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A numerical verification of an experimental method used to estimate hydrody-
namic forces in contact resonance atomic force microscopy (CR AFM) is performed.
The experimental estimation technique, known as the Hydrodynamic Reconstruc-
tion Method (HRM), is verified for three distinct cantilever geometries at sev-
eral vibrational eigenmodes and sample stiffnesses. The results of the analysis
are discussed and recommendations for the applicable measurement range of the
HRM are provided. © 2018 Author(s). All article content, except where other-
wise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5044651

I. INTRODUCTION

In the field of atomic force microscopy (AFM), accurately predicting the hydrodynamic forces
acting on an AFM cantilever is of paramount importance. Of particular interest is predicting the
surface-coupled hydrodynamic loading of the system. There are a myriad of advantages to perform-
ing AFM imaging while immersed in a liquid. These advantages include: the reduction of van der
Waals forces,1,2 the elimination of capillary forces,3,4 and the ability to image biological samples
in domains that more closely resemble their native environments.5 Additionally, the ability to accu-
rately predict hydrodynamic forces acting on microstructures will benefit a wide range of applications
including: microelectromechanical system (MEMS) design and operation,6 energy harvesting,7–9 and
biomimetic propulsion.9–11

The present work of estimating the hydrodynamic forces acting on cantilevered structures begins
with Stokes, who developed the theory to estimate the forces acting on an infinite cylinder oscillating
with small amplitude in an incompressible fluid.12 From this work, one can show that the natural
frequency of oscillating structures drops dramatically when moving from air to liquid environments.
This is due to the increased added mass effect of the much denser liquid compared to the density of
air. Tuck13 extended the theory of Stokes and provided a boundary integral technique to calculate
the hydrodynamic force components of an infinitely thin ribbon. Using a similar boundary integral
formulation as Tuck, Green and Sader14 calculated the hydrodynamic loading on an infinite cylin-
der immersed in an inviscid fluid and considered the effect of a nearby rigid wall. Tung et al.15

provided semi-analytical compact solutions of Green and Sader’s theory and verified them using
three-dimensional fluid-structure interaction computations. The aforementioned theories consider
the hydrodynamic effects of cantilevered structures oscillating near to, but not physically coupled to,
a nearby substrate. In contact resonance (CR) AFM, and other contact modes of AFM, the cantilever
is in physical contact with the substrate. Additionally, the mechanical properties of the substrate
are unknown and are the primary parameters to be measured and characterized. CR AFM utilizes
the surface-coupled cantilever resonances to infer the material properties of the sample under test.
Estimation of the hydrodynamic forces can be done accurately in proximity to a surface, however,
additional complexities and uncertainties are introduced while in contact with a surface of unknown
properties.
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FIG. 1. In-plane fluid shear stresses for a cantilever immersed in water (a) far from the sample surface, (b) near to, but
uncoupled from, the sample surface, and (c) near and coupled to the sample surface. Sample mechanical properties shift the
resonant frequencies, and change the system eigenmodes, when the cantilever contacts the sample surface.

When a cantilever that is freely vibrating near a surface, in one or more of its eigenmodes, is
brought into repulsive contact with that surface the eigenfrequencies can shift a substantial amount.
This shift in eigenfrequencies can greatly change the hydrodynamic forces (which are frequency
dependent) acting on the system, see Fig. 1. Several previous works have tried to address this issue.
Mirman and Kalinin16 and Payam17 considered the near surface effects but used semi-analytical
hydrodynamic formulae derived for the unbounded fluid case. Ploscariu and Szoskiewicz18 proposed
an experimental reconstruction method for inertial fluid loading which required extensive information
about the cantilever and the experimental conditions. Furthermore, this method did not consider the
near surface effects and did not account for physical cantilever-sample coupling effects. To overcome
this knowledge gap, Tung et al.19 presented a Hydrodynamic Reconstruction Method (HRM) which
can accurately characterize both the intertial and viscous hydrodynamic forces in the CR AFM
system. This method does not require a priori knowledge of the geometry and material properties
of the cantilever or the liquid it is immersed in. The Hydrodynamic Reconstruction Method has
been validated experimentally in both air and water for one particular sample stiffness and cantilever
geometry. In this paper, we present a numerical verification of the Hydrodynamic Reconstruction
Method for various cantilever geometries and sample stiffnesses. A fully three-dimensional fluid-
structure interaction (FSI) simulation has been developed with ADINA20 software to accomplish this
goal. We show that the HRM can accurately predict the hydrodynamic forces in CR AFM systems
for a wide range of cantilever geometries and sample stiffnesses.

