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We describe a method for sensing short range forces using matter-wave interference in dielectric
nanospheres. When compared with atom interferometers, the larger mass of the nanosphere results in
reduced wave-packet expansion, enabling investigations of forces nearer to surfaces in a free-fall
interferometer. By laser cooling a nanosphere to the ground state of an optical potential and releasing
it by turning off the optical trap, acceleration sensing at the 10−8 m=s2 level is possible. The approach can
yield improved sensitivity to Yukawa-type deviations from Newtonian gravity at the 5 μm length scale by a
factor of 104 over current limits.
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I. INTRODUCTION

Light-pulse atom interferometers have been demonstrated
as a powerful tool for precision sensing, enabling gravimetry
at the 10−9g level [1–3], gravity gradiometry at the
10−9 s−2=

ffiffiffiffiffiffi
Hz

p
level [4], and rotation sensing at the

10−8 rad=s=
ffiffiffiffiffiffi
Hz

p
level [5]. Atom interferometers can also

be used in principle for measuring the gravitational attraction
of nearby masses [6] and for tests of deviations from
Newton’s inverse square law of gravitation [7–13]. In
addition atom interferometers can be used as a surface probe
for electromagnetic forces [14] such as Casimir–Polder
forces [15–19]. A challenge for applying light-pulse atom
interferometers to such measurements in proximity to
surfaces results from the finite wave-packet expansion of
the atomic cloud. By replacing the atom with a massive
dielectric object which is laser cooled to its motional ground
state in an optical trap, the velocity spread dramatically
decreases as ðma=MÞ1=2, wherema andM are themass of the
atom and sphere, respectively, enabling measurement times
of order 1 s with a wave-packet spread of order 1 μm.
In this paper we describe two protocols which utilize

macroscopicmatter-wave phenomena in dielectric spheres to
perform sensitive acceleration measurements near material
surfaces. First we describe a near-field Talbot interferometer
[20–22] which diffracts a sphere from a pure phase grating
made of light to generate a density distribution with a fringe
pattern at twice the grating period. Such a setup can be used
as an accelerometer to test for corrections to Newtonian
gravity at short range. These corrections are generally
parametrized according to a Yukawa-type potential

VðrÞ ¼ −
GNm1m2

r
½1þ αe−r=λ�; ð1Þ

wherem1 andm2 are twomasses interacting at distance r,α is
the strength of the potential relative to gravity, and λ is the
range of the interaction. For twoobjects ofmass densityρ and
linear dimension λ with separation r ≈ λ, a Yukawa force
scales roughly as FY ∼GNρ

2αλ4, decreasing rapidly with
smaller λ. We estimate sufficient sensitivity to measure α ¼
400 at the λ ¼ 5 μm length scale in such a setup. The current
experimental limits at 5 μm are jαj > 3 × 106 [23]. Thus, an
improvement by several orders of magnitude is possible
in searches for beyond-the-standard-model physics which
can naturally produce large deviations jαj ≫ 1 at μm-scale
distances, including supersymmetry [11], string theory
[24,25], and vector or scalar particles residing in large extra
dimensions [26,27].
We then compare this to a ballistic experiment which is

not based on interference, in which a larger nanosphere is
initially cooled to the ground state of an optical potential.
After cooling, the optical trap is ramped down quickly
allowing the sphere to undergo free wave-packet expansion
at a rate determined by the ground state momentum spread.
For 200 nm diameter spheres, such an approach has a
sensitivity of 1 μGal ¼ 10−8 m=s2, which is comparable to
falling corner cube gravimeters [28]. We compare the two
techniques as a function of the temperature and mass of the
nanosphere and conclude with a discussion of the system-
atic error and noise sources for each measurement protocol.

