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REVIEW ARTICLE

The role of S-nitrosoglutathione reductase (GSNOR) in human disease
and therapy

Scott D. Barnett and Iain L. O. Buxton

Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV, USA

ABSTRACT
S-nitrosoglutathione reductase (GSNOR), or ADH5, is an enzyme in the alcohol dehydrogenase
(ADH) family. It is unique when compared to other ADH enzymes in that primary short-chain
alcohols are not its principle substrate. GSNOR metabolizes S-nitrosoglutathione (GSNO), S-
hydroxymethylglutathione (the spontaneous adduct of formaldehyde and glutathione), and some
alcohols. GSNOR modulates reactive nitric oxide (�NO) availability in the cell by catalyzing the
breakdown of GSNO, and indirectly regulates S-nitrosothiols (RSNOs) through GSNO-mediated
protein S-nitrosation. The dysregulation of GSNOR can significantly alter cellular homeostasis,
leading to disease. GSNOR plays an important regulatory role in smooth muscle relaxation,
immune function, inflammation, neuronal development and cancer progression, among many
other processes. In recent years, the therapeutic inhibition of GSNOR has been investigated to
treat asthma, cystic fibrosis and interstitial lung disease (ILD). The direct action of �NO on cellular
pathways, as well as the important regulatory role of protein S-nitrosation, is closely tied to
GSNOR regulation and defines this enzyme as an important therapeutic target.
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Introduction

S-nitrosoglutathione reductase (GSNOR) is an important
regulator of human health and disease. The modulation
of protein S-nitrosation by GSNOR contributes to a host
of maladies and can be exacerbated by the dysregula-
tion of GSNOR. In recent years, much effort has been
dedicated to identifying a safe and efficacious means to
alter GSNOR activity. A myopic investigation of GSNOR
would reveal little more than its inherit ability to metab-
olize S-nitrosoglutathione (GSNO) (Jensen et al., 1998), S-
hydroxymethylglutathione (HMGSH) (Hedberg et al.,
2000), and a handful of alcohols (Adinolfi et al., 1984;
Jensen et al., 1998). If we look beyond the direct actions
of the enzyme itself, it quickly becomes apparent that
GSNOR influences several downstream and parallel path-
ways (Figure 1). One of the most important is GSNOR’s
regulation of GSNO, and by extension, nitric oxide (�NO)
and protein S-nitrosation. �NO is a reactive nitrogen spe-
cies (RNS) that is critical to the normal function of most
cell types (Beckman & Koppenol, 1996; Moncada et al.,
1991; Radi et al., 1991; Salvador Moncada, 1994). It is a
powerful smooth muscle relaxing agent (Bradley et al.,
1998; Buxton et al., 2001; Ricciardolo et al., 2004; Tomita
et al., 2002), cardiopulmonary regulator (Liu et al., 2004;
Tamargo et al., 2010), neuroeffector (Bredt & Snyder,

1992; Corti et al., 2014) and immune system modulator
(MacMicking et al., 1997). �NO is likely carried as GSNO
from endothelium, and other sources, and acts as a sta-
ble �NO reserve (Broniowska et al., 2013; Smith &
Marletta, 2012). GSNO can transfer its �NO moiety to a
cysteine thiol, resulting in the posttranslational modifica-
tion (PTM) S-nitrosation/S-nitrosylation (Stamler et al.,
1992). S-nitrosation describes a thiol (e.g. cysteine) con-
verted to a S-nitrosothiol (RSNO) by a one-electron oxi-
dation from the �NO radical (Smith & Marletta, 2012). The
term nitrosylation describes addition of an �NO group to
a metal centered protein such as guanylyl cyclase
(Mart�ınez-Ruiz & Lamas, 2004). Researchers have used
both terms to describe �NO addition to a protein thiol.
We employ S-nitrosation to refer to protein modifica-
tions on cysteine residues. Protein S-nitrosations are also
referred to in the literature in a fashion that takes into
account protein and non-protein nitrosations (e.g.
RSNO). We employ the term RSNO as it appears in the
literature.

Alcohol dehydrogenase family overview

The alcohol dehydrogenase (ADH) family of enzymes
have been investigated for well over a century
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(Battelli & Stern, 1910; Daniel, 1909; Lutwak-Mann,
1938). They are evolutionarily conserved from bacteria
to man (Gonz�alez-Duarte & Albalat, 2005; Liu et al.,
2001) and are categorized into five distinct classes that
contain seven known isoforms (Table 1). ADH enzymes
perform several important functions in human cells. The
most well studied of these is the metabolism of short
chain alcohols. Ethanol, being of significant cultural
relevance due to its widespread consumption and
abuse (Oscar-Berman & Marinkovic, 2003), has led to an
extensive investigation of the entire ADH family. Most
ADH enzymes have some affinity for ethanol. In hepato-
cytes, ADH1A (formerly ADH1), ADH1B (formerly ADH2)
and ADH1C (formerly ADH3), are responsible for the oxi-
dative catabolism of ethanol to acetaldehyde before
further processing in the Krebs cycle, or elimination
(Cederbaum, 2013). ADH4, a class II ADH (Svensson
et al., 2001) whose sequence is 70% homologous to
ADH1, catalyzes the oxidation of retinol (Vitamin A), and
bolsters ethanol metabolism in the liver (Ramchandani
et al., 2001). Numerous single nucleotide polymor-
phisms (SNPs) in the genes encoding the ADH family
affect the rate of ethanol metabolism. These SNPs have

