the x-axis is chosen as 50 Hz. It is noted that for higher rate fabrication, the

cutoff frequency can be increased, but only up to 800 Hz when m2 = 1 (see Fig. 8.14).

The 500 Hz cutoff frequency was chosen because it provided a safety margin.
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Figure 8.14: Phase response of θT (ω) + θ2(ω), where the θ2(ω) is contributed by
the parameter m2 of phase lead compensator zm2 . The inset plot shows the cutoff
frequency versus the phase lead parameter m2. As m2 changes, the frequency range
for stability changes.

The RC gain krc and the m1 for zm1 are determined to be krc = 0.4 and m1 = 4

respectively for the system stability and tracking performances with the designed

Q(z) and m2 = 1. The values of krc and m1 are determined in the simulation to track

the nanofabrication signal [see Fig. 8.15] for ±19 µm scan range at 50 Hz for the best

tracking performance. The krc and m1 share the same tuning process. An example

result for optimizing the value of m1 is shown in Fig. 8.15(b). As shown in the figure,

the optimum value is m1 = 4 and this value is also used in the experiments discussed

below.

In experiments, the RC, PID controllers and the H−1 are implemented digitally

using the Matlab Simulink and xPC Target. To use xPC Target to implement con-

trollers, the control system is built in Matlab Simulink in discrete-time first on a host

computer, then the control system is compiled through xPC-Target Toolbox in Matlab
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Figure 8.15: (a) The reference trajectory of 50 Hz used in the experiments and sim-
ulations for m1 value determination. (b) The maximum tracking error versus the
parameter m1 of phase lead compensator P1(z) = zm1 .

to executable C-codes. Next, the C-codes is download through a crossover cable to

a Target computer booted by a Bootdisk created on the host computer. Finally, the

compiled digital control system is executed on the Target computer through a data

acquisition system with a closed loop sampling frequency of 10 kHz. This process is

briefly presented in Fig. 8.16.

8.1.4 Controller Implementation for y-axis of the Nanoposi-
tioner

For the nanofabrication experiments, the y-axis piezoactuator system is controlled

by a PID controller to compensate the dynamics and hysteresis effects. The transfer

function of the PID controller is:

Gc(z) = 4 + 12000
Tsz

z − 1
+ 0.08

z − 1

Tsz
, (8.6)

where Ts = 10 kHz is the sampling frequency, and the controller gains are tuned

experimentally. In implementation, the PID controller for y-axis is applied along
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Figure 8.16: An example xPC Target coding process: the C-code of the controllers is
generated in Matlab Simulink on a host computer, then is downloaded to the Target
computer for execution through a crossover cable.
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Table 8.1: Tracking error at last two periods of the triangular trajectory tracking
results.

Controller 1 Hz 10 Hz 50 Hz

emax erms emax erms emax erms

PID 1.8 1.49 4.3 3.12 10.6 7.59

PID+H−1 1.5 1.19 3.6 2.36 9.3 6.80

PID+RC 0.5 0.21 1.3 0.51 2.5 0.89

PID+RC+H−1 0.4 0.16 1.2 0.44 2.2 0.78

with the control system for x-axis using Matlab Simulink and xPC Target.

8.2 Experimental Tracking Results of the Nanofab-

rication Signals

To implement the repetitive control system for AFM-based nano-hole arrays fabrica-

tion, the performance of the control system for tracking triangular trajectories and

hole array fabrication trajectories is first validated. In experiments, the reference

signals are at 1 Hz, 10 Hz, and 50 Hz for ±19 µm range displacement [a full range

displacement]. The reference trajectories are passed through a two-pole zero-phase-

shift filter with a cutoff frequency of 500 Hz to remove high-frequency components

before applying it to the closed-loop system. The cutoff frequency for the low-pass

filter Q(z) in the RC loop is set at 500 Hz. The m2 = 1 was chosen to give a maximum

fabrication frequency of 50 Hz. The RC gain is chosen as krc = 0.4 and m1 = 4 for

the best performance and the stability conditions given by Eqs. (3.3) and (4.4).

The tracking results for the PID, PID with H−1, RC, and RC with H−1 for 38 µm

scanning at 50 Hz is presented in Fig. 8.17 and Fig. 8.18. The steady-state tracking

errors for the controllers scanning and fabricating at 1 Hz, 10 Hz, and 50 Hz are
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(a)

(b)

(c)

(d)

(e)

Figure 8.17: (a) Experimentally measured tracking results of triangular trajectory
at 50 Hz for PID, PID with H−1, RC, and RC with H−1. Experimentally measured
tracking error at 50 Hz comparing (b) PID with and without H−1; (c) PID and RC
(without H−1); (d) PID+RC and PID+RC+H−1; and (e) steady-state displacement
vs. time
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described in Table 8.1 and Table 8.2. In particular, the maximum error [emax(%)]

[Eq. (7.3)] and root-mean-squared error [erms(%)] [Eq. (7.5)] are reported. Figure 8.17

and Table 8.1 show the triangular trajectory tracking results, as well as the tracking

results for nanofabrication trajectory are in Fig. 8.18 and Table 8.2. Because the

action of the repetitive controller is delayed by one scan period, the tracking response

for the first period are similar for the PID and RC as shown in Fig. 8.17 and Fig. 8.18.

However, after the first period the RC begins to take action as illustrated by the

reduction in the tracking error from one cycle to the next. On the other hand, the

tracking error of the PID controller persists from one cycle to the next.

The 50 Hz scanning results shown in Figs. 8.17 and 8.18, and Tables 8.1 and 8.2

demonstrate that the RC controller reduces the maximum tracking error from 10.6%

to 2.5% compared to the PID for tracking triangular trajectory, and reduces the

maximum tracking error from 10.8% to 3.9% for tracking nanofabrication trajectory.

The reductions are 76.4% and 63.9% respectively. By adding the H−1 to the PID and

RC controllers, an additional reduction on the tracking error is achieved. For example,

by adding the H−1 to RC controller, the tracking error of PID controller decreases

from 10.6% to 2.2%, a total 79.3% reduction, for triangular trajectory tracking. For

the nanofabrication trajectory tracking, the total decrease is 65.4%, and the maximum

tracking error is only 3.74%. Therefore, the RC with H−1 enables precision tracking

and nanofabrication at higher scan rates, which reveals the implementation of RC

and H−1 to AFM-based nano-hole array fabrication can enhance the accuracy and

speed of the nanofabrication.

8.3 Nanofabrication Results

The remaining section of this chapter discusses nano-hole arrays pattern fabrication

on a PMMA film coated ZnO/Si substrate to validate the performance of the RC sys-
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Figure 8.18: (a) Experimentally measured tracking results of nanofabrication tra-
jectory at 50 Hz for PID, PID with H−1, RC, and RC with H−1. Experimentally
measured tracking error at 50 Hz comparing (b) PID with and without H−1; (c)
PID and RC (without H−1); (d) PID+RC and PID+RC+H−1; and (e) steady-state
displacement vs. time
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Table 8.2: Tracking error at last two periods of the nanofabrication signal tracking
results.

Controller 1 Hz 10 Hz 50 Hz

emax erms emax erms emax erms

PID 3.90 3.16 5.81 4.38 10.8 8.48

PID+H−1 3.62 2.64 4.96 3.68 10.1 7.80

PID+RC 0.91 0.40 1.93 0.75 3.90 1.52

PID+RC+H−1 0.87 0.34 1.85 0.69 3.74 1.46

tem on enhancing fabrication precision. By using these nano-hole arrays as templets,

ZnO nanowires can be controlled grown within these nano-holes on Si substrate by a

hybrid approach. The fabrication of the patterns requires the following process: (1)

coating zinc-oxide (ZnO) buffer layer onto the substrate, which is silicon (Si) wafer

in this study, as the seed for nanowire growth; (2) spin-coating the resist layer, poly-

methylmethacrylate (PMMA), onto the ZnO layer for patterning; and (3) patterning

the resist layer by force lithography using the nanofabrication system in Fig. 8.4. This

section is presented according to above process. Afterwards, the fabrication results

are quantified and discussed.

8.3.1 Step 1: Substrates Preparation for Nanofabrication

The aim of this step is to prepare PMMA coated ZnO/Si substrates for fabricating

nanno-hole arrays on the PMMA thin film. There are mainly two tasks, which are to

deposit ZnO layer to Si wafer, then to spin coat a PMMA resist layer on the surface

of ZnO/Si substrates.

The Si wafers are commercially available from UniversityWafer. The ZnO seed

layer with a thickness of around 40 nm is coated on the Si wafers for experiments. The

Si wafers [P/B (100) 1-10 ohm-cm SSP 380 µm PRIME] are type P with a diameter
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of 3′′ and a thickness of 380 µm. The ordination of the Si wafer is ⟨100⟩ and the

resistance is 1− 10 ohm-cm. The ZnO seed layer is deposited on the Si wafer by the

facility of UniversityWafer, and the ZnO/Si wafers are used as they are purchased.

Several sheets of ZnO/Si wafer are spin coated with PMMA film. The spin coat is

produced in a class 10 clean room of the Nanofabrication Laboratory at Pennsylvania

State University (Penn State). First of all, these ZnO/Si wafers are washed in acetone

with the aid of ultrasonic agitation for 10 minutes, then in isopropanol and distilled

water for another 10 minutes respectively. After the preliminary cleaning, the sub-

strates are placed in a steam of high purity nitrogen (N2) to dry. Next, the ZnO/Si

substrates are spin coated with PMMA. PMMA with a molecular weight of 15kg/mol

is used as received. A 1wt.% solution of PMMA in anisole is prepared, which is

generated using, for example, approximately 1 g of PMMA in 99 g of anisole. The

PMMA solution is then spin coated onto the ZnO/Si wafers in two-step spin, which

are 500 rpm for 40 s in the first step and 5000 rpm for another 40 s in the second

step. Afterwards, these PMMA coated wafers are split into 3 groups to soft bake at

75◦C, 100◦C, and 150◦C respectively for 30 minutes for different hardness of PMMA

films. The film thickness of PMMA coated on the ZnO/Si wafers are around 25 nm.

In the study, the PMMA coated ZnO/Si wafer baked at 75◦C are used, because of

the softness. The thickness of the PMMA film is measured by FESEM in the clean

room at Penn State and is verified by AFM in EASYLab at UNR as shown in the

coming section.

8.3.2 Step 2: Mechanical Scratching with AFM for Pattern
Design on PMMA Layer

All the nano-hole arrays are fabricated and imaged using the nanofabrication system

in Fig. 8.4 in a regular lab environment at room temperature. In fabrication and

imaging, the AFM scan head is operated in a static force mode with a constant force
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Figure 8.19: photographes of the ZnO/Si substrate coated with PMMA film with a
schematic diagram of each layer. (a) The PMMA coated ZnO/Si substrate on the
sample stage of the nanopositioner. (b) A photograph of the PMMA coated ZnO/Si
wafer. (c) A schematic diagram of the layers of the substrate.

loaded on the AFM tip. VistaprobesTM silicon tips (T190R-10, nanoScience) with a

radius of approximately 10 nm for the curvature of the tip and a spring constant of

approximately 48 N/m are employed for AFM mechanical lithography and imaging in

static force mode. The AFM scanner positions the cantilever/tip in vertical direction

(z-axis) to hold a certain force (load), and the nanopositioner drives the substrate in

lateral x and y directions to determine the location of the holes and in z-axis for the

AFM tip to punch holes.

Before the imaging and nanofabrication, a PMMA film coated ZnO/Si wafer is

cut into custom size to fit the sample platform of the nanopositioner. The wafer is

cut using a diamond scribe, and washed in 1% acetone with the aid of ultrasonic

agitation for 5 minutes, then in distilled water for another 5 minutes to remove the
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dust generated during the wafer cleaving. Then the substrate is adhered to the sample

holder of the nanopositioner by a double-side tape as shown in Fig. 8.6(a). The sample

holder is made from alumina ceramic sheet because the sheet has high mechanical

strength, density and flat surface to minimize the tilt of the substrate on it for high-

quality fabrication and imaging. The double-side tape is selected over other glues,

since using tapes makes the exchange of the substrate much easier. In this study,

the fabrication is operated in normal lab environment instead of clean room, and the

particles in air may deposit on the substrate surface, therefore a substrate is not used

in fabrication for a long time, and the exchange of the substrate is required.

Figure 8.20: Schematic plots of concept tasks for experimental nanofabrication. (a)
Calibration of the thickness of the PMMA film on the ZnO/Si substrate. (b) The
fabrication of nano-hole array on the PMMA film for ZnO nanowire growth. These
results are compared with the standard calibration sample for validation.