II. PROTOCOL

A diagram of the interferometry protocol is given in
Fig. 1, and a list of experimental parameters is given in
Table I. We consider a silicon sphere of radius R ¼ 6.5 nm
(and mass M ≈ 1.5 × 106 amu) which is optically trapped
and cooled such that its center-of-mass wave function ψCM
is near the harmonic oscillator ground state with the
oscillator frequency ω determined by the trap. Silicon is
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chosen for its combination of low-optical absorption and
low blackbody emissivity [22]. The sphere is then released
from the trap and allowed to fall freely in the z-direction
(with the x-direction being transverse to the fall) next to a
wall behind which a mass can be placed. Immediately after
it is released, the wave function has transverse spread

σx ¼
ffiffiffiffiffiffiffi
ℏ

2Mω

q
≈ 6 nm. After one Talbot time TT ¼ Md2=h,

the wave packet has expanded, and the sphere is diffracted
by a pure phase grating of period d ¼ 0.25 μm. The size of
the sphere is chosen such that TT ¼ 0.25 s.
The sphere is then allowed to propagate a timeTT after the

grating to a position-sensitive detector, which can be an
optical cavity or split photodetector. For cavity assisted
readout of the final displacement of the sphere, the relevant
optomechanical coupling which describes the change of the
cavity resonance frequency ωc due to the motion of the

sphere is given by ∂ωc=∂z ¼ 2kLgs. Here the coupling
strength gs ¼ 3V

4Vc

ϵ−1
ϵþ2

ωc, where ϵ is the dielectric constant
of the sphere of volume V and Vc and κ ¼ πc=LF are the
cavitymodevolume and linewidth, respectively, andF is the
cavity finesse. For an incident laser with power Pc and
frequency ωc, photon shot noise limits the minimum detect-
able phase shift to δϕ ≈ 1=ð2 ffiffi

I
p Þwhere I ≡ Pc=ðℏωcÞ [29].

The corresponding photon shot-noise limited displacement

sensitivity is
ffiffiffiffiffiffiffiffiffiffiffiffi
SzðωÞ

p ¼ κ
4kLgs

1ffiffi
I

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ω2

κ2

q
[30], along the

cavity axis for an impedance matched cavity. For a 532 nm
readout laser of 10mWwith awaist 10 μmandF ¼ 100, the
displacement sensitivity is 9 pm=

ffiffiffiffiffiffi
Hz

p
. A split photodetector

was recently used to measure the position of a nanosphere
with 1.2 pm=

ffiffiffiffiffiffi
Hz

p
resolution [31]. We estimate that a

position resolution of ∼30 pm=
ffiffiffiffiffiffi
Hz

p
is adequate for the

proposed measurements.
After recording the position of the sphere after several

experiments, an interference pattern builds up one meas-
urement at a time, with fringes spatially separated by 2d.
An acceleration a in the transverse direction due to the
presence of the wall results in a shift in the fringe pattern by
an amount δxϕ ¼ −aT2

T . A measurement of the influence
of the gravitational attraction of the mass can then be
obtained from the relative phase between the fringe patterns
with and without the presence of the mass behind the wall.
The effect of the grating on the wave function can be

understood using the phase-space formalism of Ref. [32]. If
the sphere is cooled to the ground state of c.m. motion, its

initial Wigner function is w0ðx; pÞ ¼ A · exp ½− x2

σ2x
− p2

σ2p
�,

where A is fixed by normalization. After falling for a time
t with transverse acceleration a, the Wigner distribution is
sheared accordingly as w1ðx; p; tÞ ¼ w0ðx − p

M tþ 1
2
at2;

p −MatÞ. At the grating, the wave function undergoes a
transformation of the form jψCMi ↦ UjψCMi [33] (see also
the Appendix). Since the de Broglie wavelength of the
sphere is small compared with the interaction range of
the optical potential, we can employ the eikonal approxi-
mationUðxÞ¼expðiϕðxÞÞ, where ϕðxÞ¼−1

ℏ

R∞
−∞Vðx;tÞdt¼

αωIτ
ℏcϵ0

sin2ðπx=dÞ≡ϕ0sin2ðπx=dÞ. Here αω ¼ 4πR3ϵ0ðϵ−1ϵþ2
Þ is

the polarizability of the sphere, I is the peak laser intensity,
and τ ¼ 1 μs is the pulse duration.
After propagating to the grating over a time t0 and falling

for an additional time t1 from the grating to the detector, the
final fringe pattern in the probability density jψCMðxÞj2 can
be obtained by integrating the final Wigner distribution
over momentum. A detailed description of the Wigner
function evolution is provided in the Appendix. We find an
optimum fringe contrast for ϕ0 ≈ 1.5. The final fringe
pattern develops a phase Φða; t0; t1Þ which is proportional
to the transverse acceleration a to lowest order:
Φða; t0; t1Þ ≈ ðiπt0t1d Þa. For t0 ¼ t1 ¼ TT and R ¼ 6.5 nm,
the acceleration required for a π phase shift in the fringe