been linked to some forms of alcoholism and cancer
(Edenberg, 2007; Hurley & Edenberg, 2012). Other ADH
SNPs have been correlated with schizophrenia,
Parkinson’s disease, asthma and autism in certain popu-
lations (Bowers et al., 2011; Buervenich et al., 2000; Wu
et al., 2007; Zuo et al., 2013). GSNOR (ADH5), the focus
of this review, is differentiated from other ADH enzymes
in that primary short chain alcohols, in particular etha-
nol, are not its principal substrate. ADH6 has been iden-
tified in both fetal and adult livers, but its function
remains unclear as this enzyme has yet to be isolated
for biochemical analysis (Edenberg, 2007; €Ostberg et al.,
2016). A recent examination of ADH6 has provided evi-
dence that it may act as an S-nitroso-CoA reductase
(Anand et al., 2014). Similarly, ADH7’s function remains
elusive. Available data suggest ADH7 may serve a role
in seemingly disparate cellular functions and diseases,
such as: first pass gastric metabolism of ethanol (Lee
et al., 2006), retinol metabolism (Chase et al., 2009),
Parkinson’s disease (Buervenich et al., 2000) and even
personality traits in some individuals with substance
dependence (Luo et al., 2008). Clearly, the ADH family
of enzymes performs a diverse and important role in

Figure 1. GSNOR in the cell. One of the principle functions of GSNOR is to metabolize GSNO. SNPs in ADH5 can affect expression
of GSNOR in the cell, which in turn alters the concentration of GSNO and total levels of RSNOs (term to include nitrosation of
cysteine residues, e.g. SNO). Inhibitors of GSNOR increase available GSNO and increase total RSNOs (see colour version of this
figure at www.tandfonline.com/ibmg).
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the cellular metabolism of endogenous and exogenous
chemicals. Here we focus on the function, significance
and therapeutic potential of modulating GSNOR
activity.

Nomenclature of alcohol dehydrogenases

The ADH family of enzymes has had several overlapping
naming schemes in the past (Holmquist & Vallee, 1991;
Staab et al., 2008). This has led to ambiguity in the lit-
erature and is due in part to the fact that naming
assessments have historically been guided by substrate
specificity, phylogenic classification and publication
date. GSNOR was not disambiguated from glutathione-
dependent formaldehyde dehydrogenase (FDH) until
1989 when it was found that these two proteins were in
fact the same enzyme (Koivusalo et al., 1989). A formal
attempt to reconcile the nomenclature began in 1999
when it was proposed that ADH proteins use numeric
Arabic designators to identify each class of enzyme
(Duester et al., 1999). In recent years, the research com-
munity has generally adopted the gene naming guide-
lines put forth by the Human Genome Organization’s
Gene Nomenclature Committee (Wain et al., 2002). Of
all the ADH enzymes, GSNOR naming is particularly con-
voluted in this respect. While this protein is still some-
times referred to in the literature by its nonstandard
name, ADH3 (as in class III ADH), the official gene desig-
nator is now ADH5, and the protein is GSNOR, ADH5 or
alcohol dehydrogenase 5 (class III) v-polypeptide. It can
also be found in the literature under several other mon-
ikers: formaldehyde dehydrogenase (FDH or FALDH);
alcohol dehydrogenase X (ADHX); alcohol dehydrogen-
ase class-3 (ADH-3); vv-ADH (homodimeric chi ADH);
ADH 5; glutathione-dependent formaldehyde dehydro-
genase (GSH-FDH); and S-(hydroxymethyl) glutathione
dehydrogenase (EC 1.1.1.284). For purposes of clarity,

this review will address the gene as ADH5, and the pro-
tein as ADH5 or GSNOR.

ADH5: structure/localization

ADH5, the gene that encodes GSNOR, is located on the
reverse strand of chromosome 4 (4q23 – chr4:99993567
– 10000985) (Smith, 1986). ADH5 is tandemly aligned in
the same orientation as the other genes that encode for
the entire family of ADH enzymes. Phylogenic analysis
of the ADH5 locus revealed that GSNOR evolved inde-
pendently from class I and II ADH (Adinolfi et al., 1984),
and it is highly conserved across most vertebrate spe-
cies (Foglio & Duester, 1996). GSNOR has a molecular
weight of 39,724Da and is translated to a 374 amino
acid enzyme (UniProtKB identifier: P11766) via 9 exons
(Hur & Edenberg, 1992). Glu-67 and Arg-368 are highly
conserved essential amino acids important to the cata-
lytic mechanism of this enzyme (Sanghani et al., 2006).
Splice variants of ADH5 exist and result in the produc-
tion of truncated proteins; however, their functional
relevance has not been documented (H€o€og et al., 2001).