II. THEORY

For a microcantilever submerged in a fluid oscillating in one or more of its eigenmodes near to, but
not mechanically coupled to, a nearby rigid surface, Tung et al.19 showed that the hydrodynamic forces
acting on the system can be discretely calculated using three experimental quantities. These quantities
are the in-vacuo natural frequency ωn, the wet natural frequency ωwet, and the wet quality factor of
vibration Qwet. More specifically, the complex-valued hydrodynamic function Γ(Re) can be calculated
discretely at each eigenmode of vibration using the aforementioned experimental quantities, where
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Re is the unsteady Reynolds number given by Re= ρfωb2

4µf
, ρf is the mass density of the fluid, ω is

the frequency of oscillation of the microcantilever, b is the microcantilever width, and µf is the shear
viscosity of the fluid. The hydrodynamic function Γ(Re) can be decomposed into real and imaginary
parts Γ(Re) = Γr(Re) − iΓi(Re). The real part of the hydrodynamic function Γr is related to inertial
forces and the imaginary part of the hydrodynamic function Γi is related to viscous forces in the fluid.
For a given eigenmode of vibration, the discrete values of the hydrodynamic function are given by:19

Γr(Reωwet )=

(
ωn
ωwet

)2
− 1

χ
(1)

and

Γi(Reωwet )=

(
ωn
ωwet

)2

Qwet χ
. (2)

The term χ is a non-dimensional parameter given by χ = π
4
ρf b2

ρA , where A is the cross-sectional area
of the beam and ρ is the mass density of the beam. χ is typically a constant in AFM experiments.
Additionally, so long as χ is a constant, its value has no effect on the hydrodynamic reconstruction
method (HRM).19

To experimentally reconstruct the hydrodynamic function, the AFM cantilever is brought very
close to the substrate, to capture surface-coupled hydrodynamic effects, and is then excited at several
of its eigenmodes. For each eigenmode, the wet natural frequency ωwet and the wet quality factor
Qwet are measured. The in-vacuo natural frequency ωn can be measured in vacuum or approximated
by using the natural frequency measured in air far from the sample surface. Once a suitable number of
discrete points of the hydrodynamic function are calculated, a regression analysis is performed that
accounts for the asymptotic nature of the hydrodynamic function. The general form of the regression
functions for the real and imaginary parts of the hydrodynamic function are:19

Γr = a1 + b1 Re−
1
2 (3)

and
Γi = a2 + b2 Re−

1
2 + c2 Re−1. (4)

Figure 2 depicts the procedure for using the HRM. First, the hydrodynamic function is measured
at each of the discrete uncoupled eigenmodes of the system while vibrating near to, but uncoupled
from, the sample surface using the measurement quantities described above. These data points are
shown as green squares in Fig. 2. Next, Eqs. (3) and (4) are used in a regression analysis to determine
the best fit to the data. Finally, with the best fit determined, the hydrodynamic function can be

FIG. 2. Graphical depiction of the hydrodynamic reconstruction method for the real part of the hydrodynamic function. Γr

Measured are the discretely measured values of the hydrodynamic function for freely vibrating eigenmodes next to the sample
surface. Γr fit is the fit-line calculated using Eq. (3). Γr Predicted are the interpolated values of the hydrodynamic function for
a given in-contact resonance frequency.
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interpolated at any point within the data set for a given contact resonance frequency (Reynold’s
number) of the original AFM system. The blue circles depict the hydrodynamic function estimates
for a given set of in-contact natural frequencies.

With the hydrodynamic function successfully reconstructed for a given cantilever, the hydro-
dynamic forces acting on the cantilever can be accurately predicted at any arbitrary frequency. This
predictive capability is especially useful in situations such as contact resonance (CR) AFM, where
experimental measurement of the hydrodynamic function becomes impossible when coupled to a
surface of unknown mechanical properties. Tung et al.19 experimentally validated the HRM for a sin-
gle cantilever geometry in water for a single sample stiffness. In the following sections, we present
a numerical verification of the HRM for several cantilever geometries and sample stiffnesses in a
liquid water environment.

