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Abstract 
 

The phase diagram assessment of binary AMPL-TRIS system was calculated using the 

CALPHAD approach.  Thermo-Calc, TCC software was used to fit the experimental 

phase diagram data by simultaneous optimization of thermodynamic properties of pure 

components and phase equilibria data available in the literature, and also calculated in the 

present work. The measured interaction parameters for low temperature  and  solid 

solution phases are relatively small and are assumed to be ideal. Preliminary calculation 

of AMPL-TRIS phase diagram showed complete solid solubility of the high temperature 

 and ‟ phases, as reported by Barrio et al. (1994). In the next iteration, we calculated 

AMPL-TRIS phase diagram using heat capacity data and found that it was in good 

agreement with the current experimental phase diagram developed by V. Kamisetty 

(2010). In final calculations, the Parrot module of Thermo-Calc program was used to 

obtain an optimized phase diagram.  The calculated phase corroborates well with V. 

Kamisetty data.  Two eutectoids, one at ~21 mol.% TRIS at 85
o
C, the other at ~60 mol. 

% TRIS at 104
o
C, and one peritectic at 55 mol.% TRIS at 127

o
C were calculated.  The 

maximum solubility of TRIS in AMPL is 10 mol.%, and that of AMPL in TRIS is 18 

mol.% at 85
o
C. An important feature of this phase diagram is the presence of  and ‟ 

phases above 110
o
C. Details of the methodology and calculations are shown in this 

thesis.  
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CHAPTER 1 

INTRODUCTION 

1.1. Thermal Energy storage materials 

The storage of thermal energy and its utilization are important roles in conservation of 

energy. The phenomenon involved in the energy storage is such that the heating and 

cooling cycles either absorb or emit heat at the transformation. In general, the energy 

storage is accomplished by either phase transformations of a material or by storing the 

heat as sensible heat in the lattice of a material. Phase Change Materials (PCMs) store 

heat by phase transitions and can be categorized in to two groups organic and inorganic. 

Organic PCMs have high gravimetric latent heat, low pressure, non-corrosive, chemically 

stable, little supercooling, low thermal conductivity, large changes in volume during 

phase change [1].  

Depending on their applications PCMs are selected based on their melting points or solid 

state phase transition temperatures. PCMs are chosen in such a way that the thermal 

gradient between the storage temperature and the substance temperature should be kept 

minimum by use of PCMs‟ phase change temperatures. In one of the applications these 

materials are suggested for use in the making of concrete and brick. The use of PCMs for 

thermal storage in cooling and heating buildings was one of the first applications in the 

literature by Telkes in 1975 [2]. Materials that melt below 15 
o
C are used for cooling 

applications such as air conditioning, while materials that melt above 90 
o
C are used for 
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absorption refrigeration [1]. Apart from the latent heat, sensible heat is also stored by the 

PCMs making the overall efficiency of the system higher.  

In general, PCMs may be classified as (1) solid- liquid, (2) gas-solid and (3) solid-solid 

phase change materials. The examples of solid-liquid PCMs are paraffins, salt hydrates 

and metals. The salt hydrates such as sodium sulfate deca-hydrate and calcium chloride 

hexa-hydrate [3-4] have large enthalpies of transformation near or below room 

temperature; sodium triacetate hydrate is an example of this material.  

Metal hydrides store energy by transforming from solid to gas. The energy generated 

from the reaction of formation of metal hydride from pure metal is stored in the lattice of 

the material [5]. Substituted LaNi5 – xMx, where M = Sn, Gd, Al, or excess Ni, is a 

potential candidate for this type of storage medium. Polyalcohols such as pentaerythritol, 

pentaglycerine, neopentylglycol, and amines exhibit crystalline transformations which 

absorb and emit large amounts of heat by phase transitions from solid to solid [6]. Latent 

heat is stored in the crystal and when a transition occurs, at a specific temperature, called 

the transition temperature (Tt), energy changes take place.  Plastic crystals are good 

candidates for energy storage material because freedom of molecular rotation exists in the 

very crystalline state on account of their globular shape. After the melting point is 

reached, the coherence of the crystal is disrupted [7]. 

1.2. Solid-Solid PCMs 

Solid-solid PCMs have been focused very little due to their smaller latent heat and higher 

phase change temperatures in low temperature heat-storage applications [8]. It was found 
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that polyalcohols (layered perovskites) and polyethylene are becoming the most 

important area of research. Among three the Polyalcohols are more efficient in low 

temperature energy storage applications. Besides the sensible heat polyalcohols also has 

additional solid-solid phase transformation energies in the range 20-80 cal/gm depending 

on the number of the O-H···O bonds. Polyalcohols exhibit tetragonal structures. An alloy 

mixture of different Polyalcohols in a molar ratio leads to the adjustment of its 

temperature, can be used in the application of interest.  

Polyalcohols materials exhibit polymorphism on solid to solid phase transformation. 

Polyalcohols with functional group (CH3, CH2OH and NH2) transform from low 

temperature heterogeneous α or β to high temperature cubic γ‟ or γ intermediate 

orientationally disordered crystal phases also called as „Plastic Crystals‟. These „Plastic 

Crystals‟ store energy reversibly. The low temperature anisotropic phases α and β change 

to disordered isotropic high temperature phases absorbing a great deal of hydrogen bond 

energy at the solid-solid transition temperature. Few materials like 2- amino-2- methyl-

1,2- propanediol (AMPL) [(NH2)C(CH3)(CH2OH)2],  pentaerythritol [PE: (CH2OH)2C 

(CH2OH)2], neopentylglycol [NPG: (CH3)2C(CH2OH)2], neopentylalcohol [NPA: 

(CH3)3C(CH2OH)], pentaglycerine [PG: (CH3)C(CH2OH)3], and tris(hydroxymethyl) 

aminomethane [TRIS: (NH2)C(CH2OH)3] are being investigated for their energy storage 

capabilities. Murrill and Breed (1970) have reported the transition parameters in the 

compounds CR
1
R

2
R

3
R

4
 where R

s
 are methyl, methylol, amino and carboxy groups. The 

solid-solid transition phenomenon can be observed in the temperature range 20 
o
C to 200 
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o
C,

 
from ordinary to plastic crystals is acquired by a very high value of Cp before the 

transition point [9]. 

Dr. Chandra‟s group put efforts for a long period in investigating the thermodynamic data 

experimentally to study the organic solid-solid phase change thermal storage materials 

„Plastic Crystals‟.   

1.3. An Overview on TRIS-AMPL Phase Diagram  

Materials are subjected to high pressure and temperatures to study their affect on the 

phase transitions. By calculating the phase diagrams one can see through the phase 

stabilities of solid solutions over the temperature range of interest. Chandra et al. [10-11] 

have reported pure component heat capacities, enthalpy and transition temperatures for 

AMPL, TRIS, TRMP, PE, NPG etc.. Chellappa and Chandra [12-14] reported computer 

simulated phase diagrams for PE-PG, PE-NPG, PG-AMPL, NPG-AMPL, TRIS-AMPL, 

NPG- TRIS, PG-TRIS and PE-TRIS, using FACT/ Thermo-Calc programs using the heat 

capacity data and showed that there is an excellent correlation between the experimental 

phase diagram and computer generated ones.  

We are currently working on TRIS-AMPL, TRMP-AMPL systems. In 1993 Barrio et al. 

[14] constructed experimental TRIS-AMPL phase diagram with the results of thermal 

analysis and crystallographic studies in the range of temperatures 25 
o
C to 177 

o
C [15]. 

Zhang et al, have measured the thermal conductivities of AMPL and TRIS individual 

systems and both as a binary system with 50:50 mixture [16].  Thermodynamic and 

crystallographic data for the system has been investigated by numerous researchers [3-
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16].  The experimental phase diagram of AMPL-TRIS has been determined by Mr. 

Vamsi K. Kamisetty [21] and the experimental data will be used as a comparison of this 

calculated AMPL-TRIS phase diagram presented in this work. Thermodynamic data has 

been collected for calculating AMPL-TRIS phase diagrams of plastic crystal materials on 

the basis of the CALPHAD method. The heat capacity measurements of pure and solid 

solutions TRIS and AMPL are key input to computer modeling of binary phase diagrams 

using CALPHAD method.  

1.4. CALPHAD 

CALPHAD has been an efficient tool for the last 30 years in utilizing available 

experimental data and performing a thermodynamic optimization. Since the pioneering 

work by Kaufman who also derived the name CALPHAD, the CALPHAD modeling of 

thermodynamics has been developed into a sophisticated approach capable of calculating 

phase equilibria in multi-component, technologically important materials. The journal 

CALPHAD is started in 1977 under the editorship of Larry Kaufman. It not only has the 

assessed databases and optimized parameters for alloys but also has databases for oxides, 

salts, aqueous and organic systems comprising the major portion of the journal 

CALPHAD [16]. It also has many articles on application and the development of the 

different solution models to different material problems. The journal has been primary 

source of references for different kinds of thermodynamic assessments of alloy systems. 

The CALPHAD approach is particularly valuable in materials science and engineering in 

comparison with physics and chemistry due to more complicated systems involving multi 

component solution phases.  The accuracy is achieved, if all the experimental data 
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available are taken into account and if thermodynamic consistency exists between every 

thermodynamic functions of the phases and the phase diagram.  

We focused on optimization of the TRIS-AMPL binary phase diagram data from the 

experiments conducted by Chandra‟s research group, also in contributing to the 

development of the database with thermodynamic description of these PCMs. The 

Optimization and the development of the database were achieved through programming 

in computer software „Thermo-Calc‟. In a variety of applications like materials 

development to process control these self-consistent databases having complete 

thermodynamic descriptions of unary, binary, ternary and higher order systems are being 

used in equilibrium calculations. The assessed database contains the calculated Gibbs 

energies from the experimentally determined Cp data for individual phases as a function 

of temperature, composition and pressure. These databases are then linked to the Thermo-

Calc for the computing the phase equilibria. The information should be stored in a 

compact form. The success of the model in correlating with the experimental phase 

diagram relies on the reliability of these databases.  

There are three major problems associated with the generation of phase diagrams from 

experimental data, to which computer calculations are useful: the phase diagram should 

be as accurate as possible [17]. A powerful tool is necessary to evaluate the enormous 

number of unknown parameters of multi-component systems.  
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1.5. Thermo-Calc Software package 

A number of software packages dealing with the equilibrium calculations for the 

databank development are available, e.g.: THERMO-CALC, Chemsage, Thermosuite, 

MTDATA, FACT, and Pandat. Thermo-Calc has been proved worldwide to be the most 

powerful and flexible tool based upon powerful Gibbs energy minimize, which can help 

in avoiding time consuming experiments, improve quality, performance and control 

environmental impacts. For the calculations of thermodynamic properties which can 

include functions with temperature, pressure, composition, magnetic ordering, chemical 

potential, etc and for reproducing various types of stable/meta stable phase diagrams, 

property diagrams, etc.  

By means of optimization procedures, the coupling of the experimental thermodynamic 

information with phase diagram data can lead to optimal values of the thermodynamic 

properties of the various phases in the system. These procedures use all available 

experimental information on phase diagram and thermodynamic quantities like activities, 

enthalpies of formation and heat capacities. They are integrated in several software 

packages like BINGSS and TERGSS, PARROT, CHEMSAGE and FACT which are 

used worldwide provide an excellent representation of the thermodynamic properties of 

the properties of the various phases of a system and are consistent with phase diagram 

information. 

The optimization of a system based on different types of data usually is done by trial and 

error methods. With increasing number of components and/or increasing number of 
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different types of data, this method becomes more and more cumbersome. Therefore a 

straight forward method is desirable. As straight forward method, the least squares 

method of Gauss was adapted [20].  

In PARROT module of Thermo-Calc phase diagram is calculated for several times during 

the assessment to interpolate the thermodynamic properties between the experimental 

points and calculated data. During optimization which is by least-squares a set of 

experimental data is used.  

This thesis describes the step by step procedure of calculating the phase diagram of 

AMPL-TRIS using CALPHAD models and Thermo-Calc computer program. The G-X 

curves were constructed for each phase derived from the Gibbs energy equations of pure 

components in unmixed condition. Gibbs energy minimization of the phases and the 

common tangent construction showing the two phase equilibrium is also discussed. 

