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Abstract

The Internet has become essential to our daily life, especially with a multi-

tude of IoT devices. However, the end hosts connected to the Internet are prone

to be compromised. An essential measure for protecting attacks on end hosts

is through the detection of system characteristics and isolation of vulnerable

devices by restriction of communications to the device. Network traffic finger-

printing provides the ability to remotely and automatically gather information

about the hosts within a network.

Fingerprinting can help perform network management and the detection and

isolation of vulnerable hosts. It is essential to automate this process to perform

fingerprinting more efficiently. It also provides the ability to adapt to changes in

the behavior of host devices and software.

Network practitioners rely on some classifier tools for fingerprinting, but they

rely on an expert to select features/attributes and generate machine learning

models. Hence, existing approaches need to be manually updated for each new

Operating System (OS) or IoT device introduced to the network.

This dissertation addresses automated methods and tools for performing fin-

gerprinting of OSes and IoT devices. It also presents SILEA, a new inductive

learning algorithm along with improvements to its numerical feature quantiza-

tion to further improve classification accuracy.
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SILEA is a covering-method inductive learning algorithm that reliably extracts

IF-THEN rules from a collection of examples/instances. The algorithm elimi-

nates exhaustive feature selection by reducing the number of features to be con-

sidered for each necessary iteration of rule extraction. We also use a genetic

algorithm (GA) to determine the maximum number of clusters to be consid-

ered for each numeric feature for quantization and observe their contribution to

classification accuracy. Once the number of clusters for each numeric feature is

determined, we run the k-means algorithm for each feature with the number of

clusters that are pre-determined by GA to obtain as optimal ranges for numeric

features as possible.

We analyze the TCP/IP packet headers to automate OS classification. We utilize

a GA to determine the relevant packet header features, which helps reduce the

classification complexity and increases accuracy by eliminating noisy features

from the data. We use several machine learning algorithms to generate a set of

rules and models that can differentiate OSes. We also investigate an automated

system, called OSID, for classifying host OSes by analyzing the network packets

that they generate without relying on human experts.

We introduce another automated system, called SysID, for the classification of

IoT device characteristics based on their network traffic. The system uses any

single packet that is originated from the device to detect its kind. We utilize a

GA to determine relevant features in different protocol headers, and then deploy

various machine learning algorithms to classify host device types by analyz-

ing features selected by GA. SysID allows a completely automated classification

of IoT devices using their TCP/IP packets without expert input. SILEA, OSID

and SysID codes and trained models are available at https://github.com/

netml/.

https://github.com/netml/
https://github.com/netml/
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Chapter 1

Introduction

Network management requires knowledge of devices attached to a network.

A vulnerable device connected to the network could be utilized for insider at-

tacks. Hence, network administrators identify devices that are connected to the

network in order to monitor and secure the network. To this end they may per-

form local or remote network measurements to analyze networked devices [1].

Detecting the Operating System (OS) versions of connected systems helps deter-

mine vulnerabilities of particular OSes. Knowing vulnerable systems, network

administrators can take necessary actions to secure not only a particular system

but also the whole network. OS identification is also helpful for network ad-

ministrators to manage and monitor a large number of hosts within a network.

As the various Internet of Things (IoT) devices are introduced into a network,

the network administrators need a better understanding of the devices that are

connected as well. In particular, IoT devices lack computational capabilities of

typical networked devices, and hence need closer monitoring to prevent/detect

intrusion/malware. Securing IoT devices is not only crucial for the device it-

self but also for other network components. Identification of network devices is

valuable for network managements as well as network security [2]. Also, fine

grained access controls could be implemented for critical systems to improve
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system security [3].

Machine learning techniques have been beneficial in terms of knowledge extrac-

tion from examples in an automatic way [4]. One of the most preferred machine

learning techniques undoubtedly is inductive learning [5]. Inductive learning

is the process of reaching general rules from specific examples/instances [6].

The reasons for inductive learning algorithms to be preferred are their simplic-

ity, speed, and accuracy [5]. The categories of inductive learning can be listed as

divide-and-conquer methods and covering methods [7]. Decision tree-based ap-

proaches of divide-and-conquer methods are efficient but not always reliable in

terms of the generality of the rules they generate. Covering-method algorithms

provide more flexibility and generality but have higher complexity.

In this dissertation, we present a new covering-method inductive learning al-

gorithm called SILEA [8], which efficiently generates a set of IF-THEN rules.

It employs a feature selection technique similar to that of Sequential Forward

Selection [9] to decrease the number of attribute-value pairs that are to be con-

sidered. Sequential Forward Selection prioritizes certain attributes over the oth-

ers by an objective function [10]. Similarly, SILEA ensures that these biases are

made on attributes with higher metric values than other attributes. The metric

used for this purpose is the entropy measure, which allows SILEA to eliminate

an enormous amount of possible combinations for each iteration. Also, the ex-

traction process that SILEA employs eliminates unnecessary comparisons for

rule extraction. It extracts all possible rules for each combination and selects

the most classifying ones among them. It excludes rules which might become

redundant due to the existence of more classifying rules. This approach assures

the extraction of the most general rules for each combination of attributes con-

sidered.
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In covering-method inductive learning, the quantization of numerical features

plays a significant role in providing generality to the rules extracted. Quantiza-

tion is a method that allows inductive learning algorithms to process numerical

attributes by determining ranges for data points. Assume a feature containing

the ages for every employee in a company. Depending on the number of em-

ployees and their age distribution, the age feature in the dataset can contain

many unique values. Rather than extracting a specific rule for every unique

value in the dataset, which could introduce over-fitting, quantization provides

the ability to determine ranges of similar values of employee ages which help

both reduce the number of rules extracted and provide generality to the rules

extracted. In this dissertation, we employ an automated clustering technique

using genetic algorithms (GA), and we test the automated quantization method

with the SILEA [8] algorithm to further increase the classification accuracy.

Especially with the Internet of Things (IoT), everything is getting connected to

the Internet. With a plateau of devices attached to a network, local network man-

agement is becoming more challenging. Management and security of a medium

to a large network requires an understanding of devices connected to the net-

work. As various OSes run on these devices, identifying and patching vulnera-

ble systems is crucial. Network managers adopt multiple security mechanisms

to protect the network from malicious activities. An essential step in securing a

network is to be aware of the devices that are attached to it. It is crucial to de-

tect devices that use old or insecure versions of OSes due to their vulnerabilities

to remote attacks [11]. Detecting the OS versions of connected systems helps

determine vulnerabilities of particular OS versions [12]. Knowing vulnerable

systems, network administrators can take necessary actions to secure not only
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the particular system but also the whole network. OS identification is also help-

ful for network administrators to manage and monitor a large number of hosts

within a network [13].

OS kernels provide a mechanism for transferring network packets from a source

to a destination. Although protocol standards exist for packet header informa-

tion that OSes implement, there still are ambiguities in the specification and

developers have differing defaults for protocol fields. Such unique implementa-

tions in packet headers provide the ability to identify OSes based on the TCP/IP

headers [14]. OS fingerprinting is the process of remotely detecting a system’s

OS through packet signatures generated by it. Detecting OS is essential for de-

termining system vulnerabilities, improving cybersecurity, and identifying po-

tential attacks. OS detection also helps network administrators better manage

and monitor large numbers of hosts [13]. Such detection can also be extended

for the classification of host roles [15].

Researchers perform OS identification considering various TCP/IP protocols.