III. NUMERICAL VERIFICATION PROCEDURE

To conduct the numerical verification study, two distinct tip-less cantilever geometries were
chosen. The first cantilever geometry chosen, which will henceforth be named “Cantilever 1”, was
composed of silicon and had a length of 197 µm, a width of 29 µm, and a thickness of 2 µm. The
mass density ρ and Young’s modulus E of the cantilever was assigned as ρ = 2320 kg · m−3 and
E = 169 GPa. The second cantilever geometry, “Cantilever 2”, was also composed of silicon and had
a length of 49 µm, a width of 29 µm, and a thickness of 2 µm. The mass density and Young’s modulus
was identical to Cantilever 1. In both cantilevers, the Poisson’s ratio was assigned as ν = 0.25. The
geometry of Cantilever 1 was chosen to mimic common AFM cantilevers that are regularly used in
the field. Additionally, the geometry of Cantilever 1 was chosen such that we could easily benchmark
our simulation data with previously published results by Basak et al.21 The geometry of Cantilever
2 was chosen to probe the limits of the HRM method. To simplify the hydrodynamic theory used
in analysis it is often assumed that cantilever length greatly exceeds its width. Cantilever 2 has an
aspect ratio closer to unity, therefore, the system hydrodynamics can no longer be considered two-
dimensional. Cantilever 2 will test the ability of the HRM to capture three-dimensional hydrodynamic
forces.

With each cantilever geometry, five distinct sample stiffnesses were selected to emulate various
CR AFM sample contact conditions. In the simulations performed, sample contact is approximated
by attaching linear springs at the free (distal) edge of the cantilever. The first stiffness was chosen
to represent a soft contact. The second, third, and fourth stiffnesses were chosen such that the in-
vacuo frequency sensitivity to contact stiffness changes of the first, second, and third eigenmodes
were maximized, respectively. The frequency sensitivity to contact stiffness changes is defined as ∂fi

∂k ,
where fi is the ith eigenfrequency of the cantilever-spring system and k is the sample stiffness. The
fifth stiffness was chosen to represent an extremely stiff contact.

The numerical verification was conducted in three distinct steps. These steps are repeated for
each cantilever geometry. The first step is to determine the first four in-vacuo natural frequencies
and mode shapes of the cantilever. This was accomplished by performing a modal analysis of each
geometry using ADINA software. The next step is to simulate the cantilever vibrating near to, but
uncoupled from, a nearby rigid surface while immersed in fluid. The final step is to simulate the
cantilever vibrating while coupled to the sample surface while immersed in fluid.

In the simulation, the cantilever is submerged in liquid water with a dynamic viscosity η = 8.59 ×
10−4 kg · m−1 · s−1, a mass density ρ = 997 kg · m−3 and a bulk modulus K = 2.2 GPa. The cantilever
is inclined at an angle of 11◦ relative to the rigid surface. More specifically, we define a unit vector êx

parallel to the width direction of the cantilever originating from the centroid of the fixed end surface
of the cantilever, a unit vector êy parallel to the length direction of the cantilever originating from
the fixed end, and a rigid sample surface normal n̂. The cantilever is first oriented in relation to the
rigid surface such that (êx × êy) ‖ n̂. Next, the cantilever is inclined such that angle between êy and the
surface is 11◦. The distance from the cantilever to the surface is set such that the minimum distance
of a vector originating from the sample surface, parallel to the surface normal, and terminating at the
free (distal) end of the cantilever is 7.5 µm and represents the minimum distance between the surface
and any point on the cantilever.
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Next, the transient ringdown of the cantilever is simulated for each of the four calculated
in-vacuo mode shapes. For each simulation, the material points of the cantilever are given initial
velocity conditions proportional to that mode shape. The maximum tip velocity is scaled to 10 nm · s−1.
From the ringdown data, the wet natural frequencyω4et and wet quality factor Q4et can be calculated
using a single degree of freedom harmonic oscillator model and regression analysis, see Basak et al.21

Using these data, the discrete values of the hydrodynamic function can be calculated using Eq. (1)
and Eq. (2). Using the discrete values of the hydrodynamic function, an estimate of the hydrodynamic
function for arbitrary Reynolds number (frequency) values can be generated using Eqs. (3) and (4),
see Fig. 2.

The final step of the verification process is to calculate the wet natural frequency and wet quality
factor of the in-contact system. The cantilever is submerged in liquid water and oriented to the rigid
surface as described previously. Linear springs are added to the free end of the cantilever that provide
restoring forces proportional to the transverse displacement of the cantilever. The spring-coupled
cantilever is simulated in-vacuo to determine the natural frequencies and mode shapes in the absence
of fluid loading. Unique mode shapes are determined for each distinct spring value assigned. These
in-vacuo mode shapes are then used as initial velocity conditions in the fully coupled FSI simulation,
as described above.