GSNOR functions as a homodimer (Figure 2) (Yang
et al., 1997) and is localized to the nucleus and cyto-
plasm (Fern�andez et al., 2003). Amino acid substitutions
in the subunit interacting portions of the coenzyme-
binding domain prevent heterodimeric variants from
being generated with other ADH enzymes (Juli�a et al.,
1988). Each subunit binds a catalytic and structural
Zn2þ cofactor (Kaiser et al., 1988; €Ostberg et al., 2016),
for a total of four Zn2þ ions per functional enzyme. In
addition to Zn2þ, GSNOR also requires a coenzyme that
can vary based upon the substrate. These include: nico-
tinamide adenine dinucleotide (NADþ), its reduced
form NADH, NADPHþHþ or NAD(P)þ (Gupta &
Igamberdiev, 2015; Hedberg et al., 2003; Jensen et al.,
1998; Sanghani et al., 2000).

Table 1. ADH variants. ADHs are most commonly recognized as highly effective metabolizers of ethanol. ADH5
evolved independently from class I and class II ADHs varies from other AHDs in that GSNO and HMGSH are its
primary substrates. The identification and analysis of other ADHs continue.

Gene name Principle substrate
Uniprot
Identifier Subunits Enzyme class

ADH1A Ethanol P07327 a I
ADH1B (formerly ADH2) Ethanol P00325 b I
ADH1C (formerly ADH3) Ethanol P00326 c I
ADH1{D-H)a Unkown – – –
ADH4 Ethanol/Retinol P08319 p II
ADH5 GSNO/HMGSH P11766 III
ADH6 EthanoI/S-nitroso-CoAb P28332 l/rc V
ADH7 Retinol P40394 r IV
ADH{8-14)a Unkown/Retinolb – –

Source: Modified from Edenberg (2007).
aNon-human.
bLimited evidence.
ccDNA data.

342 S. D. BARNETT AND I. L. O. BUXTON



In general, ADH enzymes are highly expressed in the
liver, the upper digestive tract and the kidneys (Zuo
et al., 2013). ADH5 RNA has been recognized in all major
human tissue types with protein expression highest in
smooth muscle, liver, epididymis, kidney and testis (Giri
et al., 1989). GSNOR is an important negative regulator
of neuronal differentiation during development (Wu
et al., 2014) and is the only known ADH enzyme present
in the brain (Beisswenger et al., 1985; Galter et al.,
2003). Conversely, GSNOR protein expression is negli-
gible or non-existent in skeletal muscle, lymph nodes,
spleen, bone marrow, cerebellum and the lateral ven-
tricle (If & Wb, 2017).

Substrates

S-nitrosoglutathione/formaldehyde

As with most enzymes, GSNOR has a varying degree of
affinity for several substrates. The two primary targets
of GSNOR are GSNO, and HMGSH, the spontaneous
adduct of formaldehyde and glutathione. HMGSH binds
at the zinc active site and interacts with the highly con-
served residues Arg114/115, Asp55, Glu57 and Thr46
(Engeland et al., 1993; Sanghani et al., 2002). That being
said, the rate of substrate conversion (Kcat) is about 20-
fold higher for GSNO over HMGSH (Green et al., 2012;
Hedberg et al., 2003; Salisbury & Bronas, 2015; Sanghani
et al., 2000; Staab et al., 2008). Both reactions are
dependent on an abundant source glutathione (GSH) in
the cell. GSH is the major thiol in mammalian cells and
while concentrations can reach as high as 10mM
(Bateman et al., 2008), they are typically 1mM. Under
stress conditions, the concentration can fluctuate dra-
matically and drive GSNO toward atypical reactions
(Figure 3) (Salisbury & Bronas, 2015; Staab et al., 2009).
The enzymatic activity of human recombinant GSNOR
for GSNO exhibits a Km of approximately 27 lM and a

kcat value of between 2400 and 12,000min�1

(Fern�andez et al., 2003; Hedberg et al., 2003).

Alcohols

GSNOR more readily acts upon alcohols of greater
chain length than class I ADH enzymes (Figure 4).
This is due in part to a longer span between the
binding and active site of the enzyme (Salisbury &
Bronas, 2015), as well as amino acid substitutions that
affect binding affinity (Juli�a et al., 1988; €Ostberg et al.,
2016). As a result of these evolutionary divergences,
GSNOR is not optimized for metabolizing short-chain
alcohols. Consequently, it is not a misnomer to iden-
tify GSNOR as an ADH. GSNOR metabolizes both etha-
nol and medium/long change alcohols (preferring a
double-bond in the beta position). The active site of
GSNOR cannot be saturated by ethanol (Beisswenger
et al., 1985), and the high activity of class I ADH
enzymes toward ethanol minimizes the functional role
of ethanol metabolism by GSNOR. Several Km values
for EtOH (all >2 M) (Lee et al., 2003; Sharma et al.,
1989) have been reported in the literature, with a kcat
of 33 ± 3min�1 (Beisswenger et al., 1985; Lee et al.,
2003). GSNOR’s ability to metabolize EtOH is far sur-
passed by those of class I ADH enzymes whose Km
values range from 0.05 to 40mM. As such, medium
and long chain alcohols (>4 carbons) (Holmquist &
Vallee, 1991; Salisbury & Bronas, 2015; Theorell et al.,
1969; Wagner et al., 1984) are more freely oxidized
by GSNOR (Staab et al., 2009).