FIG. 1 (color online). Proposed experimental setup. A nano-
sphere is cooled in an optical trap and allowed to fall in proximity to
awallwhich acts as a sourcemass.After falling for a timeTT , a light
pulse grating is applied. After another time TT , the position of the
sphere is recorded. Such measurements combine to reveal an
interference pattern, where the node positions depend on the
transverse ðxÞ acceleration experienced by the bead throughout
its fall. The centroid of the distribution also shifts toward thewall by
an amount δx as a result of the acceleration. The wall consists of
vertical sections of varying density to modulate the x-omponent of
the gravitational acceleration on the sphere due to the wall,
depending on the initial y-position of the trap. By comparing
the results of experiments inwhich the sphere is initially positioned
to fall next to a dense (gold) vertical section vs a less dense (silicon)
vertical section, searches for Yukawa-type corrections to gravity
can be performed at the 5 μm length scale.

TABLE I. Experimental parameters for the interference proto-
col corresponding to a total fall time of 2TT ¼ 0.5 s.

Parameter Symbol Value

Sphere radius R 6.5 nm
Sphere density ρ 2300 kg=m3

Dielectric constant ϵ 18
Trap frequency ω 2π × 100 Hz
Grating period d 0.25 μm
Grating peak intensity I 16 kW=m2
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pattern is approximately aπ¼d=T2
T¼4μm=s2¼4×10−7g.

Thus, the sensitivity of the experiment is determined by the
grating period and time of the fall. If the sphere has an
initial transverse momentum kick, the phase shift Φ
remains the same, which means that, while this experiment
is highly sensitive to transverse acceleration, it is insensi-
tive to any systematic initial momentum kicks. Plots of the
probability densities we obtain for parameters given in
Table I are shown in Fig. 2 for a ¼ 0 and a ¼ aπ .
The above assumes that the sphere can be cooled to its

ground state of the c.m. motion. However, it is possible to
obtain a fringe pattern at temperatures above that of the
ground state, where the c.m. wave function becomes a
superposition of harmonic oscillator eigenstates. The effect
of the temperature on the Wigner distribution can be
approximated as a widening of the position and momentum
spreads of the pure ground state distribution according to
kBT ≈ ℏωn̄ðTÞ ≈Mω2σ2xðTÞ, where n̄ðTÞ is the average
principal quantum number of the c.m. state at temperature
T. Therefore, the position (and momentum) spread grows
as

ffiffiffiffiffiffiffiffiffiffi
n̄ðTÞp

at large T.

A. Short range force measurements

The Casimir–Polder force between a small dielectric
sphere andmetal plane can bewritten as [16]Fcp ¼ − 3ℏcαω

8π2ϵ0
1
z5
.

This force results in an acceleration of 4 × 10−7g on the
sphere and displaces the fringe pattern by approximately π for
a surface separation of 10 μmandR ¼ 6.5 nm,TT ¼ 0.25 s.
The phase shift is ≈3π for R ¼ 5 nm, TT ¼ 0.1 s, and a
surface separation of 6 μm. Thus, by averaging over 104

shots, the Casimir–Polder acceleration can be measured at or
below the percent level. Such measurements may be relevant
for the study of the quantum states of nanospheres near
surfaces [17].
For a short-distance gravity measurement, we consider

the differential shift in the fringe pattern between the case
where the sphere falls next to a gold section of the wall and
the case where the sphere falls next to a silicon section of
the wall. Here the shift from the Casimir acceleration is
common to both cases as a 200 nm thick uniform gold
coating covers the surface of the wall. We take the width of
the gold and silicon sections to be 40 μm. We consider two
cases, with R ¼ 6.5 nm, TT ¼ 0.25 s, and a 10 μm sepa-
ration of the sphere from the wall, and with R ¼ 5 nm,
TT ¼ 0.1 s, and 6 μm sphere-wall separation. The pro-
jected sensitivity is shown in Fig. 3 for a phase resolution of
π=300, corresponding to averaging over 105 shots of the
experiment.