From the spring-coupled liquid ringdown, the wet natural frequency ω4et and wet quality factor
Q4et are determined, as described previously. For each spring value and mode shape, ω4et , Eq. (1),
and Eq. (3) are used to predict the system’s natural frequency in the absence of hydrodynamic effects
ωn. This estimate is directly proportional to the sample stiffness. A direct comparison can be made
between theωn predicted usingωwet and Eq. (3) and theωn calculated for the coupled in-vacuo case. If
these two values ofωn are identical, then the HRM has perfectly predicted the hydrodynamic loading
present in the system. Additionally, the hydrodynamic damping in the system Q4et can be predicted
using ω4et from the simulation/experiment, the previously predicted ωn, Eq. (2), and Eq. (4). In the
case of our numerical simulation, the only damping present in the system is due to hydrodynamics.
Thus, a direct comparison between the Q4et measured from the in-contact ringdown data and the Q4et

predicted using the HRM can be made. This is in contrast to an experimental case – where additional
unknown damping would be introduced when the tip is in-contact with the sample surface.

IV. RESULTS AND DISCUSSION

Figure 3 shows the percentage difference between the numerically simulated and measured
in-vacuo sample-coupled natural frequency of Cantilever 1 vs. the sample-coupled natural frequency
predicted using the HRM for a range of nondimensional sample stiffnesses α. Here, we have defined
the nondimensional stiffness asα = k

kc
where k is the assigned sample stiffness and kc =

3EI
L3 is the static

FIG. 3. Percent difference between the predicted surface-coupled in-vacuo natural frequency using the HRM and the simulated
and measured surface-coupled in-vacuo natural frequency for Cantilever 1. Results are displayed for the first 3 eigenmodes
for various nondimensional stiffness values.
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FIG. 4. Percent difference between the predicted surface-coupled quality factor using the HRM and the simulated and
measured surface-coupled quality factor for Cantilever 1. Results are displayed for the first 3 eigenmodes for various
nondimensional stiffness values.

stiffness of the cantilever. It can be seen that the prediction error of the HRM is less than 8% for the
entire range of α for the first three eigenmodes of vibration. Figure 4 shows the percentage difference
between the in-liquid measured sample-coupled quality factor vs. the quality factor predicted by
the HRM for Cantilever 1. The prediction error is less than 11% for all modes and nondimensional
stiffness values.

Tabulated results can be seen in Table I. For each nondimensional stiffness value simulated, the
quality factor measured from the simulation output Qmeasured is reported along with the quality factor
predicted by the HRM Qpredicted. Additionally, the wet natural frequency fwet, the predicted in-vacuo

natural frequency (with hydrodynamic forces removed) f predicted
n , and the numerically simulated and

TABLE I. Tabulated simulation and HRM prediction results for Cantilever 1 for various nondimensional stiffnessα values and
eigenmodes. Qmeasured is the simulated and measured surface-coupled quality factor. Qpredicted is the quality factor predicted

using the HRM. f wet is the simulated and measured natural frequency of the surface-coupled system in liquid. f predicted
n is the

estimated in-vacuo natural frequency of the surface-coupled system using the HRM. f measured
n is the simulated and measured

in-vacuo natural frequency of the surface-coupled system.

Mode Qmeasured Qpredicted % Diff. Q fwet [kHz] f predicted
n [kHz] f measured

n [kHz] %Diff. fn

α = 2
1 3.52 3.53 0.28 40.66 116.82 119.84 2.52
2 8.25 8.08 2.06 174.19 448.66 459.16 2.29
3 16.50 15.72 4.73 509.60 1259.07 1258.28 0.06

α = 7.34
1 4.72 4.53 4.03 63.50 175.23 184.30 4.92
2 8.26 8.45 2.30 187.64 481.28 481.60 0.07
3 15.76 15.73 0.19 513.75 1260.67 1269.10 0.66

α = 50
1 6.40 5.81 9.22 98.80 263.72 283.45 6.96
2 10.24 10.52 2.73 270.72 681.34 711.90 4.29
3 16.08 16.75 4.17 566.03 1382.26 1371.12 0.81

α = 177
1 6.65 6.08 8.57 106.85 283.61 304.78 6.95
2 12.94 12.14 6.18 342.03 851.80 910.05 6.40
3 17.87 18.98 6.21 682.62 1656.64 1662.85 0.37

α = 105

1 6.95 6.20 10.79 110.38 292.37 313.54 6.75
2 14.45 13.07 9.55 384.75 953.50 1016.05 6.16
3 24.99 22.26 10.92 859.74 2071.72 2120.90 2.32
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FIG. 5. Percent difference between the predicted surface-coupled in-vacuo natural frequency using the HRM and the simulated
and measured surface-coupled in-vacuo natural frequency for Cantilever 2.

measured in-vacuo natural frequency f measured
n are reported. Recall that fwet represents the natural

frequency extracted from the in-liquid, sample-coupled ringdown of the system and is affected by the
hydrodynamic forces present in the system. In CR AFM, a measurement of the sample-coupled natural
frequency, in the absence of fluid loading effects, must be obtained to generate accurate estimates of
the sample’s material properties. We can conclude from the data that the HRM can be successfully
used in situations where the cantilever geometry is similar to Cantilever 1. The nondimensional
stiffness values probed reveal that the HRM prediction accuracy remains high across the entire range
of experimentally achievable sample stiffnesses.