TCP, TCP SYN and ICMP protocols are among the most informative TCP/IP

protocols for OS identification. Various approaches in machine learning such

as neural networks, Naive Bayesian classifiers, as well as more straightforward

approaches such as Bayes’ rule and statistical tools have been used in OS iden-

tification. The information extracted from the network packets to perform OS

identification is acquired either actively or passively. Active identification ap-

proaches perform OS detection by probing the system and analyzing the re-

sponses. Passive identification approaches perform OS detection by sniffing and

analyzing the information extracted from the packets of the system. There are

several active probing approaches for OS identification [16]–[22] as well as pas-

sive approaches [11], [20], [23]–[26].
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In this dissertation, we also present an entirely machine learning-dependent OS

classification approach and perform single-packet OS classification on network

packets that originate from host devices [14]. Specifically, we perform OS classi-

fication on a single sniffed packet by extracting and checking the packet’s pro-

tocol header information [27].

Different types of network packets yield different features that can be used for

classification [14]. For each type of network packet, and for each classifier that

we use, a GA evolves a subset of packet-type dependent features relevant to

OS classification. The evolved feature subsets have fewer features, and the

lower number of features enable faster system classification. Furthermore, these

evolved features generally lead to improved classification accuracy and lower

classifier complexity. We conjecture that the GA eliminates features that do not

contribute to the accuracy or add noise and thus decrease accuracy. The reason

why we used GA is due to the large search space of feature combinations in the

protocols. For instance, for the TCP protocol header, we obtained around 61 fea-

tures which make 261 unique combinations to consider. We tried a hill-climber,

but it did not yield as high classification results as GA. Although the presented

approach is applicable to both active and passive fingerprinting, since we col-

lected packets passively, the results presented in this dissertation are for passive

fingerprinting.

Feature subset selection is computationally expensive but cheap; distributed

computing power makes this a non-issue in practice. Collecting the data needed

for training is a different issue. Our approach’s accuracy depends on the quality

and quantity of the data collected.

The network administrators also need a better understanding of the devices that
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are connected to a network. The use of the Internet of Things (IoT) devices is in-

creasing rapidly. Since in many cases, the IoT devices do not have the necessary

computation power, such devices require closer monitoring in order to prevent

intrusion or detect malware. Therefore, the security of IoT devices is beneficial

both for the devices themselves and for other components within the same net-

work. For instance, Mirai botnet utilized over 400,000 IoT devices in launching

the first DDoS attack with over 1 TB traffic volume [28].

In this dissertation, we also present an IoT device fingerprinting system, System

IDentifier (SysID) that can identify the device type from a single packet with

high accuracy [29]. We utilize machine learning and GA to learn the unique

features of each IoT device without expert supervision. Header field informa-

tion in different protocols contains unique signatures and provides clues for the

classification of devices. We utilize a GA to select features that are as unique as

possible for each IoT device compared to other devices in the training data. GA

reduces the number of selected features to improve system efficiency in a large

search space along with classification accuracy. It also helps eliminate features

that negatively affect classification accuracy.
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Chapter 2

Related Studies

2.1 Inductive Learning

There are many divide-and-conquer and covering-method inductive learning

algorithms that induce knowledge from examples. Inductive learning forms

a knowledge base from a given set of examples where each example contains

several attribute values along with a class [30].

ID3 is a divide-and-conquer algorithm introduced by Quinlan in 1987 which

uses training examples to generate a decision tree [31]. It selects nodes accord-

ing to their entropies to construct a tree more efficiently [32]. ID3, however, lacks

in terms of the generality of the trees it generates [33]. Many covering-method

algorithms have used this vulnerability to their advantage by introducing algo-

rithms that focus more on the generality of the rules they induce.

C4.5 is another well known divide-and-conquer algorithm proposed by Quin-

lan in 1993 [34]. This improved algorithm, unlike ID3, can handle continuous

attributes. Another improvement was pruning. ID3 is more sensitive to noise

and to prevent the tree from over-fitting the data, C4.5 prunes the tree by elimi-

nating the sections of the tree that contribute little to data classification [35].
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AQ is a covering-method algorithm introduced in 1969 by Michalski [36]. AQ

was initially introduced to solve the boolean function satisfiability problem.

However, it was later adapted to solve the covering problem. The algorithm has

been applied to several problems, such as the generation of individuals within

an evolutionary computation network. The algorithm has been improved sev-

eral times but has not been used widely mainly due to its high complexity [37].

CN2 is a covering algorithm introduced in 1989 by Peter Clark and Tim Niblett [38].

CN2 algorithm takes advantage of ID3’s noisy data handling approach along

with the flexibility of AQ family algorithms. In CN2, rule forming procedure is

terminated by the use of a heuristic function based on an estimate of the noise

observed in the data. As a result, CN2 may generate rules which do not neces-

sarily classify all the training examples but perform well on new data.

RULES3 is also a covering algorithm introduced in 1995 by Pham and Aksoy.

RULES3 is an automatic rule extraction system that was released as an advance-

ment to its predecessors, RULES1, and RULES2. RULES3, in addition to its pre-

decessors, introduces two new features: 1) it allows the user to set the precision

of rules and 2) it provides more generality to the rules it generates [6].

RULES3-Plus was released in 1997 by Pham and Dimov [32] to overcome the

issue of the exhaustive searching procedure that RULES3 employs [6]. RULES3-

Plus provides two advantages over its predecessor, 1) it adopts a more efficient

rule searching procedure and 2) it uses the h-measure metric for selecting at-

tributes [6], [32].

Several algorithms, based on RULES3 and RULES3-Plus, have been implemented.

These algorithms have introduced many improvements to the base algorithms.

For instance, RULES4 can extract rules incrementally [37]. RULES5 employs a
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new method to handle continuous attributes and to extract rules [4]. RULES6

also introduces a new method for continuous attribute handling along with a

noise-tolerant rule extraction technique [5]. In addition to handling continu-

ous attributes, RULES-F can generate accurate and compact fuzzy models that

allow it to handle continuous classes as well [39]. RULES3-EXT can perform at-

tribute re-ordering and fire rules partially if the extracted rules are unable to clas-

sify new examples [40]. RULES-TL uses transfer learning by collecting knowl-

edge from agents in different domains, which helps reduce the search time [41].

RULES-IT algorithm is the incremental version of the RULES-TL algorithm that

also transfers rules from different domains to improve its accuracy [42].

2.2 Clustering using Genetic Algorithms

In this paper [43], authors use a genetic algorithm (GA) to find optimum cluster-

ing. [44] also employs GA to further improve the k-means clustering algorithm

by overcoming its major limitation of being stuck with the local optima. In the

GA implementation, the centers of the clusters are encoded in a chromosome

rather than a partition which helps reduce the length of the chromosome as the

number of data points in most cases exceeds the number of clusters.

Authors in [45], however, find a global optimum for a partition. They also em-

ploy GA and k-means. To avoid expensive crossover operation, they use a hy-

brid approach of using GA with a gradient descent algorithm.

This study [46] is an improvement to [45] where although both approaches al-

ways converge to global optima, the latter approach can run faster.
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This paper [47] introduces an improved genetic k-means algorithm that can dy-

namically detect k value for the k-means algorithms. The proposed approach

tries to reduce the number of clusters needed as much as possible while trying

to ensure a large separation of clusters. [48] also proposes an approach for au-

tomatically detecting the number of optimal clusters using a quantum-inspired

GA.

One of the important issues in the k-means algorithm is the initial selection of

centers. It is possible to obtain different results as the initial centers change. This

paper [49] addresses this issue, and the authors employ a GA that evolves the

centers to identify the right partitions for a range of values.

Authors of [50] address both the issue of the initial selection of centers and de-

termining the number of clusters within the data. They automatically find the

number of clusters to be used with the k-means algorithm using GA. After de-

termining the centers, they feed them to the k-means algorithm to increase ac-

curacy. [51] also automates the selection of the number of clusters to use with

the k-means algorithm. Similarly, [52] tries to optimize both the initial centers

and partitions from the data. It employs a two-stage GA approach where the

probabilities for selection and mutation operations are determined through the

use of GA.