III. COMPARISON OF INTERFERENCE AND
BALLISTIC MEASUREMENTS

It is interesting to compare the position sensitivity for a
ballistic approach where the position of the sphere is
measured after falling from the trap vs the Talbot interfer-
ometer sensitivity. Assuming the particle is cooled to the
ground state in the harmonic trap, the velocity spread due to

FIG. 2 (color online). (left) Density plot of jΨðxÞj2 following
the grating for zero acceleration for releasing the trap at ω0 ¼
2π × 100 Hz from its ground state. (right) As in the left panel,
with aπ ¼ 4 × 10−7g constant acceleration. (lower) Line outs
taken at t1 ¼ TT after the grating for a ¼ 0 (solid) and a ¼ aπ
(dashed).

FIG. 3 (color online). Current experimental bounds [23,34–40]
and theoretical predictions [7] for a non-Newtonian potential of
the form VðrÞ ¼ − GNm1m2

r ½1þ α expð− r
λÞ� between two masses

m1 and m2 separated by r. Curves A and B are the predicted
sensitivities for wall separation 6 and 10 μm, with corresponding
Talbot times of 0.1 and 0.25 s, respectively.
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the zero point motion σv ¼
ffiffiffiffiffi
ℏω
2M

q
will cause a spread in the

measured position of the bead after it falls during the
experiment. The position spread after a measurement at
time t later is thus given by σvt. After N repeated experi-
ments, the uncertainty in the mean of the distribution goes
as σvt=

ffiffiffiffi
N

p
. This uncertainty is added to the signal δx ¼

1
2
at2 for an acceleration a toward the wall. In the Talbot

interferometer, the fringe pattern shifts by a comparable
amount due to the acceleration from the wall. However, the
momentum uncertainty in the ground state harmonic
oscillator trap does not influence the location of particular
interference fringes—only the overall envelope is influ-
enced by the initial momentum spread. The uncertainty in
the fringe position of the fringe maxima when taking N
measurements is ∼d=

ffiffiffiffi
N

p
. Since the period is known, the

fringe pattern can be fit using a function with a known
period and variable phase. The improvement over the
ballistic measurement is given by β ¼ χσvt=d, where χ
is the fringe contrast of the interferometer. Plots of β as a
function of mass are given for various temperatures in
Fig. 4 for a fixed fall time of t ¼ 2TT ¼ 0.5 s.
At temperatures near the ground state temperature, the

increasing mass results in the increasing localization and
ultimately a wave packet which is too narrow to interact
with the grating, at which point the interference signal
vanishes. For higher temperatures, the position and velocity
spreads become large enough to let higher masses interact
with the grating, but velocity spreads which are large
compared to the grating velocity vg ¼ ℏ=dM result in
reduced contrast. Increases in the mass actually improve the
sensitivity of the interference setup until one strays too far
from the Talbot condition [i.e. TTðMÞ ≫ t]. At this point
the contrast of the fringe pattern falls until there is no more
visibility. Thus, at higher temperatures, β increases for
some mass interval, peaks, and subsequently falls to zero.

If the mass is increased without also extending the time
of flight to maintain the Talbot time condition, the ballistic
experiment eventually exceeds the sensitivity of the inter-
ference experiment, with the caveat that the location of the
sphere at the end of the experiment is sensitive to
systematic errors in the initial velocity distribution upon
release from the optical trap. For a 100 nm radius sphere
initially cooled to the ground state and allowed to expand
and fall ballistically, the sensitivity curves are approxi-
mately 10 times better than those shown in Fig. 3, however,
with this additional source of error.