Figure 5 shows the percentage difference between the numerically simulated and measured
in-vacuo sample-coupled natural frequency of Cantilever 2 vs. the sample-coupled natural frequency
predicted using the HRM for a range of nondimensional sample stiffnesses α. The prediction accuracy
of the HRM stays approximately below 10% for modes 2 and 3, however the prediction error is much
greater for mode 1 with a maximum error of approximately 18%. It can be seen that the prediction
error decreases with each subsequently higher eigenmode.

Figure 6 shows the percentage difference between the in-liquid measured sample-coupled quality
factor vs. the quality factor predicted by the HRM for Cantilever 2. The prediction error is very large,
with a maximum of approximately 50%. The same trend of increasing prediction accuracy with
increasing mode that was observed in the natural frequency data is not seen in the quality factor
data. We believe that the discrepancy in the prediction error, for both natural frequency and quality

FIG. 6. Percent difference between the predicted surface-coupled quality factor using the HRM and the simulated and
measured surface-coupled quality factor for Cantilever 2. Results are displayed for the first 3 eigenmodes for various
nondimensional stiffness values.
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FIG. 7. Third eigenmode of (a) Cantilever 1 and (b) Cantilever 2.

factor, is due to reduced dimensions of Cantilever 2. The length to width ratio of Cantilever 1 is
approximately 6.8, while the length to width ratio of Cantilever 2 is approximately 1.7. Cantilever 2
behaves much more like a plate than an Euler-Bernoulli beam. Figure 7 shows the third transverse
eigenmode calculated for Cantilever 1 and 2 – anticlastic curvature is apparent in Cantilever 2. The
anticlastic motion of Cantilever 2 increases the complexity of the system’s overall hydrodynamic
loading. Furthermore, the primary assumption in two-dimensional hydrodynamic theory that the
cantilever be very long relative to its width is also violated by the geometry of Cantilever 2. These
additional complications are not well captured by the HRM. It is clear from the numerical analysis
conducted that the HRM should be used in cases where the cantilever is long relative to its width.
Tabulated results for Cantilever 2 can be seen in Table II.

For both Cantilever 1 and Cantilever 2, the prediction error for the in-vacuo natural frequency
decreases as mode number increases. As the frequency of oscillation, and thus Reynolds number,
is increased the rate of change of the real part of the hydrodynamic function Γr decreases. For

TABLE II. Tabulated simulation and HRM prediction results for Cantilever 2 for various nondimensional stiffness α values
and eigenmodes.

Mode Qmeasured Qpredicted % Diff. Q fwet [kHz] f predicted
n [kHz] f measured

n [kHz] %Diff. fn

α = 2
1 14.53 13.40 7.78 842.09 1854.16 1946.46 4.74
2 33.45 24.01 28.22 3698.76 7106.27 7424.58 4.29
3 46.67 36.80 21.15 11094.69 19989.86 19986.68 0.02

α = 7.34
1 18.49 15.72 14.98 1262.558 2661.07 2988.93 10.97
2 36.45 24.85 31.82 4039.35 7712.65 7940.24 2.87
3 32.15 36.96 14.96 11218.83 20203.13 20153.79 0.24

α = 50
1 39.91 18.37 53.97 1874.85 3805.39 4601.17 17.30
2 36.10 28.77 20.30 5868.04 10937.13 11489.40 4.81
3 58.79 38.44 34.61 12441.14 22297.61 21691.23 2.80

α = 177
1 33.23 18.91 43.09 2018.08 4068.00 4949.72 17.81
2 48.13 31.27 35.03 7268.61 13381.75 14682.04 8.86
3 86.71 41.24 52.44 14979.66 26634.58 26703.02 0.26

α = 105

1 35.59 19.14 46.22 2080.16 4182.59 5096.14 17.93
2 60.97 32.60 46.53 8099.40 14823.69 16386.59 9.54
3 65.95 44.88 31.95 18697.52 33086.72 33737.66 1.93
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successively higher eigenmodes, the total change in Γr due to the frequency shift from the un-coupled
to coupled case decreases. This fact decreases the predictive error. Additionally, lower nondimensional
stiffness values (α values) show less predictive error in both Cantilever 1 and Cantilever 2. This is
due to the fact that for lower α values the extrapolation range of the HRM is reduced. In the limit of
an alpha value of zero, the HRM would be 100% accurate.