Description of phase relations and thermodynamic data of the system has been obtained 

by means of thermodynamic modeling. A systematic description of Optimization method 

with PARROT module of Thermo-Calc is reported. Rigorous calculations and reanalysis 

of phase diagram have been done before presenting them. 
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CHAPTER 2 

CALPHAD modeling of Phase Diagrams  

2.1 . Introduction to Phase Diagram Calculation  

Thermodynamics is the basis of materials science and engineering.  It has been a major 

contribution to the design of new materials in metallurgy.  Calculation of phase diagrams 

for multi-component systems using a thermodynamic approach is an important step in 

resolving industrial problems. The relationship between the composition, microstructure, 

and process conditions, phase diagrams are used in materials research.  For the 

development of new materials there is always demand of new applications for achieving 

quality. The design of new materials to achieve the optimal desired properties is 

predominately achieved by the advances in computational materials science and 

information technology.  

Different approaches of determining a phase diagram: 

 Common Tangent Method ه

 Analytical Method ه

 Equation of State Method ه

 Equilibrium Constant Method ه

  Calphad Method ه

Where in which, the CALPHAD approach is currently the most widely used because of 

the ease with which equilibrium computations can be coded using a computer.  
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The CALPHAD approach is based on mathematically formulated models describing the 

thermodynamic properties of individual phases. The model parameters are evaluated 

from thermo chemical data of individual phase equilibrium data between phases. 

Generally  in practical applications of materials during CALPHAD modeling, the 

commonly controlled processing variables are temperature (T), pressure(P), and number 

of atoms or moles of component  i(Ni) which render the Gibbs energy (G) to be the state 

function to be modeled as T, P and Ni.  

2.2. Gibbs energy Modeling of Solution Phase  

A number of models are available for the thermodynamic properties of various phases. 

The integral Gibbs energy will be used as the modeled thermodynamic property. Since 

the experiments are generally carried out at constant temperature and pressure it is 

practical to model Gibbs energy than any other thermodynamic function. The traditional 

„Monte Carlo‟ method for thermodynamic calculations is not being used in Calphad.   

Each type of phase has different physical and chemical properties and structures which 

requires different types of models for them to describe accurately. Since those 

mathematical expressions are in more general form sometimes the mathematical 

expressions describing a physical quantity may be similar to the expressions of the other. 

These general expressions must have to be able to incorporate in them the additional 

phase properties or behavior involving chemical ordering, magnetic ordering and order-

disorder transitions. One can independently select models for the phases except only 

when phases are of same structure family.  
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There are two types of Gibbs energies, configurational Gibbs energy due to mixing of 

unlike atoms and Gibbs energy due to bonding between the molecules.  

The selection of the model for a phase must be based on the physical and chemical 

properties of the phases, for example crystallography, type of bonding, order-disorder 

transitions, and magnetic properties [3]. The phase equilibria and the thermodynamic 

properties measured for a system are incorporated in to the Gibbs energy model 

parameters adjusted so as to explain the system thermodynamically.   The term parameter 

will be used for a quantity that is part of a model, like excess parameter. Some parameters 

can be a function of temperature, pressure, or even composition, and thus can be split into 

several other parameters. Each parameter may consist of several coefficients and a 

coefficient is always just a single numerical value.  

The general form of a phase theta is expressed as 

  
   srf  

   

In order to predict the multiphase equilibria or to analyze industrial process 

thermodynamic calculations are used initially. Modeling is a connection between 

experimental observations and theoretical predictions and is preceded with the 

minimization of the total Gibbs energy of a system (1).  Many models empirical or 

derived from statistical thermodynamics have been published. There exist a number of 

models to evaluate the thermodynamic behavior of the solution phases, non-

stoichiometric compounds with different structures, or phases with order-disorder 
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transformations [2]. In the Calphad modeling, the molar Gibbs energy of individual 

phases is modeled.  

2.2.1. Substitutional Solution models 

The thermodynamic description of Substitutional solutions in terms of power series have 

been formulated by many mathematicians like Margules [4], Redlich and Kister [5], 

Esdaile[6], Sharkey[7], Bale and Pelton [8] and Tomiska [9].  

These power series have been extended to multicomponent system [6] following 

composition variable be used: 

                     
 
          (2.1) 

Where        whatever the order of the system, and a certain symmetry for the mole 

fractions is introduced.  

Van Laar [10], Sactchard-hamer [11], Flory-Huggins [12, 13], Wolhl [14], and Wilson 

[15] suggested volume fractions as compositions instead of using molar fractions. The 

table [1] shows the thermodynamic properties of binary and ternary organic mixtures but 

very seldom for metallic solutions.  
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Table 2.1.  Analytical equations representing the Excess Gibbs Energies of   

Substitutional Solutions [16]. 

    

 

 

 



17 
 

The solubility of the one or more components in a phase is said to be solution phase. 

There exist four major types of solution phases in CALPHAD software programs: 

1. Random Substitutional 

2. Sublattice 

3. Ionic and 

4. Aqueous  

For all solution phases the Gibbs free energy is given by, 

EXideal

mix

o GGGG           (2.2) 

where 
oG is the contribution of the pure components of the phase to the Gibbs energy, 

ideal

mixG  is the ideal mixing contribution and 
EXG is the contribution due to the non-ideal 

interactions between the components known as the Excess Gibbs Energy.  

2.2.2. Gibbs Energy for Pure Species or Stoichiometric Compounds 

The integral Gibbs energy, ),( PTG of a pure compound or species is given by the 

following simple equation, 

),(),(),( PTTSPTHPTG        (2.3) 

The enthalpies and entropies are represented as functions of temperature and pressure. In 

all the major databases such as Scientific Group Thermodata Europe (SGTE) Database, 

the Gibbs energy is usually of the form, 

    
n

n

n

SER

mm TdTcTbTaHTG
2

ln     (2.4) 
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This is the Gibbs energy relative to the Standard Element Reference (SER) Enthalpy of 

the element or substance at 298.15 K. The coefficients, a, b and c are determined from 

experimental data. For compounds for which such data is not available, we can derive the 

relation for ),( PTG if we have the specific heat capacity as a function of temperature by 

using common thermodynamic relationships, 














  dT

T

TC
STdTTCHTG

T

Po

T

P

o

298

298

298

298

)(
)()(     (2.5) 

When the standard enthalpy and entropy of formation of compounds is not available they 

can be estimated using Group Contribution Techniques (Organic Compounds) or Ab-

initio and statistical mechanics considerations. 

2.2.3. Random Substitutional Models 

Random Substitutional models are used for phases such as the gas phase or simple 

metallic liquid and solid solutions where components can mix on any spatial position, 

which is available to the phase. This is especially true in case of gas and liquid phases 

where the crystallographic structure is lost and there is no preferential occupation of any 

site by any particular component.  

Simple thermodynamic models that account for non-ideality and mixing effects are 

grouped under this category. The gas phase and condensed phase modeling is presented 

in detail here.  
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 Mixing in Liquid and Solid Phases  

To model the liquid and solid Phases, we develop the concept of activity. Activity is 

defined in terms of fugacity. We note here that this definition is for convenience so that 

we maintain the functional form. The activity of a component „i‟ in a mixture is defined 

as, 

o

i

i

i
f

f
a

ˆ
          (2.6) 

Where if̂ is the fugacity of component „i‟ in solution phase and o

if is the fugacity of the 

pure component at temperature T. 

Ideal Raoultian Solution 

If the vapor in equilibrium with the condensed solution is ideal then  

ii pf ˆ   and  o

i

o

i pf        (2.7) 

 iii aRTGG ln         (2.8) 

For a solution that obeys Raoult‟s Law, 

 io

i

i

ii XRT
p

p
RTGG lnln 













       (2.9) 

or  

ii Xa           (2.10) 
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Non-ideal Henrian Solution  

When the condensed phase does not behave ideally, we introduce an activity coefficient 

to account for the non-ideality. The activity coefficient is defined as, 

i

i

i
X

a
          (2.11) 

When the activity coefficient is assumed as a constant parameter at infinite dilution, the 

solution is then called Henrian. 

i

o

ii Xa           (2.12) 

The Gibbs energy of a binary solution mixture is given by, 

BBAA GXGXG          (2.13) 

The Gibbs energy of unmixed pure components is given by, 

o

BB

o

AA

o GXGXG          (2.14) 

The change in Gibbs energy for binary can be written as,  

    BAAA

Mixo aXaXRTGGG lnln      (2.15) 

For a solution with „n‟ components the general equations can be written as, 


i

ii GXG          (2.16) 
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
i

o

ii

o GXG         (2.17) 

 
i

ii

Mixo aXRTGGG ln       (2.18) 

We can divide the Gibbs energy of mixing into the ideal and excess parts, where the 

excess Gibbs energy will be the part that accounts for non-ideality. 

EXMix

ideal

Mix GGG         (2.19) 

EXMix

ideal

oMixo GGGGGG       (2.20) 

Substituting eqns. (2.9), (2.10) and (2.11) into eqn. (2.18), we can obtain the expression 

for different models which are shown below, 

Ideal Solution Model 

 
i

ii

oMix

ideal

o XXRTGGGG ln      (2.21) 

0EXG          (2.22) 

Henrian Solution Model 

    
i

o

ii

i

ii

oMixo XRTXXRTGGGG lnln    (2.23) 

 
i

o

ii

EX XRTG ln        (2.24) 
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General Non-ideal Solution Model 

    
i

ii

i

ii

oMixo XRTXXRTGGGG lnln    (2.25) 

 
i

ii

EX XRTG ln        (2.26) 

Eqns. (2.25) and (2.46) are the most general equations that model the non-ideal solution. 

The semi-empirical approaches of Activity Coefficient modeling is the preferred way of 

Chemical Engineering community. 

2.2.4 Regular Solution Model 

The regular solution model is the simplest of the non-ideal models and considers that the 

magnitude and sign of interactions between the components in a phase are independent of 

composition. The discussion presented here follows the classic undergraduate text for 

metallurgical thermodynamics by Gaskell [19]. Assuming the total energy of the solution 

0E arises from only the nearest-neighbors bond energies in a binary system A – B, we 

can express this as, 

ABABBBBBAAAA EEEE  0       (2.27) 

where ABBBAAABBBAA EEE ,,,,,   are the number of bonds and energies associated with 

formation of different bonds types AA, BB and AB. If there are N atoms in solution and 

the co-ordination number for nearest neighbors of the crystal structure is z, the number of 

bond types being formed in a random solution is, 
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2

2

1
AAA NzX         (2.28) 

2

2

1
BBB NzX         (2.29) 

BAAB XNzX         (2.30) 

Where XA and XB are the mole fractions of A and B. Substituting eqns. (2.28), (2.29) and 

(2.30) into eqn. (2.27), 

  BBAAABBABBBAAA EEEXXEXEX
Nz

E  2
2

0
  (2.31) 

Assuming pure A and B as reference states, eqn. (2.31) can be rewritten as, 

  BBAAABBAMix EEEXX
Nz

H  2
2

     (2.32) 

Using this enthalpy of mixing, we can write the Excess Gibbs energy of mixing as, 

 BA

EX XXG         (2.33) 

Here  is a temperature dependent interaction parameter usually represented as, 

BTA          (2.34) 

Combining eqn. (2.33) with eqn. (2.20), we can write the final equation for the Gibbs 

Energy for a regular solution with „n‟ components, 

  



i ij

ijji

i

ii

o LXXXXRTGG ln      (2.35) 
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Now all that remains to be done is improve upon the assumption of composition 

independent interactions. Many improvements have been proposed and this leads to the 

different models, one particular model is shown in eqn. (2.39).  

2.2.5. The Substitutional-Regular-Solution Model 

Regular and sub-regular solution models are applied in calculation of the phase diagram 

for the random substitutional phases such as gas phase or metallic liquid and solid 

solutions where the mixing of atoms or their occupation can take place in any position in 

the lattice site. 

The excess Gibbs energy for a sub-regular solution model is given by 

           
                        (2.36) 

The regular solution model is so flexible that we can add up the additional parameter with 

each term to the heat of mixing equation. 

For the non-regular solution model the above equation can be formulated by adding the 

dependency of the enthalpy of the mixture on temperature as follows 

           
                             (2.37) 

Redlich-Kister Model 

The multi-component solution widely applied for such models is the Redlich-Kister 

equation.  