IV. SYSTEMATICS

While the effect of decoherence due to gas collisions is
negligible for our setup, Rayleigh scattering of photons
from the laser grating can result in decoherence in the
interference experiment. The timescale for this, however,
can be much larger than τ ¼ 1 μs. Since the spread of the
c.m. wave function at the grating is of order ∼d, the
decoherence time is roughly the time for one scattering
event, approximately 2 ms. More significantly, blackbody
emission from the sphere as it is falling can result in
decoherence. However, the low emissivity of silicon allows
for measurements on the time scales we require [22].
A deviation in vertical alignment will produce a constant

offset in the measured acceleration. If each shot has a
varying misalignment, this becomes an additional noise
source. Such noise is negligible for tilt fluctuations of the
apparatus of ∼0.5 μrad=

ffiffiffiffiffiffi
Hz

p
. While the fringe locations

are insensitive to any systematic velocity kick given to the
falling sphere as it is released from the optical trap, the
setup is sensitive to vibrational noise in the mirrors during
the application of the grating pulse and during the detection
of the sphere. Maximal sensitivity requires vibrational
stability of ∼10−3 μm=

ffiffiffiffiffiffi
Hz

p
at frequencies around 1 Hz.

The charge on the dielectric sphere will produce a
significant background in the presence of stray electric
fields. However, recent experimental work has shown that
the charge on optically trapped spheres can be made zero
and remain zero for long measurement periods [41,42].
The polycrystalline structure of the gold coating on the

wall results in local electric field variations due to the patch
effect [43,44]. These patch potentials can drift with time
and vary over the spatial extent of the wall. We can estimate
the acceleration applied to the sphere as a result of typical
patch potentials ranging from ∼50 mV variations over
length scales of a few μm to be of order 10−7g. Such
accelerations will contribute to the fringe shift of the
interferometer and would need to be characterized exper-
imentally. However, the initial trap can be translated
laterally, so that the experiment can first be performed
with the sphere closest to a gold section of the wall, then
closest to the adjacent silicon section of the wall, then
closest to the next gold section, etc., as shown in Fig. 1.
Thus, by scanning the initial y-position of the sphere along

β

FIG. 4 (color online). The improvement factor β for an
interference experiment relative to a ballistic wave-packet ex-
pansion experiment as a function of mass at various temperatures.
The fall time is fixed at t ¼ 0.5 s, corresponding to 2TT for a
sphere of mass M ¼ M0, where M0 ≡ 4

3
ρπR3 with R ¼ 6.5 nm.
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the wall, one expects a spatially periodic signal for the
acceleration due to the mass. The variation of the accel-
eration due to the patch effect is not expected to exhibit the
same periodicity as the underlying spatial density pattern in
the wall. This can be used in principle to distinguish the
effects. For example, assuming random patch variations on
the μm scale, the spatial Fourier component of the patch
effect at the period of the mass density modulation should
be suppressed as 1=

ffiffiffiffiffiffi
Ny

p
for Ny initial y-positions. In this

case we roughly expect sensitivity at the 10−8g level for
Ny ¼ 100. The required value of Ny would ultimately need
to be determined from the experimentally measured patch
variations.
The Casimir–Polder force can also produce a back-

ground systematic effect if the screening provided by the
uniform gold coating on the wall is not adequate due to its
finite thickness and conductivity. This can lead to a
differential acceleration for the cases where the sphere is
close to a gold section vs silicon section of the wall, despite
the uniform metal coating on the surface. Using the method
developed in Ref. [45] to determine the finite conductivity
and thickness effects, we estimate that for a uniform gold
thickness of 200 nm the screening is adequate for mea-
surements at the projected level of sensitivity.