Other substrates

As with most enzymes, the entire cohort of ADH5 sub-
strates is not fully known. Additional classes of mole-
cules such as x-hydroxy fatty acids (Achkor et al., 2003;
Boleda et al., 1993; Moulis et al., 1991) exhibit a limited
affinity for the enzyme. The ability of GSNOR to metab-
olize retinol remains in question. ADH7 (a class IV ADH)
is the primary ADH accountable for retinol metabolism
(Cederbaum, 2013), but there is evidence to support
GSNOR’s contribution in the retinoid-signaling pathway.
Studies have shown that ADH5–/– null mice exhibit
reduced retinoic acid production (Molotkov et al., 2002),
and the presence of ADH5 transcript in human fetal
lungs correlates with a decrease in the presence of ret-
inol (Coste & Labbe, 2011). Ultimately, the exact nature
of relationship between GSNOR and retinol is still under
investigation (Boleda et al., 1993; Ca~nestro et al., 2010;
Gonz�alez-Duarte & Albalat, 2005).

Figure 2. GSNOR quaternary model derived from X-ray diffrac-
tion (2.7 Å) and displayed as a functional vv homodimer with
(2) Znþ ions and (1) NADH co-enzyme per subunit. swissmo-
del.expasy.org SMTL id 1teh.1 (see colour version of this figure
at www.tandfonline.com/ibmg).
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GSNOR: health and disease

GSNOR is integral to the modulation of �NO in the cell.
�NO is produced enzymatically in many cell types
(Schmidt & Walter, 1994). Free �NO is a highly reactive

uncharged radical with a half-life of �1–5 second in vivo
(Kelm & Schrader, 1990), and will often establish a sta-
ble RSNO equilibrium with GSH in the form of GSNO
(Wink & Mitchell, 1998). �NO, and by extension, GSNO,

Figure 3. GSNO and HMSGH metabolism by GSNOR – GSNOR metabolizes multiple substrates. S-nitrosoglutathione (GSNO), one
of the primary substrates for GSNOR, is first enzymatically degraded to an unstable intermediate, N-hydroxysulfinamide
(GSNHOH). In the presence of additional glutathione (GSH), GSNHOH will be converted to glutathione disulfide (GSSG). Under cer-
tain condition, such as high levels of oxidative stress, GSH will not be sufficiently available, and other products, such as glutathi-
one sulfinamide (GSONH2) and glutathione sulfinic acid (GSSOH) will be formed. GSNOR can also oxidize the spontaneous adduct
of formaldehyde and GSH, S-(hydroxymethyl)glutathione (HMGSH), to S-formylglutathione (FGSH) (see colour version of this figure
at www.tandfonline.com/ibmg).

Figure 4. Alcohol metabolism by GSNOR: GSNOR can metabolize medium and long chain primary alcohols to aldehydes and/or
ketones before being further processed by other enzymes It preferentially metabolizes medium and long chain alcohols with a dou-
ble-bond on the beta carbon, however, its specificity for all alcohols is much lower than for GSNO. �Evidence supporting GSNOR’s
ability to metabolize retinol to the aldehyde retinal is limited (see colour version of this figure at www.tandfonline.com/ibmg).
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plays a critical role in smooth muscle relaxation (Bradley
et al., 1998; Buxton, 2004; Liu et al., 2016; Ricciardolo
et al., 2004; Tomita et al., 2002) cardiopulmonary regula-
tion (Rastaldo et al., 2007; Sears et al., 2004; Tamargo
et al., 2010), neuronal signaling (Shahani & Sawa, 2011),
as well as dozens of other intra/extracellular functions
(Pacher et al., 1995; Salvador Moncada, 1994). The dys-
regulation of �NO production and metabolism can lead
to drastic changes in protein S-nitrosation (Foster et al.,
2003, 2009), an important PTM, and can have numerous
other downstream consequences.

Oxidative/nitrosative stress

The dysregulation of GSNO through aberrant GSNOR
modulation, when combined with oxidative stress, can
further exacerbate disease. During conditions of cellular
stress RNS, such as peroxynitrite (ONOO–), are formed
when �NO reacts with superoxide (O��

2 ) (Squadrito &
Pryor, 1998). Not only does oxidative stress comman-
deer available �NO and GSH (Rahman & MacNee, 2000),
but peroxynitrite can cross the cell membrane and react
directly with protein thiols (Alvarez & Radi, 2003),
which may prevent S-nitrosation. RNS also induce
S-glutathionylation of protein thiols (Dalle-Donne et al.,
2009), further depleting the GSH pool (Klatt & Lamas,
2000). Decades of research have left little question as to
detrimental effects of oxidative/nitrosative stress (Dalle-
Donne et al., 2006; Guzik et al., 2002; M€unzel et al.,
1997), and the mechanistic underpinnings of this pro-
cess have been thoroughly investigated (Apel & Hirt,
2004; Valko et al., 2007). For the purpose of this review,
it should be noted that this process can alter the levels
of �NO and GSH in the cell, which in turn can affect
�NO/GSNO signaling.