A schematic diagram of two main tasks in the nanofabrication experiments is

shown in Fig. 8.20. The PMMA thickness verification is a key factor for AFM-based
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force lithography to create through holes on PMMA film successfully. After the thick-

ness calibration, nano-hole arrays fabrication is performed at several writing speeds.

Before the thickness verification and nanofabrication, the topographical information

of the PMMA film is characterized by AFM to give an observation on the PMMA

film surface conditions. The results are show in Fig. 8.21. The plot (a) shows a

typical AFM topography image, from which it can be seen the color of the PMMA

surface is evenly distributed. It reflects the flatness of the surface. Also, a 3-D image

of the PMMA film in plot (b) shows the surface condition in another view. The

root-mean-square roughness for the PMMA film surface is approximately 0.84 nm.

To validate the thickness of the PMMA film spun on the ZnO/Si substrate using

AFM, an engraving force is estimated from the Sneddon formulism of indentation

based on the thickness of PMMA film first [189]. By calculation, the force is estimated

as 3 µN based the thickness of PMMA determined from FESEM (25 nm). In the AFM

system, this engraving force is caused by the bend of the cantilever. Therefore, the

force can be determined and monitored through the bend of the cantilever in z-axis.

The relation of the engraving force and the bend of the cantilever is described in

Fig. 8.22, and is estimated using the mathematical equations in Eq. (8.7) [190].

σmax =
P

k
and σmax =

Pl3

3EI
, (8.7)

where σmax is the maximum bend of the cantilever under the engraving force P , k

is the spring constant of the cantilever, l is the length of the cantilever as shown in

Fig. 8.22(a), E is the young’s modulus, and I is the moment of inertia. I = bh3/12,

where b and h is the width and thickness of the cantilever shown in Fig. 8.22(a).

According to the equation, the deflection at the tip end of the cantilever should be

around 71 nm for the cantilever to generate an engraving force of 3 µN. Figure 8.22(b)

shows the experimental deflection result of 71 nm for the cantilever in z-axis, which
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Figure 8.21: (a) Topography image of the PMMA film spun on the ZnO/Si substrate.
(b) A 3-D image of the PMMA surface. (c) The topological information of z-axis.
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is measured by operating the AFM cantilever in static force mode with a high PID

gain for z-axis controller, and is determined by comparing with the cantilever deflec-

tion output for measuring a calibrations sample with a feature height of 19 nm [see

Eq. (8.8)] with a small PID gain.

σz1

19 nm
=

Signal output of z -axis for σz1

Signal output of z -axis for 19 nm
, (8.8)

where σz1 represents the bend of the cantilever for an engraving force of 3 µN. In

fabrication experiments, the output of the cantilever in z-axis for a bend of 71 nm is

used as a feedback signal for the PID controller in z-axis to maintain an engraving

force of 3 µN.

l

P

δ

A

A

(a) 

Section A-A of cantilever 

h

b

(b) 

P

0 1 2
65

71

75

Time (s)

D
ef

l.
 o

f 
ca

n
ti

. 
(n

m
)

Figure 8.22: (a) The conceptual diagram of the force relative to the bend of the
cantilever, where P is the load, l is the length of the cantilever, h is the thickness of
the cantilever in the direction of load P , b is the width of the cantilever, and δ is the
deflection of the cantilever under the load P . (b) The experimental deflection result
of cantilever for a static force of 3 µN for nanofabrication.

Now, the thickness of the PMMA film is characterized through scratching the
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film. The film is scratched using a VistaprobesTM Silicon cantilever/tip (a radius of

approximately 10 nm for the tip curvature), and the tip is positioned by the AFM

scan head in x, y, and z-axes. These scratches are produced with a engraving load

of 3 µN at the tip end of the cantilever and with the z-axis controller disabled. The

images of the scratched surface are presented in Fig. 8.23(a1), (b1) and (c1), and the

depth of the scratch [plots (a2), (b2), and (c2)] is determined by comparing the z-axis

difference of the scratched feature images with the z-axis difference of the calibration

sample images as shown in Fig. 8.23(e1) and (e2). From these image results, it can

be seen that the vertical distance between the scratched surface and the unscratched

surface is about 19 nm, when it is scratched once, as shown in plots (a1) and (a2).

By scratching two more times, the vertical distance is increased to 25 nm [see plots

(b1) and (b2)]. Then another two more trials is added, and the distance becomes

28 nm as shown in plots (c1) and (c2). However, by increasing the trails from 5

to 8 does not enlarge the vertical distance between the scratched and unscratched

surface, therefore the PMMA film is scratched through, and the AFM tip touches the

ZnO surface. Finally, the thickness of the PMMA film is around 28 nm in the lab

environment.

8.3.3 Experimental Nanofabrication Results

With the use of the calibrated engraving force 3 µN , the PMMA film coated ZnO/Si

substrate is fabricated by a VistaprobesTM AFM tip to form a nano-hole arrays pat-

tern. In fabrication experiments, the nanofabrication signals in Fig. 8.1(b) to (d)

are applied to the z, x, and y-axes of the nanopositioner respectively to position the

PMMA film coated ZnO/Si substrate relative to the AFM tip. The designed RC and

P-I inverse hysteresis compensator are implemented to the x-axis of the piezo-based

long-range nanopositioner to demonstrate its ability on ensuring the even spacing

and size of nano holes. The performance of RC with inverse hysteresis compensator
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Figure 8.23: The thickness measurement of a PMMA film by AFM scratching. (a1)
and (a2) The image and line map of a PMMA surface scratched for 1 trial. (b1) and
(b2) The image and line map of a PMMA surface scratched for 3 trial. (c1) and (c2)
The image and line map of a PMMA surface scratched for 5 trial. (d1) and (d2) The
image and line map of a PMMA surface scratched for 8 trial. (e1) and (e2) The image
and line map of a standard calibration sample with a feature hight of 19 nm.
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is compared with PID + H−1 and open-loop results to reveal the benefit of RC and

inverse hysteresis compensator in precise positioning in AFM based nanofabrication.

On the slow scanning y-axis, a PID controller is applied to ensure the fabrication

accuracy of the hole array in y-axis. However, the positioning accuracy in the fast

scanning x-axis of the piezo-based nanopositioner is the focus of this study.

The AFM images of the PMMA film surface after patterning are shown in Fig. 8.24.

These images are scanned using the NanoSurf AFM scan head and nanopositioner.

The AFM scan head is operated in static force mode with a constant load of 10 nN

on the AFM tip and with the z-axis PID controller on. The z-axis controller output

to the cantilever is collected as the topological information of the PMMA film surface

to create images. The nanopositioner drives the substrate in x, y-axis for scanning.

The scanning ranges in x and y-axes is 4×4 µm. The scanning rate in x-axis is 0.1 Hz

for imaging.

The images in Fig. 8.24 show nano-hole arrays fabricated without controller (open-

loop) and with PID + H−1 and RC + H−1 at scanning rates of 1, 10, and 50 Hz.

The scanning rate represents the frequency of the nanofabrication signal applied to

the x-axis, the fast scanning axis. According to these scanning rates, the fabrication

speeds in x-axis are 8 µm/s, 80 µm/s, and 400 µm/s at 1, 10, and 50 Hz respectively,

which results in the fabrication speeds for z-axis of the nanopositioner are 2.66 µm/s,

26.6 µm/s, and 133 µm/s. From the image results, it can be observed the effect of

the fabrication rate on the quality of the fabricated holes. For example, the fasciated

holes of the open-loop at 1 Hz are nearly equally arranged, and the size of the holes

are closely even. However, with the fabrication rate increased, for example at 50 Hz,

the AFM tip begins to cause damage round the desired nano-holes on the PMMA

surface, and holes are not evenly spaced any more. The damage is caused by the

vibration of the piezoactuator in x-axis of the nanopositioner during the fabrication.
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Figure 8.24: Images of nanofabrication results, which compare the fabricated results
from open-loop, PID with hysteresis compensator, and RC with hysteresis compen-
sator. The images are measured using the Nanosurf AFM scan head and the long-
range nanopositioner at 0.1 Hz.

By implementing the PID with inverse hysteresis compensator, the quality of the

fabricated nano-hole arrays is increased. However, the enhancement on the quality is

limited, for example at 50 Hz, the damage caused by the AFM tip is still significate.

By adding RC to the PID+H−1 control system, an additional reduction on the damage
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to the PMMA surface and the positioning error of the hole location is achieved, when

the operating cycle increased. The performances of the controllers on reducing the

positioning error of nano-holes and the damages to the PMMA surface are further

quantified in the next section. As well as the depth of the fabricated holes.

8.3.4 Quantifications of the Fabricated Results

As mentioned before, to develop the ZnO naowaire generator, a precision control

of the morphology (shape and size) of the ZnO nanowire, and the alignment and

position of the ZnO nanowire arrays are required [191]. The well alignment and

morphology of the ZnO nanowire arrays are determined by the nano-holes array

patterns. Therefore, the fabricated nano-hole arrays patterns are quantified in this

section in term of alignment, morphology (size), and depth.

The quantification results on alignment and morphology (size) are presented in

Fig. 8.25 [1 Hz], Fig. 8.26 [10 Hz] and Fig. 8.27 [50 Hz]. These figures show the

fabricated nano-hole arrays results from open-loop [plots (a1) to (a3)], PID+H−1

[plots (b1) to (b3)] and RC+H−1 [plots (c1) to (d3)]. Specifically, the plots (a1),

(b1), and (c1) show the AFM images of the fabricated 4× 4 (columns × lines) nano-

hole arrays, as well as compare the center of the fabricated hole [green dot] with the

desired location of the center [brown dot] to show the performance of RC+H−1 on

enhancing the alignment accuracy. In these images, the labels No.1.1 and No.4.4

represent the starting and ending points of the fabrication respectively, which tells

the AFM tip pouched the first hole at No.1.1 and the last one at No.4.4 in the

nanofabrication following the sequence:

No.1.1 −→ No.1.2 −→ ..No.1.4 −→ No.2.1.. −→ No.2.4.. −→ No.3.4.. −→ No.4.4

The ID for each hole is defined as No.m.n, wherem,n = 1, 2, 3, 4 represent the location
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of a hole in line (x-axis direction) and column (y-axis direction). The center of each

fabricated nano-hole is defined in Matlab by the deepest location of the fabricated

hole. The desired locations of the centers of the holes are plotted on the top of the

AFM image of the fabricated nano-hole arrays in Matlab.

The matching errors between the real hole center and the desired hole center are

presented in plots (a2), (b2), and (c2) for open-loop, PID+H−1, and RC+H−1 control

respectively. The matching error is defined by:

ecenter =
D1

D2

,

where D1 is the distance between the real center and idea center of a hole in x -axis,

and D2 is the idea space between neighbor holes in x -axis. From the plots, it can

be seen the RC+H−1 enhances the alignment accuracy by reducing the centering

error between the fabricated hole center and the desired hole center. For example,

at 50 Hz fabrication [see Fig. 8.27], by applying PID+H−1 control, the maximum

centering error of open-loop is reduced from 19.7% to 2.45%, an approximately 87.5%

reduction. Then adding RC to the PID+H−1 control system contributes an additional

81.6% reduction on the centering error to the PID+H−1 control system. By RC+H−1

control, the centering difference between the real and idea locations at steady-stage

is only about 4.5 nm comparing to the idea spacing of 1 µm, a centering error of

approximately 0.45%.

The quantification on the morphology of the fabricated holes is achieved through

determining the size and shape of the fabricated holes in x-y surface. The shape

of the nano-hole can be determined through the shape of the AFM tip used in the

fabrication. For example, rectangular shape holes can be fabricated using an AFM

tip with a rectangular shape. The quantification results on the size of the nano-hole

are shown in plots (a3), (b3) and (c3) of Figs. 8.25, 8.26 and 8.27 for open-loop,
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PID+H−1 and RC+H−1 respectively. From the Fig. 8.24, it can be visually seen

the effects of fabrication speed and the dynamics and hysteresis of the piezo-based

nanopositioner on the size of the fabricated holes; as well as the performance of the

PID+H−1 and RC+H−1 on reducing the surface damage caused by the AFM tip

through compensating the dynamics and hysteresis effects.