     
             

    
   

 
   

 
         

      (2.38) 
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Adding more complex composition dependency to L, 

    



i ij v

v

ji

v

ijji

i

ii

o XXLXXXXRTGG ln    (2.39) 

The first term on the right hand side of the equation (2.39) contributes to the Gibbs 

energy due to the mechanical mixing, and the second on the ideal mixing and the third 

indicates the deviation from ideal mixing also specified as excess Gibbs energy mixing. 

   
  represent the interaction parameters between the atoms for a given occupancy of the 

other and they can be described by the Redlich-Kister type polynomial derived for each 

of the binary systems. They are interaction parameters either constants or linearly 

dependent on the temperature and exponent v. the model becomes regular when v=0 and 

sub-regular when v=1. 

The models described in the Calphad consider the sublattices which are characterized by 

different crystallographic symmetries. A sublattice is a division of a crystal characterized 

by different crystallographic symmetries. Sublattice can either be a single constituent or a 

compound formed by each constituent from each sublattice. Such compound can be 

stoichiometric composition. The so called end members of a solution phase have such 

compounds. The phase having single set of sites and the elements as constituents is said 

to be pure element [3]. The end members consisting of such compounds have solubility 

limit.  
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2.3. Experimental Data for Optimization 

Calculated results when combined with the experimental data using the modeling 

methods like Calphad one can find the loop holes in the trends of the theoretical 

applications  

As we know that the experiments are quite expensive when compared to the theoretical 

applications the collected data from the literature survey should be validated by 

optimizing the data to get the preliminary phase diagram before beginning with one‟s 

own experimental data. This always helps in investigating the phases with inadequate 

data leading to more experimentation. 

More information related to the phase-diagram and thermodynamic functions can be 

obtained from the literature review. It is still of great importance to know the 

experimental methods used for measuring the heat capacity data, enthalpy and transition 

temperatures. The experimental data can be divided in to thermodynamic data, and phase-

diagram data. 

Binary Phase-Diagram Data 

The experimental data points can be found to measure the binary phase diagram are  

i) The temperatures at invariant three phase equilibria points  

ii) The points on the two- phase field boundaries  

iii) For the samples of single and two phase regions with composition x 

annealed to equilibrium at constant temperature T. 
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iv) the values calculate through the least-squares method which include the 

calculated temperature  for which the amounts of three phase and pressure are given, the 

temperature of two-phase equilibrium for which the composition of once phase, the 

amounts of two phases and the pressure are given, the composition of one phase in the 

two-phase equilibrium at given temperature and pressure.  

Thermodynamic Data 

The calorimetric data gives the physical and chemical changes heat capacity of a system.  

The change in temperature before and after a chemical reaction between the reactants 

added to the calorimeter is measured and then multiplied with the specific heat and mass 

of the reactants gives the energy given off or absorbed during that reaction. 

Chemical –potential data are connected with a formula            in which ∆µ is the 

difference of chemical potentials at two different equilibrium states  

2.4. Phase Diagram Determination 

Given a system in which the components can co-exist in many phases, we are usually 

interested in the Temperature – Composition relationships (T versus x). There are many 

different methods to evaluate equilibrium conditions in multicomponent systems and the 

Gibbs free energy curves forms the basis for doing these calculations. The prevalent 

approaches are: 

Gibbs energy minimization methods for calculation of phase equilibria can be conducted 

in following prevalent methods: 
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 Graphical and Numerical Common Tangent Construction Approach ه

 Analytical Approach ه

 Equation of State (EOS) Approach ه

 Equilibrium Constant Approach (ECA) ه

 CALPHAD Approach ه

Of these approaches, the CALPHAD approach is currently the most widely used. This is 

primarily dictated by the ease with which it can be coded to perform the calculations 

using a computer. A summary of 3 of these different approaches will be provided here to 

compare and contrast with the CALPHAD approach. 

2.4.1. Construction of common tangent for a binary system 

This is the most intuitive of all the methods.  It is an earlier method of calculating a phase 

diagram. In a binary system to derive equilibrium phase boundary compositions over a 

range of temperatures, and produce a complete phase diagram, the calculation of common 

tangents to the Gibbs energy curves of the phases can be conducted.  For ternary system 

the calculation of the points of contact of tangents to the Gibbs energy curves becomes 

difficult and time consuming. Gaye and Lupis described the Gibbs energy minimization 

methods for calculation of phase equilibria in higher order systems. An example using a 

hypothetical binary system (A – B) will be shown here. This particular system assumes 

that the solid and liquid phases follow Regular Solution behavior.  

1. The conditions for the two phase field equilibrium in a binary system: 

T
α =T

β          Pα
 =P

β         
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If two phases are in equilibrium, the Partial Molar Gibbs free energy of a component 

is equal is both the phases. For example, in a two-phase region of solid – liquid 

equilibrium, this condition can be represented as: 

Sol

A

Liq

A GG           (2.40) 

Where, 

 

PTA

Liq
Liq

A

x

G
G

,













  And 

PTA

Sol
Sol

A

x

G
G

,













      (2.41) 

2. For a given T and P, the stable phase is the one which has the minimum Gibbs free 

energy. 

A graphical representation of the common tangent construction is illustrated in Fig. 2.1 

the diagram is constructed at constant temperature and pressure. The G-X curves 

represent the thermodynamic behavior of the solutions. As the G-X curves for the two 

phases cross with each other, it is possible to construct a common tangent line to both 

curves. The points of contact of the tangent and the curves are   
  and   

 , a unique pair 

of composition. 

Applying the same principle to a system exhibiting the regions of stability for two 

different phases, Fig 2.2. The compositions at N and P exists in two phase equilibrium. 

  
  lying between   

  and   
 . The point M represents the free energy of mixing for the 

composition   
  

 



30 
 

 

 

Fig 2.1. The G-X curves for two different phases are plotted with consistent   reference 

states. If these curves cross, then unique line can be drawn that is tangent to both 

curves. The comparisons at these tangent points satisfy the conditions for 

equilibrium between the phases [18]. 

 

 

 

Fig 2.2 Consistent G-X curves are plotted for two phases, α and β. For any composition  

  
  and   

 
 has a lower free energy than either homogeneous phase at   

 , or any           

mixture of solution compositions other than   
 

 and   
 

[18]. 
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        is the tangent line. The points A and B represents the Gibbs free energy of 

component 1 in α solution of composition   
  and  at the same time gives the Gibbs 

energy of component 1 in a liquid solution composition   
 . These compositions at the 

two at opposite ends of the tie line phases represent the states of the two phases. 

Generally a system can exhibit an arbitrary number of phases. Fig. 2.3. The combination 

of single and two phase regions given by the curve segments and common tangent lines 

trace the excess Gibbs free energy minimum. The line segment OA-AB-BC-CD-DE-EF-

FP shows the trace. 

 

Fig 2.3.  Taut string construction shows the sequence of equilibrium conditions across  

the composition range in a system forms, α, ε, L and β [18]. 
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Fig 2.4a,b.  Pattern of thermodynamic behavior that generates a two phase field with a  

          minimum.   
        

 

   
     

              [18]. 
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Fig 2.4c,d.  Pattern of thermodynamic behavior that generates a two phase field with a  

          minimum.   
        

 

   
     

              [18]. 

 

The Fig 2.4. Shows a two phase field with a minimum together with a set of respective 

(G-X) diagrams.  To generate the complete two phase field at a constant pressure binary 

diagram, repetition of the construction at a set of temperatures which is the span in which 

the diagram is plotted. During this construction two different come in to picture which 

can determine the configuration: 
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1. The mixing behavior of two phases which include excess and ideal energy mixing 

2. The Gibbs energy variation between the stabilities of the two phases for the pure 

substances. 

In simple binary system considered here the solid phase has a lower Gibbs free energy at 

T =900 K (Fig. 2.4d), so it is more stable than the liquid phase. At T = 987K (Fig. 2.4c) 

the liquid phase has equal Gibbs free energy as the solid, which can be projected as a line 

segment on the T-X diagram below it. At T = 1000 K (Fig. 2.4d), we can see that the 

liquid phase is stable for some mole fractions and the solid phase is stable for some mole 

fractions. It is obvious then that there are two a regions where the two phases can exist in 

equilibrium. At T = 1150 K (Fig. 2.4a) we can observe the two phase field. At higher 

temperatures only liquid phase exists.  

The chemical equilibria constraints, eqns. (2.37) and (2.38) are written again below: 

Sol

A

Liq

A GG           (2.42) 

Where, 

 

PTA

Liq
Liq

A

x

G
G

,













  and 

PTA

Sol
Sol

A

x

G
G

,













      (2.43) 

1 Sol

A

Liq

A xx          (2.44) 

Substituting eqn. (2.43) into (2.42), 
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  0,

,,

1 


























Sol
A

Liq
A xPTA

Sol

xPTA

Liq
Sol

A

Liq

A
Sol

A

Liq

A
x

G

x

G
GGxxf   (2.45) 

Eqn. (2.55) is basically stating the fact that slopes of the curves at equilibrium 

composition are the same. There are two unknowns in eqn. (2.55), so we need another 

equation. By constructing lines defined by equilibrium compositions for both solid and 

liquid phases, we can see that the intercepts have to be equal (since it is the same line). 

The basic equation of the line is, 

bmxy           (2.46) 

We can write this for both solid and liquid phases, 

bx
x

G
G Liq

A

xPTA

Liq
Liq

A

Liq
A















,

    and      bx
x

G
G Sol

A

xPTA

Sol
Sol

A

Sol
A















,

  (2.47) 

From eqn. (2.61), we can equate the intercepts and get our second equation, 

  0,

,,

2 
























 Sol

A

xPTA

Sol
Sol

A
Liq

A

xPTA

Liq
Liq

A
Sol

A

Liq

A x
x

G
Gx

x

G
Gxxf

Sol
A

Liq
A

         (2.48) 

In eqns. (2.46) and (2.48), we have two sets of equations with two unknowns which can 

be solved graphically by drawing tangents (Fig. 2.4). This graphical method of finding 

the compositions is called the “common tangent” method. A magnified view is shown in 

Fig. 2.5. To solve graphically by drawing common tangents is cumbersome. We usually 

use numerical packages to solve these non-linear algebraic equations. We can 

approximate the differentials by using a forward or centered difference method. 
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Numerical packages like MathCAD, MATLAB have robust codes for solving algebraic 

equations. 

 

Fig  2.5a.  Common tangent drawn to find equilibrium composition points for  

      solid and liquid phases (Tie – line points) 

 

 

 

Fig 2.5b.  Magnified view of Fig.2.4. 
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2.4.2. CALPHAD Approach 

CALPHAD methods provide a true equilibrium calculation by considering the Gibbs 

energy of all the phases and minimizing the total Gibbs energy of the system (G). At the 

heart of the CALPHAD-method is the Gibbs energy modeling [3]. This involves 

selection of appropriate thermodynamic models for the Gibbs energy functions G(P, T, x) 

of phases and maximum-likelihood estimation of the model parameters using critically 

selected thermo-chemical and constitutional data as input, eventually leading to an 

optimized thermodynamic description of the system. A flowchart representing the 

procedure of CALPHAD method is shown in Fig. 2.6.  

The total energy G of the system is represented either in terms of the chemical potential 

of the component „i‟, 
iG ,  


i

ii GnG          (2.49) 

or by the amount of phases (N
Ф

) involved, 

mGNG 



         (2.50) 
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Fig 2.6.  Schematic representation of CALPHAD method for Assessing Phase Diagrams   

[22]. 
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This total Gibbs free energy is now minimized considering the phases present in multi-

phase equilibria by using various numerical techniques. The main questions that arises in 

using this approach are, 

1. What is the model (semi-empirical, theoretical or empirical) for Gibbs free energy 

that adequately represents the non-ideality of the phase under consideration? How 

many parameters do we need to include for the excess Gibbs energy to be modeled? 

2. What is the minimization technique that is robust and provides good convergence for 

the model parameters? 

The solution to these questions forms the basis for assessments of phase diagrams using 

the CALPHAD method. To answer the first question, we have to understand the nature of 

non-ideality in the solution phase. Various models have been proposed and used for 

different systems. For Metal – Hydrogen systems, the Virial EOS (for a given range of 

pressure) is usually proposed for Hydrogen in gaseous phase and the sublattice model for 

an approximate description of the solid hydride phase. The sublattice modeling is a very 

important feature and has been discussed in detail in Section 3.3. 