GSNO and S-nitrosation

Any investigation into the modulation/activity of
GSNOR would not be complete without mention of
S-nitrosation. The study of this PTM and its influence on
normal cell-signaling and disease has significantly
impacted research and medicine for over 25 years
(Broniowska & Hogg, 2012; Foster et al., 2009; Stamler
et al., 1992).

The detection and quantitation of RSNOs in bio-
logical systems are inherently challenging. The biotin
switch technique (Jaffrey & Snyder, 2001), in which
S-nitrosated cysteines are reduced and biotinylated,
provides a simple and elegant method for the qualita-
tive detection of S-nitrosated proteins. An analysis of a
wide variety of RSNO measurement techniques, includ-
ing the biotin switch, has established that artifacts are

common when measuring RSNOs and it is not always
possible to identify which thiols have been S-nitrosated
(Giustarini et al., 2003). Newer techniques have become
available in recent years (Chen et al., 2013; Devarie-Baez
et al., 2013), such as tandem mass spectrometry (MS/
MS) of S-nitrosated protein thiols (Murray et al., 2012;
Ulrich et al., 2013), that are highly quantitative. Beyond
the problem of quantitation, it has been proposed that
other thiol modifications such as dithiol/disulfide
exchange, S-glutathionylation and oxidation, may affect
signaling more readily than do RSNOs (Lancaster, 2008),
and should be investigated along with S-nitrosation.

As with phosphorylation, S-nitrosation regulates cel-
lular mechanisms and affects protein–protein interac-
tions. The intracellular availability of �NO and its
functional derivatives, like GSNO, affect protein S-nitro-
sation (Broniowska & Hogg, 2012; Hess et al., 2005;
Thomas & Jourd’heuil, 2012). GSNOR is a potent nega-
tive regulator of GSNO in smooth muscle (Que et al.,
2009). The aberrant expression of ADH5, as with many
ADH subclasses, is associated with disease (Jelski &
Szmitkowski, 2008; Jelski et al., 2009; Laniewska-Dunaj
et al., 2013). In fact, the deletion of the ADH5 gene
increases both the levels of GSNO and total protein
S-nitrosation in vivo (Liu et al., 2001). Protein S-nitrosa-
tion is of intense interest to researchers and clinicians
as the hypo/hyper-S-nitrosation of a diverse set of pro-
teins, spanning nearly every tissue types, can have a
drastic effects in disease (Foster et al., 2009). Some of
these include: Type 2 diabetes (Carvalho-Filho et al.,
2005), sickle cell anemia (Bonaventura et al., 1999,
2002), ventricular arrhythmia in individuals with the
Duchenne muscular dystrophy (Fauconnier et al., 2010),
cell death and survival pathways (Iyera et al., 2011),
post-infarct cardio-protection (Methner et al., 2014),
pregnancy/parturition (Ulrich et al., 2013) and many
others. Interestingly, GSNOR itself is a cysteine rich pro-
tein that is S-nitrosated by GSNO, which in turn initiates
a feedback loop that affects GSNOR expression (Guerra
et al., 2016) and activity (Brown-Steinke et al., 2010).
Although it is beyond the scope of this review, it should
be noted that GSNOR dysregulation in plants can result
in significant biotic and abiotic nitrosative events that
affect growth, development and survival (Leterrier et al.,
2011; Shi et al., 2015; Yun et al., 2016).

GSNOR dysregulation

GSNOR dysregulation has been implicated in numerous
disease states (Figure 5). The use of models and ADH5–/–

knockout animals has uncovered surprising and valu-
able data related to GSNOR function. RSNO levels, as
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well as canonical NO-mediated pathways, are severely
altered when GSNOR activity is modulated.

Cardiovascular health

One of the major organs affected by GSNOR is the heart
and surrounding vascularity. It has long been known
that �NO and S-nitrosation protect the body from car-
diovascular disease. Following myocardial infarction,
ADH5–/– mice exhibit enhanced cardiac regenerative
capabilities as a result of increased cardiac stem cell
turnover (Hatzistergos et al., 2015), as well as a reduc-
tion in myocardial infarct size and higher coronary
vascular density (Lima et al., 2009). Moreover,
de-S-nitrosation of cardiac ryanodine receptor 2 (RyR2)
in ADH5–/– mice results in decreased peripheral vascular
tone due to calcium “leak” (Beigi et al., 2012). In skeletal
muscle only about 1 in 50 cysteines on the ryanodine
receptor are S-nitrosated, indicating that this PTM, even
when conservatively distributed, can drastically alter
protein function (Sun et al., 2001). Taken together this
data suggests that RyR2 S-nitrosation modulates cal-
cium storage in the sarcoplasmic reticulum. There is
clearly a complex relationship between the correlative
observation of an increase in S-nitrosation and GSNOR
dysregulation.