There is also research trying to eliminate the numeric data only limitation. [53]

proposes a clustering approach based on the GA and the k-means algorithm

paradigm, which can work with both numeric and categorical data.
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2.3 Genetic Algorithms for Feature Subset Selection

Genetic algorithms (GA) can be used to select feature subsets from a dataset.

Feature subset selection is the process of selecting a smaller set of features based

on an optimization criteria [54], [55]. Feature subset selection helps increase clas-

sification accuracy by selecting features that contribute to the classification the

most and increase efficiency by reducing the number of features to process [56].

There exist many work on feature selection using GA. Most of these work de-

pends on wrappers where different machine learning algorithms are used to

evaluate subsets of features selected by GA [57]. However, there is work on

applying GA to clustering using filter methods as well [58]. Due to classifica-

tion accuracy and simplicity, SVMs and K Nearest Neighbor (KNN) are among

the most preferred algorithms. Researchers analyzed how different values for

population size, mutation, and crossover effect the accuracy [59].

Studies such as [57] and [60] do not consider feature interaction. Elimination

of feature interaction potentially creates an issue of elimination of features that

might yield better classification accuracy together as opposed to being used in-

dividually. There are traditional approaches to GA feature selection as well. For

example, in [57], the authors combine both SFFS and GA to select features. The

results are claimed to be improved with such hybrid approaches. However, this

introduces extra computation overhead.

It is also possible to use GA along with a classifier to improve the original classi-

fier’s accuracy. Kelly and Davis [61] use GA and KNN algorithms in conjunction

to improve accuracy. GA helps increase KNN’s accuracy by searching a weight

vector. Their results show that KNN, along with GA, performs better than KNN

alone [62].
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2.4 Operating System Fingerprinting

Operating system (OS) fingerprinting techniques are often classified as active

and passive approaches [63]. Both active and passive fingerprinting approaches

have received much attention over the last few years, and many tools have been

developed for these approaches. In active fingerprinting, the target device is

directly probed, and the OS of the target device can be detected based on its

response. In passive fingerprinting, OS detection can only be performed by ana-

lyzing sniffed packets from the target device. There are also hybrid approaches

that try to overcome the limitations of active and passive fingerprinting by com-

bining both. For instance, Sinfp uses signatures acquired from active finger-

printing to perform passive fingerprinting [64].

As noted earlier, active fingerprinting tools can be blocked by firewalls and IDSs.

Such tools also require numerous probes to classify OSs accurately. Even though

there is work on trying to reduce the number of probes required, e.g., [65], we

cannot guarantee that the system will not block packets generated by these tools

before it receives enough information to identify the system accurately. Often,

such tools are not even aware of whether it is the firewall or the actual system

that they are scanning [20].

Passive fingerprinting is more limited than active fingerprinting since passive

systems cannot choose the type of packet and therefore, the type of information

to use for classification. Since passive fingerprinting techniques sniff packets,

they are limited to the information that the packets provide.
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2.4.1 Active Fingerprinting

Active fingerprinting tools can request specific types of information that are useful

to distinguish OSes. Therefore, active fingerprinting tools usually yield high ac-

curacy. Since such active measurements involve probing the system, they could

interfere with the operation of the system or be blocked from probing the sys-

tem. Additionally, system responses depend on the probe packets [66], [67].

Veysset et al. perform a temporal response analysis-based OS detection [16].

Their system employs an active fingerprinting approach to elicit the TCP SYN

packet responses, which is then compared to the known signatures to detect the

OS of the target system.

Similarly, Arkin performs active OS classification by analyzing the ICMP replies

from target systems [17].

SYSNSCAN tries to determine the distinguishing information among different

TCP implementations of OSes to determine the OS of a target system [18]. In

addition to incorporating many of the existing techniques, SYNSCAN also de-

pends on features such as congestion control, congestion window size, don’t

fragment bit, default MSS value, IP identification field, TTL value, etc.

Greenwald et al. derive effective probe communications for OS detection by

evaluating fingerprinting probes to reduce the number of packets to be exchanged

with the target system [65]. In active fingerprinting, multiple probes to a target

system may be needed to deduce the OS of the target device. It is possible that

tools such as IDS at the target network can detect and prevent responses to such

probes. By minimizing the probes to a target system, the authors try to evade

such mechanisms.



14

Additionally, machine learning techniques have been adopted for performing

OS classification [21]. Authors employ neural networks and statistical tools with

DCE-RPC endpoints and Nmap [19] signatures to improve detection analysis.

They try to initially detect the OS type (Windows, Linux, Mac) of packets us-

ing neural networks, and then Nmap’s signature database to further classify

the specific OS version, for example as Windows 7. The proposed system con-

sists of two modules where one of them performs Windows OS classification

using DCE-RPC, and the other oner performs Linux-based OS classification us-

ing Nmap. Authors have relied on features such as ACK flag responses: S, S++,

O; DF flag response (yes/no); response flag: ECN-Echo, URG, ACK, PSH, RST,

SYN, FIN; Options field and window size.

Nmap is an active OS fingerprinting tool introduced by Gordon Lyon [20]. It

has received multiple improvements over the years, which gave it the ability to

classify various OSs. However, since it sends up to 16 probes to be able to make

a decision, it becomes easily detectable and blockable.

Xprobe2 is another active fingerprinting tool [22] and mostly uses ICMP pro-

tocol probes to perform fingerprinting. Xprobe2 can perform partial matching

and using ICMP enables Xprobe2 to distinguish similar OSs such as different

Windows versions.

2.4.2 Passive Fingerprinting

Passive fingerprinting tools merely sniff packets originating from the host. Such

systems can perform identification as long as the host device generates network

traffic. The disadvantage of passive identification tools is that they are limited
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in the type of information they can access to perform identification. If the in-

formation provided in the network packets are not distinguishing enough, they

might not be able to narrow down the search space.

p0f was introduced by Michal Zalewski [20] and is widely used. p0f extracts

header information from TCP SYN packets which then are compared to a database

of signatures for OS classification.

Spitzner performs passive OS classification on pre-determined signatures such

as TTL, window size, DF and TOS [24].

Lippmann et al. determine the accuracy of passive OS classification based on

TCP/IP packets along with evaluating open-source tools for OS classification [11].

They also evaluate suitable classifier techniques to increase classification accu-

racy.

Beverly developed a Naive Bayesian classifier for passive fingerprinting [68].

The presented machine learning-based approach is compared to rule-based in-

ference tools such as p0f’s signature database and HTTP UserAgent data in

terms of its classification accuracy.

Chen et al. analyze and identify a series of TCP/IP header features to exam-

ine the effectiveness of such features for their contribution to OS classification,

including mobile devices [25]. They utilize features such as the stability of the

clock frequency, presence of TCP timestamp option, and the default set of TCP

window size scale.

Mavrakis develop a machine learning-based system that uses TCP/IP headers

and decision-tree learning [69]. It is shown that the UserAgent data outper-

formed p0f’s signature database. Since they use p0f’s signatures, the selected
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features are similar to those of p0f, including MSS, WS, and iTTL. They also

consider features such as options layout and IP version.

Unlike OS classification from TCP/IP traffic analysis, Chang performs OS clas-

sification based on DNS logs [70]. The author used a chi-squared test to extract

features from DNS logs to distinguish different OSes and used the hamming

distance for classification.

Some tools focus on performing OS fingerprinting using IPv6 packets [26] where

they analyze data obtained from passive measurements to perform a compari-

son between IPv4 and IPv6 data.