The quantification results in plots (a3), (b3), and (c3) are calculated by comparing

the size of the fabricated holes with the size of hole No.1.1 using the following equation:

Hole size ratio =
Sm.n

S1.1

,

where Sm.n represents the size of any hole in the fabricated 4 × 4 nano-hole arrays

with m,n = 1, 2, 3, 4, and S1.1 is the size of the hole No.1.1. The size of the hole is

calculated following the logic described in Fig. 8.28. The hole No.1.1 is selected as a

reference hole for size quantification, because the hole No.1.1 as the starting point of

the fabrication is not affected by the dynamics and hysteresis of the piezoactuator.

Therefore, ideally, all holes in the 4 × 4 nano-hole arrays should have the same size

and shape as the hole No.1.1. The quantification results show that the RC+H−1

reduces the surface damage around the fabricated hole. For example, at 50 Hz, the

maximum hole size ratio of open-loop fabrication is about 3.5. By adding PID+H−1,

the maximum hole size ratio is reduce to 2.5. Then adding the RC to PID+H−1

reduces the hole size ratio to 1.28 at the steady stage (the line 3 and line 4), which

means, by using RC + H−1, the surface damage caused by the AFM tip around the

fabricated hole is about 28% of the desired hole size. However, with no compensation

of the hysteresis and dynamics, the surface damage is about 250% of the desired hole

size.

The quantification on the depth of the fabricated nano-holes is shown in Fig. 8.29

for fabrication at 1 Hz, Fig. 8.30 for 10 Hz fabrication, and Fig. 8.31 for 50 Hz
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fabrication. The plots (a1), (b1) and (c1) are 3-D images of the fabricated hole arrays

of open-loop, PID+H−1, and RC+H−1 respectively. The plots (a2), (b2) and (c2)

are the depth of holes in an example line, which are results of open-loop, PID+H−1,

and RC+H−1 control system respectively. The results show that, by driving the z-

axis stage of the piezo-based nanopositioner to move in a range of 100 nm, the hole

depth of 28 nm is achieved at different fabrication rate with or without controller.

However, the shape of the cross-section of the fabricated hole bottom is changing

while the fabrication speed is increasing. For example, the bottom of the open-loop

fabricated hole changes from a desired dot shape [see plots (a2) in Fig. 8.29] into

a line shape [see plots (a2) in Fig. 8.31] when the fabrication rate increases from

1 Hz to 50 Hz. The changing in the shape is caused by the dynamics and hysteresis

in the piezoactuator. The shape of the bottom of the hole will affect the shape

and consequently the property of the grown ZnO nanowire. By applying PID+H−1,

the shape of the cross-section of the hole at high fabrication rate begins to recover.

However, there are still line shapes in some of the fabricated holes [see plots (b2) in

Fig. 8.31]. Adding RC to the PID+H−1, the desired dot shape for the bottom of the

fabricated hole is achieved at steady-stage [see plots (c2) in Fig. 8.31].

8.4 Summary

In summary, this chapter discussed the implementation of the RC and the inverse P-I

hysteresis compensator for AFM-based fabrication of nano-hole arrays. The process

involves modeling the hysteresis and dynamics of the piezo-based long-range nanopo-

sitioner, design of the inverse hysteresis compensator, PID, and RC controllers, and

preparation of PMMA coated ZnO/Si substrate. The experimental results show that

the proposed RC and inverse P-I hysteresis compensator can achieve high-precision

positioning for fabricating nano-hole arrays patterns. The results show good align-
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ment, positioning, and morphology of the nano-holes for ZnO nanowire growth. Ad-

ditionally, when compared to conventional PID feedback approach, the RC approach

provides additional error reduction with respect to feature alignment and morphology.

It is demonstrated that the RC approach can be used in AFM-based nanofabrication,

where tracking of periodic trajectories is required.
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Figure 8.25: Fabrication results at 1 Hz: (a1) Image of the fabricated results of open-
loop; (a2) the matching error between the real center of the fabricated holes and the
desired hole center; (a3) the ratio of the size of the fabricated holes compared with
the hole No.1.1. (b1) and (c1) Images of the fabricated results of PID + H−1 and
RC + H−1 respectively; (b2) and (c2) the matching error between the real center of
the fabricated holes and the desired hole center for PID and RC respectively; (b3)
and (c3) the ratio of the size of the fabricated holes compared with the hole No.1.1
for PID + H−1 and RC + H−1 respectively.
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Figure 8.26: Fabrication results at 10 Hz: (a1) Image of the fabricated results of
open-loop; (a2) the matching error between the real center of the fabricated holes
and the desired hole center; (a3) the ratio of the size of the fabricated holes compared
with the hole No.1.1. (b1), (b2), and (b3) are the image, matching error of centering,
and hole size results from PID + H−1. (c1), (c2), and (c3) are from RC + H−1.
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Figure 8.27: Fabrication results at 50 Hz: (a1), (a2), and (a3) are the image, matching
error of centering, and hole size results from open-loop. (b1), (b2), and (b3) are from
PID + H−1. (c1), (c2), and (c3) are from RC + H−1.
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Figure 8.28: Schematic diagram of the logic for calculating the size of the fabricated
holes.
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Figure 8.29: Depth calibration for fabricated holes at 1 Hz. (a1) and (a2) The 3-D
image of the fabricated holes of open-loop and the depth of an example hole line.
(b1) and (b2) The 3-D image of the fabricated holes of PID+H−1 and the depth of
an example hole line. (c1) and (c2) The 3-D image of the fabricated holes of RC+H−1

and the depth of an example hole line.
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Figure 8.30: Depth calibration for fabricated holes at 10 Hz. (a1), (b1), and (c1) The
3-D image of the fabricated holes of open-loop, PID+H−1, and RC+H−1 respectively.
(a2), (b2), and (c2) The depth of example holes line of open-loop, PID+H−1, and
RC+H−1 respectively.
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Figure 8.31: Depth calibration for fabricated holes at 50 Hz. (a1), (b1), and (c1) The
3-D image of the fabricated holes. (a2), (b2), and (c2) The depth of example holes
line.
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Chapter 9

Conclusions and Suggested Future

Work

This dissertation studied high-precision tracking of periodic motion trajectories in

hysteretic systems, in particular, piezo-based nanopositioners. To precisely track

periodic motion trajectories, repetitive control (RC), which exploits the process of

repetition, is designed. First, an enhanced RC and an odd-harmonic RC were de-

signed for linear dynamics to serve as a starting point for designing RC for hysteretic

systems. In this process, the stability and performances of the RCs for linear dy-

namics were analyzed, and stability conditions were developed to ensure the linear

RC system is stable, as well as the tracking performance is enhanced by the addition

of phased-lead compensators and RC gains. Second, the effect of hysteresis on RC

closed-loop system stability was analyzed. The hysteresis of the piezoactuator was

modeled using a Prandtl-Ishlinskii hysteresis model. Then the effect of hysteresis on

the RC closed-loop stability was analyzed and the allowable size of the hysteresis

nonlinearity for a stable RC was quantified. In the stability analysis, conditions were

developed for the bounded-input bounded-output (BIBO) stability of the repetitive

controlled hysteretic system in the L2-norm sense. Combining this result with the
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Small-Gain Theorem, bounds on the hysteresis nonlinearity were determined to guar-

antee closed-loop stability. When the hysteresis effect exceeds the maximum bound,

a new inverse-hysteresis feedforward controller based on the Prandtl-Ishlinskii hys-

teresis model was developed to compensate hysteresis for closed-loop stability and

tracking performances. Finally, the control approach and the developed stability

theorem were validated experimentally on a custom-designed piezoactuator driven

nanopositioning stage. Experimental results showed that the enhanced RC design

ensured that the closed-loop RC system was stable. The experimental tracking and

nanofabrication results also showed that the repetitive control system can reduce the

repeating tracking error and enhance the positioning accuracy in AFM-based nano-

hole array fabrication. For example, the tracking results at 1 kHz show that by adding

hysteresis compensation, a 14% improvement in the stability margin and rate of con-

vergence of the RC was achieved. Likewise, the enhanced RC reduced the repeating

tracking error of PI control from 13.7% to 3.9% (using RC with hysteresis compen-

sation), a 71% reduction. The nanofabrication results at 50 Hz showed that adding

enhanced RC to PID+H−1 control system reduced the location error of the fabricated

holes by 81.6%. The surface damage was decreased from 150% (PID+H−1) to about

28%. Both the tracking and nanofabrication results underscore the benefits of RC

with hysteresis compensation on reducing repeating tracking error and minimizing

the effect of hysteresis.

Suggested future work includes growing and quantifying the structural and optical

properties of the ZnO nanowire arrays to further determinate the quality of the nano-

hole arrays pattern fabricated using AFM. The growth of the ZnO nanowire arrays

includes the nanowires growth using a chemical methods and the remove of the PMMA

layer from the substrate through chemical etching. Specifically, the growth of ZnO

nanowires need to be produced in solution with zinc hexahydrate (Zn(NO3)·6H2O)
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and water-soluble hexamethylene tetraammine (C6H12N4) as reagents [184]. This

chemical reaction process is less complex, but the growth results can be affected by

serval parameters, such as pH of the solution, the temperature of the flask and the

reaction time. After the growth of the ZnO nanowire arrays, the PMMA layer can

be removed using isopropyl alcohol. The quantification on the structure of the grown

ZnO nanowire will be to determine the length, diameter and the morphology of the

fabricated ZnO nanowire using a field emission scanning electron microscopy (FE-

SEM). The optical property quantification is to test the photoluminescence spectra

of the grown nanowires through the UV emission the fabricated nanowires.

Additional work can also include implementing the repetitive control system on

other types of AFM based nanofabrication, such as AFM-based ferroelectric mate-

rials polarizing and AFM-based nanooxidation, while requires using periodic motion

trajectories.



155

Bibliography

[1] G. M. Clayton, S. Tien, K. K. Leang, Q. Zou, and S. Devasia, “A review of

feedforward control approaches in nanopositioning for high speed SPM,” ASME

J. Dyn. Syst. Meas. and Cont., Special issue on Dynamic Modeling, Control,

and Manipulation at the Nanoscale, vol. 131, no. 6, p. 061101 (19 pages), 2009.

[2] S. O. R. Moheimani and A. J. Fleming, Piezoelectric transducers for vibration

control and damping (advances in industrial control). Springer, 2006.

[3] D. Lagoudas, Shape Memory Alloys: Modeling and Engineering Applications.

New York: Springer, 2008.

[4] G. Song, B. Kelley, and B. N. Agrawal, “Active position control of a shape

memory alloy wire actuated composite beam,” Smart Materials and Structures,

vol. 9, pp. 711–716, 2000.

[5] X. Tan and J. S. Baras, “Modeling and control of hysteresis in magnetostrictive

actuators,” Automatica, vol. 40, pp. 1469 – 1480, 2004.

[6] R. Wiesendanger, Scanning probe microscopy and spectroscopy. Cambridge:

Cambridge University Press, 1994.

[7] U. Aridogan, Y. Shan, and K. K. Leang, “Design and analysis of discrete-time

repetitive control for scanning probe microscopes,” ASME J. Dyn. Syst. Meas.



156

and Cont., Special issue on Dynamic Modeling, Control, and Manipulation at

the Nanoscale, vol. 131, p. 061103 (12 pages), 2009.

[8] Y. Shan and K. K. Leang, “Dual-stage repetitive control for high-speed

nanopositioning,” in IFAC Symposium on Mechatronic Systems and ASME Dy-

namic Systems and Control Conference (DSCC), Invited session on Micro- and

Nanoscale Dynamics and Control, Cambridge, Massachusetts, USA, 2010.

[9] T. Inoue, M. Nakano, and S. Iwai, “High accuracy control of a proton syn-

chrotron magnet power supply,” in Proc. 8th World Congr. IFAC, vol. 20, 1981,

pp. 216 – 221.

[10] S. Hara, Y. Yamamoto, T. Omata, and M. Nakano, “Repetitive control system:

a new type servo system for periodic exogenous signals,” IEEE Trans. Autom.

Cont., vol. 33, no. 7, pp. 659 – 668, 1988.

[11] K. K. Leang, Q. Zou, and S. Devasia, “Feedforward control of piezoactuators in

atomic force microscope systems: inversion-based compensation for dynamics

and hysteresis,” IEEE Cont. Syst. Mag., Special Issue on Hysteresis, vol. 29,

no. 1, pp. 70 – 82, 2009.

[12] D. Croft, G. Shed, and S. Devasia, “Creep, hysteresis, and vibration compensa-

tion for piezoactuators: atomic force microscopy application,” ASME J. Dyn.

Syst., Meas., and Control, vol. 123, no. 1, pp. 35–43, 2001.