To predict the in-vacuo natural frequency, only Γr is needed. To predict Q, both Γr and Γi are
needed. In fact, the prediction of Q involves the quotient of these two quantities. For this reason,
we believe that the prediction of Q has an increased uncertainty and although similar logic can be
applied to the accuracy of Γi no trend can be seen for the Q prediction.

A. Triangular cantilever

To further explore the effects of geometry on the HRM, we present results for a triangular
cantilever. The triangular lever was created by merging two Cantilever 1 geometries rotated ninety
degrees with respect to each other. The fixed end of the triangular cantilever was then cropped to
provide a straight edge with fixed boundary conditions (see Fig. 8(a)). Additionally, the thickness
of the structure was reduced to 0.8 micrometers to simulate a softer triangular lever. The triangular
cantilever has the same material properties as Cantilever 1. The aforementioned HRM analysis was
performed for one nondimensional stiffness value α = 2. Here, we have chosen a nondimensional
stiffness value representative of an experimental case is which sensitivity of the first in-contact
eigenmode of vibration is desired.22 We have foregone analysis of higher nondimensional stiffness
values for the triangular cantilever.

Table III shows the computed results. Overall, the HRM provides excellent predictive capability
for the first three eigenmodes of vibration for the triangular cantilever. The prediction error of the
in-vacuo surface-coupled natural frequency is less than 5% for the entire range. However, the predic-
tion error does not decrease monotonically as observed in both Cantilever 1 and Cantilever 2. One
potential reason for this discrepancy is that the triangular cantilever geometry, when viewed in its
component two-dimensional cross-sections, can be thought of as 2 two-dimensional cross-sections
vibrating close to one another. Basak and Raman23 have performed an in-depth analysis of this very

FIG. 8. (a) Top view the triangular cantilever. Dashed lines show the original “Cantilever 1” geometry used to create the
triangular cantilever. (b) Isometric view of the third bending mode of the triangular cantilever.
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TABLE III. Tabulated simulation and HRM prediction results for a triangular cantilever for one nondimensional stiffness
value α and various eigenmodes. Qmeasured is the simulated and measured surface-coupled quality factor.

Mode Qmeasured Qpredicted % Diff. Q fwet [kHz] f predicted
n [kHz] f measured

n [kHz] %Diff. fn

α = 2
1 5.23 5.57 6.49 92.2 415.79 430.32 3.38
2 12.71 11.49 9.58 395.34 1508.77 1587.63 4.97
3 12.38 13.63 10.08 850.84 3049.81 3155.14 3.34

topic. Basak and Raman showed that the hydrodynamic function, for the case of 2 cross-sections
vibrating close to one another in an unbounded fluid, is dependent on the distance between the can-
tilever cross-sections. The triangular cantilever can be viewed as an ensemble of two-dimensional
cross-sections of various separation distances. In our case, there is an additional complexity caused
by the proximity of the rigid substrate. These two factors combined undoubtedly produce a hydro-
dynamic function that is much more complex than the form used in Eqs. (3) and (4). Despite these
complexities, the HRM predictive capability for the triangular lever is still comparable to, if not better
than, that of Cantilever 1.

V. CONCLUSION

A fully three-dimensional finite element analysis was conducted to verify the Hydrodynamic
Reconstruction Method19 (HRM). The verification was performed for three cantilevers with distinct
geometries for 3 separate transverse bending modes across a wide range of sample stiffnesses. This
numerical verification supplements the limited experimental validation that was performed by Tung
et al.,19 in which a single sample stiffness was tested. We have found that the HRM performs with
a high degree of accuracy for cantilever geometries that are long relative to their width for a wide
range of sample stiffnesses. Poor performance was discovered for cantilevers that are short relative
to their width.
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APPENDIX A: COMPUTATIONAL MODEL

The software “ADINA” has been used throughout the work to perform the numerical fluid-
structure interaction (FSI) computations. The numerical simulations are designed to recreate the
experimental conditions present in a typical CR AFM experiment and to verify the HRM. The FSI
computations are performed by defining two different computational domains: (i) the solid domain
and (ii) the fluid domain.

The solid domain consists of the AFM cantilever, which is constructed with three-dimensional
linearly elastic elements. Specifically, the element group “threedsolid” is used for all solid elements.
Additionally, the small displacement assumption has been made for all simulations. Fixed boundary
conditions are used on one end of the cantilever, while the other end is free to vibrate or constrained
using linear springs, depending on the simulation. In the simulations, the geometry of the tip has been
excluded.