V. DISCUSSION

The matter-wave accelerometer we have presented can
be advantageous when compared with light-pulse atom
interferometry for use in surface-force measurements
where localization of the sensor is required. This technique
could lead to advances in tests of inverse-square law
violations of gravity at μm distances and Casimir force
measurements between nanospheres and surfaces.
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APPENDIX: EFFECT OF THE GRATING IN THE
WIGNER FUNCTION FORMALISM

The initial state Wigner distribution associated with the
sphere’s c.m. mode in the x− direction is given as

w0ðx; pÞ ¼
1

2πℏ

Z
∞

−∞
dseisp=ℏhx − s=2jρ̂jxþ s=2i; ðA1Þ

where ρ̂ is the density matrix for the c.m. mode. If the sphere
is cooled to the ground state of center-of-mass motion, its
initialwave functionwill be that of a pure quantumharmonic
oscillator ground state of position spread σx and momentum

spread σp ¼ ℏ=σx, so w0ðx; pÞ ¼ A · exp ½− x2

σ2x
− p2

σ2p
�, where

A is fixed by normalization. After falling for a time t0, the
Wigner distribution is sheared accordingly asw1ðx; p; t0Þ ¼
w0ðx − p

M t0 þ 1
2
at20; p −Mat0Þ, where w0 is the Wigner

distribution at time t ¼ 0 and a is the acceleration in the
x-direction [32]. At the grating, thewave function undergoes
a transformation of the form jψCMi ↦ UjψCMi, so the
density matrix transforms as ρ ↦ UρU†. Because the de
Broglie wavelength of the sphere is small compared to the
range of the grating potential, we may employ the eikonal
approximation, in which UðxÞ ¼ expðiϕðxÞÞ and ϕðxÞ ¼
− 1

ℏ

R
∞
−∞ Vðx; tÞdt ¼ αωIτ

ℏcϵ0
sin2ðπx=dÞ≡ ϕ0sin2ðπx=dÞ is an

integral over a straight line in the z-direction, where αω ¼
4πR3ϵ0ðϵ−1ϵþ2

Þ is the polarizability of the sphere, I is the peak
laser intensity, and τ is the pulse duration. After propagating
to the grating over a time t0, the shearedWigner distribution
w1 transforms at the grating into a new Wigner fucntion w2

via the integration kernel [33]

w2ðx; p; t0Þ ¼
Z

∞

−∞
dp0dx0Kðx; p; x0; p0Þw1ðx0; p0; t0Þ;

ðA2Þ

where

Kðx; p; x0; p0Þ ¼
1

2πℏ

Z
dsds0eiðp0s0þpsÞ=ℏhx − s=2jUjx0

þ s0=2ihxþ s=2jU�jx0 − s0=2i ðA3Þ

¼ 1

2πℏ
δðx − x0Þ

X
j;m∈Z

bjb�j−me
2πimx=d

× δ

�
p − p0 − ðj −m=2Þ 2πℏ

d

�
: ðA4Þ

The integration kernel K is obtained by transforming the
wave function by the phase expðiϕðxÞÞ and plugging the
transformed wave function into Eq. (A1) to obtain Eq. (A3).
After Fourier expanding we obtain Eq. (A4). The bm ¼
ð−iÞmeiϕ0=2Jmðϕ0=2Þ are called Talbot–Lau coefficients
[46]. After propagating for an additional time t1 to the
detector, the final fringe pattern can be obtained by integrat-
ing the sheared distribution w2 over momentum:

W3ðxÞ ¼ jψCMðxÞj2

¼
Z

∞

−∞
dpw2

�
x −

p
M

t1 þ
1

2
at21; p −Mat1

�
:

The final fringe pattern is a sumofwave packetsweighted by
the Bessel functions bjb�j−m, each with spatial period
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D ≈
d
m

�
1 −

t1
t0 þ t1

�
−1
: ðA5Þ

Because the bm’s decrease quickly as jmj grows, to very
good approximation, the period of the fringe pattern is that
of the m ¼ 1 term. So if the sphere falls for the same
amount of time before and after interacting with the
grating, t0 ¼ t1 and D ≈ 2d. This period is different from
the period d which one normally associates with the
Talbot effect, for example in the diffraction of beams of

molecules as in Ref. [46]. However, this result requires a
position spread of the matter wave at the grating which is
very large compared to the grating spacing. For the
experimental parameters given in Table 1, by the time
the sphere reaches the grating, its wave function has a
position spread only of order the grating spacing. In the
limit where the sphere falls for a very long time before
reaching the grating, i.e. t0 ≫ t1, its position spread would
become large, and we would obtain from Eq. (A5) a
period of D ≈ d, as expected.
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