[13] M.-S. Tsai and J.-S. Chen, “Robust tracking control of a piezoactuator using a

new approximate hysteresis model,” ASME J. Dyn. Syst., Meas., Control, vol.

125, no. 1, pp. 96–102, 2003.

[14] R. Cross, Unemployment, hysteresis, and the natural rate hypothesis. New

York: Basil Blackwell Ltd., 1988.



157

[15] D. C. Jiles and D. L. Atherton, “Theory of ferromagnetic hysteresis,” J. Mag-

netism and Magnetic Materials, vol. 61, pp. 48–60, 1986.

[16] P. J. Chen and S. T. Montgomery, “A macroscopic theory for the existence of

the hysteresis and butterfly loops in ferroelectricity,” Ferroelectrics, vol. 23, pp.

199–207, 1980.

[17] H. Cao and A. G. Evans, “Nonlinear deformation of ferroelectric ceramics,” J.

Amer. Ceram. Soc., vol. 76, pp. 890–896, 1993.

[18] I. D. Mayergoyz, Mathematical models of hysteresis. New York: Springer-

Verlag, 1991.

[19] W. P. Mason, “Quartz crystal applications,” in Quartz crystals for electrical

circuits, R. A. Heising, Ed. New York: D. Van Nostrand Co., Inc., 1946, pp.

11 – 56.

[20] A. Ballato, “Piezoelectricity: history and new thrusts,” in IEEE Ultrasonics

Symposium, 1996, pp. 575–583.

[21] W. G. Cady, Piezoelectricity. New York: McGraw-Hill, 1946.

[22] D. Berlincourt, “Piezoelectric ceramics: characteristics and applications,” J.

Acoust. Soc. Am., vol. 70, no. 6, pp. 1586–1595, 1981.

[23] T. G. King, M. E. Preston, B. J. M. Murphy, and D. S. Cannell, “Piezoelectric

ceramic actuators: a review of machinery applications,” Precision Engineering,

vol. 12, no. 3, pp. 131–136, 1990.

[24] C. B. Sawyer, “The use of rochelle salt crystals for electrical reproducers and

microphones,” Proceedings of the Institute of Radio Engineers, vol. 19, no. 11,

pp. 2020 – 2029, 1931.



158

[25] L. APC International, Piezoelectric ceramics: principles and applications.

Mackeyville, PA: APC International, Ltd., 2002.

[26] C. J. Chen, “Electromechanical deflections of piezoelectric tubes with quartered

electrodes,” Appl. Phys. Lett., vol. 60, no. 1, pp. 132–134, 1992.

[27] J. V. Ramsay and E. G. V. Mugridge, “Barium titanate ceramics for fine-

movement control,” J. Sci. Instrum., vol. 39, pp. 636 – 637, 1962.

[28] T. Ando, N. Kodera, D. Maruyama, E. Takai, K. Saito, and A. Toda, “A

high-speed atomic force microscope for studying biological macromolecules in

action,” Jpn. J. Appl. Phys. Part 1, vol. 41, no. 7B, pp. 4851 – 4856, 2002.

[29] G. Schitter, K. J. Astrom, B. E. DeMartini, P. J. Thurner, K. L. Turner,

and P. K. Hansma, “Design and modeling of a high-speed afm-scanner,” IEEE

Trans. Cont. Sys. Tech., vol. 15, no. 5, pp. 906 – 915, 2007.

[30] K. K. Leang and A. J. Fleming, “High-speed serial-kinematic AFM scanner:

design and drive considerations,” in American Control Conference, Invited Ses-

sion on Modeling and Control of SPM, Seattle, WA, USA, 2008, pp. 3188 –

3193.

[31] M. J. Rost, L. Crama, P. Schakel, E. van Tol, G. B. E. M. van Velzen-Williams,

C. F. Overgauw, H. ter Horst, H. Dekker, B. Okhuijsen, M. Seynen, A. Vi-

jftigschild, P. Han, A. J. Katan, K. Schoots, R. Schumm, W. van Loo, T. H.

Oosterkamp, and J. W. M. Frenken, “Scanning probe microscopes go video rate

and beyond,” Rev. Sci. Instr., vol. 76, pp. 053 710–1 – 053 710–9, 2005.

[32] A. V. Srinivasan and D. M. McFarland, Smart structures: analysis and design.

New York: Cambridge University Press, 2001.



159

[33] S. Stilson, A. McClellan, and S. Devasia, “High-speed solution switching using

piezo-based micro-positioning stages,” in Proc. American Control Conference,

Arlington, VA, 2001, pp. 2238–2243.

[34] R. B. Evans, J. S. Griesbach, and W. C. Messner, “Piezoelectric microactuator

for dual stage control,” IEEE Trans. Magnetics, vol. 35, no. 2, pp. 977–982,

1999.

[35] J.-H. Park, K. Yoshida, and S. Yokota, “A piezoelectric micropump using reso-

nance drive: proposal of resonance drive and basic experiments on pump char-

acteristics,” in Proc. of the 1997 ASME Inter. Mech. Eng. Congress and Expo-

sition: The Fluid Power and Systems Technology Division, vol. 4, Dallas, TX,

1997, pp. 77–82.

[36] C. F. Quate, “Scanning probes as a lithography tool for nanostructures,” Sur-

face Science, vol. 386, pp. 259–264, 1997.

[37] S. M. Salapaka and M. V. Salapaka, “Scanning probe microscopy,” IEEE Con-

trol Systems Magazine, vol. 28, no. 2, pp. 65 – 83, 2008.

[38] G. Binnig and C. F. Quate, “Atomic force microscope,” Phys. Rev. Lett., vol. 56,

no. 9, pp. 930–933, 1986.

[39] S. Kasas, N. H. Thomson, B. L. Smith, P. K. Hansma, J. Miklossy, and H. G.

Hansma, “Biological applications of the afm: from single molecules to organs,”

Int. J. of Imaging Syst. and Technol., vol. 8, no. 2, pp. 151–161, 1997.

[40] N. Jalili and K. Laxminarayana, “A review of atomic force microscopy imaging

systems: application to molecular metrology and biological sciences,” Mecha-

tronics, vol. 14, no. 8, pp. 907 – 945, 2004.



160

[41] Q. Tang, S. Shi, and L. Zhou, “Nanofabrication with atomic force microscopy,”

J. Nanosci. Nanotech., vol. 4, pp. 946 – 963, 2004.

[42] Y. Chen and A. Pepin, “Nanofabrication: Conventional and nonconventional

methods,” Electrophoresis, vol. 22, pp. 187 –207, 2001.

[43] G. M. Whitesides, J. Mathias, and C. Seto, “Molecular self-assembly and

nanochemistry: a chemical strategy for the synthesis of nanostructures,” Sci-

ence, vol. 254, no. 5036, pp. 1312 – 1319, 1991.

[44] D. Pisignano, L. Persano, M. Raganato, P. Visconti, R. Cingolani, G. Bar-

barella, L. Favaretto, and G. Gigli, “Room-temperature nanoimprint lithogra-

phy of non-thermoplastic organic films,” Adv. Mater., vol. 16, no. 6, pp. 525 –

529, 2004.

[45] F. Giessibl, “Advances in atomic force microscopy,” Rev. Mod. Phys., vol. 75,

no. 3, pp. 949 – 983, 2003.

[46] F. J. Rubio-Sierra, W. M. Heckl, and R. W. Stark, “Nanomanipulation by

atomic force microscopy,” Adv. Engr. Mater., vol. 7, no. 4, pp. 193 – 196, 2005.

[47] R. Magno and B. R. Bennelt, “Nanostructure patterns written in III-V semi-

conductors by an atomic force microscope,” Appl. Phys. Lett., vol. 70, no. 14,

pp. 1855 – 1857, 1997.

[48] L. G. Rosa and J. Liang, “Atomic force microscope nanolithography: dip-pen,

nanoshaving, nanografting, tapping mode, electrochemical and thermal nano-

lithography,” J. Phys., vol. 21, no. 48, pp. 483 001 – 483 015, 2009.

[49] L. B. and S. D., “Nanooxidation of silicon with an atomic force microscope:

A pulsed voltage technique,” Appl. Phys. Lett., vol. 74, no. 26, pp. 123 257 –

123 260, 1999.



161

[50] R. D. Piner, J. Zhu, F. Xu, S. Hong, and C. A. Mirkin, “Dip-pen nanolithog-

raphy,” Science, vol. 283, pp. 661 – 663, 1999.

[51] Y. Kim and C. M. Lieber, “Machining oxide thin films with an atomic force

microscope: pattern and object formation on the nanometer scale,” Science,

vol. 257, pp. 375 – 377, 1992.

[52] P. E. Sheehan and C. M. Lieber, “Nanotribology and nanofabrication of MoO3

structures by atomic force microscopy,” Science, vol. 272, no. 5265, pp. 1158 –

1161, 1996.

[53] R. Luthi, E. Meyer, H. Haefke, L. Howald, W. Gutmannsbauer, and H.-J.

Guntherodt, “Sled-type motion on the nanometer scale: Determination of dis-

sipation and cohesive energies of C60,” Science, vol. 266, no. 5193, pp. 1979 –

1981, 1994.

[54] T. Junno, K. Deppert, L. Montelius, and L. Samuelson, “Controlled manipula-

tion of nanoparticles with an atomic force microscope,” Applied Physics Letters,

vol. 66, no. 26, pp. 3627 – 3629, 1995.

[55] C. Baur, B. C. Gazen, B. Koel, T. R. Ramachandran, A. A. G. Requicha, and

L. Zini, “Robotic nanomanipulation with a scanning probe microscope in a

networked computing environment,” J. Vac. Sci. Technol. B, vol. 15, no. 4, pp.

1577–1580, 1997.

[56] T. R. Ramachandran, C. Baur, A. Bugacov, A. Madhukar, B. E. Koel, A. Re-

quicha, and C. Gazen, “Direct and controlled manipulation of nanometer-

sized particles using the non-contact atomic force microscope,” Nanotechnology,

vol. 9, no. 3, pp. 237 – 245, 1998.



162

[57] S. L. Brandow, W. J. Dressick, C. S. Dulcey, T. S. Koloski, L. M. Shirey,

J. Schmidt, and J. M. Calvert, “Nanolithography by displacement of catalytic

metal clusters using an atomic force microscope tip,” J. Vac. Sci. Technol. B,

vol. 15, no. 5, pp. 1818 – 1825, 1997.

[58] D. Q. Yang and E. Sacher, “Local surface cleaning and cluster assembly using

contact mode atomic force microscopy,” App. Surf. Sci., vol. 210, no. 3-4, pp.

158 – 164, 2003.

[59] D. M. Schaefer, R. Reifenberger, A. Patil, and R. P. Andres, “Fabrication of

two-dimensional arrays of nanometer-size clusters with the atomic force micro-

scope,” Appl. Phys. Lett., vol. 66, no. 8, pp. 1012 – 1015, 1995.

[60] R. Resch, C. Baur, A. Bugacov, B. E. Koel, A. Madhukar, A. A. G. Requicha,

and P. Will, “Building and manipulating three-dimensional and linked two-

dimensional structures of nanoparticles using scanning force microscopy,” Lang-

muir, vol. 14, no. 23, pp. 6613 – 6616, 1998.

[61] P. Guthner and K. Dransfeld, “Local poling of ferroelectric polymers by scan-

ning force microscopy,” Appl. Phys. Lett., vol. 61, no. 9, pp. 1137 – 1139, 1992.

[62] O. Kolosov, A. Gruverman, J. Hatano, K. Takahashi, and K. Tokumoto,

“Nanoscale visualization and control of ferroelectric domains by atomic force

microscopy,” J Mater Process Technol, vol. 74, no. 21, pp. 4309 – 4312, 1995.

[63] C. H. Ahn, T. Tybell, L. Antognazza, K. Char, R. H. Hammond, M. R. Beasley,

O. Fischer, and J.-M. Triscone, “Local, nonvolatile electronic writing of epitaxial

Pb(Zr0.52Ti0.48)O3/SrRuO3 heterostructures,” Science, vol. 16, pp. 1100 – 1103,

1997.



163

[64] T. Hidaka, T. Maruyama, M. Saitoh1, N. Mikoshiba, M. Shimizu, T. Shiosaki,

L. A. Wills, R. Hiskes, S. A. Dicarolis, and J. Amano, “Formation and obser-

vation of 50 nm polarized domains in PbZr1−xTixO3 thin film using scanning

probe microscope,” Appl. Phys. Lett., vol. 68, no. 17, pp. 2358 – 2359, 1996.