2.5. Application of the CALPHAD  

2.5.1. Description of the CALPHAD Procedure 

CALPHAD (CALculation of PHAse Diagrams) as it thrives today is a technique to 

determine phase diagrams of alloys and multi-component systems that was pioneered in 

the 1960‟s and 1970‟s by Larry Kaufman among others [3]. This study provides an 



40 
 

introduction to the theory and applications of this methodology along with the 

computational software that are available. A brief summary of the underlying 

thermodynamics of phase equilibria calculations is given with some illustrations and 

many of the recent advances especially in the modeling of the solution phases will be 

elucidated. The working of two of the widely used software F*A*C*T (Facility for 

Analysis of Thermodynamics) and Thermo-Calc is also presented. 

A simple binary Ni – Cu system is considered here. The phase diagram for this system is 

shown in Fig. 2.7. For ease of understanding the procedure is described in steps. The 

main aim is to find the minimum Gibbs energy for a mixture of f.c.c and liquid phases for 

an equilibrium composition e

fccx and e

Liqx at a given temperature T. Obviously it is 

assumed that the model for the two phases are known. The procedure to determine how to 

obtain the model is described in the next section. These steps have been mathematically 

formulated specifically. 

 

Fig 2.7.  Ni-Cu Phase Diagram. 
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Step 1 

Set Temperature as a constant (T = 1523K in this case) 

Step 2 

Define the total Molar Gibbs energy of the mixture using eqn. (2.49) as, 

mTotal GNG 



         (2.51) 

with 




ii NN and MN 


 , where iN is total number of moles of component „i‟ in 

the system and 

iN is the number of moles of component „i‟ in the phase  and M is the 

total number of moles in the system. The above general equation is now written for our 

system as, 

Liq

Liq

fcc

fcc

Total GNGNG         (2.52) 

Liq

Ni

fcc

NiNi NNN          (2.53) 

Liq

Cu

fcc

CuCu NNN          (2.54) 

MNN Liqfcc          (2.55) 

Let us assume that the total number of moles is M = 1. 

Liq

Liq

fcc

fcc

Liq

Liq

fcc

fcc

Total GNGNGXGXGG     (2.56) 
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Step 3 

Find the composition at which the Gibbs energy for both the phases are equal. This is 

simply obtained from equating the molar Gibbs energy of the two phases. 

Liqfcc GG           (2.57) 

Assuming that Liquid follows ideal solution behavior and the f.c.c phase follows regular 

solution behavior, eqn. (2.51) can be expanded as follows, 

  fcco

Cu

fcc

Ni

fcco

Ni

fcc

Ni

fcco

Cu

fcc

Cu

fcco

Ni

fcc

Ni

o

fcc GXGXGXGXG ,,,, 1    (2.58) 

  Liqo

Cu

Liq

Ni

Liqo

Ni

Liq

Ni

Liqo

Cu

Liq

Cu

Liqo

Ni

Liq

Ni

o

Liq GXGXGXGXG ,,,, 1   (2.59) 

0EX

LiqG          (2.60) 

   fcc

Ni

fcc

Ni

EX

fcc XXBTAG  1      (2.61) 

Substituting eqns. (2.58) – (2.61) into (2.57), we get 
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
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Liq
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Liq

Ni

fcc

Ni

fcc

Ni

fcc

Ni

fcc
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fcc

Ni

fcc

Ni
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Cu

fcc

Ni

fcco

Ni

fcc

Ni

XXXXRTGXGX

XXBTAXXXXRTGXGX

            (2.62) 

In eqn. (2.62), assuming, 

0XXX fcc

Ni

Liq

Ni           (2.63) 
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we have one equation in one unknown and we can solve this using any standard 

numerical package. From this 0X , shown in Fig. 2.8, we can calculate the amount of 

fccN . Using this as starting point has advantages of fast convergence though any point 

NiX , which would be the overall composition of Ni, satisfying the lever rule could be 

used. 

fcc

Ni

Liq

Ni

Liq

NiNifcc

XX

XX
N




         (2.64) 

 

Fig 2.8.  G/x curves for Ni-Cu system at T =1523 K. 
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Step 4 

Assume alloy to be of single f.c.c phase and introduce an arbitrary amount of liquid. This 

can be done by, 

LiqLiqLiq NNN          (2.65) 

If 0LiqN to begin the minimization it is single phase (f.c.c), then addition of a small 

amount of liquid is carried out by adding
LiqN . 

Step 5 

Retain mass balance by calculating new 
fccN based upon equations (2.54) – (2.55). 

Step 6 

Calculate the value of molar Gibbs energy using eqn. (2.56) 

Step 7 

Now, we keep 
fccN as a constant and start to vary 

LiqN so that the value of Gibbs energy 

is reduced. This is a simple numerical iterative procedure that can be programmed easily. 

Fig. 2.9 shows this iterative process starting from 0X . 

Step 8 

From Fig. 12, it is clear what we are accomplishing, the variation of G with respect to the 

amount of Liquid Phase, 
LiqN . The iteration will stop when the value of the slope of the 

curve becomes zero. Numerically, 





LiqN

G
         (2.66) 
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Where 0001.0 or some small number like that. This tolerance level or convergence 

limit, depends on the accuracy of computation we are trying to maintain. The differential 

(slope) can be approximated using a centered or forward difference approximation. 

 

Fig 2.9.  Iterative procedure starting from 0X to find the minimum Gibbs energy by   

varying the amount of liquid phase, 
LiqN , for the Ni –Cu binary system at T =   

1523 K. 

 

Step 9 

The variation of 
LiqN can be carried out in an arbitrary way but a better way of guessing 

the next amount of 
LiqN to be added can be calculated more efficiently by calculating the 

second differential 
2

2

LiqN

G




. Plotting Liq

Liq
Nvs

N

G




gives us a clear picture of where the 

minimization of Gibbs energy is proceeding (Fig. 2.11). Let the final value of G be 

  variableliquid fixed, fccG  
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Fig 2.10.  Determination of the end of the minimization routine. 

Step 10 

The composition of Liquid is held as a constant and the Steps 4 – 9 are repeated for 

changes in f.c.c amount (Fig 2.11). A new value of the final amount of minimized G is 

calculated. This is termed as   variablef.c.c fixed, liquidG . 

Step 11 

If, 

      variableliquid fixed, f.c.c variablef.c.c fixed, liquid GG   (2.67) 

where  is some pre-determined convergence limit then we STOP the minimization 

process. If this is not achieved then Steps 4 – 11 are repeated. A schematic representation 

of the repetition is shown in Fig. 2.13 and Fig. 2.14. 
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We will note here that the value of initial composition that was chosen was in the two-

phase field, 0X calculated from eqn. (2.64). 

 

Fig 2.11. Schematic diagram of the first differential of the 
LiqNvsG curve  

 

 

 

Fig 2.12.  Schematic of the second iteration showing the variation of the f.c.c amount  

       keeping amount of liquid fixed. 
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Fig 2.13.  Repetition of Step 9, varying Liquid amount keeping f.c.c fixed, if Step 11 is  

       not satisfied. 

 

 

 

Fig 2.14.  Repetition of Step 10, varying f.c.c amount keeping Liquid fixed, if Step 11 is  

      not satisfied. 
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Step 12 

If we start the iteration process using eqn. (2.65) that is from a single-phase field, the 

iterative schematic will look like Fig. 2.15. This will be automatically recognized by 

program. Fig. 2.15 (a) shows the case where the composition 
fccN  was determined from 

eqn. (2.62) by assuming 11 XX Ni  . Now some amount of liquid is introduced and G is 

calculated.  

 

Fig  2.15.  Minimization process starting from a single-phase field (f.c.c or Liquid) 
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The amount of liquid is then changed until a minimum value of G is obtained based upon 

eqn. (2.64) and this is noted to be   variableliquid fixed, fccG . Fig. 2.15 (b) shows the 

case when 
LiqN was determined from eqn. (2.65) and the minimization was done. The 

procedure is repeated (composition of f.c.c phase reaching 1X  and the amount of liquid is 

therefore reduced to zero to maintain mass balance. and the minimum value of G 

obtained is noted as   variablef.c.c fixed, liquidG . Step 11 is repeated to test for 

convergence. So, at the end of iteration from Step 4 – 11 what we have is just one single 

point on the phase diagram or a tie-line in the two-phase field. This procedure has to be 

repeated for various temperatures by changing the value of Temperature. 

This will not be a computationally intensive procedure since there are only few numerical 

calculations involved. Three phase equilibria can also be calculated using a similar 

procedure. The procedure described above is a very general procedure for performing the 

Gibbs minimization. We can see that this is fundamentally different from ECA or EOS or 

the common tangent technique. 

2.5.2. Minimization of Gibbs Free Energy Routines 

The software program such as F*A*C*T (EQUILIB Module) and Thermo-Calc (POLY-3 

Module) have customized routines to perform a similar minimization as described in the 

previous section. The concept is the same but the numerical techniques are advanced and 

robust. 
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The F*A*C*T program uses the method of steepest descent to provide a rapid solution to 

the minimization problem. The name of the code used is ChemSage. A Gibbs energy 

function is first defined by the following method. 


i

iiGnYG )(  

   i

o

i

c

s

ccg

m

gg
i aRTGyyyyyyG ln,...,,,...,, 2121      (2.68) 

Y is the vector containing all the various compositions, m is the number of substances in 

gas phase and s is the number of substances in the condensed phase. A quadratic 

approximation of G(Y) is then expanded using the Taylor‟s approximation and minimized 

using the method of Lagrange multipliers. What we described in the previous section is 

basically a Newton – Raphson kind of method but new software program use more 

advanced numerical techniques. The Thermo-Calc software uses a similar technique in its 

POLY-3 module but these are proprietary in nature so I will not be able to discuss the 

particular routines in detail. 

The methods like Newton-Raphson and steepest descent are based on calculating local 

minima. There are problems, which can arise when we are interested in determining 

minimum Gibbs energy for multi-component systems. There are techniques available, 

which can determine global to provide more robust estimates for the compositions at 

which the minimum Gibbs energy is obtained. 
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2.5.3. Model Parameters Determination through Thermodynamic 

Optimization   

By means of optimization procedures, the coupling of the experimental thermodynamic 

information with phase diagram data can lead to optimal values of the thermodynamic 

properties of the various phases in the system. Thermodynamic optimization is the fitting 

process where the adjustable coefficients in the total Gibbs energy equation (These will 

essentially be the excess parameters such as BTA , A and B are the unknowns) are 

altered such that the best representation of both the experimentally measured phase 

diagram and thermodynamic properties are obtained. The accuracy with which these 

parameters are determined depends upon the mathematical form of the least squares 

technique. An optimization module is a part of any CALPHAD software, which takes 

various types of input such as 

 Experimental Tie line Points ه

 Invariant Equilibria Points ه

 Enthalpy of Solution Phases ه

 Activity Measurements and Activity Coefficient Estimations ه

 Any Experimental Data that can be converted into “convenient” form ه

Currently F*A*C*T program does not have a robust optimization module. Thermo-Calc 

has the most robust code in its PARROT module. The general procedure for optimization 

at the present time using modules such as PARROT is performed through a process of 

trial-and-error by reducing the error using some mathematical algorithm. The manual 
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procedure is just that we change the excess parameters according to our personal 

judgment depending upon our knowledge of the system we want to optimize. 

2.6. Thermodynamic Optimization of Phase Diagrams 

The optimization was carried by using a computer program THERMO-CALC [3]. The 

measured enthalpies of compounds and the phase diagram data are used as input to the 

program. The adjusting process of the coefficients in the Gibbs energy equations to best 

fit both experimentally measured phase diagram and thermodynamic properties. The 

accuracy of this representation can be defined mathematically through some form of 

least-squares algorithm, and this forms the basis for optimization software such as 

PARROT [20]. 