2.4.3 Hybrid Fingerprinting

There are also hybrid systems such as SinFP that try to reap the benefits of both

approaches [64]. SinFP also introduced methods such as using signatures col-

lected from one system to perform classification on another. They also perform

active and passive OS fingerprinting with IPv6. Like p0f, SinFP relies on TCP

SYN packets for fingerprinting.

Ettercap detects man-in-the-middle attacks and can also perform OS fingerprint-

ing [71]. Like p0f, Ettercap uses TCP SYN packet information for OS classifica-

tion. This tool is not a pure passive fingerprinting tool since it sends SYN packets

to the system and checks responses.

Another hybrid approach was introduced in [72]. In this study, the authors use

the answer set programming where the problem of OS classification is solved

through automated reasoning.
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[63] formalizes the problem of OS fingerprinting as a diagnosis problem. Diag-

nosis problem helps detect components within a system which helps determine

the incompatibility of what is observed and how the system is supposed to func-

tion [73]. They employ both active and passive fingerprinting approaches to

extract information from previous observations and to be able to request infor-

mation on demand.

2.4.4 Mobile OS Fingerprinting

There is some work in Mobile OS classification as well. In [25], the authors try

to improve the classification of Mobile OSs by introducing new features. Their

approach implements Bayes’ rule to perform classification.

2.5 IoT Device Classification

Similar to OS identification, researchers have developed approaches to finger-

print IoT devices.

2.5.1 Active & Passive Fingerprinting

Nmap is an active OS fingerprinting tool that is also capable of device finger-

printing [74]. It takes advantage of different implementation of network stack

by different vendors to detect the device type. Nmap generates up to 16 probes

to detect the OS version or the device type.

A couple of passive fingerprinting approaches focus on network packet features.

P0f performs passive fingerprinting and leverages the TCP SYN packets’ header
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information for OS detection, as well as device identification [20]. Gao et al.

perform wavelet analysis on packet traffic to distinguish access points [75].

In [76], authors introduce GTID, which is a passive fingerprinting technique

used to fingerprint wireless devices. The authors rely on the wired backbone ob-

servations such as hardware compositions (e.g., processor, DMA controller and

memory) and hardware variations (e.g., clock skew) of the devices to perform

device type identification and device identification, respectively. They utilize

statistical approaches to capture the uniqueness of devices. The main limitation

of this work is that since the approach relies on the timing of packets and since

this timing is possible to be lost in switches and routers due to buffering, the

proposed approach is not very suitable for classifying devices across the Inter-

net.

The most similar study to ours is [77], where the authors propose an automated

system for device fingerprinting. Miettinen et al. collect n packets after a new

IoT device initiates its setup phase. This n is determined when a decrease in the

packet rate is observed. They use 23 features to fingerprint a device where 19

are binary values representing the absence or existence of the following proto-

cols; link layer (i.e. ARP, LLC), network layer (i.e. IP, ICMP, ICMPv6, EAPoL),

transport layer (i.e. TCP, UDP), application layer (i.e., HTTP, HTTPS, DHCP,

BOOTP, SSDP, DNS, MDNS, NTP), data payload, and IP options (i.e. Padding,

RouterAlert). Additional four features are integer values to count for packet

size, destination IP counter, source port counter, and destination port counter.

They remove consecutive identical packets and use the first 12 unique vector

packets and generate a 23x12 matrix as a fingerprint for each device. Then they

use the RandomForest algorithm to generate a classifier for each device.
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2.5.2 Device Authentication

In [78], authors propose a device authentication protocol named S2M (speaker-

to-microphone). The proposed protocol extracts an acoustic fingerprint for each

device by utilizing the frequency response of their speakers and microphones.

S2M helps authenticate users by checking for a match with the extracted finger-

prints. Although the authors claim that many IoT devices contain microphones

and speakers, the limitation of the approach presented occurs with simpler IoT

devices that may not contain such hardware.

An object authentication framework is proposed in [79]. The proposed frame-

work uses transfer learning to distinguish between an attack and a legitimate

change of behavior by analyzing the effect of the physical environment on IoT

devices.

2.5.3 Time-domain Based Fingerprinting

Several approaches focus on timing characteristics. Passive and Temporal Fin-

gerprinting performs device fingerprinting based on the application layer pro-

tocols’ timing [80]. RTF represents fingerprints in a tree-based temporal finite

state machine and uses SVM (Support Vector Machines) as a classifier. Similarly,

Radhakrishnan et al. model the distribution of packet inter-arrival times (IAT)

and use Artificial Neural Network (ANN) to classify devices [81]. Formby et al.

focus on the identification of industrial control systems with data response pro-

cessing times and physical operation times as device signatures [82]. Kohno et

al. identify devices based on the distribution of clock skews, which are captured

from TCP timestamps [83].
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2.5.4 Wireless Network Fingerprinting

Several studies focus on wireless network characteristics. Desmond et al. detect

devices connected to a Wireless-LAN by analyzing the timing of 802.11 probe

request frames [84]. The authors employ clustering algorithms to generate fin-

gerprints. Nguyen et al. propose a passive fingerprinting technique using radio-

metrics as the distinguishing feature of devices to detect identity spoofing [85].

The radio-metrics include radio signal amplitude, frequency, etc. They then em-

ploy a non-parametric Bayesian method for device identification. Xu et al. fo-

cus on physical, MAC, and upper-layer characteristics to fingerprint wireless

devices using a White-List Based Algorithm and Unsupervised Learning [86].

Physical layer fingerprinting of ZigBee devices using Radio Frequency Finger-

printing is performed in [87]. In this work, the author proposes improvements to

their previous work after observing that, unlike the normal distribution assump-

tion in their previous work, most of the signals collected from the devices are ei-

ther multi-modal or non-parametric. The author uses non-parametric methods

for feature generation. The authors claim to have increased their accuracy up to

9%.

2.5.5 Mobile Device Fingerprinting

In this study [88], authors utilize sensors in smartphones to extract unique fin-

gerprints across them. The authors utilize the frequency response of the speaker

and microphone and the accelerometer calibration errors of devices. One of the

advantages of the proposed approach is claimed to be easy access to devices’ ac-

celerometer readings by JavaScript. Authors claim that with their approach, the



21

fingerprints extracted can be used to de-anonymize devices’ activities on the In-

ternet. It is shown in the paper that the devices can be uniquely identified based

on the entropy from the devices’ sensors. However, the proposed approach per-

forms device-specific fingerprinting. It may not be able to detect the generalities

across devices to perform device-type fingerprinting.
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Chapter 3

SILEA - a System for Inductive

LEArning

In this section, we present a new inductive learning algorithm called SILEA. In

order to reduce the complexity of rule extraction, SILEA employs a feature se-

lection technique similar to that of Sequential Forward Selection [9]. Sequential

Forward Selection is a technique that prioritizes certain attributes over others

based on an objective function [10]. SILEA uses the entropy measure for priori-

tizing the features to be selected.

In order to asses SILEA’s complexity and accuracy, we compared it with some of

the well-known algorithms in the field. SILEA considerably reduces the number

of attribute combinations, i.e., from O(n3) to O(n2) in the worst case and has a

smaller run-time complexity. The algorithm also performs better than the others

on averages of all the analyzed datasets.
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3.1 Proposed Algorithm

SILEA is an inductive learning algorithm that generates rules from a dataset

efficiently and accurately. In order to achieve this, the algorithm employs two

important characteristics, namely, feature selection and rule extraction.