[65] T. Tybell, C. H. Ahn, and J.-M. Triscone, “Ferroelectricity in thin perovskite

films,” Appl. Phys. Lett., vol. 75, no. 6, pp. 856 – 858, 1999.

[66] X. Q. Chen, H. Yamada, T. Horiuchi, K. Matsushige, S. Watanabe, M. Kawai,

and P. S. Weiss, “Surface potential of ferroelectric thin films investigated by

scanning probe microscopy,” J. Vac. Sci. Technol. B, vol. 17, no. 5, pp. 1930

–1934, 1999.

[67] C. Durkan, M. E. Welland, D. P. Chu, and P. Migliorato, “Scaling of piezoelec-

tric properties in nanometre to micrometre scale,” Electronics Letters, vol. 36,

no. 18, pp. 1538 – 1539, 2000.

[68] S. F. Lyuksyutov, R. A. Vaia, P. B. Paramonov, S. Juhl, L. Waterhouse, R. M.

Ralich, G. Sigalov, and E. Sancaktar, “Electrostatic nanolithography in poly-

mers using atomic force microscopy,” Nature Materials, vol. 2, pp. 468 – 472,

2003.

[69] Y. Yan, T. Sun, Y. Liang, and S. Dong, “Investigation on afm-based

micro/nano-cnc machining system,” International Journal of Machine Tools

and Manufacture, vol. 47, pp. 1651 –1659, 2007.

[70] L. A. Porter, Jr., A. E. Ribbe, and J. M. Buriak, “Metallic nanostructures via

static plowing lithography,” Nano Letters, vol. 3, no. 8, pp. 1043 – 1047, 2003.



164

[71] J. Chen, S. Liao, and Y. Tsai, “Electrocheical synthesis of polypyrrole within

pmma nanochannels produced by afm mechanical lithography,” Synthetic

Matals, vol. 155, pp. 11 –17, 2005.

[72] A. A. Tseng, “A comparison study of scratch and wear properties using atomic

force microscopy,” Appl. Surf. Sci., vol. 256, pp. 4246 – 4252, 2010.

[73] E. Dubois and J. Bubbendorff, “Nanometer scale lithography on silicon, tita-

nium and pmma resist using scanning probe microscopy,” Solid-State Electron-

ics, vol. 43, pp. 1085 – 1089, 1999.

[74] S. Hu, A. Hamidi, S. Altmeyer, T. Koster, B. Spangenberg, and H. Kurz, “Fab-

rication of silicon and metal nanowires and dots using mechanical atomic force

lithography,” J. Vac. Sci. Tech. B, vol. 16, no. 5, pp. 2822 – 2824, 1998.

[75] T. Fang and W. Chang, “Effect of AFM-based nanomachining process on alu-

minum surface,” J. Phy. Chem. Solids, vol. 64, pp. 913 – 918, 2003.

[76] B. Yu, H. Dong, L. Qian, Y. Chen, J. Yu, and Z. Zhou, “Friction-induced

nanofabrication on monocrystalline sillicon,” Nanotechnology, vol. 20, pp.

465 303 – 465 310, 2009.

[77] K. Umemura, T. Wang, M. Hara, R. Kuroda, O. Uchida, and M. Nagai,

“Nanocharaterization and nanofabrication of a Nafion thin film in liquids by

atomic force microscopy,” Langmuir, vol. 22, pp. 3306 – 3312, 2006.

[78] C. Martin, G. Rius, X. Borrise, and F. Perez-Murano, “Nanolithography on

thin layers of pmma using atomic force microscopy,” Nanotechnology, vol. 16,

pp. 1016 – 1022, 2005.

[79] S. Skabernaa, M. Versena, B. Klehna, U. Kunzea, D. Reuterb, and A. D.

Wieckb, “Fabrication of a quantum point contact by the dynamic plowing tech-



165

nique and wet-chemical etching,” Ultramicroscopy, vol. 82, no. 1-4, pp. 153 –

157, 2000.

[80] M. Versena, B. Klehna, U. Kunzea, D. Reuterb, and A. D. Wieckb, “Nanoscale

devices fabricated by direct machining of GaAs with an atomic force micro-

scope,” Ultramicroscopy, vol. 82, no. 1-4, pp. 159 – 163, 2000.

[81] V. Bouchiat and D. Esteve, “Lift-off lithography using an atomic force micro-

scope,” Applied Physics Letters, vol. 69, no. 20, pp. 3098 – 3100, 1996.

[82] S. Xu, C. Lao, B. Weintraub, and Z. Wang, “Nanometer-scale fabrication by si-

multaneous nanoshaving and molecular self-assembly,” Langmuir, vol. 13, no. 2,

pp. 127 – 129, 1997.

[83] R. G. Nuzzo and D. L. Allara, “Adsorption of bifunctional organic disulfides on

gold surfaces,” J. Am. Chem. Soc., vol. 105, no. 13, pp. 4481 – 4483, 1983.

[84] N. A. Amro, S. Xu, and G. Liu, “Patterning surfaces using tip-directed dis-

placement and self-assembly,” Langmuir, vol. 16, no. 7, pp. 3006 – 3009, 2000.

[85] D. Zhou, X. Wang, L. Birch, L. Rayment, and C. Abell, “Afm study on protein

immobilization on charged surfaces at the nanoscale: Toward the fabrication

of three-dimensional protein nanostructures,” Langmuir, vol. 19, no. 25, pp.

10 557 – 10 562, 2003.

[86] S. Xu, P. E. Laibinis, and G. Liu, “Accelerating the kinetics of thiol self-

assembly on gold-A spatial confinement effect,” J. Am. Chem. Soc., vol. 120,

no. 36, pp. 9356 – 9361, 1998.

[87] J. Liu, J. R. Von Ehr, C. Baur, R. Stallcup, J. Randall, and K. Bray, “Fabri-

cation of high-density nanostructures with an atomic force microscope,” Appl.

Phys. Lett., vol. 84, no. 8, pp. 1359 – 1361, 1994.



166

[88] M. B. Ali, T. Ondarcuhu, M. Brust, and C. Joachim, “Atomic force microscope

tip-induced local oxidation of silicon: kinetics, mechanism, and nanofabrica-

tion,” Appl. Phys. Lett., vol. 71, no. 2, pp. 285 – 287, 1997.

[89] J. A. Dagata, T. Inoue, J. Itoh, K. Matsumoto, and H. Yokoyama, “Role of

space charge in scanned probe oxidation,” J. Appl. Phys., vol. 84, no. 12, pp.

6891 –6900, 1998.

[90] P. Avouris, R. Martel, T. Hertel, and R. Sandstrom, “Afm-tip-induced and

current-induced local oxidation of silicon and metals,” Appl. Phys. A, vol. 66,

pp. 5659 – 5667, 1998.

[91] R. Garcia, M. Calleja, and H. Rohrer, “Patterning of silicon surfaces with non-

contact atomic force microscopy: Field-induced formation of nanometer-size

water bridges,” J. Appl. Phys., vol. 86, no. 4, pp. 1898 – 1903, 1999.

[92] F. Perez-Murano, C. Martin, N. Barniol, H. Kuramochi, H. Yokoyama, and

J. A. Dagata, “Measuring electrical current during scanning probe oxidation,”

Appl. Phys. Lett., vol. 82, no. 18, pp. 3086 – 3088, 2003.

[93] A. Majumdar, P. I. Oden, J. P. Carrejo, L. A. Nagahara, J. J. Graham, and

J. Alexander, “Nanometer-scale lithography using the atomic force microscope,”

Appl. Phys. Lett., vol. 61, no. 19, pp. 2293 – 2295, 2002.

[94] E. S. Snow and P. M. Campbell, “Fabrication of Si nanostructures with an

atomic force microscope,” Appl. Phys. Lett., vol. 64, no. 15, pp. 1932 – 1935,

1994.

[95] S. Gwo, C.-L. Yeh, P.-F. Chen, Y.-C. Chou, T. T. Chen, T.-S. Chao, S.-F. Hu,

and T.-Y. Huang, “Local electric-field-induced oxidation of titanium nitride

films,” Appl. Phys. Lett., vol. 74, no. 8, pp. 1090 – 1092, 1999.



167

[96] F. S.-S. Chien, Y. C. Chou, T. T. Chen, W.-F. Hsieh, T.-S. Chao, and S. Gwo,

“Nano-oxidation of silicon nitride films with an atomic force microscope: Chem-

ical mapping, kinetics, and applications,” J. Appl. Phys., vol. 89, no. 4, pp. 2465

–2472, 2001.

[97] E. S. Snow and P. M. Campbell, “Afm fabrication of sub-10-nanometer metal-

oxide devices with in situ control of electrical properties,” Science, vol. 270, no.

5242, pp. 1639 – 1641, 1995.

[98] F. S.-S. Chien, W.-F. Hsieh, S. Gwo, A. E. Vladar, and J. A. Dagata, “Silicon

nanostructures fabricated by scanning probe oxidation and tetra-methyl am-

monium hydroxide etching,” J. Appl. Phys., vol. 91, no. 12, pp. 10 044 –10 051,

2002.

[99] D. S. Ginger, H. Zhang, and C. A. Mirkin, “The evolution of dip-pen nano-

lithography,” Angew. Chem., vol. 43, no. 1, pp. 30 – 45, 2003.

[100] G. Agarwal, L. A. Sowards, R. R. Naik, and M. O. Stone, “Dip-Pen nanolithog-

raphy in tapping mode,” J. Am. Chem. Soc., vol. 125, no. 2, pp. 580 – 583,

2003.

[101] S. Hong, J. Zhu, and C. A. Mirkin, “Multiple ink nanolithography: Toward a

multiple-pen nano-plotter,” Science, vol. 286, no. 5439, pp. 523 – 525, 1999.

[102] C. A. Mirkin, S. Hong, and L. Demers, “Dip-Pen nanolithography: Control-

ling surface architecture on the sub-100 nanometer length scale,” Phys. Chem.,

vol. 2, no. 1, pp. 37 – 39, 2001.

[103] A. Ivanisevic and C. A. Mirkin, “”Dip-Pen” nanolithography on semiconductor

surfaces,” J. Am. Chem. Soc., vol. 123, no. 32, pp. 7887 – 7889, 2001.



168

[104] B. W. Maynor, Y. Li, and J. Li, “Fabrication of luminescent nanostructures

and polymer nanowires using Dip-Pen nanolithography,” Nano Letters, vol. 2,

no. 2, pp. 109 – 112, 2002.

[105] J. C. Smith, K.-B. Lee, Q. Wang, M. G. Finn, J. E. Johnson, M. Mrksich, and

C. A. Mirkin, “Nanopatterning the chemospecific immobilization of cowpea

mosaic virus capsid,” Nano Letters, vol. 3, no. 7, pp. 883 – 886, 2003.

[106] H. Zhang, S.-W. Chung, and C. A. Mirkin, “Fabrication of sub-50-nm solid-

state nanostructures on the basis of Dip-Pen nanolithography,” Nano Letters,

vol. 3, no. 1, pp. 43 – 45, 2003.

[107] L. M. Demers, D. S. Ginger, S.-J. Park, Z. Li, S.-W. Chung, and C. A. Mirkin,

“Direct patterning of modified oligonucleotides on metals and insulators by

Dip-Pen nanolithography,” Science, vol. 296, no. 5574, pp. 1836 –1838, 2002.

[108] H. Zhang, Z. Li, and C. Mirkin, “Dip-Pen nanolithography-based methodology

for preparing arrays of nanostructures functionalized with oligonucleotides,”

Adv. Mater., vol. 14, no. 20, pp. 1472 – 1474, 2002.

[109] J. Hyun, S. J. Ahn, W. K. Lee, A. Chilkoti, and S. Zauscher, “Molecular

recognition-mediated fabrication of protein nanostructures by Dip-Pen lithog-

raphy,” Nano Letters, vol. 2, no. 11, pp. 1203 – 1207, 2002.

[110] M. Su and V. P. Dravid, “Colored ink Dip-Pen nanolithography,” Appl. Phys.

Lett., vol. 80, no. 23, pp. 4434 – 4437, 2002.

[111] A. Ivanisevic, J.-H. Im, K.-B. Lee, S.-J. Park, L. M. Demers, K. J. Watson,

and C. A. Mirkin, “Redox-controlled orthogonal assembly of charged nanos-

tructures,” J. Am. Chem. Soc., vol. 123, no. 49, pp. 12 424 – 12 425, 2001.



169

[112] P. Manandhar, J. Jang, G. C. Schatz, M. A. Ratner, and S. Hong, “Anomalous

surface diffusion in nanoscale direct deposition processes,” Phys. Rev. Lett.,

vol. 90, no. 11, pp. 115 505 – 115 509, 2003.