Immune system

GSNOR performs an important protective role in the
immune system’s development of lymphocytes. ADH5–/–

KO mice show increased RSNO production that
decreases CD4 single-positive thymocyte development,
and increases lymphocytic apoptosis (Yang et al., 2010).
Damage to immune cells from nitrosative stress in
ADH5–/– mice results in a significant increase in the ani-
mal’s susceptibility to pulmonary infection by K. pneu-
moniae as well as multi-fold increases of the bacteria in
the spleen and blood, resulting in increased inflamma-
tion (Tang et al., 2013a, 2013b). Enhanced nitric oxide
synthase (NOS) 2 activity in monocytes and macro-
phages increases �NO production and elicits a cytostatic
or cytotoxic response against bacteria, viruses and other
intruders, but also increases inflammation (MacMicking
et al., 1997). The bronchoalveolar lavage fluid of asth-
matics consists of high macrophage levels as well as
significantly increases GSNOR activity (Que et al., 2009).
Inhibiting GSNOR in these patients increases total
RSNOs and restores inflammatory markers to near base-
line levels while limiting ova-induced NFjB activation
(Blonder et al., 2014). Ultimately, the balance between
GSNOR activation and inhibition is critical in maintain-
ing balance in the immune system.

Figure 5. The dysregulation of GSNOR can initiate or exacerbate many disease states. This is due in part to GSNOR’s indirect func-
tion as a S-nitrosothiol modulator, as well as its ability to mediate canonical NO cell signaling through GSNO metabolism. GSNOR
inhibitors are being actively investigated to treat certain disorders in which increased NO availability would be beneficial (see
colour version of this figure at www.tandfonline.com/ibmg).
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Brain development and function

GSNOR regulation in the brain affects a broad swath of
cellular functions ranging from neural development and
maturation to other neurodegenerative diseases more
typically associated with adult and geriatric populations.
These disease states are often the result of aberrant
protein S-nitrosation caused by the dysregulation of
GSNOR. For instance, in developing and adult mouse
brains the overexpression of GSNOR results in
decreased neuronal differentiation in part due to
de-S-nitrosation of histone deacetylase 2 (HDAC2) (Wu
et al., 2014). Conversely, ADH5–/– mice exhibit neuro-
muscular atrophy as a result of a decrease in muscle
mass, while also presenting with neuropathic behavior
(Montagna et al., 2014). In Drosophila, GSNOR overex-
pression results in visual pattern memory defects which
can be rescued by co-expression of cyclic-GMP depend-
ent protein kinase G (PKG) (Hou et al., 2011). This occurs
independently from neuronal development and implies
an adjacent regulatory role for GSNOR in the PKG phos-
phorylation pathway. Neuronal homeostasis is also
affected by GSNOR. In a Parkinson’s disease model
using neuronal (SH-SY5Y) cells, a decrease in GSNOR
availability results in activation of nuclear factor Nrf2
((erythroid-derived 2)-like 2), which regulates the
expression of antioxidant proteins (Rizza et al., 2015).
Interestingly, GSNOR may also affect the phosphory-
lated state of platelet-derived growth factor receptor-b
(Palmer et al., 2015) in the brainstems of mice during
hypoxic exposure. When these data are considered as a
whole, it is apparent that deviating GSNOR activity and
expression from baseline can have drastic consequen-
ces in both the developing and mature brain.

Cancer

The link between GSNOR dysregulation and cancer is
not well understood. GSNOR deficiency has been
known to affect the rate of genomic mutations in
mice by increasing the frequency of A:T to T:A trans-
position (Leung et al., 2013). This may be the result
of a GSNOR-mediated reduction in activity of the
DNA repair protein O6-alkylguanine-DNA alkyl trans-
ferase which can lead to an increase in the rate of
human hepatocellular carcinoma (HCC) (Tang et al.,
2012; Wei et al., 2010, 2011). Pharmacologic inhibition
of inducible NOS (iNOS) when GSNOR is down-regu-
lated shows strong potential as a therapeutic for
those patients with HCC (Tang et al., 2013a). As with
HCC, some types of breast cancer are linked to a
decrease in GSNOR expression. Specifically, high levels
of human epidermal growth factor receptor 2 (HER2)

expression in breast tumors is associated with low
GSNOR expression and an increase in apoptosis-
related protein S-nitrosation (Ca~nas et al., 2016). This
study also determined that an increase in GSNOR
expression in HER2 tumors correlates with higher
patient survival and begs the question as to whether
or not NOS inhibition would also serve this popula-
tion well. These examples are of course complicated
by the fact that �NO is a pleiotropic regulator of
gene function and the modulation of GSNO by
GSNOR can have both cytostatic and cytotoxic effects
on tumor survival (Xu et al., 2002). To this point,
GSNOR is effective at removing formaldehyde, a
known carcinogen, from the cell; however, ADH5
polymorphisms do not significantly affect an individu-
al’s capacity to protect against DNA damage when
exposed to formaldehyde (Xie et al., 2010).
Furthermore, ADH5�/� mice are known to generate
DNA damage when formaldehyde forms and adduct
with guanine to create N2-hydroxymethyl-dG which
can result dysfunction of hepatocytes and nephrons
(Pontel et al., 2015).