The feature selection approach that SILEA employs is similar to the Sequential

Forward Selection method. To avoid consideration of every possible combina-

tion of attributes, the algorithm in each iteration fixes nc− 1 attributes and takes

the combinations of these pre-selected attributes with the remaining ones. To

avoid accuracy degradation, it needs to select these attributes judiciously. Oth-

erwise, the algorithm can miss more optimal attribute combinations. That is

why SILEA uses the entropy measure to select the attributes in each iteration of

the rule extraction. It favors attributes with lower entropy values to assure the

selection of more information-gaining attributes, which helps SILEA to generate

as general rules as possible for a given iteration.

After deciding on which attributes to consider for rule extraction, SILEA extracts

all possible rules from a dataset. For each iteration, SILEA generates all possible

rules for a given number of conditions with a single visit of every example in

the dataset. Each potential rule that SILEA forms from the selected attributes

are considered to be a rule unless it contradicts other examples. A contradiction

occurs when the formed attribute combination value(s) belong to more than one

class among the examples in the dataset. After the extraction, the rule selection

phase of SILEA eliminates obsolete rules. Obsolete rules are rules that can be

replaced by higher occurring ones. After selecting the rules, it discards the ex-

amples that can be classified by these rules. SILEA stops rule extraction when it

can classify all the examples in the dataset with the selected rules.



24

SILEA induces rules from a set of examples within a dataset as presented in

Algorithm 1 through Algorithm 4. Each example in a dataset contains numerous

attributes and a class [30]. A single or combination of attributes is considered

a condition. The number of attributes within a condition could vary between

one and na (total number of attributes in an example). After data initialization

in Section 3.1.1, feature selection and rule extraction procedures of SILEA are

explained in Section 3.1.2 and Section 3.1.3.

3.1.1 Data Initialization

To ease the selection process before feature selection and rule extraction, the

SortFeatures function is executed to sort attributes according to their entropy

values from the lowest to the highest (Alg1-Ln1). SILEA quantizes numerical

attributes by defining and setting ranges for their values (Alg1-Ln2). For the

quantization process, the algorithm executes QuantizeAttributes function. It

finds the ranges of each numerical attribute (Alg2-Ln1) by determining the min-

imum and maximum values of the attribute (Alg2-Ln2-3) and dividing their dif-

ference by the number of quantization levels provided by the user (Alg2-Ln4).

Then, for each example (Alg2-Ln5), the range that the corresponding attribute

value belongs to is calculated and assigned (Alg2-Ln6-12). Note that we quan-

tize values outside the range as min or max. After the quantization process, the

algorithm goes into a loop which is executed until there are no more unclassified

examples left in the dataset (Alg1-Ln6).
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Algorithm 1: SILEA rule forming procedure
1 SortFeatures(Examples);
2 QuantizeAttributes(Examples, NoOfRanges);
3 SelectedRules = ∅;
4 nc = 0 ; // default
5 Unclassi f iedExamples = Examples;
6 while UnclassifiedExamples != ∅ do
7 nc = nc + 1;
8 Blacklist = ∅;
9 PotentialList = ∅;

10 for each Example ∈ Examples do
11 FormedRules = GenerateFormedRules(Example, nc);
12 for each Rule ∈ FormedRules do
13 if Rule /∈ Blacklist then
14 if Rule /∈ PotentialList then
15 PotentialList = PotentialList ∪ Rule;
16 Rule.occurrence = 1;

17 else if Rule ∈ PotentialList and Rule.class = Example.class then
18 Rule.occurrence = Rule.occurrence + 1;

19 else if Rule ∈ PotentialList and Rule.class != Example.class then
20 PotentialList = PotentialList− Rule;
21 Blacklist = Blacklist ∪ Rule;

Algorithm 2: QuantizeAttributes(Examples, NoOfRanges)
1 for each Attributei ∈ Examples do
2 Min = FindMin(Attributei);
3 Max = FindMax(Attributei);
4 Range = (Max−Min)/NoO f Ranges;
5 for each Example ∈ Examples do
6 if Example.Attributei <= Min then
7 Example.Attributei = 1;

8 else if Example.Attributei > Max then
9 Example.Attributei = NoO f Ranges;

10 else
11 Example.Attributei = d(Example.Attributei)/Rangee;
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3.1.2 Feature Selection Procedure

SILEA tries to extract rules from an example set according to the unique corre-

spondence of attribute-value pairs and their associated classes. It starts with the

minimum number of conditions set by the user, and as needed, it keeps incre-

menting them until it reaches the maximum, which is equivalent to the number

of attributes na.

An important feature of SILEA for optimizing the performance and accuracy

of the classification while increasing efficiency is to prioritize certain attributes

over the others. It employs a feature selection technique similar to that of Se-

quential Forward Selection [9] to dramatically decrease the number of combina-

tions to deal. The criteria for such selection is decided based on the entropy of

the attributes [89]. SILEA selects the attributes according to their entropies from

the smallest to the highest, in other words, from the most information-gaining

to the least. The entropy of ith attribute Ai, i.e., E(Ai) is formulated as:

|Si|

∑
j=1

|Sij ∈ Ai|
|I|

[
−
|C|

∑
k=1

|(Sij ∪ Ck) ∈ I|
|Sij ∈ Ai|

log
|(Sij ∪ Ck) ∈ I|
|Sij ∈ Ai|

]
where;

I = set of ith attribute value and ith class value pairs from the dataset,

Si = set of unique values that the ith attribute can take,

C = set of unique classes in the dataset.

Rule extraction starts with the minimum number of conditions. It can manually

be set to any number ranging from 1 to na. If all the examples in the dataset

cannot be classified by the rules extracted while satisfying the current number

of conditions (Alg1-Ln6), it is incremented by one (Alg1-Ln7) and the process
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Algorithm 3: GenerateFormedRules(Example, nc)
1 FormedRules = FixedAttributes = ∅;
2 for i = 1, i++, while i <= nc − 1 do
3 FixedAttributes = FixedAttributes ∪ Example.attributei;

4 for i = 1, i++, while i <= na − (nc − 1) do
5 FormedRule = FixedAttributes ∪ Example.attributei ∪ Example.class;
6 FormedRules = FormedRules ∪ FormedRule;

7 return FormedRules;

is repeated until there are no more unclassified examples left. If the number

of conditions reaches the maximum value, which is equivalent to na, then the

remaining unclassified examples are all considered to be rules individually.

In order to minimize the number of combinations when the condition number

is greater than one, SILEA follows an approach similar to Sequential Forward

Selection (Alg3). This approach eliminates the consideration of every possi-

ble combination because, in each iteration, SILEA fixes an attribute from the

previous iteration. It selects (nc − 1) number of attributes with least entropies

where nc=condition number (Alg3-Ln2-4). It then finds all the combinations

of these pre-selected attribute(s) with the remaining attribute(s) by appending

the remaining attributes one by one to the pre-selected ones (Alg3-Ln5-8). For

example, to determine combinations when condition number is 3, the two at-

tributes with least entropy values are selected and then the remaining attributes

are appended one by one to form the combinations for rule extraction. There-

fore, if the number of attributes within the example set is 5, the combinations

to be considered for rule extraction is {(Attr1, Attr2, Attr3); (Attr1, Attr2, Attr4);

(Attr1, Attr2, Attr5)}. For each combination, the algorithm goes through the

rule extraction mechanism employed by SILEA, which is explained in detail in

Section 3.1.3.
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3.1.3 Rule Extraction Procedure

For each selected combination of attributes, SILEA extracts every possible rule

in a simple yet accurate way. The main idea is that the attribute combinations,

along with their classes for each example in the example set, are considered to be

potential rules unless a contradiction among examples occurs. A contradiction

is when an attribute combination belongs to different classes in the dataset. Two

different sets are used throughout the extraction process, Blacklist (Alg1-Ln8)

and PotentialList (Alg1-Ln9). The Blacklist contains attribute combinations which

cannot form a rule and the PotentialList contains attribute combinations with

their classes which are likely to be rules. Potential rules in PotentialList also

contain the number of examples they can classify.