The solid microcantilever is then surrounded by three-dimensional Navier-Stokes elements. This
is achieved by creating a sphere of three-dimensional Navier-Stokes elements, from which a void
matching the dimensions of the microcantilever is created. The solid microcantilever is then inserted
into this void and is thereby surrounded by the fluid elements. The radius of the sphere has been chosen
through a convergence study discussed below. The outer boundaries of the sphere are assigned no-slip
conditions to approximate a rigid wall. A fluid-structure boundary condition is defined between the
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TABLE IV. Quality factor comparison of simulations results of the present work, Qpw, and Basak et al.,21 QBasak. These
data represent simulation results for the transient ringdown of the first transverse bending mode of a cantilever tilted 11◦ with
respect to the rigid surface at various gap heights.

Gap [µm] Qpw QBasak % Diff.

7.5 2.594 2.323 11.666
10 2.891 2.626 10.091
15 3.084 3.002 2.732
20 3.381 3.266 3.521
25 3.427 3.417 0.293
30 3.559 3.546 0.367

outer surfaces of the microcantilever and the adjacent void boundaries of Navier-Stokes elements.
The resulting FSI simulation is conducted using a direct two-way coupling between the fluid and
solid elements.

The simulations are run for three distinct dynamics cases: (i) the microcantilever oscillating in
an unbounded fluid, (ii) the microcantilever oscillating near to, but not coupled to, a rigid surface, and
(iii) the microcantilever oscillating near to and coupled to a rigid surface with linear springs anchored
at the end of the microcantilever.

APPENDIX B: BENCHMARKING

In order to increase our confidence in the numerical simulations conducted, we have performed
benchmark simulations against Basak et al.21 Benchmark simulations of the transient ringdown of
the first and second bending modes were conducted in an unbounded fluid domain. For each case,
our predicted natural frequencies were within 1.5% and quality factors were within 0.5% of the
benchmark data.

Additionally, benchmark simulations were conducted for 11◦ tilt orientations of the beam near
to, but uncoupled from, the rigid sample surface for the first and second bending mode. Table IV
shows the results of the benchmark simulations. Our prediction results are within 10% of the quality
factor benchmark for gap heights above 10 µm and below 12% for gap heights of 7.5 µm. Basak
et al.21 did not provide natural frequency vs. gap data for the tilted or un-tilted simulations. A thorough
convergence study has been conducted for each gap height.

APPENDIX C: CONVERGENCE STUDY

Following the work of Basak et al.21 we have performed convergence studies investigating the
effect of the domain size, time step size, and mesh size on the final solutions. The convergence
criterion we followed throughout our work is as follows:

√√√i=N∑
i=1

(x2,i − x1,i)2 ≤ 0.01

√√√i=N∑
i=1

x2
2,i,

where x1,i is the displacement of the cantilever tip at i=1,. . .N instants of time during the first oscillation
cycle and x2,i are the displacements calculated at exactly the same instants of time for computations
that are performed with a denser mesh, finer time step, or larger domain.

To begin the convergence study, we first study the effect of mesh size on the output eigenfre-
quencies of the solid model. The element size is systematically decreased until there is less than a
1% change in subsequent estimations of the transverse eigenfrequencies for the first 4 transverse
eigenfrequencies of the system. This mesh is used as a starting point for the solid model in the FSI
simulation.

The FSI convergence study has been conducted in an iterative fashion. The iterative convergence
study was conducted for a cantilever oscillating in an unbounded fluid. First, the solid and fluid
elements are systematically increased until the simulation output meets the convergence criterion
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defined above. Then, the time step is decreased until the convergence criterion is met. Finally, the
domain size is increased until the convergence criterion is met. The process is then repeated until
the convergence criterion is met simultaneously for the chosen mesh size, time step size, and domain
size.

Domain independence is achieved when the radius of the simulation domain R= 1.2
√

3
2 L, where

L is the length of the microcantilever. Time step independence is achieved when the time step dt = T /50,
where T is the period of cantilever oscillation. Mesh independence is achieved when using 272,200
fluid elements and 4050 solid elements. Mesh subdivisions were refined by adjusting the divisions
of individual edges in the simulation domain. Free form meshing using Delaunay triangulation was
used for the fluid elements.

For simulations in bounded domains, i.e. near to the substrate, the convergence criterion was
checked for increasingly finer fluid mesh sizes. The initial mesh size calculated for the unbounded
fluid case was insufficient to meet the convergence criterion for simulations conducted near to the
surface. The fluid mesh density in the vicinity of the cantilever was increased accordingly to ensure
simulation convergence.