Asthma and single nucleotide polymorphisms

SNPs can alter the transcriptional output of a gene as
well as the structure/function of proteins they encode.
Several SNPs in the promoter and 30 UTR of the ADH5
gene can result in the aberrant expression of GSNOR
(Choudhry et al., 2010). Of particular interest is the
observation that airway hyperesponsivity in wild-type
mice correlates with increased expression of GSNOR
and decreased RSNO production, while ADH5–/– mice
are protected from airway hyperresponsiveness and
maintain higher total RSNO levels (Que et al., 2005). In
humans, GSNOR upregulation can lead to changes in
airway smooth muscle tone in asthmatics (Henderson &
Gaston, 2005; Wu et al., 2007). A study involving
Mexican children with asthma who possess SNPs in the
promoter region of ADH5 at suspected NF-jB binding
sites (rs2602899 and rs2851301), were found to exhibit
a decreased relative risk of asthma due to suppressed
GSNOR production (Wu et al., 2007). Interestingly, alter-
native SNPs (rs1154404 and rs28730619) were associ-
ated with an increase in childhood asthma risk,
although the mechanism behind this correlation has
not been determined (Wu et al., 2007). Another study in
African American children found that SNPs in ADH5 and
the b2 adrenergic receptor gene are associated with
acute response to asthma-specific therapy (Moore et al.,
2009).

Looking beyond GSNO-mediated relaxation of airway
smooth muscle we may also consider GSNOR’s ability to
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metabolize formaldehyde, a chemical known to induce
bronchoconstriction after long term exposure at low
concentrations (Leikauf, 1992). It has been suggested
that the presence of formaldehyde in airway smooth
muscle may stoichiometrically favor bound NADH/
GSNOR, thereby increasing GSNOR metabolism of
GSNO, and by extension, promote smooth muscle con-
traction (Thompson & Grafstr€om, 2007).

Regardless of the mechanism driving GSNOR-medi-
ated consumption of GSNO in airway smooth muscle, it
is easy to see why the inhibition of GSNOR has been of
particular interest to researchers for its therapeutic
potential as a smooth muscle relaxant.

Myoendothelial junctions

GSNOR plays an interesting role at myoendothelial junc-
tions (MEJ) where it co-localizes with the hemichannel
Connexin-43 (Cx43). Cx43 hemichannels form gap junc-
tions between cells by linking to hemichannels in
opposing membranes to couple endothelial and vascu-
lar smooth muscle cells and when Cx43 is S-nitrosated,
this pore allows for the free movement of inositol tri-
sphosphate from vascular smooth muscle to endothelial
cells. Due to the co-localization of GSNOR and Cx43 at
the MEJ, basal �NO availability at this site is blunted,
which in turn increases the likelihood that Cx43 will not
be S-nitrosated (Straub et al., 2011). This decreases
channel permeability until Ca2þ levels increase as a
result of smooth muscle cell stimulation, which in turn
activates eNOS and increases the probability of Cx43
S-nitrosation.

Myometrium

�NO is an important mediator of relaxation in the
myometrium. It has been well established that �NO
relaxes vascular and gastrointestinal smooth muscle
by activating soluble guanylyl cyclase (sGC), which in
turn converts guanosine triphosphate to cyclic guano-
sine monophosphate (cGMP), activating PKG, which in
turn dephosphorylates the regulatory light chain
(MYL9) of myosin via the amplified phosphatase
activity of MYPT1 (pS695) (Grassie et al., 2011;
Nakamura et al., 2007; Puetz et al., 2009; Roux et al.,
2012). This is not the dominant �NO-mediated relax-
ation pathway in uterine smooth muscle, however,
�NO can relax the myometrium even when sGC has
been inhibited (Buxton et al., 2010). The pathway
through which �NO relaxes the myometrium inde-
pendent of cGMP is unknown, but it is likely that the
S-nitrosation of contractile proteins plays a role. It
has been determined that the state of labor (full

term versus preterm) can vastly alter the S-nitrosated
protein landscape in uterine smooth muscle after
exposure to GSNO (Ulrich et al., 2012). It is also well
known that S-nitrosation can vary significantly based
upon the cytoplasmic availability GSNOR (Broniowska
& Hogg, 2012; Hess et al., 2005; Thomas &
Jourd’heuil, 2012). Regardless of the pathway through
which �NO acts to relax uterine smooth muscle, it
does beg the question as to whether or not inhibit-
ing GSNOR, and thereby increasing intracellular avail-
ability of GSNO, may serve as an effective tocolytic
strategy by promoting uterine quiescence through
�NO-mediated relaxation pathways. This notion is sup-
ported by data showing an increased expression of
GSNOR in patients delivering spontaneously preterm.