The primary governing principles in PARROT involves establishing a criterion for the 

best fit (usually by specifying an objective function), separating the data into sets of 

different accuracies and making a distinction between independent and dependent 

variables. The criterion for best fit is based on the well-known Maximum Likelihood 

Estimation (MLE) technique where the best estimates of the model parameters should 

maximize the likelihood function, L, for the N experimental observations, 

 



N

i

i

o

ii wzFL
1

,         (2.69) 

where iF is the multivariable density function for the distribution of the measured values 

in experiment „i‟, 
o

iz , are the measured experimental values which might differ from their 
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true value and iw is used to denote the statistical parameters in the probability density 

function concerning experiment „i‟ (Say measurement of Enthalpy of solution phase). 

The mathematical details of MLE type estimation are complex but a thorough 

understanding is vital to know the working of the PARROT module. It is suffice to say 

that the PARROT can accept any kind of experimental information in the evaluation of 

model parameters. 

A strong statistical knowledge is necessary to understand the difference between the 

presence of systematic and random errors. The assumption of Gaussian distribution in the 

experimental data is reasonable though depending upon the uncertainty in the 

measurements other distributions may also be considered. But it is a well-known fact in 

the CALPHAD community that the Thermo-Calc software is very robust software and 

understanding the working should enable us to optimize the model parameters in a 

satisfactory manner. 

2.6.1. Least-Squares Method of Optimization 

This section is first introduced by gauss and can be found in many text books.  This 

method is well known for optimization of single functions and also for the determination 

of the partial free enthalpy from binary phase diagrams. With the least squares method 

the simultaneous calculation of the different thermodynamic functions an be achieved. 

An analytical formalism is necessary which describes the different functions with 

coefficients taken from one common set of coefficients.  Thermodynamic consistency is 

still well expressed by the use of thermodynamic relations. Following is the description 
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of our problem in terms of least-squares equations. In Gaussian calculation one equation 

of error belongs to each experimental value. The different types of values (calorimetric, 

emf or vapor pressure, phase diagram measurements) have their special equations of 

error. Also for one type of measurement special equations exist for different number of 

phases [Zimmerman].  

Zimmermann defines the error of a two-phase equilibrium by a linear expression relating 

the Gibbs energies and their derivatives with respect to the composition x as  

     -    
   

   
-           (2.70) 

The first two terms together give the distance between this point at x‟ on the tangent to 

the curve G‟(x) at x‟. All three terms together thus give the distance between this point on 

the tangent and G” = G
liq

 at x” =x
liq

. If the single-phase Gibbs energies are linear 

functions of the adjustable coefficients, the error itself is a linear adjustable coefficients. 

The thus-defined error is zero if the common-tangent construction fits exactly with the 

measured concentration x‟. 
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Fig 2.16.  Construction of the „alternate definition of error‟.  The difference taken at  

composition x
bcc

 between G
bcc

 and the tangent touching G
liq  

at x
liq

 is taken to          

be   the “error”. 

 

The general equations of our problem are outlined as follows: 

The minimum of the sum of the squares of errors is determined by the method of Gauss, 

which can be expressed in matrix formulation. The corrections of the coefficients are the 

solutions of the matrix equation. 

 A set of n measurable values Wi depends on a set of m unknown coefficients Vi via 

functions Fi with values of independent variables xki: 

Wi=Fi(Vj, xki)      i=1,….,n ,       j=1,…….,m         (2.71) 
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The index k distinguishes the various independent variables (temperature, concentrations 

…) belonging to measurement number i. 

If n is greater than m it is not possible to find the set of coefficients Vj for which the Wi 

calculated are equal to the corresponding measured values Li.  The best values of Vj 

obtained which minimizes the sum of the squares of errors, error is defined as the 

difference between calculated and measured Fi and Li values times the weighing factor pi: 

               (Fi(Vj,xki)-Li)·pi = vi      equation number                           (2.72) 

pi is called the error equation. 

The condition for the best value of Vj with respect to Vj is    

      
  

             (2.73)  

The derivation of the above m equations with respect to m unknown coefficients Vj is 

written as 

    
   
   

  

 

   

 

j = 1,….,m          (2.74) 

Linear expansion of vi in terms of Taylor series 

             
    

        
   

   

 
             (2.75) 
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Where the ∆   are the corrections to the coefficients Vi. if the difference between   
  

values and the final values are too high which is invalid which are non-linear in the 

coefficients Vj.  The corrections can be calculated by inserting the Eq. 2.75 into Eq. 2.74 

and rearranging to give: 

   
   

   

 
    

   

   
    

 
        

  
   

   

 
                     (2.76) 

These are called “Gaussian normal equations” with m set of linear equations for the m 

unknowns:  

   
   

   
 
   

   

 
     

   

               
  

   

   
         

     
   

                (2.77) 

Set of coefficients initial coefficients    
  when incorporated in the above set of Eq (6.7) 

solves the corrections ∆Vi . Until the corrections are less than the given limit, the 

corrections are being added to the initial set of coefficients and checked. 

The mean square error is defined as a measure of the fit between the measured values and 

the resulting Vj : 

                      
  
 

   

 
            (2.78) 

So the accuracy of the calculate coefficients is proportional to the square root of the mean 

squared error. The factor of proportionality of each coefficient is the square root of the 

corresponding diagonal element of the reciprocal of the m x m matrix of Eq.(2.77) 
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The squares of errors in Eq (2.73) should have the same dimension. The weighing factor 

pi in Eq (2.72) can be used to make the errors vi dimensionless, if pi is taken as the 

reciprocal of the estimated accuracy ∆Li of the measured values [2]: 

                                                     -1           (2.79) 

In PARROT software the term sum of squares of errors for each experimental value i is 

equal to          
                                         

                        
 
 

    (2.80) 

          

This equation is equivalent to the addition of Eqs (2.72) and (2.79) without considering 

the uncertainties of the independent variables. 

2.7. PARROT module of THERMO-CALC 

2.7.1 .The PARROT Program 

The PARROT program which is integrated into the Thermo-Calc software is the tool to 

perform optimization.  The principle behind the program is to minimize the error between 

the experimental and the calculated quantities. PARROT separates the data in to 

independent and dependent variables in order to best-fit the model parameters. Any kind 

of model parameter can be optimized, including magnetic and pressure-dependent 

parameters, in all models that have been implemented in the Gibbs Energy System 

(GES), which is also a part of Thermo-Calc.  PARROT gives all the possible information 

regarding the system to be assessed. PARROT has another important module EDIT-
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EXPERIMENT for manipulating the optimizing conditions and individual experimental 

equilibrium.  For example, 

ENTER-PARAM L (LIQUID, AU, CU; 0) 298.15 V1+V2*T; 6000 N 

Also the Gibbs energies of the systems can be functions of temperature and pressure with 

several parameters to be optimized.  

In the PARROT module of Thermo-Calc there is no limitation in definition the error for 

each experiment, thus the alternate definition can be chosen independently. The 

PARROT module has an option called “set alternate mode,” with the use of which 

alternate errors can be calculated from a “normal‟ experimental data file as differences of 

Gibbs energies rather than differences between the measured and calculated quantity.  

All the possible information related to the system to be assessed can be given to the 

program from the keyboard. The optimization is stated by creating the text files for data 

and commands, the most important files are the setup file and the experimental data file. 

Optimization procedure: 

Inaccuracies in experimental conditions can be taken into account in two ways in 

PARROT: 

1. The inaccuracies in conditions, i.e., independent state variables, can be prescribed 

in the POLY-3 interface. In this case an equilibrium will be calculated with the 

experimental values of independent state variables. The standard deviations of the 

dependent state variables will be calculated by use of the error-propagation law, 
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presuming linear dependences of the dependent state variable on the independent 

state variables. 

2. The “true” value of the condition can be optimized by using one of the defined 

variables as the condition. This can be obtained by the IMPORT command in the 

experimental data file. In this case the experimental observations of the 

independent state variable should be specified in the EXPERIMENT command in 

the experimental data file. The commands that can be used in the experimental 

data file are a subset of the commands available in the POLY-3 module, with a 

few extensions. 

Both methods can be transformed to the problem of finding the minimum of the sum 

of squares. Method 2 can be used when several experiments have been performed 

under the same, badly determined, conditions. The two methods can be mixed in the 

same optimization run. 

The set of adjustable coefficients, in PARROT called variables, that give a minimum 

of the sum of squares is found by numerical subroutine called VA05A from Harwell 

subroutine Library. 

2.7.2. Optimization with PARROT [2] 

The assessor should prepare the following files during assessment. These are briefly 

described as follows 

POP file with experimental data, 

SETUP file with models and known and unknown parameters, 



62 
 

EXP file with experimental data to be plotted, and 

MACRO files for quick calculation of various diagrams. 

A simple description of the flow of assessment work would be as follows 

1. Preparation of the SETUP and POP and EXP files with a text editor 

2. Starting PARROT and run the SETUP file once to create the work file, usually 

called the PAR file since its extension is “.PAR.”  The PAR file is machine-

dependent and cannot be read by a text editor. It can be manipulated only through 

the PARROT module. The PAR file will always contain the last results and is 

automatically updated whenever it is used in PARROT. Whenever a user wants to 

“freeze” a reasonable set of model parameters but perhaps continue trying to 

change the weightings or set of model parameters, it is advisable to make a copy 

of PAR file. 

3. COMPILE the POP file inside the PARROT module. The experimental data will 

be stored on the PAR FILE. 

4. Selection of variables to be optimized. 

5. SET-ALTERNATE-MODE ON and optimize all equilibria until they have 

converged. 

6. RESCALE the variables to set the start values to the final values. 

7. Optimize and rescale until no more changes occur. 

8. SET-ALTERNATE-MODE OFF. 

9. Calculating of diagrams and comparing the results with experimental data. This 

should be done whenever needed during the steps below also. The sum of errors is 
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not a sufficient measure of the overall fit. We may find it convenient to make 

MACRO files to calculate several diagrams. 

10. Use the EDIT-EXPERIMENT module to COMPUTE-ALL equilibria. Some 

equilibria might not converge or may converge to results far away from the 

experimental data. Some hints on how to handle that are given below. 

Experimental data that cannot be calculated should have SET-WEIGHT zero. 

SAVE when finished with the EDIT module. 

11. Optimizing the variable zero times and checking the errors carefully, using the 

LIST-RESULT command. This output gives an overview of the current fit to all 

experimental data. We may have to use the EDIT module again to correct or 

remove (SET-WEIGHT) some equilibria. 

12. Optimize and rescale the variable until the calculation has converged. We may 

find that some variable becomes very large or very small. That may be due to a 

lack of experimental information. We may have to increase or decrease the 

number of optimized variables and also use the EDIT module to select the 

weightings of the various experimental equilibria until we get reasonable results.  

13. We may have to optimize “in parts” keeping the variables for some phases fixed 

and optimizing others with respect to selected sets of experimental data. The 

selections of experiments are made in the EDIT module. 

14. We may have to iterate several times through all points above, even editing the 

POP and SETUP files, before we are satisfied. We can try various models for the 

phases and various numbers of variables for each phase. 
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15. A final optimization with all variables and all experiments with their selected 

weightings should be carried out. 

16. Writing the report. When we do this, we may find that we cannot explain some 

decisions made during the optimization; and you may have to go back to optimize 

and try various new options.  

The experimental data file, POP file 

The experimental data on a system, taken from the literature or measured by the assessor, 

should be written onto a file called a “POP” file because of the default extension .POP. 

The experimental equilibria and measurements are described with POLY commands, 

with some additional features. The commands that are legal in a POP file are described in 

a special section of the POLY manual.  It is very important to understand the state-

flexible variable notation used in POLY and PARROT. 

The POP file is a very important form of documentation because it describes the known 

experimental data for a system. The POP file is intended to be self documenting and 

readable both to a human and to the computer. The experimental data are described 

independently of the models selected for the phases. It is thus possible to use the same 

POP file to assess a system using different models for the phases. It is not uncommon that 

a system must be reassessed some years later when new information is available, or if a 

model for a phase should be changed. Since the reassessment may be done by someone 

other than the person who created the POP file, it is important that the information in the 

POP file is well organized and documented. 
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The result of an optimization must be checked by comparing all experimental data with 

the corresponding values calculated using the optimized dataset. This is usually done by 

plotting diagrams. 