[113] R. McKendry, W. T. S. Huck, B. Weeks, M. Fiorini, C. Abell, and T. Rayment,

“Creating nanoscale patterns of dendrimers on silicon surfaces with Dip-Pen

nanolithography,” Nano Letters, vol. 2, no. 7, pp. 713 – 716, 2002.

[114] L. Fu, X. Liu, Y. Zhang, V. P. Dravid, and C. A. Mirkin, “Nanopatterning of

”Hard” magnetic nanostructures via Dip-Pen nanolithography and a sol-based

ink,” Nano Letters, vol. 3, no. 6, pp. 757 – 760, 2003.

[115] M. B. Ali, T. Ondarcuhu, M. Brust, and C. Joachim, “Atomic force microscope

tip nanoprinting of gold nanoclusters,” Langmuir, vol. 18, no. 3, pp. 872 – 876,

2002.

[116] Y. Benjamin, W. Maynor, and J. Liu, “Electrochemical afm Dip-Pen nano-

lithography,” J. Am. Chem. Soc., vol. 123, no. 9, pp. 2105 – 2106, 2001.

[117] L. A. Porter, Jr., H. C. Choi, J. M. Schmeltzer, A. E. Ribbe, L. C. C. El-

liott, and J. M. Buriak, “Electroless nanoparticle film deposition compatible

with photolithography, microcontact printing, and Dip-Pen nanolithography

patterning technologies,” Nano Letters, vol. 2, no. 12, pp. 1369 – 1372, 2003.

[118] B. W. Maynor, Y. Li, and J. Li, “Au ”Ink” for afm ”Dip-Pen” nanolithography,”

Langmuir, vol. 19, no. 9, pp. 2575 – 2578, 2001.

[119] D. Leonard, M. Krishnamurthy, C. M. Reaves, S. P. Denbaars, and P. M. Petroff,

“Direct formation of quantum-sized dots from uniform coherent islands of ingaas

on gaas surfaces,” Applied Physics Letters, vol. 63, no. 23, pp. 3203 – 3205, 1993.



170

[120] R. C. Barrett and C. F. Quate, “Optical scan-correction system applied to

atomic force microscopy,” Rev. Sci. Instr., vol. 62, no. 6, pp. 1393–1399, 1991.

[121] H. J. M. T. A. Adriaens, W. L. d. Koning, and R. Banning, “Modeling piezoelec-

tric actuators,” IEEE/ASME Trans. Mechatronics, vol. 5, no. 4, pp. 331–341,

2000.

[122] A. J. Fleming and S. O. R. Moheimani, “A grounded-load charge amplifier for

reducing hysteresis in piezoelectric tube scanners,” Rev. Sci. Instr., vol. 76, pp.

073 707–1, 2005.

[123] S. M. Hues, C. F. Draper, K. P. Lee, and R. J. Colton, “Effect of pzt and pmn

actuator hysteresis and creep on nanoindentation measurements using force

microscopy,” Rev. Sci. Instr., vol. 65, no. 5, pp. 1561–1565, 1994.

[124] K. R. Koops, P. M. L. O. Scholte, and W. L. d. Koning, “Observation of zero

creep in piezoelectric actuators,” Applied Physics A, vol. 68, pp. 691–697, 1999.

[125] H. Jung and D.-G. Gweon, “Creep characteristics of piezoelectric actuators,”

Rev. Sci. Instr., vol. 71, no. 4, pp. 1896–1900, 2000.

[126] W. D. Callister, Materials science and engineering: an introduction. New York:

John Wiley and Sons, Inc., 1994.

[127] G. Schitter, P. Menold, H. F. Knapp, F. Allgöwer, and A. Stemmer, “High
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Appendix A

System Modeling Program

The following programs complements the modeling for the piezo-based nanoposition-

ing system discussed in previously in Section 7.2 and Section 8.1. The Prandtl-

Ishlinskii optimization program computes the parameters g0, g1, λ, δ and ρ for the

Prandtl-Ishlinskii model, as well as the inverse Prandtl-Ishlinskii optimization pro-

gram.

A.1 Dynamic System Program

A.1.1 Dynamic System Program for High Speed Stage

% MATLAB Code

% Linear Dynamic Model for High-Speed Stage

% Yingfeng Shan

% =====================================================

% load x y axis data===================================

load X0921.mat



180

w = x0921(:,1);

G = x0921(:,2);

% Magnitude and phase --------------------------------

mag=20*log10(abs(G));

ph = unwrap(angle(G))*180/pi-180;

% complex freq response G (Transfer Function)----------

i = sqrt(-1);

for k = 1:length(w)

a = 10^(mag(k)/20)*cos(ph(k)*pi/180);

b = 10^(mag(k)/20)*sin(ph(k)*pi/180);

G(k,1) = a+b*i;

end

Wrad_s = w*2*pi;

[N, D] = invfreqs(G,Wrad_s,7,9);

% Model of the HP x-x----------------------------------

Z = roots(N);

Z = 1.0e+005 *[

0.2421 + 1.5878i; 0.2421 - 1.5878i;

-0.0341 - 1.2642i; -0.0341 + 1.2642i

-0.0681 + 1.0382i; -0.0681 - 1.0382i

-0.0253 + 0.6399i; -0.0253 - 0.8399i

-0.0253 + 0.8399i; -0.0253 - 0.6399i

2.1953 + 0.1779i; 2.1953 - 0.1779i

-1.1481 ];

P = roots(D);
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P = 1.0e+005 * [

0.3431 + 1.9559i; 0.3431 - 1.9559i

0.0301 + 1.3559i; 0.0301 - 1.3559i

-0.0185 + 1.1736i; -0.0185 - 1.1736i

-0.0181 + 0.9784i; -0.0181 - 0.9784i

-0.0151 + 0.8284i; -0.0151 - 0.8284i

-0.0151 + 0.6284i; -0.0151 - 0.6284i

-0.3554 ];

[N,D] = zp2tf(Z,P,1);

sys = tf(N,D);

K = 10^(mag(1)/20)/dcgain(sys);

[N,D] = zp2tf(Z,P,K);

Gtf = tf(N,D);

% compare measured with model--------------

G_model = freqs(N,D,Wrad_s);

Mag_model = 20*log10(abs(G_model));

Ph_model = unwrap(angle(G_model))*(180/pi);

figure(2); clf;

subplot(211);semilogx(w,mag,w,Mag_model,’r’);

ylabel(’Magnitude (dB)’);

xlabel(’Frequency (Hz)’);

subplot(212);semilogx(w,ph,w,Ph_model,’r’);

xlabel(’Frequency (Hz)’);
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ylabel(’Phase (degrees)’);

A.1.2 Dynamic System Program for Long Range Stage

% MATLAB Code

% Linear Dynamic Model for Long-Range Stage

% Yingfeng Shan

% ============================================================

close all

clear all

clc

% Frequency response data from the DSA ========================

load LRCF1k1.mat;

data = lrcf1k1;

size(data);

% frequency;

w = data(:,1);

G = data(:,2);

% Magnitude and Phase;

mag=20*log10(abs(G));

ph = unwrap(angle(G))*180/pi;

% Frequency response plot

subplot(211);semilogx(w,mag,’b’); hold on

ylabel(’Magnitude (dB)’);

xlabel(’Frequency (Hz)’);

grid on

title(’Frequency response of the piezo-stage’)
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subplot(212);semilogx(w,ph,’b’); hold on

xlabel(’Frequency (Hz)’);

ylabel(’Phase (degrees)’);

grid on

% Dynamic model ===============================================

% complex freq response G

i = sqrt(-1);

for k = 1:length(w)

a = 10^(mag(k)/20)*cos(ph(k)*pi/180);

b = 10^(mag(k)/20)*sin(ph(k)*pi/180);

G(k,1) = a+b*i;

end

Wrad_s = w*2*pi;

[N, D] = invfreqs(G,Wrad_s,0,3);

% Model of the Lang Range Stage x-x

Z = roots(N)

Z = [];

P = roots(D)

P = 1.0e+003*[

-0.0353 + 4.5132i

-0.0353 - 4.5132i

-3.6885

];

[N D] = zp2tf(Z,P,1);

sys = tf(N,D);
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k = 10^(mag(1)/20)/dcgain(sys);

[N D] = zp2tf(Z,P,k);

Gtf = tf(N,D)

% Discrete time model

Fs = 10000;

Gz = c2d(Gtf,1/Fs,’foh’)

% compare measured with model ==================================

G_model = freqs(N,D,Wrad_s);

Mag_model = 20*log10(abs(G_model));

Ph_model = unwrap(angle(G_model))*(180/pi);

subplot(211);semilogx(w,Mag_model,’r’);

ylabel(’Magnitude (dB)’);

xlabel(’Frequency (Hz)’);

legend(’Measure X-X’,’Model X-X’);

subplot(212);semilogx(w,Ph_model,’r’);

xlabel(’Frequency (Hz)’);

ylabel(’Phase (degrees)’);

A.2 The Prandtl-Ishlinskii Hysteresis Program

The following programs implement the modeling of the Prandtl-Ishlinskii hysteresis,

which include the parameter calculation and modeling codes.

A.2.1 Optimization Program for Parameters Calculation

The parameters calculation program using a custom modified nonlinear least-squares

curve fitting method and the measured hysteresis data. This program outputs the
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optimized value for the parameters g0, g1, λ, δ and ρ to make the P-I modeled

hysteresis to match the measured hysteresis with smallest root-means square error.

% ===================================================================

% main program

% ===================================================================

% The parameters calculation program loads the input triangular signal,

% measured hysteresis output, and a custom designed function. Then

% these values and function are input to the lsqcurvefit function to

% output the optimized parameters.

% Yingfeng Shan

% -------------------------------------------------------------------

clear all

close all

clc

% input signal-----------------------------

load prtri1hz10k12vpp.in

xdata = prtri1hz10k12vpp(1:50000)’;

xdata = xdata;

% -------------------------------------------------------------------

% Loading the experimental hysteresis data for calculating the

% parameters for PI model to fit the measured model

% -------------------------------------------------------------------

load prtri1hz10k12vpp2.out

y = prtri1hz10k12vpp2(:,1);

ydata = y(1:50000)’;

ydata = ydata-ydata(1);
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ydata = ydata-(min(ydata)-min(xdata)+max(ydata)-max(xdata))/2;

ydata = ydata/0.681;

plot(xdata);hold on

plot(ydata,’r’)

% initial point for parameters g0, g1, lambda, delta and rho

% -------------------------------------------------------------------

x0 =[0; 0.0211; 0; 0; 0];

% lsqcurvefit function for parameter optimization with a custom

% defined function, myfun, and the input and output data

% -------------------------------------------------------------------

[x,resnorm] = lsqcurvefit(@myfun,x0,xdata,ydata)

% ==================================================================

% Function: myfun

% ==================================================================

% a custom defined function "myfun" to calculate the parameters for

% the P-I hysteresis model, which is developed from the analytic

% equation of the P-I model

% Yingfeng Shan

% -------------------------------------------------------------------

function F = myfun(x,xdata)

a = x(4)*xdata+x(5);

for k = 1:1:8;

r(k) = x(1)*k;
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wint(k) = 0;

for i = 1:1:length(a);

v_r(k,i) = a(i)-r(k);

vr(k,i) =a(i)+r(k);

w(k,i) = max(v_r(k,i),min(vr(k,i),wint(k)));

wint(k)=w(k,i);

end

pr(k) = x(2)*exp(-x(3)*r(k));

PFr(k,:) = pr(k)*w(k,:);

end

ItPFr = sum(x(1)*PFr);

F = a+ItPFr;

A.2.2 Example Prandtl-Ishlinskii Modeling Program

% This program validate the Prandtl-Ishlinskii model with

% the parameters calculated from the optimization program

% by comparing with the measured hysteresis output

% Yingfeng Shan

% ========================================================

clear all

close all

clc

% Load the input signal to the P-I model ------------------

load prtri1hz10k12vpp.in

xdata = prtri1hz10k12vpp(1:50000)’;

u = xdata;
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% Load the measured hysteresis data for the P-I model to fit

% ----------------------------------------------------------

load prtri1hz10k12vpp2.out

y = prtri1hz10k12vpp2(:,1);

ydata = y(1:50000)’;

ydata = ydata-ydata(1);

ydata = ydata-(min(ydata)-min(xdata)+max(ydata)-max(xdata))/2;

ydata = ydata/0.681;