Therapeutic inhibition of GSNOR

GSNOR is an attractive therapeutic target. GSNOR inhib-
ition increases GSNO availability in the cell and in turn
facilitates �NO-mediated signaling pathways. Dozens of
small molecules have been identified that can inhibit
GSNOR to varying degrees (Green et al., 2012; Jiang
et al., 2016; Sanghani et al., 2009; Sun et al., 2011a,
2011b, 2012). Two of these, N6022 (3-(5-(4-(1H-imidazol-
1-yl) phenyl)-1-(4-carbamoyl-2-methylphenyl)-1H-pyrrol-
2-yl) propionic acid) and N91115 from Nivalis
Pharmaceuticals show promise as potentially safe and
effective GSNOR inhibitors that have undergone clinical
trial for both the treatment of mild asthma (clinical-
trials.gov – NCT01316315), and cystic fibrosis in individ-
uals who are heterozygous for the cystic fibrosis
transmembrane conductance regulator (CFTR) gating
mutation CFTRDF508þ (clinicaltrials.gov – N6022:
NCT01746784; N91115: NCT02724527). Endogenous
GSNO levels are low in the airways of cystic fibrosis
patients (Grasemann et al., 1999) and GSNOR inhibition
is an appealing alternative to the direct administration
of GSNO (Snyder et al., 2002; Zaman et al., 2001, 2013).
N6022 is well tolerated with minimal side effects, even
at high concentrations, in both animals (Blonder et al.,
2014; Colagiovanni et al., 2012) and humans (clinical-
trials.gov – NCT01147406, NCT01746784). Another
GSNOR inhibitor, SPL-334 (4-{[2-[(2-cyanobenzyl) thio]-4-
oxothieno[3,2-d]pyrimidin-3(4H)-yl]methyl}benzoic acid)
from SAJE Pharmaceuticals (Baltimore, MD), is being
tested as a therapeutic to treat allergic asthma and
interstitial lung disease (ILD). Using an allergic asthma
mouse model, intranasally administered SPL-334
decreased CD4þ Th2 cytokines, eosinophils, and miti-
gated the lung inflammatory response (Ferrini et al.,
2013). Likewise, in a mouse model of ILD, SPL-334 func-
tions as both a prophylactic agent and a therapeutic to
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attenuate profibrotic cytokines and collagen accumula-
tion in the lungs (Luzina et al., 2015). Unlike N6022 and
N91115, SPL-334 is not in human clinical trials.

FDA-approved drugs are also being tested as poten-
tial GSNOR inhibitors. Nebivolol, a b1-adrenergic receptor
antagonist used for the management of hypertension,
has been shown to increase total RSNO levels in animal
and cell models (Jiang et al., 2016). Our own investiga-
tion of GSNOR fails to confirm Nebivolol as an inhibitor
of GSNOR in an enzyme activity assay. Since there are no
FDA-approved GSNOR inhibitors, the repurposing of
existing therapeutic agents that inhibit GSNOR and/or
modulate GSNO and RSNOs is of interest.

When considering GSNOR inhibitors as therapeutic
agents, it should be taken into consideration that
enzymes other than GSNOR modulate �NO availability in
the cell. �NO is critical to the normal function of most
cell types, and as is often the case, there are multiple
concurrent and complementary mechanisms to regulate
�NO and RSNOs (Benhar et al., 2009; Liu et al., 2001).
Two of the most well-known are thioredoxin-1
(Sengupta & Holmgren, 2012a, 2012b) and carbonyl
reductase (Bateman et al., 2008). NOS, the predominate
source of �NO in the body, can also be dysregulated in
certain disease states, as can its substrate, L-arginine
(Ckless et al., 2007). For instance, after stimulation of
the cavernous nerve in ADH5–/– mice, eNOS phosphoryl-
ation did not increase as predicted (Musicki et al., 2016).
Modulating GSNOR activity may insufficiently control, or
even aggravate some conditions if these alternate �NO-
regulators are the source of the disorder. Unfortunately,
direct application of endogenous �NO-donors, such as
GSNO, Cys-NO or SNO-albumin, as well as some
exogenous donors, are of limited clinical value because
they either degrade rapidly, cause intolerable side
effects, or lead to a toxic systemic build up nitrates (Al-
Sa’doni, 2005).

The therapeutic inhibition of GSNOR to treat �NO-
mediated disorders should be weighed carefully against
potential contraindications. For example, the inhibition
of GSNOR may increase a patient’s susceptibility to bac-
terial or viral infection. The inhibition of GSNOR will also
increase total RSNO levels and this can have adverse
effects in the body, especially if the drug is adminis-
tered systemically and not targeted to a specific tissue
type through means such as liposomal delivery. GSNOR
regulation varies widely in different cancer types (Ca~nas
et al., 2016; Tang et al., 2013a). Inhibiting GSNOR may
lead to a further increase in GSNO at the tumor site
which can favor angiogenesis (Prudente et al., 2017).
Conversely, with disorders such as asthma and hyper-
tension, GSNOR inhibition results in the desired relax-
ation of the smooth muscle.

Conclusions

�NO, and by extension �NO-donors, have been investi-
gated intensely for over a century as therapeutics
(Schmidt & Walter, 1994). �NO modulation not only
affects traditional pathways connected to this highly
reactive molecule, but it also drastically alters S-nitrosa-
tion levels in the cell. GSNOR is unique among the ADH
family of enzymes in that it targets GSNO and varies the
body’s response to endogenously generated �NO car-
ried as GSNO. ADH5–/– animal and cell models have pro-
vided a unique window into the importance of GSNOR
in nearly every tissue type. The up/down regulation of
GSNOR in humans has also provided invaluable data to
the medical and research communities concerning its
role in disease states. There are currently no FDA-
approved modulators of GSNOR; however, several drugs
are being investigated, and some are in clinical trial.
Indeed, our understanding of the dysregulation of
GSNOR and its effect on protein S-nitrosation and other
glutathione/�NO-mediated events is in its infancy.
Further investigations into the role of GSNOR in health
and disease are needed to reveal the most effective
therapeutic options.
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