Initially, for each example (Alg1-Ln10), the attribute combination is checked by

the algorithm whether or not it exists in the Blacklist (Alg1-Ln13). If it exists,

then the current combination for the current example is ignored since it cannot

form a rule and the next combination is considered. If the combination does not

exist in the Blacklist, then the algorithm checks whether the combination exists in

the PotentialList (Alg1-Ln14-22). Three cases can occur in this case. The first case

is that the combination does not exist in the PotentialList (Alg1-Ln14). It is then

added to the PotentialList and its occurrence value is set to 1 (Alg1-Ln15-16). The

second case is that it exists in the PotentialList and the rule combination has the

same class as the one in the PotentialList (Alg1-Ln17). In this case, the current

combination can still be considered as a potential rule and is therefore kept in

the PotentialList and its occurrence value is incremented by 1 (Alg1-Ln18). The

third case is that it exists in the PotentialList and the combination has a different

class than the one in the PotentialList (Alg1-Ln19). Thus the combination can-

not form a rule and is therefore removed from the PotentialList and placed in
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Algorithm 4: Filter(PotentialList, UnclassifiedExamples)
1 for each Rule ∈ PotentialList do
2 RuleClassi f ies = f alse;
3 for each Example ∈ UnclassifiedExamples do
4 if Classifies(Rule, Example) then
5 RuleClassi f ies = true;
6 Unclassi f iedExamples = Unclassi f iedExamples− Example;

7 if !Classifies(Rule, Example) then
8 PotentialList = PotentialList− Rule;

the Blacklist so that next time such combinations can be ignored (Alg1-Ln20-21).

After every example is visited and processed in a single pass, potential rules

within the PotentialList form rules.

The extracted rules classify examples in descending order of their occurrence

values (Alg4). If another rule also classifies all the examples that a rule can

classify with a higher occurrence value, then the rule with lower occurrence

value is discarded since it becomes obsolete (Alg4-Ln9-11). The algorithm also

discards the examples that can be classified by the selected rules (Alg4-Ln4-7).

At the end of this filtering process, the rules in PotentialList are added to the

SelectedRules list (Alg1-Ln27).

The feature selection complexity of SILEA, along with some other algorithms, is

provided in Table 3.1. SILEA’s efficiency in terms of the number of combinations

processed surpasses the algorithms it is compared. In order to visualize the

complexity of feature selection of the algorithms, assume an example set where

na = 15. For this particular example set, the maximum number of combinations

that each algorithm considers are 32,766 for RULES3, 2,955 for RULES3-Plus and

120 for SILEA. The number of combinations considered in SILEA is considerably

lower than both RULES3 and its successor RULES3-Plus algorithms.
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TABLE 3.1: Algorithm Complexities

(na = # of attributes, mPRSET = # of expressions stored in PRSET)
Algorithm Number of combinations Asymptotic growth

SILEA
1
2

na(na + 1) O(n2)

RULES3-Plus na + mPRSET

na−1

∑
i=1

na − 1 O(n3)

RULES3
na

∑
i=1

na!
(na − i)!i!

O(nn!)

3.2 Illustrative Problem

The Car Acceleration dataset [90] is used to illustrate the execution of the SILEA

algorithm. The dataset consists of examples where the algorithm must exe-

cute all of its cases at some time during the extraction, which makes it easier

to demonstrate how the algorithm functions in different cases. The dataset con-

sists of three attributes and three classes. The attributes are; Fuel, Max-Speed

and Car-Size. A combination of these attributes corresponds to a particular ac-

celeration performance of the car, which could be good, excellent or poor.

The example set is given in Table 3.2 where attributes are sorted according to

their entropies. In this example set, Fuel has the lowest entropy while Car-Size

has the highest. Quantization is not applied since there are no numerical at-

tributes in the dataset. A minimum number of conditions is set to 1.

For each example in the dataset, the algorithm goes through the following steps:

For each example, the FormedRules list is formed and filled by the Generate-

FormedRules function. This list contains the expressions generated from the
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TABLE 3.2: Example Set

Example Fuel Max-Speed Car-Size Acceleration
1 diesel high large good
2 propane high large good
3 petrol high compact excellent
4 petrol high large excellent
5 diesel low medium good
6 petrol low compact good
7 petrol average medium excellent
8 diesel average medium poor

example and is checked whether or not they form a rule. For the first example

in the set, the following expressions are formed;

• Fuel = diesel → Acceleration = good

• Max-Speed = high→ Acceleration = good

• Car-Size = large→ Acceleration = good

Since there are no items in both the Blacklist and the PotentialList, these combi-

nations are added to the PotentialList and their occurrences are set to 1 for each

one of them as shown in Table 3.3;

In the second example, the following expressions are formed;

• Fuel = propane→ Acceleration = good

• Max-Speed = high→ Acceleration = good

• Car-Size = large→ Acceleration = good

Since there are no items in the Blacklist, and there exist some combinations in

the PotentialList, each one of the newly generated expressions is compared with

those in the PotentialList. Since no potential rules are containing the attributes

of the first expression, it is added to the PotentialList and its occurrence is set to
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TABLE 3.3: PotentialList - Potential rules extracted from the 1st ex-
ample

nc # Rules
1 1 Fuel = diesel → Acceleration = good
1 1 Max-Speed = high→ Acceleration = good
1 1 Car-Size = large→ Acceleration = good

1. The second and the third expressions do exist in the PotentialList and since

they have the same class, there is no contradiction. Therefore, the rules are left

in the PotentialList but their occurrence values are incremented. The updated list

is shown in Table 3.4;

In the third example, the following expressions are formed;

• Fuel = petrol → Acceleration = excellent

• Max-Speed = high→ Acceleration = excellent

• Car-Size = compact→ Acceleration = excellent

Since there are no items in Blacklist, the expressions are compared with items

in the PotentialList. The first and the third expressions do not contradict any

of the rules in the PotentialList and are therefore added to it. The second one

exists in the PotentialList with a different class. So the contradicted rule, Max-

Speed = high → Acceleration = good, is removed from the PotentialList and

TABLE 3.4: PotentialList - Potential rules extracted from the 1st and
2nd examples

nc # Rules
1 2 Max-Speed = high→ Acceleration = good
1 2 Car-Size = large→ Acceleration = good
1 1 Fuel = diesel → Acceleration = good
1 1 Fuel = propane→ Acceleration = good
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TABLE 3.5: Blacklist - Attribute name(s) which belong to more than
one class

nc Conditions
1 Max-Speed = high

the attribute of this rule is added to the Blacklist to be ignored the next time it is

observed. The lists are shown in Table 3.5 and Table 3.6;

The same process is applied to every example in the example set. After visiting

every example in the set, the PotentialList will contain all the rules with condition

number nc, which is currently set to 1.