APPENDIX D: COMPUTATIONAL PROCESS AND FITTING

The transient motion of the tip has been recorded for each time step of the simulation. From the
tip displacement curve, we can calculate the quality factor and wet natural frequency of the system.
As described in the body of the paper, we assign small initial velocities to the cantilever proportional
to each eigenmode of the system and simulate the cantilever ringdown. Due to the small oscillations
of the microcantilever, each eigenmode ringdown of the system can be analyzed using a damped
single degree of freedom oscillator equation. Nonlinear regression is used to extract the wet natural
frequency and quality factor of the system using the equation

x(t)=Ae−
ωn t
2Qn sin(ωnt

√
1 −

1

4Q2
n

),

where, x(t) is the tip displacement as a function of time, A is the amplitude of oscillation, ωn is the
wet natural frequency and Qn is the quality factor. Specifically, the tip displacement curve has been
fit in “MATLAB” using the Gauss-Newton algorithm with bisquare regression.

1 U. Hartmann, Physical Review B 43, 2404 (1991).
2 A. Weisenhorn, P. Maivald, H.-J. Butt, and P. Hansma, Physical Review B 45, 11226 (1992).
3 A. Weisenhorn, P. Hansma, T. Albrecht, and C. Quate, Applied Physics Letters 54, 2651 (1989).
4 B. Drake, C. Prater, A. Weisenhorn, S. Gould, T. Albrecht, C. Quate, D. Cannell, H. Hansma, and P. Hansma, Science 243,

1586 (1989).
5 P. Hansma, J. Cleveland, M. Radmacher, D. Walters, P. Hillner, M. Bezanilla, M. Fritz, D. Vie, H. Hansma, C. Prater et al.,

Applied Physics Letters 64, 1738 (1994).
6 R. Batra, M. Porfiri, and D. Spinello, Smart Materials and Structures 16, R23 (2007).
7 M. Aureli, C. Prince, M. Porfiri, and S. D. Peterson, Smart Materials and Structures 19, 015003 (2009).
8 J. Brufau-Penella, M. Puig-Vidal, P. Giannone, S. Graziani, and S. Strazzeri, Smart Materials and Structures 17, 015009

(2007).
9 A. Erturk and G. Delporte, Smart Materials and Structures 20, 125013 (2011).

10 M. Aureli, V. Kopman, and M. Porfiri, IEEE/ASME Transactions on Mechatronics 15, 603 (2010).
11 Z. Chen, S. Shatara, and X. Tan, IEEE/ASME Transactions on Mechatronics 15, 448 (2010).
12 G. G. Stokes, On the effect of the internal friction of fluids on the motion of pendulums, Vol. 9 (Pitt Press, Cambridge, 1851).
13 E. Tuck, Journal of Engineering Mathematics 3, 29 (1969).
14 C. P. Green and J. E. Sader, Physics of Fluids 17, 073102 (2005).
15 R. C. Tung, A. Jana, and A. Raman, Journal of Applied Physics 104, 114905 (2008).
16 B. Mirman and S. V. Kalinin, Applied Physics Letters 92, 083102 (2008).
17 A. F. Payam, Ultramicroscopy 135, 84 (2013).
18 N. Ploscariu and R. Szoszkiewicz, Applied Physics Letters 103, 263702 (2013).
19 R. C. Tung, J. P. Killgore, and D. C. Hurley, Journal of Applied Physics 115, 224904 (2014).
20 A. T. Manual, Inc., Watertown, MA, 77 (2013).
21 S. Basak, A. Raman, and S. V. Garimella, Journal of Applied Physics 99, 114906 (2006).
22 J. P. Killgore and D. C. Hurley, Nanotechnology 23, 055702 (2012).
23 S. Basak and A. Raman, Physics of Fluids 19, 017105 (2007).

https://doi.org/10.1103/physrevb.43.2404
https://doi.org/10.1103/physrevb.45.11226
https://doi.org/10.1063/1.101024
https://doi.org/10.1126/science.2928794
https://doi.org/10.1063/1.111795
https://doi.org/10.1088/0964-1726/16/6/r01
https://doi.org/10.1088/0964-1726/19/1/015003
https://doi.org/10.1088/0964-1726/17/01/015009
https://doi.org/10.1088/0964-1726/20/12/125013
https://doi.org/10.1109/tmech.2009.2030887
https://doi.org/10.1109/tmech.2009.2027812
https://doi.org/10.1007/bf01540828
https://doi.org/10.1063/1.1995467
https://doi.org/10.1063/1.3033499
https://doi.org/10.1063/1.2801524
https://doi.org/10.1016/j.ultramic.2013.07.006
https://doi.org/10.1063/1.4858411
https://doi.org/10.1063/1.4882755
https://doi.org/10.1063/1.2202232
https://doi.org/10.1088/0957-4484/23/5/055702
https://doi.org/10.1063/1.2423254