Output and Checking  

It is difficult to know when the best possible set of parameters has been reached. The 

solution will depend on the best fit of optimized diagram with the experimental data 

points. The sub-regular model parameters L0 of temperature-independent and L1 of 

temperature-dependent are the only once to be optimized and these can be related to 

enthalpies and entropies, respectively. One may reset or discard the parameter values that 

are unreasonable for the reasons one should have. If the heat-capacity have been asses, 

the enthalpy and entropy must be recalculated from the Gibbs-energy expression and 

cannot just consider only the L0 and L1. 

A well optimized set of parameters for the Gibbs energies of the system should be able to 

reproduce the available experimental set in one of the best possible following ways: 

1. The final results and final errors of each measurement are printed in an additional 

file during the run of the program. The calculated coefficients can be incorporated 

in the excess terms of Gibbs energy equations and run in Thermo-Calc to post the 

phase diagram so as to get a visual check of the agreement between for 

experimental data and calculated data in the phase diagram.  

2. Another point one can observe while optimizing is the term sum of the squares of 

errors obtained from the least-squares fit.  
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3. Extrapolating to higher order systems sometimes shows how successful is the 

description of the system. 

4. If the value of the parameter of L1 term is very large, that should be taken as an 

indication that L0 and L1 cannot be optimized independently and the constraint 

proposed by Tanaka et al. (1990) should be considered an adequate estimate. 

5. Truncation of the non-significant digits in a parameter. Safe method of rounding 

of the digits must be followed . 

6. Check that S298 and Cp of all the phases are within reasonable limit.    

The principle of least squares method is to select the best match of all the experimental 

values and all the coefficients. Many of the coefficients of the descriptions, however, are 

not able to improve the fit between measurements and the descriptions significantly.  

2.8. Thermodynamic Database and Importance of its Development  

Using CALPHAD method, the functions relating the composition, temperature, pressure, 

Gibbs free energy for all the stable phases of a given system are used in construction and 

development of thermodynamic databases. The availability of these functions allows the 

calculation of multi-phase, multi-component equilibria at any temperature, composition, 

and pressure by the minimization of the total Gibbs energy for given conditions.  

Acquiring the equilibrium data for the metastable phases from the experimental data 

available is quite difficult, so good theoretical models are required to extrapolate data into 

the metastable phase regions. 
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Substance database  

The substance databases have complex data of combined stoichiometric phases and 

gaseous components. It has more than 10.000 different substances so the difficulty arise 

in using this database is while getting the Gibbs energy data for a reaction individual 

constituents need to be specified clearly. Substance database doesn‟t have the difficulties 

with non-ideal mixing of substances. 

Solution database 

This considers the thermodynamic descriptions for phases in wide ranges of temperature 

and pressure. Miscibility gaps can appear ternary and higher order systems; the Gibbs 

phase rule helps in understanding such type of reactions. This may lead to the validation 

of the database for multi-component systems.  

The continued developments in CALPHAD assessment of alloy and other materials 

phase diagrams was assisted by the creation of thermo chemical databanks. The advent of 

the computer provided a perfect platform for automating the storage and retrieval as well 

as the assessment and application of thermodynamic data. The availability of assessed 

parameters for many systems also allowed easy exchange and use of data by others in the 

field, thereby providing a basis for calculations and continuous addition and updating of 

the stored parameters. 

The ongoing thermodynamic databank activities by members of communities like SGTE, 

Ecole Polytechnique in Montreal, KTH Stockholm, and NPL at AEA Harwell in UK, at 

University of Grenoble and IRSID, RWTH in Aachen Germany establish a common 
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databank accessible to all participants, provide an up-to-date data for the research 

activities. 

All the above organizations contributed greatly to a dramatic increase in development of 

new materials with the use of thermodynamic calculations. 
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CHAPTER 3 

Results and Discussion 

3.1. Thermodynamic Computations  

Calculation of TRIS-AMPL binary phase diagram, exhibiting two phase region ODIC 

phases (FCC-BCC), referred to as non-isomorphous systems  

This section involves the general aspects of our modeling strategy using TRIS as A 

system that can be extended to AMPL as B. Computational method such as Calphad is 

employed to model thermodynamic properties for each phase. Pure Gibbs energies of 

different phases are adequate to use regular-solution model. We adopted the standardized 

nomenclature for various phases, prior work by Chandra et al. denoted α or β to be the 

lower temperature phase and γ or γ‟ prime to be the higher temperature plastic phases and 

the liquid phase L. Now we have to model the Gibbs energies of solutions phases φ(φ=α, 

β, γ, γ, L). If the reference state for each phase is taken to be that of the pure components 

in that phase, then the Gibbs energy of a solution phase φ(φ=α, β, γ, γ, L) can be 

represented as follows(units of Gibbs energy throughout this work, where a mol is a mole 

of formula unit): 

        
       

                                (1) 

Where, Φ= α, β, γ, γ1, L, R= 8.314 J mol
-1

K
-1

, xA is mole fraction of „A‟ and xB is the 

mole fraction of  „B‟.    
 and    

  same as Φ. We choose a single reference phase for 

each component and express the pure component Gibbs energies in Φ. 
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                (2) 

   
  and   

  are the excess Gibbs energy parameters. 

For a phase Φ(Φ=α,β,γ,γ‟,L),    
 and    

 are the reference states of pure „A‟ and „B‟, 

same as . We chose a single reference phase for each component and express the pure 

component Gibbs energies of other phases as changes from this reference phase. We 

chose al phase for A and be phase for „B‟ and set them equal to zero to get     
     and 

    
 

=0 

The stable phases for „A‟ are α and γ and β and γ‟ for „B‟. Gibbs energies of the other 

phases in terms of these reference states can be represented as: 

   
 
    

   --   
   

     
   

                                (3) 

   
     

      
     --   

   
     

   
     (4)  

   
  
    

 
     

    
     

    
        (4) 

   
     

 
     

   
     

    
     

    
     (6) 

The pure component stable Gibbs energies,   
 ,   

  
    

 
    

 
 were determined including 

the heat capacity data. The following are the Gibbs energies of the stable phases of 

component: 

   
 
     

   
                

   
   

   
   

 
  

 

   

 

   
                          (7) 
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       (8) 

Similarly expressions can be drawn for Gibbs energies for stable phases of „B‟ using Eqs 

(6) and (7) 

The metastable Gibbs energies can be estimated from these Gibbs energies. For example, 

for „A‟ in be phase, the difference, G-G is needed such that we express 

°  
 
    

    
 

         (9) 

The Gibbs energy of β phase,   
 

 can be written as 

  
 
       

    
 
       

 
                                (10) 

=     
 
                                (11) 

Similarly for the α phase, we can write the Gibbs energy,   
 , as: 

  
       

        
 
   

                                  (12) 

=     
                                 (13) 

To estimate   
 

and   
 , we assume that α and β phases are ideal solutions. 
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Therefore, the partial molar Gibbs energies can be written as [5]: 

   
 
     

 
         

 
         (14) 

   
      

          
          (15) 

Where,    
 

 and    
  are the partial molar Gibbs energies of „B‟ in β and α phases 

respectively. At equilibrium,    
 
    

 , we can make the following estimation at the 

temperature of maximum solubility, T=Tmax , 

 

   
    

 
         

      
 

      
           

      
 

      
   

           (16) 

  
                

    

    
                 

A similar expression can be made for   
 

and is given by, 

   
 
    

          
      
 

      
           

      
 

      
   

           (17) 

 

 

The assumption that α and β phases are ideal solutions is used only to describe the 

metastable pure Gibbs energies    
  and    

 
  The nature of non-ideality of the α phase 

can still be expressed using sun-regular solution model for       
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To estimate the metastable    
 and    

 
, we again assume ideal solutions and thus we can 

make the following estimations: 

   
  
     

  
         

      
 

      
        

   
         

      
 

      
    

           (18) 

  
  
          

      
 

      
             

   

   
  

 

The above calculations were shown in the following Math-cad files in detail. 
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3.1.1. Gibbs energy calculations 

 

  

  

  

 
 

 
 

 

  

 

  

 

 

Since  and  is taken as reference state the corresponding Cp is zero  

 

 

  

 

  

 

 

 

 

 

 

  

 

 

 

  

 

TF_ 385 AMPL

TF_1 445 TRIS

A AMPL
B TRIS

 

TF_ 385 AMPL

STR_ 66.01

TF_1 445 TRIS

STR_1 80.12

 1



CP_ T( ) CP_1 T( ) CP_ T( )

CP_ T( ) 104.094 .922T

CP_LA T( ) 80 0.482 T CP_LB T( ) 57.714 0.817 T

CP_1 T( ) CP_ T( ) CP_ T( )

HTR_ 23450 HTR_1 32690

CP_ T( ) 0

HF_ 2991.4

CP_ T( ) 110 0.55 T

TTR2 408

HF_1 3340

SF_ 7.24 SF_1 7.506

CP_ T( ) 0

CP_1 T( ) 104.094 0.922T

CP_1 T( ) 110 .55T

TTR 353
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CP_1L T( ) 52.286( ) .267TCP_L T( ) 24.094( ) .440T

G0_B_1 HTR_1 T STR_1

TTR2

T

TCP_1 T( )





d T

TTR2

T

T
CP_1 T( )

T







d

T

G0_B_1 86520.256 23.974T .461T
2

 .922T
2

 104.094T ln T( ) 1001.913T T

G0_B_1 86520.256( ) 1025.887T .461T
2

 104.094T ln T( )
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KB T( )

TTR2

T

TCP_1 T( )





d T

TTR2

T

T
CP_1 T( )

T







d















KB T( ) 104.094T .461T
2

 119210.256 .922T
2

 104.094T ln T( ) 1001.912T

KB T( ) 1106.006T .461T
2

 119210.256 104.094T ln T( )

G0_A_ HTR_ T STR_

TTR

T

TCP_ T( )





d T

TTR

T

T
CP_ T( )

T







d

T

G0_A_ 49647.475 43.99T .275T
2

 .55T
2

 110 T ln T( ) 839.461T T

G0_A_expand float 7 49647.475( ) 883.451T .275T
2

 110 T ln T( )  expand float 7 

T STR_ 66.01T T STR_1 80.12T
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TTR

T

TCP_ T( )





d











104.09400000000000000T .46100000000000000000T
2

 94189.931000000000000

T

TTR

T

T
CP_ T( )

T







d T .92200000000000000000T 104.09400000000000000ln T( ) 936.13012591841459371( )

K T( ) .275T
2

 110 T 73097.475 .55T
2

 110 T ln T( ) 839.461T

K T( ) .275( ) T
2

 949.461T 73097.475 110 T ln T( )

G0_A_L HF_ T SF_

TF_

T

TCP_L T( )





d T

TF_

T

T
CP_L T( )

T







d

T

G0_A_L 19581.05 37.77T .34e-1T
2

 .68e-1T
2

 30 T ln T( ) 204.777T T
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G0_A_L 19581.05 242.547T .34e-1T
2

 30 T ln T( )

T SF_ 7.24T

KGA_L

TF_

T

TCP_L T( )





d T

TF_

T

T
CP_L T( )

T







d

T

KAL T( ) K T( ) 30 T .34e-1T
2

 16589.65 .68e-1T
2

 30 T ln T( ) 204.777T

KAL T( ) .241( ) T
2

 714.684T 56507.825 80 T ln T( )

G0_A_L G0_A_ G0_A_L G0_A_

G0_A_L 30066.425( ) 640.904T .241T
2

 80 T ln T( )
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G0_A_L 19581.05 242.547T .34e-1T
2

 30 T ln T( )

T SF_ 7.24T

KGA_L

TF_

T

TCP_L T( )





d T

TF_

T

T
CP_L T( )

T







d

T

KAL T( ) K T( ) 30 T .34e-1T
2

 16589.65 .68e-1T
2

 30 T ln T( ) 204.777T

KAL T( ) .241( ) T
2

 714.684T 56507.825 80 T ln T( )

G0_A_L G0_A_ G0_A_L G0_A_

G0_A_L 30066.425( ) 640.904T .241T
2

 80 T ln T( )
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G0_B_1L HF_1 T SF_1

TF_1

T

TCP_1L T( )





d T

TF_1

T

T
CP_1L T( )

T







d

T

G0_B_1L 34375.4125 53.886T .525e-1T
2

 0.105T
2

 46.38T ln T( ) 329.553T T

G0_B_L G0_B_1 G0_B_1L G0_B_1

G0_B_L 52144.8435( ) 642.448T .4085T
2

 57.714T ln T( )