After the rule extraction, Filter function removes unnecessary rules from the

PotentialList. Unnecessary rules are those that have become obsolete since the

examples they can classify can be classified by other rule(s) with higher occur-

rence value(s). Starting from the most effective rules in the PotentialList, rules

are checked to see whether they can classify existing unclassified examples. If

the rules can classify at least one example in the UnclassifiedExamples set, then

the examples that the rules can classify are removed from the set and the rest

of the rules are checked with the remaining unclassified examples. If the rules

cannot classify the unclassified examples or if there are no more examples in the

UnclassifiedExamples set, then these rules are removed from the PotentialList. Af-

ter the execution of the Filter function, the remaining rules in the PotentialList

TABLE 3.6: PotentialList - Potential rules extracted from the 1st, 2nd
and 3rd examples

nc # Rules
1 2 Car-Size = large→ Acceleration = good
1 1 Fuel = diesel → Acceleration = good
1 1 Fuel = propane→ Acceleration = good
1 1 Fuel = petrol → Acceleration = excellent
1 1 Car-Size = compact→ Acceleration = excellent
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TABLE 3.7: PotentialList - Potential rules selected from all the ex-
amples with nc = 1 and from the 1st example with nc = 2

nc # Rules
1 2 Car-Size = low→ Acceleration = good
1 1 Fuel = propane→ Acceleration = good
2 1 Fuel = diesel&Max-Speed = high→ Acceleration = good
2 1 Fuel = diesel&Car-Size = large→ Acceleration = good

are added to the SelectedRules list.

Since there remain unclassified examples, the number of conditions is incre-

mented, the first attribute is fixed since (nc − 1 = 1), and all the combinations

with the remaining attributes are calculated. The following expressions are gen-

erated from the first example by the GenerateFormedRules function;

• Fuel = diesel&Max-Speed = high→ Acceleration = good

• Fuel = diesel&Car-Size = large→ Acceleration = good

Since there are no items in both the Blacklist and the PotentialList, these combi-

nations are added to the PotentialList and their occurrences are set to 1 as shown

in Table 3.7;

All the other examples are visited one by one going through the same steps as

above. Rules in Table 3.8 are what are left in the SelectedRules list at the end of

extraction and selection processes.

TABLE 3.8: SelectedList - All selected rules from the dataset

nc # Rules
1 2 Car-Size = low→ Acceleration = good
1 1 Fuel = propane→ Acceleration = good
2 2 Fuel = petrol&Max-Speed = high→ Acceleration = excellent
2 1 Fuel = diesel&Max-Speed = average→ Acceleration = poor
2 1 Fuel = diesel&Max-Speed = high→ Acceleration = good
2 1 Fuel = petrol&Max-Speed = average→ Acceleration = excellent
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Since the rules in the SelectedRules list can classify every example in the dataset,

the algorithm selects all the rules in the SelectedRules list and terminates.

3.3 Experimental Results

In this section, we compare the classification accuracy of SILEA to some of

the well-known algorithms in the inductive learning field using five different

datasets. The datasets used for evaluation are; Balloons [91], Hayes-Roth [92],

Hepatitis [93], Iris [94] and Lenses [95]. For each of the datasets, we generated

ten randomly sorted versions of the datasets and recorded their average accu-

racy along with the average number of rules each algorithm extracted for the

given dataset. The dataset was split as 60% and 40% for training and testing,

respectively.

Tables 3.9, 3.10, 3.11, 3.12 and 3.13 present a number of experiments and their

accuracy. The number of conditions set for SILEA and RULES algorithms is

equal to 1 for all the datasets and the quantization levels set for the Iris dataset

is 3 and for the rest of the datasets is 5. RULES3-Plus requires an additional

TABLE 3.9: Accuracy for the Balloons dataset

Algorithms Avg. # of rules µ σ

SILEA 3 100% 0
RULES3 3 100% 0

RULES3-Plus 6 100% 0
C4.5 3 90.0% 16.1
CN2 3 100% 0

RIPPER 2 84.4% 21.08
RIDOR 2 71.1% 13.04
PART 3 90.0% 16.1

DecisionTable 4 86.7% 17.21
RandomTree 6 88.9% 18.89
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TABLE 3.10: Accuracy for the Hayes-Roth dataset

Algorithms Avg. # of rules µ σ

SILEA 24 84.1% 3.92
RULES3 21 72.3% 4.5

RULES3-Plus 46 64.4% 3.68
C4.5 12 80.7% 5.4
CN2 18 70.9% 9.05

RIPPER 6 72.8% 8.05
RIDOR 7 68.0% 12.56
PART 9 78.3% 7.46

DecisionTable 6 55.0% 3.03
RandomTree 50 74.4% 8.81

parameter to be set, which is called PRSET. For each dataset, this value was set

equal to the number of attributes of the dataset’s examples in order to assure the

algorithm generates the highest accuracy possible. The remaining algorithms

were run with their default parameter settings as they are the ones that were

suggested to be used.

Even though the number of attribute combinations to be considered is reduced

in SILEA to O(n2), it still was able to perform either as well or better than other

TABLE 3.11: Accuracy for the Hepatitis dataset

Algorithms Avg. # of rules µ σ

SILEA 23 82.6% 3.47
RULES3 33 73.3% 4.92

RULES3-Plus 41 73.7% 4.63
C4.5 5 78.2% 2.66
CN2 12 79.0% 2.4

RIPPER 3 79.0% 3.65
RIDOR 3 78.5% 4.44
PART 7 79.4% 3.63

DecisionTable 13 76.8% 2.43
RandomTree 48 76.6% 5.65
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TABLE 3.12: Accuracy for the Iris dataset

Algorithms Avg. # of rules µ σ

SILEA 5 96.7% 2.36
RULES3 5 86.1% 4.07

RULES3-Plus 19 96.7% 2.36
C4.5 4 93.5% 3.46
CN2 5 94.5% 3.41

RIPPER 4 92.3% 2.85
RIDOR 3 93.7% 3.41
PART 4 93.8% 4.01

DecisionTable 3 94.3% 2.96
RandomTree 12 94.8% 2

algorithms on averages of all 5 cases as seen in Tables 3.14. Considering aver-

age accuracy for all datasets, SILEA was 8.8% better than RULES3, 12.1% better

than RULES3-Plus, 4.2% better than C4.5, 5.8% better than CN2, 9.8% better than

RIPPER, 14.4% better than RIDOR, 4.4% better than PART, 13.7% better than De-

cisionTable, and 8.0% better than RandomTree algorithms. Standard deviations

show that the accuracy of SILEA, in most cases, were either close to or more

stable than the other algorithms.

Compared to similar algorithms like the RULES algorithms, SILEA was able to

TABLE 3.13: Accuracy for the Lenses dataset

Algorithms Avg. # of rules µ σ

SILEA 6 80.0% 13.33
RULES3 6 68.0% 15.49

RULES3-Plus 9 48.0% 14.76
C4.5 3 80.0% 12.47
CN2 4 70.0% 9.43

RIPPER 2 66.0% 5.16
RIDOR 2 60.0% 14.91
PART 3 80.0% 12.47

DecisionTable 2 62.0% 13.17
RandomTree 11 69.0% 18.53
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TABLE 3.14: Average accuracy

Algorithms µ

SILEA 88.7%
RULES3 79.9%

RULES3-Plus 76.6%
C4.5 84.5%
CN2 82.9%

RIPPER 78.9%
RIDOR 74.3%
PART 84.3%

DecisionTable 75.0%
RandomTree 80.7%

achieve these accuracies by reducing the number of rules in 4 out of 5 datasets.