% The P-I model ---------------------------------------------

% The optimized Parameters

B = 0.3569; rho = 0.6684; tau = 0.6859; c0 = 0.6580; c1 = 0.0606;

% The model

a = c0*u+c1;

for k = 1:1:8;

r(k) = B*k;

wint(k) = 0;

for i = 1:1:length(a);

v_r(k,i) = a(i)-r(k);

vr(k,i) =a(i)+r(k);

w(k,i) = max(v_r(k,i),min(vr(k,i),wint(k)));

wint(k)=w(k,i);

end

pr(k) = rho*exp(-tau*r(k));
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PFr(k,:) = pr(k)*w(k,:);

end

ItPFr = sum(B*PFr);

yp = a+ItPFr;

% Plotting the response --------------------------------------

freq = 10000;

t = [0:1:length(u)-1]/freq;

figure(3);

plot(t,yp,’r’);hold on

plot(t,ydata)

xlabel(’Time (s)’); ylabel(’Disp. (v)’);

legend(’P-I model’,’Hysteresis’)

figure(4);

plot(u,yp,’r’); hold on

plot(u,ydata); hold on

xlabel(’Input (v)’); ylabel(’Disp. (v)’);

title(’Hysteresis curve’)

legend(’Model’,’Measured hysteresis’)

% The matching error between the model and measured hysteresis

% ------------------------------------------------------------

emax = abs(yp-ydata)/[max(ydata)-min(ydata)]*100;

figure(6);clf;
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plot(t,emax)

xlabel(’Time (s)’); ylabel(’Error’);

title(’Error plot’)

dif = yp-ydata;

dif2 = dif.^2;

itg = sum(dif2)/50000;

erms = sqrt(itg)/[max(y)-min(y)]*100

A.2.3 Example Simulink System Model Configuration

An example Simulink model for piezo-based nanopositioning system is presented in

this section in Fig. A.1. This Simulink model simulate the piezo-based nanoposition-

ing system with a cascade model of hysteresis and dynamics as shown in Fig. A.1(a).

It is noted that the main logic of the Prandtl-Ishlinskii model is defined by a for loop

is a sub Simulink model as shown in Fig. A.1(b).

A.3 The Inverse Prandtl-Ishlinskii Hysteresis Pro-

gram

The programs for modeling the inverse hysteresis compensator and calculating the

parameters of the inverse hysteresis compensator are presented in this section.

A.3.1 Optimization Program for Parameters Calculation

The optimization program calculates the parameters g′0, g
′
1, λ

′, δ′ and ρ′ for the inverse

Prandtl-Ishlinskii hysteresis compensator. The parameters calculation program loads

a triangular signal, measured hysteresis output, and a custom designed function to

the lsqcurvefit function to compute the optimized parameters, where the the measured

hysteresis output is used as a input for calculation, and the triangular signal is used for
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(a)

(b
)

Figure A.1: (a) The main block diagram of Simulink model of the piezo system [H +
G(z)]. (b) The logic loop of the Prandtl-Ishlinskii model.

the inverse P-I hysteresis with the computed parameter to compare with to determine

the optimized parameters.
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% ===================================================================

% main program

% ===================================================================

% load measured hysteresis, reference triangular trajectory, initial

% value for the P-I inverse model parameters, and a custom designed

% function "myfun" to lsqcurvefit function to calculate the parameters.

% Yingfeng Shan

% -------------------------------------------------------------------

clear all

close all

clc

% load the measured hysteresis output ------------------------

load prtri1hz10k12vpp2.out

x = prtri1hz10k12vpp2(:,1);

xdata = x’;

xdata = xdata-xdata(1);

xdata = xdata-(min(xdata)-min(ydata)+max(xdata)-max(ydata))/2;

xdata = xdata/0.681;

% load the reference triangular trajectory ---------------------------

load prtri1hz10k12vpp.in

ydata = prtri1hz10k12vpp’;

% initial point for parameters g0’, g1’, lambda’, delta’ and rho’

% -------------------------------------------------------------------
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x0 =[0; 0.0211; 0; 0; 0];

% lsqcurvefit function for parameter optimization with a custom

% defined function, myfun, and the input and output data

% -------------------------------------------------------------------

[x,resnorm] = lsqcurvefit(@myfunInv,x0,xdata,ydata)

% ==================================================================

% Function: myfunInv

% ==================================================================

% a custom defined function "myfunInv" to calculate the parameters for

% the inverse P-I hysteresis model, which is developed from the analytic

% equation of the inverse P-I model

% Yingfeng Shan

% -------------------------------------------------------------------

function F = myfunInv(x,xdata)

a = x(4)*xdata+x(5);

for k = 1:1:8;

r(k) = x(1)*k;

wint(k) = 0;

for i = 1:1:length(a);

v_r(k,i) = -a(i)-r(k);

vr(k,i) =-a(i)+r(k);

w(k,i) = max(v_r(k,i),min(vr(k,i),wint(k)));

wint(k)=w(k,i);

end

pr(k) = x(2)*exp(-x(3)*r(k));
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PFr(k,:) = pr(k)*w(k,:);

end

ItPFr = sum(x(1)*PFr);

F = a+ItPFr;

A.3.2 Example Inverse Prandtl-Ishlinskii Modeling Program

An example inverse Prandtl-Ishlinskii modeling program is shown here for validation

of the performance of the inverse hysteresis compensator on minimizing hysteresis

effect.

% This program validate the inverse Prandtl-Ishlinskii model

% with the parameters calculated from the optimization program

% by comparing with the desired system response.

% Yingfeng Shan

% ========================================================

clear all

close all

clc

% Load the signal (the measured hysteresis) input to the inverse

% P-I model ----------------------------------------------------

load prtri1hz10k12vpp2.out

x = prtri1hz10k12vpp2(:,1);

xdata = x’;

xdata = xdata-xdata(1);

xdata = xdata-(min(xdata)-min(ydata)+max(xdata)-max(ydata))/2;

xdata = xdata/0.681;
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% Load the desired system output for the inverse P-I model output

% to fit with ---------------------------------------------------

load prtri1hz10k12vpp.in

ydata = prtri1hz10k12vpp’;

ydata = ydata;

% The inverse P-I model -----------------------------------------

% The optimized Parameters

B = 0.7521; rho = 0.2873; tau = 0.5769; c0 = 1.4188; c1 = -0.1582;

% The inverse model main logic

a = c0*xdata+c1;

for k = 1:1:8;

r(k) = B*k;

wint(k) = 0;

for i = 1:1:length(a);

v_r(k,i) = -a(i)-r(k);

vr(k,i) =-a(i)+r(k);

w(k,i) = max(v_r(k,i),min(vr(k,i),wint(k)));

wint(k)=w(k,i);

end

pr(k) = rho*exp(-tau*r(k));

PFr(k,:) = pr(k)*w(k,:);

end

ItPFr = sum(B*PFr);

yp = a+ItPFr;
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% Plotting the response --------------------------------------

freq = 10000;

t = [0:1:length(xdata)-1]/freq;

figure(3);

plot(t,yp,’r’);hold on

plot(t,ydata)

plot(t,xdata,’k’)

xlabel(’Time (s)’); ylabel(’Disp. (v)’);

legend(’W/ hyst. comp.’,’Reference’,’W/o hyst. comp.’)

figure(4);

plot(ydata,yp,’r’); hold on

plot(ydata,xdata); hold on

xlabel(’Input (v)’); ylabel(’Disp. (v)’);

title(’Hysteresis curve’)

legend(’W/ hyst. comp.’,’W/o hyst. comp.’)

% The matching error between the desired output and the compensated

% output --------------------------------------------------------

emax = abs(yp-ydata)/[max(ydata)-min(ydata)]*100;

figure(6);clf;

plot(t,emax)

xlabel(’Time (s)’); ylabel(’Error’);

title(’Error plot’)
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dif = yp-ydata;

dif2 = dif.^2;

itg = sum(dif2)/100000;

erms = sqrt(itg)/[max(ydata)-min(ydata)]*100

Example Simulink Inverse hysteresis compensation Configuration

An example Simulink model for validating the performance of the inverse hysteresis

compensator in minimizing the hysteresis effect in piezo-based nanopositioning sys-

tem is presented in this section in Fig. A.2. This Simulink model demonstrates the

performance of inverse P-I compensator by adding the inverse P-I model to the feed-

forward loop of the cascade model of hysteresis and dynamics as shown in Fig. A.2(a),

and comparing with the output of dynamics. It is noted that the main logic of the

inverse Prandtl-Ishlinskii model is defined by a for loop is a sub-Simulink model as

shown in Fig. A.2(b).
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Figure A.2: (a) The main block diagram of Simulink model of the inverse hysteresis
compensation system. The output of the inverse hysteresis compensation system is
compared to the dynamic system output to validate the performance of the inverse P-
I model on minimizing hysteresis. (b) The logic loop of the inverse Prandtl-Ishlinskii
model.
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Appendix B

Repetitive Controller Design
Program

The section presents example Matlab codes used in designing repetitive control sys-

tem, which are the program for calculating m2 for phase lead compensator P2 and

cut-off frequency for low pass filter Q(z), and optimizing the values of m1 and krc for

the enhanced RC design.

B.1 Phase Response of θT + θ2

The following program is the phase response of θT + θ2 to determine the m2 for phase

lead compensator P2 and cut-off frequency for low pass filter Q(z) for the enhanced

RC.

% to analysis the phase response of the closed-loop feedback with

% phase lead compensator P2

clear all

close all

clc

% Frequency response data from the DSA ==========================

load LRCF1k1.mat;

data = lrcf1k1;
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size(data);

% frequency;

w = data(:,1);

G = data(:,2);

% Magnitude and Phase;

mag=20*log10(abs(G));

ph = unwrap(angle(G))*180/pi;

% Dynamic model ============================

% complex freq response G

i = sqrt(-1);

for k = 1:length(w)

a = 10^(mag(k)/20)*cos(ph(k)*pi/180);

b = 10^(mag(k)/20)*sin(ph(k)*pi/180);

G(k,1) = a+b*i;

end

Wrad_s = w*2*pi;

[N, D] = invfreqs(G,Wrad_s,0,3);

% Model of the Lang Range Stage x-x

Z = [];

P = 1.0e+003*[

-0.0353 + 4.5132i

-0.0353 - 4.5132i

-3.6885

];

[N D] = zp2tf(Z,P,1);

sys = tf(N,D);
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k = 10^(mag(1)/20)/dcgain(sys);

[N D] = zp2tf(Z,P,k);

Gtf = tf(N,D);

% PID controller ================================================

GPID = tf([.0001 0.02 3000],[1 0]); % PID

sys1 = GPID*Gtf;

Gt = feedback(sys1,1);

num = [3.391e006 6.781e008 1.017e014];

den = [1 3759 2.402e007 7.581e010 1.017e014];

Gt_model = freqs(num,den,Wrad_s);

Mag_Gt = 20*log10(abs(Gt_model));

Ph_Gt = unwrap(angle(Gt_model))*(180/pi);

% compare measured with model-------------------------

G_model = freqs(N,D,Wrad_s);

Mag_model = 20*log10(abs(G_model));

Ph_model = unwrap(angle(G_model))*(180/pi);

% plot the phase of the closed-loop system with zm2================

% phase of the zm2--------------------------

Ts = 1/10000;

m2 = [0 1 2 3 4 5 6]; % value of the m2 for phase lead

% compensator P2

for k = 1:1:length(m2);

zm2(k,:) = cos(m2(k)*Wrad_s*Ts)+sin(m2(k)*Wrad_s*Ts)*j;

Ph_zm2(k,:) = unwrap(angle(zm2(k,:)))*(180/pi);

Ph_cl(k,:) = Ph_Gt’+Ph_zm2(k,:);

end
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figure(3);

subplot(211);semilogx(w,Ph_Gt,’k’,w,Ph_cl,’r’); hold on

xlabel(’Frequency (Hz)’);

ylabel(’Phase (degrees)’);

legend(’w_2=0’,’w_2=6’)

grid on

% Table of the m_2 vs the cutoff frequency of the low pass filter

cutoff = [380 840 750 720 710 700 690];

figure

plot(m2,cutoff,’*’)

B.2 Simulink Model for m1 and krc

The following Simulink model is used to determine the optimized value of m1 and krc

for the enhanced RC design. The Simulink model is shown in Fig. B.1.

Reference.mat

Figure B.1: The Simulink model for m1 and krc optimization.