T SF_1 7.506T

KBL T( ) KB T( )

TF_1

T

TCP_1L T( )





d T

TF_1

T

T
CP_1L T( )

T







d















KBL T( ) 1059.626T .5135T
2

 88174.843 104.094T ln T( ) .105T
2

 46.38T ln T( ) 329.553T

KBL T( ) 730.073T .4085T
2

 88174.843 57.714T ln T( )
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GIBBS FREE ENERGY- COMPOSTION (G - X) DIAGRAMS 

 

 

 

 

 

 

 

 

 

 

 

 

 

G0_A_ 0

G0_B_ 0

G0_B_ 5008.9

G0_A_ 5173.3

G0_A_ T( ) 49647.4750 883.451T .275T
2

 110 T ln T( )

G0_B_1 T( ) 86520.256 1025.887T .461T
2

 104.094T ln T( )

G0_A_L T( ) 30066.425 640.90T .241T
2

 80 T ln T( )

G0_B_L T( ) 52144.8430 642.448T .4085T
2

 57.714T ln T( )

G0_B_ T( ) G0_B_1 T( ) 669

GEX_ 0

GEX_ 0

GEX_L 0
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R 8.314

G XB T  G0_A_ T( ) 1 XB  G0_B_ T( ) XB R T 1 XB  ln 1 XB  XB ln XB  

G XB T  G0_A_ 1 XB  G0_B_ XB R T 1 XB ln 1 XB  XB ln XB  
*

G XB T  G0_A_ 1 XB  G0_B_ XB R T 1 XB ln 1 XB  XB ln XB  
*

G1 XB T  G0_A_1 T( ) 1 XB  G0_B_1 T( ) XB R T 1 XB  ln 1 XB  XB ln XB  

GL XB T  G0_A_L T( ) 1 XB  G0_B_L T( ) XB R T 1 XB  ln 1 XB  XB ln XB  
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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0
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T= 50 C

G XB T 

G1 XB T 

G XB T 

G XB T 

GL XB T 

XB

α β α+β 
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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0
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3000

T= 90 C

G XB T 

G1 XB T 

G XB T 

G XB T 

GL XB T 

XB

γ 

β 

γ' 

γ+ γ’ γ+β γ+β 
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G XB T 

G1 XB T 

G XB T 

G XB T 

GL XB T 

XB

γ+ γ’ 
γ+β 

L+γ 
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G XB T 

G1 XB T 

G XB T 

G XB T 

GL XB T 

XB

L+γ 
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3.2. Experimental data for Optimization 

Thermodynamic Properties of Pure AMPL and NPG 

All previous phase diagram calculations [Barrio et.al] do not take into consideration any 

contribution from heat capacity to the Gibbs energy expressions for mathematical 

convenience. Inclusion of heat capacity expressions (Table 1) to calculate Gibbs energies 

(table 2), given in equations 3 to 6, results in non-linear dependence on temperature. An 

equation for Cp data for the γ‟ phase of pure AMPL was not available due to the small 

region between the solid-solid and solid-liquid transition temperature, but an 

approximation (interpolation between α and Liquid heat capacities) was made from our 

work Chandra et al.  

Table 3.1.  Crystal Structures, Transition Temperatures and Thermal properties of TRIS 

and AMPL [2]. 

Compound α or  β  

Phases  

TT R  

(K) 

∆HT R  

(J .mol
- 1

)  

∆ST R  

(J .mol
- 1

.K
1
)  

γ’  or γ  

Phases  

TF  

(K) 

∆HF  

(J .mol
- 1

)  

∆ST R  

(J .mol
- 1

.K
1
)  

AMPL Monocl inic  353 23540 66.01  BCC 385 2991 7.77  

TRIS Orthorhombic  408 32690 80.12  FCC 445 3340 7.32  
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3.3. Binary Phase Diagram data 

The data that is available for these kinds of organic systems are essentially the tie lines 

and invariant equilibria determined by using DSC and X-ray diffraction. For the TRIS-

AMPL system, there are no reported experimental data on activities or heat of mixing etc. 

in this work, we have only used the data from the works by Chandra et al.[2] for 

optimization. Chandra et al. [4] developed the experimental phase diagram of TRIS-

AMPL in 2010, subsequently by Barrio et al.[1] in 1994. Although the global features of 

the phase diagram were reproduced in all the works [1, 4], there were some significant 

differences between them. Comparing the data of Barrio et al. and Chandra et al. Barrio 

expresses that there exists complete miscibility in the plastic phase implying that AMPL 

and TRIS have the same space group, where as Chandra et al showed the immiscibility 

existing in this region with by means of X-ray measurements. We use Chandra et al.[4] 

experimental data for optimization as we were unable to compromise such wide 

differences and moreover the useful temperature range for these organic binary phase 

diagrams is only 310K to 440K (solid and liquid phases). 

Table 3.2.  Heat Capacities of TRIS and AMPL [2]. 

Compound Heat Capacity Equations 

(J.mol
-1

.K
-1

) 

Temperature 

Range 

AMPL 

CP(α)=0 305-322.5K 

CP(γ‟)=110+0.55·T 327.5-337.5K 

CP(L)=80+0.482·T 387.5-412.5K 
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TRIS 

CP(β)=0 305-322.5K 

CP(γ)=104.094+0.922·T 327.5-387.5K 

CP(L)=57.714+0.817·T 430-440K 

 

Note: since the chosen reference states are °  
   , and  

 
  , the heat capacities 

Cp(α)=0 and Cp(β) =0 were used to determine stable and metastable modifications of 

pure component Gibbs energies. 

3.4. Joback’s method 

Joback method is a group contribution method. The method predicts the thermodynamic 

properties for the most common functional groups using basic structural information of a 

chemical molecule like a list of simple functional groups.  

The following table shows the group contribution for the non-ring groups, the Joback‟s 

method is being applied for the estimation of the thermodynamic data (enthalpy, entropy 

and Gibbs free energy) for the pure compounds AMPL and TRIS. Table 3 shows the 

Group contributions for different functional groups. The following calculations can be 

performed in MathCAD, a tool which can handle robust mathematical calculations. 
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NOHCOHCHCNHCH 2114223 )2())((   

  

 

 

 

 

 

 

  

 

 

 

 

 

AMPL STRUCTURE: 

 

 
  

 
 

 

 

 

 

Mol. Wt=105 

 

 

 

 

"2:-OH Non Ring"

"2:-CH2- Non Ring"

"1:>C< Non Ring"

"1:-CH3 Non Ring"

"1:-NH2 Non Ring"

















H AMPL

208.4

20.64

82.23

76.45

22.02

















 GAMPL

189.20

8.42

116.02

43.96

14.07



















k 2 2 1 1 1( )

H 0AMPLf 68.29 k H AMPL

H 0AMPLf 10
3

 4.06 10
5



G 0AMPLf 53.88 k G AMPL

G 0AMPLf 10
3

 2.216 10
5



S0AMPLf

H 0AMPLf G 0AMPLf 
298



S0AMPLf 10
3

 619.06
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TRIS STRUCTURE 

(NH2)C--(CH2OH)3 Mol wt=121 

   

  

 
 

 

 

 

"-NH2 Non Ring"

">C< Non Ring"

"-CH2- Non Ring"

"-OH Non Ring"















H

22.02

82.23

20.64

208.04















 G

14.07

116.02

8.42

189.20

















H 0_TRISf k H G 0_TRISf k G

G0_T RISf 10
3

 4.122 10
5


H 0_T RISf 10

3
 6.258 10

5


S0TRISf

H 0_T RISf G0_T RISf 
298



S0TRISf 10
3

 716.711

k 1 1 3 3( )
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3.5. Results and Discussion 

Phase diagram (unoptimized) and Effect of Heat Capacity 

 By using only pure enthalpies of the AMPL and TRIS compounds without having 

included any kind of experimental data shown in fig.1, estimated the temperature and 

composition range where the phase transitions can be formed, and then calculated the 

unoptimized phase diagram by including the calculated Gibbs energies for metastable 

phases. Simultaneously experiments can be conducted to determine to check for the 

accuracy of the temperature and composition conditions of phase transitions. Also 

calculated the phase diagram by adding Cp data to the Gibbs energy equations with the 

assumption of ideal solution phases, and observed the difference the phase diagram 

makes from the phase diagram without Cp data. The global features of the phase diagram 

are well represented in both the cases; with and without inclusion of Cp data to determine 

the Gibbs energies. But we can see from the Figure 2, that with the inclusion of Cp data 

to determined the Gibbs energies of the pure components, a significant improvement is 

achieved in the unoptimized phase diagram, especially in the invariant temperatures and 

compositions. There is a strong effect of Cp data especially for the low temperatures and 

compositions. There is a strong effect of Cp data especially for the low temperature 

eutectoid and the reason is due to the noticeable jump in Cp values during solid-solid 

transitions for TRIS and AMPL.  
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3.6. Optimized phase diagram for TRIS-AMPL Binary System 

 In order to determine the parameters for excess Gibbs energy, a thermodynamic 

optimization utilizing all available experimental data is desired. In this work, the 

following conditions for optimization were used: 

i. It was assumed that         and         because of limited miscibility.  

ii. The high temperature γ‟ and γ phases were assumed to behave as sub regular 

solutions and the liquid phase was assumed to be ideal. 

iii. No temperature dependency was assumed for all the excess parameters. 

In parametric form, the excess Gibbs energies are of the following form: 

For φ(φ=γ, γ‟),              
Ф+  

Ф       ,   
Ф,   

Ф are constants which have to 

be optimized. 

Table  3.4. Expressions of Gibbs energies of pure components (including Cp)*. 

No. Gibbs Energy 

1    
     

2    
     9  

3    
 
                                                ]  

4    
 
                                                       

5    
                                                           

6    
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7    
 
       

8    
  
                                                     

9    
  
                                                                

10    
                                                       

The terms in the first brackets represents the change due to the inclusion of CP 

data and the second represents the estimate for the difference between the 

metastable and stable phases. 

 

The optimization was carried out using the PARROT module of Thermo-Calc software. 

The optimized phase diagram for the AMPL-NPG system superimposed with DSC and 

X-ray diffraction data is shown in Figure 2. The expressing determined for the excess 

Gibbs energies are given below: 

Table  3.5.  Calculated Excess Gibbs energy Expressions 

                                                         
         

                           }                              
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Fig 3.1.  AMPL-TRIS without inclusion of Cp data; [Chandra et.al]. 
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Fig 3.2. Unoptimized calculated diagram of TRIS-AMPL System with Cp data (Chandra 

et al [2] and V. Kamisetty [4]). 
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3.7. Optimization with L-terms 

The optimization of the TRIS-AMPL is carried out by sub-regular solution model. The 

model solution is represented by the Redlich-Kister equations with L0 and L1 parameters 

to be optimized to give excess Gibbs energy of mixture between the plastic phases. The 

sub-regular model leads to a fair comparison of optimized fig 3 with the unoptimized fig- 

2. The Peritectic region at 401 K is extended for 5 to 10 K as shown in the optimized fig-

3. The γ+γ‟ phase is observed between the temperatures 109 K and 128K which is 

appeared to be slightly shifted towards right when compared to the experimental data 

points.  There is no good agreement with the experimental data in the L+γ region in this 

optimization. 

 

 

 



101 
 

 

Fig 3.3. Optimized Phase Diagram of the TRIS-AMPL binary system superimposed with 

DSC and X-ray Diffraction data from Chandra et al [2] and V. Kamisetty [4].  
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Ideal solution behavior is assumed in estimating the metastable Gibbs energies of pure 

components. The ideal solution assumption is used only for metastable estimations and 

accounted for the non-ideality in high temperature γ‟ and γ phases by assuming sub-

regular solution behavior, lower temperature (α and β) phases and the liquid phases are 

assumed to be ideal. Under ideal solution assumption for all the phases, the inclusion of 

heat capacity data to determine the Gibbs energies of various phases of pure components 

allowed better representation of the experimental invariant equilibria. The phase diagram 

without optimization did not showed the Peritectic phase transition   at 401K and 

49.7mol% TRIS however, and with incorporation it is closer to the experimental values. 

The calculated TRIS-AMPL phase diagram in the earlier work [1] reproduced the global 

features of the experimental phase diagram but invariant equilibria temperatures between 

calculations and experiments differed by 5-7K, and also the fitting of invariant 

compositions was unsatisfactory. This calculation by [1] used the thermal analysis results 

and the results of crystallographic data stated that the miscibility is complete in the plastic 

phase and almost nonexistent in the ordered phases.  
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THERMO-CALC Files of Phase Diagram Calculations 

TRIS-AMPL Phase Diagram - No Inclusion of Cp  

LOGFILE GENERATED ON PC/WINDOWS NT    DATE 2009-12-17 

 BY PRATHYUSHA                                                                                                                                                                                                                                                        

 

GO G 

ENTER-ELEM A TR 

AMEND-ELEM-DATA TR BE 70 -625800 -716.711 

1 

AMEND-ELEM-DATA A AL 50 -406000 -619.06 

1 

ENTER-PHASE AL,, 1 A TR; N N 

ENTER-PHASE BE,, 1 TR A; N N 

ENTER-PHASE GP,, 1 A TR; N N 

ENTER-PHASE GA,, 1 TR A; N N 

$ENTER-PHASE LIQ L 1 A TR; N N 

ENTER-PHASE LIQ L 1 TR A; N N 

 

ENTER-PARAMETER G(AL,A) 273.15 0; 550 N 

 

ENTER-PARAMETER G(AL,TR) 273.15 5500; 550 N 

 

ENTER-PARAMETER G(BE,TR) 273.15 0; 550 N 
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ENTER-PAR G(BE,A) 273.15 5200; 550 N 

 

ENTER-PAR G(GA,A) 273.15 23540-66.01*T; 550 N 

$23450-65.5*T 

ENTER-PAR G(GA,TR) 273.15 32690-80.12*T; 550 N 

 

ENTER-PAR G(GP,A) 273.15 23540-66.01*T; 550 N 

 

ENTER-PAR G(GP,TR) 273.15 32690-80.12*T; 550 N 

 

ENTER-PAR G(LIQ,A) 273.15 26291.4-73.25*T; 550 N 

$26291.4-73.25*T 

ENTER-PAR G(LIQ,TR) 273.15 36030-87.62*T; 550 N 

 

ENTER-PAR L(AL,A,TR;0) 273.15 0; 550 N 

ENTER-PAR L(AL,A,TR;1) 273.15 0; 550 N 

ENTER-PAR L(BE,A,TR;0) 273.15 0; 550 N 

ENTER-PAR L(BE,A,TR;1) 273.15 0; 550 N 

ENTER-PAR L(GP,A,TR;0) 273.15 0; 550 N 

ENTER-PAR L(GP,A,TR;1) 273.15 0; 550 N 

ENTER-PAR L(LIQ,A,TR;0) 273.15 0; 550 N 

ENTER-PAR L(GA,A,TR;0) 273.15 0; 550 N 

ENTER-PAR L(GA,A,TR;1) 273.15 0; 550 N 
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GO POLY 

DEF-COMP A TR 

S-R-S A AL * 1E5 

S-R-S A BE * 1E5 

S-C N=1 T=340 P=1E5 X(TR)=0.18 

C-E * 

S-A-V 1 X(TR) 0 1 0.1 

S-A-V 2 T 293 460 10 

ADD,,, 

SAVE TRIS-AMPL1 Y 

MAP 

PO 

PLOT 

SCREEN 

SET-INTER  

EXIT 
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TRIS-AMPL Phase Diagram - With Cp 

LOGFILE GENERATED ON PC/WINDOWS NT    DATE 2009-12-17 

 BY PRATHYUSHA                                                                                                                                                                                                                                                        

 

GO G 

ENTER-ELEM A TR 

AMEND-ELEM-DATA TR BE 70 -625800 -716.711 

1 

AMEND-ELEM-DATA A AL 50 -406000 -619.06 

1 

ENTER-PHASE AL,, 1 A TR; N N 

ENTER-PHASE BE,, 1 TR A; N N 

ENTER-PHASE GP,, 1 A TR; N N 

ENTER-PHASE GA,, 1 TR A; N N 

$ENTER-PHASE LIQ L 1 A TR; N N 

ENTER-PHASE LIQ L 1 TR A; N N 

 

ENTER-PARAMETER G(AL,A) 273.15 0; 550 N 

 

ENTER-PARAMETER G(AL,TR) 273.15 5500; 550 N 

 

ENTER-PARAMETER G(BE,TR) 273.15 0; 550 N 

 

ENTER-PAR G(BE,A) 273.15 5200; 550 N 
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ENTER-PAR G(GA,A) 273.15 23450-65.5*T-0.275*T**2 

+949.01*T-110*T*LN(T)-73097.475+2035.3-800-70; 550 N 

 

ENTER-PAR G(GA,TR) 273.15 32690-80.12*T-0.45*T**2 

+1106*T-104*T*LN(T)-119210.25-1820-230; 550 N 

 

ENTER-PAR G(GP,A) 273.15 23450-65.5*T-0.275*T**2 

+949.01*T-110*T*LN(T)-73097.475; 550 N 

 

ENTER-PAR G(GP,TR) 273.15 32690-80.12*T-0.461*T**2 

+1106*T-104*T*LN(T)-119210.25+2125-1320-150; 550 N 

 

ENTER-PAR G(LIQ,A) 273.15 26291.4-73.25*T-0.241*T**2 

+714.68*T-80*T*LN(T)-56507.825-60; 550 N 

 

ENTER-PAR G(LIQ,TR) 273.15 36030-87.4*T-0.411*T**2 

+730*T-57.714*T*LN(T)-88174.84+850-50; 550 N 

 

ENTER-PAR L(AL,A,TR;0) 273.15 0; 550 N 

ENTER-PAR L(AL,A,TR;1) 273.15 0; 550 N 

ENTER-PAR L(BE,A,TR;0) 273.15 0; 550 N 

ENTER-PAR L(BE,A,TR;1) 273.15 0; 550 N 

ENTER-PAR L(GP,A,TR;0) 273.15 0; 550 N 

ENTER-PAR L(GP,A,TR;1) 273.15 0; 550 N 
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ENTER-PAR L(LIQ,A,TR;0) 273.15 0; 550 N 

ENTER-PAR L(GA,A,TR;0) 273.15 0; 550 N 

ENTER-PAR L(GA,A,TR;1) 273.15 0; 550 N 

 

GO POLY 

DEF-COMP A TR 

S-R-S A AL * 1E5 

S-R-S A BE * 1E5 

S-C N=1 T=340 P=1E5 X(TR)=0.18 

C-E * 

S-A-V 1 X(TR) 0 1 0.1 

S-A-V 2 T 293 453 10 

ADD,,, 

SAVE TRIS-AMPL1 Y 

MAP 

PO 

PLOT 

SCREEN 

SET-INTER  

EXIT 
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TRIS-AMPL Phase Diagram - FINAL OPTIMIZATION  

LOGFILE GENERATED ON PC/WINDOWS NT    DATE 2009-12-17 

 BY PRATHYUSHA                                                                                                                                                                                                                                                      

 

GO G 

ENTER-ELEM A TR 

AMEND-ELEM-DATA TR BE 70 -625800 -716.711 

1 

AMEND-ELEM-DATA A AL 50 -406000 -619.06 

1 

ENTER-PHASE AL,, 1 A TR; N N 

ENTER-PHASE BE,, 1 TR A; N N 

ENTER-PHASE GA,, 1 A TR; N N 

ENTER-PHASE GP,, 1 TR A; N N 

$ENTER-PHASE LIQ L 1 A TR; N N 

ENTER-PHASE LIQ L 1 TR A; N N 

 

ENTER-PARAMETER G(AL,A) 273.15 0; 550 N 

 

ENTER-PARAMETER G(AL,TR) 273.15 5009; 550 N 

 

ENTER-PARAMETER G(BE,TR) 273.15 0; 550 N 

 

ENTER-PAR G(BE,A) 273.15 5173; 550 N 
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ENTER-PAR G(GA,A) 273.15 23540-66.01*T-0.275*T**2 

+949.461*T-110*T*LN(T)-73097.475; 550 N 

 

ENTER-PAR G(GA,TR) 273.15 32690-80.12*T-0.461*T**2 

+1106*T-104.09*T*LN(T)-119210.25+530; 550 N 

 

 

ENTER-PAR G(GP,A) 273.15 23540-66.01*T-0.275*T**2 

+949.01*T-110*T*LN(T)-73097.475+600; 550 N 

 

ENTER-PAR G(GP,TR) 273.15 32690-80.12*T-0.461*T**2 

+1106*T-104.09*T*LN(T)-119490.25; 550 N 

 

ENTER-PAR G(LIQ,A) 273.15 26291.4-73.25*T-0.241*T**2 

+714.68*T-80*T*LN(T)-56507.825; 550 N 

 

ENTER-PAR G(LIQ,TR) 273.15 36030-87.66*T-0.4085*T**2 

+730*T-57.714*T*LN(T)-88424.84; 550 N 

 

 

ENTER-PAR L(AL,A,TR;0) 273.15 1177; 550 N 

 

ENTER-PAR L(BE,A,TR;0) 273.15 1147-5.12*T; 550 N 

 



111 
 

ENTER-PAR L(GA,A,TR;0) 273.15 1720-2.3*T ; 550 N 

 

ENTER-PAR L(GA,A,TR;1) 273.15 2671-0.1*T; 550 N 

 

ENTER-PAR L(LIQ,TR,A;0) 273.15 1600; 550 N 

 

ENTER-PAR L(GP,A,TR;0) 273.15 1827+0.05*T; 550 N 

 

ENTER-PAR L(GP,A,TR;1) 273.15 4125-6.7*T; 550 N 

 

GO POLY 

DEF-COMP A TR 

S-R-S A AL * 1E5 

S-R-S A BE * 1E5 

S-C N=1 T=340 P=1E5 X(TR)=0.18 

C-E * 

S-A-V 1 X(TR) 0 1 0.1 

S-A-V 2 T 293 453 20 

ADD,,, 

SAVE TRIS-AMPL1 Y 

MAP 

PO 

S-D-A 

Y 
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T-C 

 

PLOT 

SCREEN 

SET-INTER  

EXIT 
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== OPTIMIZING VARIABLES == 

 

 AVAILABLE VARIABLES ARE V1 TO V00 

 

 VAR.   VALUE             START VALUE       SCALING FACTOR    REL.STAND.DEV   

 V11     1.17700000E+03 

 V21     1.14700000E+03 

 V22    -5.12153615E+00 

 V31     1.72013028E+03 

 V32    -2.31980977E+00 

 V33     2.67100000E+03 

 V34    -1.00000000E-01 

 V41     1.82734626E+03 

 V42     5.00000000E-02 

 V43     4.12554034E+03 

 V44    -6.70000000E+00   

 V51     1.60000000E+03  

 

 

 NUMBER OF OPTIMIZING VARIABLES:   1 

 ALL OTHER VARIABLES ARE FIX WITH THE VALUE ZERO 
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3.8. Conclusions 

The phase diagram for the TRIS-AMPL system has been calculated utilizing a simple 

estimation for metastable Gibbs energies, in combination with thermodynamic 

optimization. The experimental data for the thermodynamic properties has been 

considered during the optimization. It can be seen that there is a good agreement with the 

calculated results and the experimental data of V. Kamisetty. The low-temperature α and 

β phases and the liquid phase were assumed to be ideal. An initial assumption of ideality 

in the high-temperature phases is used only to estimate the metastable Gibbs energies. 

The non-ideality of the solution phases for γ and γ‟ have been modeled as sub-regular 

solutions. The optimization using Thermo-Calc software included data only from the 

phase diagram (tie line, invariant equilibria composition and temperatures). There is good 

agreement between the calculated and experimental phase boundaries and invariant 

equilibria. The agreement between the calculated and measured values of the enthalpies 

of fusion is not very good but reasonable especially since the measured values were not 

used in the thermodynamic optimization. 

 The magnitude of heat capacities (~32
o
C to 177

 o
C) for these organic Plastic 

Crystals is relatively high and they result from sharp increases during the solid-solid 

phase transitions. Such changes become significant since they also have low melting 

temperatures (~77
 o
C to 167

 o
C). These effects can become important when making an 

initial phase diagram calculation in the absence of any experimental phase diagram data 

and help us narrow down the expected phase diagram behavior.   
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