203

Appendix C

FPGA Codes for Controllers
Implementation

This chapter shows example FPGA codes used to implement enhanced repetitive

controller, dual-stage repetitive controller for validating the performance of the RC on

tracking periodic trajectories in piezo-based high-speed nanopositioner with a closed-

loop sampling frequency of 100 kHz.

C.1 FPGA Code for Enhanced RC with PI Con-

troller

Figure C.1 shows the FPGA code of an enhanced RC with PI controller.

C.2 FPGA Code for Dual-Stage RC with PID

Controller

This section shows the FPGA code for the dual-stage RC with PID controller in

Fig. C.2, where the dual-stage RC is formed by an enhanced RC with an odd-harmonic

RC in serial.
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Figure C.1: The FPGA logic of enhanced RC with PI controller.

C.3 FPGA Code for Controlling x and y-axes of

the Nanopositioner

Figure C.3 shows the control system for x and y-axes control of the nanopositioner.

Specifically, the x-axis is controlled by an enhanced RC with PI control, and y-axis
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Figure C.2: The FPGA logic of enhanced dual-stage RC with PID controller.

is controlled with a radular PI controller.
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Figure C.3: The FPGA logic of controlling the x and y-axes of the nanopositioner.

C.4 FPGA Code for Enhanced RC with Inverse

Hysteresis Compensator

The FPGA code for enhanced RC + H−1 is shown in Fig C.4, where the enhanced

RC contains a signal generator with a low pass filter, a phase lead compensator and
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Figure C.4: The FPGA logic of RC with inverse hysteresis compensator.
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Appendix D

Matlab Program for Determining
Repetitive Control Closed-Loop
Stability

Example Matlab codes for determining the closed-loop stability using the stability

conditions developed in Eq. (6.10) and (6.16).

D.1 Matlab Program for Gain Margin MGL
Calcu-

lation

The following program shows the Matlab program for calculating the gain margin

MGL
for the stability condition in Eq. (6.10).

% Gain margin of the open loop linear RC system for RC

% closed-loop system stability that contains hysteresis

% Yingfeng Shan

% ====================================================

clear all

close all

clc

% ==========================Dynamic Model G(z)=======

% load data
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load X0921.mat

w = x0921(:,1);

G = x0921(:,2);

% Magnitude & phase

mag=20*log10(abs(G));

ph = unwrap(angle(G))*180/pi-180;

% complex freq response G (Transfer Function)---------

i = sqrt(-1);

for k = 1:length(w)

a = 10^(mag(k)/20)*cos(ph(k)*pi/180);

b = 10^(mag(k)/20)*sin(ph(k)*pi/180);

G(k,1) = a+b*i;

end

Wrad_s = w*2*pi;

[N, D] = invfreqs(G,Wrad_s,7,9);

% Pool and Zero

Z = roots(N);

Z = 1.0e+005 *[ 0.2421 + 1.5878i;

0.2421 - 1.5878i; -0.0341 - 1.2642i

-0.0341 + 1.2642i; -0.0681 + 1.0382i

-0.0681 - 1.0382i; -0.0253 + 0.6399i

-0.0253 - 0.8399i; -0.0253 + 0.8399i

-0.0253 - 0.6399i; 2.1953 + 0.1779i

2.1953 - 0.1779i; -1.1481];

P = roots(D);

P = 1.0e+005 * [
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0.3431 + 1.9559i; 0.3431 - 1.9559i

0.0301 + 1.3559i; 0.0301 - 1.3559i

-0.0185 + 1.1736i; -0.0185 - 1.1736i

-0.0181 + 0.9784i; -0.0181 - 0.9784i

-0.0151 + 0.8284i; -0.0151 - 0.8284i

-0.0151 + 0.6284i; -0.0151 - 0.6284i

-0.3554];

% Transfer function

[N,D] = zp2tf(Z,P,1); sys = tf(N,D);

K = 10^(mag(1)/20)/dcgain(sys);

[N,D] = zp2tf(Z,P,K);

Gtf = tf(N,D);

% Complex number model

G_model = freqs(N,D,Wrad_s);

Mag_model = 20*log10(abs(G_model));

Ph_model = unwrap(angle(G_model))*(180/pi);

% ===========================closed loop =================

Freq = 100000;

s = tf(’s’);

% ---------------------------PI controller----------------

kp = 1.1; ki = 40000;

Gc = kp+ki/s;

Gop = Gc*Gtf;

GGc = c2d(Gop,1/Freq,’zoh’);

% ---------------------------RCRCRCRCRCRC-----------------

krc = 0.5;
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z =tf(’z’,1/Freq);

H = z^(-194)*0.3558/(z-0.6442);

RC = H/(1-H);

RCk = krc*RC;

Grc = (RCk+1)*GGc;

figure(3);clf

margin(Grc);

D.2 Matlab Program for Quantifying the Size of

Hysteresis and Linear RC System

This section presents the Matlab program for calculating the size of hysteresis and

the size of linear RC closed-loop system for the stability condition in Eq. (6.10).

D.2.1 An Example Matlab Program for Quantifying the Size

of Hysteresis

The following program calculates the size of the hysteresis in the x-axis of the high-

speed piezo-based nanopositioner for the stability condition in Eq. (6.10) developed

in Section 6.

clear all

close all

clc

% triangle 1hz===========================

B =0.1079; rho = 0.0211; tau = -5.0194; c0 = 0.8331; c1 = 0.0677;

for k = 1:1:8;

r(k) = B*k;

wint(k) = 0;
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pr(k) = rho*exp(-tau*r(k));

end

Size of d(r) = sum(B*pr)

D.2.2 An Example Matlab Program for Quantifying the Size
of Linear RC Closed-Loop System

The following program calculates the size of the linear RC closed-loop system for the

stability condition in Eq. (6.10).

clear all

close all

clc

% ==========================Dynamic Model G(z)=======================

load X0921.mat

w = x0921(:,1);

G = x0921(:,2);

% Magnitude & phase

mag=20*log10(abs(G));

ph = unwrap(angle(G))*180/pi-180;

% complex freq response G (Transfer Function)----------------------

i = sqrt(-1);

for k = 1:length(w)

a = 10^(mag(k)/20)*cos(ph(k)*pi/180);

b = 10^(mag(k)/20)*sin(ph(k)*pi/180);

G(k,1) = a+b*i;

end

Wrad_s = w*2*pi;
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[N, D] = invfreqs(G,Wrad_s,7,9);

% Pool and Zero

Z = roots(N);

Z = 1.0e+005 *[ 0.2421 + 1.5878i

0.2421 - 1.5878i; -0.0341 - 1.2642i

-0.0341 + 1.2642i; -0.0681 + 1.0382i

-0.0681 - 1.0382i; -0.0253 + 0.6399i

-0.0253 - 0.8399i; -0.0253 + 0.8399i

-0.0253 - 0.6399i; 2.1953 + 0.1779i

2.1953 - 0.1779i; -1.1481];

P = roots(D);

P = 1.0e+005 * [ 0.3431 + 1.9559i

0.3431 - 1.9559i; 0.0301 + 1.3559i

0.0301 - 1.3559i; -0.0185 + 1.1736i

-0.0185 - 1.1736i; -0.0181 + 0.9784i

-0.0181 - 0.9784i; -0.0151 + 0.8284i

-0.0151 - 0.8284i; -0.0151 + 0.6284i

-0.0151 - 0.6284i; -0.3554];

% Transfer function

[N,D] = zp2tf(Z,P,1); sys = tf(N,D);

K = 10^(mag(1)/20)/dcgain(sys);

[N,D] = zp2tf(Z,P,K); Gtf = tf(N,D);

% Complex number model

G_model = freqs(N,D,Wrad_s);

Mag_model = 20*log10(abs(G_model));

Ph_model = unwrap(angle(G_model))*(180/pi);
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% state-space representation of G(z)--------------

Freq = 100000;

Gz = c2d(Gtf,1/Freq,’zoh’);

Pol = pole(Gz); Zer = zero(Gz);

[A,B,C,D] = zp2ss(Zer,Pol,1);

% ===========================RC+PI=====================

s = tf(’s’);

% PI controller

kp = 1.1; ki = 40000;

Gc = kp+ki/s; % Transfer function Gc(s)

Gcz = c2d(Gc,1/Freq,’zoh’); % Transfer function Gc(z)

% state-space representation of Gc(z)------------------

Polc = pole(Gcz); Zerc = zero(Gcz);

[Ac,Bc,Cc,Dc] = zp2ss(Zerc,Polc,1.1);

% RC

krc = 0.5;

z =tf(’z’,1/Freq);

H = z^(-94)*0.3558/(z-0.6442); % z^-100 for 1kHz signal Q = 7kHz

RC = H/(1-H); % Transfer function RC

RCk = krc*RC; % Transfer function RC*krc

% RC+PI

Grp = (RCk+1)*Gcz; % Transfer function Grp = RC*Gc

% state-space representation of Grp(z)---------------------

Pgrp = pole(Grp); Zgrp = zero(Grp); % pole and zeros

[Arp,Brp,Crp,Drp] = zp2ss(Zgrp,Pgrp,1.1);

% ======================================================
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% Sup of the G_2

% ======================================================

% R to Y

Gcl = Grp*Gz/(1+Grp*Gz);

% R to u

Gru = Gcz/(1+Gcz*Gz);

Gru = Grp/(1+0.9*Grp*Gz);

% G2(z)----------------------------------------------

Pol = pole(Gru); Zer = zero(Gru); % pole and zeros

[NUM,DEN] = ZP2TF(Zer,Pol,1.068);

NUM = NUM-2*DEN;

Gru = tf(NUM,DEN);

% get the G(jw) and G(-jw)

[mag,phase,w]=bode(Gru);

ma = 20*log10(mag(:));

ph = phase(:);

% complex number of the transfer function

gcp1 = mag(:).*[cos(pi*ph/180)+sin(pi*ph/180)*j];

gcp2 = mag(:).*[cos(pi*ph/180)-sin(pi*ph/180)*j];

Gsup= gcp2.*gcp1;

% sup||G2||2 -----------------------------

sup_G = max(sqrt(Gsup(21:end)))
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piezo-based nanopositioning, Y. Shan, B. J. Kenton and K. K. Leang, Mecha-
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cations (In press).

3. Design and analysis of discrete-time repetitive control for scanning probe mi-
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4. Integrated sensing for IPMC actuators using strain gages for underwater appli-
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5. Frequency-weighted feedforward control for dynamic compensation in ionic
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and control, Y. Shan, J.E. Speich and K.K. Leang, IEEE/ASME Trans. on

Mechatronics, Vol. 13, No. 6, pp. 700-709, 2008.

Conference papers:

1. Repetitive control design for piezoelectric actuators, Y. Shan and K. K. Leang,

ASME Conference on Smart Materials, Adaptive Structures and Intelligent Sys-

tems (SMASIS, 2011), September 18-21, Scottsdale, AZ.

2. Dual-stage repetitive control for high-speed nanopositioning, Y. Shan and K.
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namic Systems and Control Conference (DSCC), Invited session on Micro- and

Nanoscale Dynamics and Control, Cambridge, Massachusetts, USA, September

13-15.

3. Tracking control of oscillatory motion in IPMC actuators for underwater ap-

plications, S. Song, Y. Shan, K. J. Kim and K. K. Leang, 2010 IEEE/ASME

International Conference on Advanced Intelligent Mechatronics, Invited session

on EAP, July 6-9, Montreal, Canada, 2010.

4. Repetitive control with Prandtl-Ishlinskii hysteresis inverse for piezo-based

nanopositioning, Y. Shan and K. K. Leang, American Control Conference,

Invited Session on Advances in Control of Nanopositioning and SPM Systems,

St. Louis, MO, pp. 301-306, 2009.

5. Discrete-time phase compensated repetitive control for piezoactuators in scan-

ning probe microscopes, U. Aridogan, Y. Shan and K. K. Leang, ASME Dy-
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and Control of Systems with Smart Materials, Ann Arbor, Michigan, pp. 1325-

1332, October 20-22, 2008.

6. Application of feedforward dynamics compensation in ionic-polymer metal com-

posite actuators, Y. Shan and K. K. Leang, SPIE Smart Structures and Mate-

rials and NDE for Health Monitoring and Diagnostics Conference, San Diego,

CA., Vol. 6927, pp. 69270F-1 (12 pages), 2008.

7. A biaxial shape memory alloy actuated cell/tissue stretching system, Y. Shan,

J. Dodson, S. Abraham, J. E. Speich, R. Rao and K. K. Leang, ASME Inter-

national Mechanical Engineering Congress and Exposition (IMECE), Seattle,

WA, USA, November 11 - 15, 2007.