The difference in terms of the number of rules generated between SILEA and

the other algorithms on average is minimal, which shows that SILEA can ex-

tract as general rules as possible for each iteration with these datasets. SILEA’s

method of rule selection among the generated rules also work accurately since

its accuracy has surpassed the other algorithms with the analyzed datasets.
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Chapter 4

Operating System Classification

Performance of TCP&IP Protocol

Headers

Network measurement and management requires an understanding of devices

connected to a network [96]–[98]. Operating system (OS) fingerprinting is the

process of remotely detecting the OS of a target IP address. Note that a system

might have multiple IP addresses assigned, which would require IP alias reso-

lution [99]. There are two methods for performing OS classification: active and

passive [63]. Active fingerprinting actively probes target devices and analyzes

their responses [66]. Certain systems can respond in an unusual way upon spe-

cific requests. Such scenarios can allow for active fingerprinting tools to narrow

down possibilities or even directly determine the OS of such systems. However,

firewalls could block probes, and active fingerprinting might lead to limited or

no knowledge of the target host. Passive fingerprinting passively sniffs packets

from target devices and analyzes the packet header information. As passive fin-

gerprinting merely depends on the information extracted from regular TCP/IP
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packet headers, it is possible to perform OS classification even when a firewall

exists. On the other hand, passive fingerprinting might not be as accurate as ac-

tive fingerprinting as it cannot observe distinct features. Passive fingerprinting

techniques can take advantage of less than one-third of the features that active

fingerprinting tools such as Nmap offers [11].

It can become impractical for system administrators to manage and monitor a

vast amount of hosts which might be at different locations [13]. Therefore, OS

fingerprinting tools and techniques can ease network management and secu-

rity [18]. These tools may also be useful for collecting statistical data on the

OSes that host devices within a network use. OS fingerprinting, however, can

also be used for malicious purposes. It can allow intruders to detect devices and

identify their vulnerabilities in a target network. When intruders detect the pres-

ence of unpatched or outdated OSes, they can easily deploy known malware to

compromise them.

While current OS classification systems are expert-based, automated detection

and configuration of networked systems are valuable [100], [101]. To this end,

machine learning approaches can provide automated system configuration with

minimal or no expert input [15].

In this section, we analyze the accuracy of TCP/IP headers in classifying OSes

with machine learning. We perform a single-packet OS classification on packets

originating from host devices. We compare the classification results for several

protocols at layer 3 (i.e., IP and ICMP), layer 4 (i.e., TCP and UDP), and layer

5 (i.e., HTTP, DNS, SSL, SSH, and FTP) using multiple machine learning algo-

rithms in order to determine their contribution in classifying OSes.

We tested the classification both with every non-null feature extracted from the
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protocol and with features that were selected by a genetic algorithm (GA). GA

allows us to perform OS classification of packets with a less computational over-

head with no significant degradation in classification accuracy. After selecting

features that help classify the packet, we use different machine learning algo-

rithms to detect the OS of the host devices. With the help of GA, we detected

the features that contribute most to the classification of OSes. Using GA and

machine learning, we identify TCP/IP header features that can guide OS classi-

fication.

Our results, in general, are consistent with an expert system based OS finger-

printing tools such as p0f, ettercap, and siphon [11]. While current tools that

depend on specific packet types such as SYN, ACK, and SYN-ACK, our clas-

sifier can detect OSes of individual packets regardless of the packet type. In

this measurement study, we performed OS classification with all types of packet

observed from host devices.

4.1 Methodology

In this section, we measure the operating system (OS) classification accuracy

of TCP/IP protocol headers using machine learning. We use the GA feature

selection technique for determining the relevant features from TCP/IP protocol

headers. After determining the protocol features, we used machine learning

algorithms to populate a set of rules using the full and selected set of features.

We initially collected the set of all features to be used for performing OS classi-

fication. We then eliminated features that contained null values along with the

ones that were machine learning incompatible such as cookie value in HTTP, the
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domain name in DNS, etc. and the ones that were machine dependent such as

MAC address in DHCP, user agent in HTTP, etc.

For the implementation of the fitness function of the GA, we employed the

wrapper method of feature selection [102]. The fitness function uses the trainer

itself to determine the accuracy of feature combinations generated by the GA.

We then determined the TCP/IP protocol header features that led to the best OS

classification.

4.1.1 Data Initialization

We set up a local network consisting of 4 computers. Three of these comput-

ers run instances of Fedora 23, Xubuntu 14.04, Windows 7 and Windows 8 and

the fourth computer runs an instance of OSX El Capitan. We collected packets

from multiple devices to remove any possible bias from the collected packets to-

wards one instance of the OSes. Every instance of OSes on the machines that we

collected packets from was freshly installed. We did not use VirtualMachine in

order to generate as realistic scenarios as possible and used the Wireshark tool

to collect packets.

To generate HTTP protocol packets, we visited the same websites on every OS.

These websites were;

http://www.google.com, http://www.yahoo.com,

http://www.unr.edu and http://www.youtube.com.

We also collected approximately 20 minutes of YouTube video streaming. To

generate FTP protocol packets, we connected to ftp://ftp.godaddy.com

FTP server and uploaded files to the server. To generate ICMP packets, we used

the “traceroute” application to connect to all 4 of the domain names mentioned
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earlier. To generate SSH packets, we initiated connections to an SSH server and

transmitted files to the server. The remaining protocols such as; IP, TCP, UDP,

DNS, and SSL were observed among the collection of packets for the protocols

mentioned above.

The number of packets collected for each protocol is provided in Table 4.1. The

number of packets among different protocols differs as different protocols have

different popularity in real network flows. 5% of the dataset was dedicated to

the training of the GA’s fitness function, and another 5% was dedicated to the

testing of the GA. The remaining 90% of the packets were split into five parts to

perform a 5-fold cross-validation test. Four of the five parts of the packets were

used to train the system, and the remaining one was used to test it. This process

was performed for every combination of these parts of data, and their average

accuracy was recorded.

For packet collection, packets containing specific protocols were generated and

collected within this local network. These protocols include; HTTP, DNS, SSL,

FTP, SSH, ICMP, UDP, TCP, and IP. For each protocol, feature selection and ma-

chine learning classification were performed for two sets. One of them used

every possible feature of the provided protocol, and the other one used the GA

selected features of this protocol. For each test, features of the protocols were

collected, and those features with only null values were eliminated since they

do not contribute to the classification.

SSH and FTP protocol packets seemed to have many packets with similar head-

ers, and after the removal of the duplicate packets, there was an insufficient

number of packets for GA. Therefore, we did not run the GA feature selection

technique for SSH and FTP protocols. We calculated the classification accuracy

of these protocols using all available features.
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TABLE 4.1: Number of packets

Protocols GA train GA test Train Test Total
IP 4,711 4,711 339,280 84,820 433,522

ICMP 39 39 2,900 725 3,703
TCP 5,583 5,583 402,100 100,525 513,791
UDP 711 711 51,240 12,810 65,472

HTTP 308 308 22,320 5,580 28,516
DNS 561 561 40,580 10,145 51,847
SSL 201 201 14,660 3,665 18,727
SSH - - 60 15 75
FTP - - 100 25 125

4.1.2 Feature Selection

In addition to testing OS classification accuracy with every feature determined

from the protocols, we tried to reduce the number of features to be considered.

We use a GA to determine a subset of features that maintains high classification

accuracy. GA is the process of searching and testing the accuracy of a solution

among a space of solutions [103]. The idea is based on the biological mechanisms

of natural selection and reproduction. GA uses an objective (or fitness) function

to evaluate every solution it finds. This process is performed until a certain

criterion is met. In our case, the criterion was the generation of 15 consecutive

identical solutions. The fitness function to evaluate the solutions is:

Fitness = 0.80× Accuracy +

0.15×
(

1− |SelectedFeatures| − 1
|AllFeatures| − 1

)
+

0.05×
(

1− |SelectedRules| − 1
|AllRules| − 1

)

where Accuracy is a measure of the classification accuracy with the provided

machine learning algorithm.
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Different weight values for accuracy, features, and rules were tested. Since we

aim to optimize classification accuracy, we set the weight for accuracy to 80%.

We also wanted to use as few features as possible while maintaining high clas-

sification accuracy. Therefore, we set the weight for the number of features to

15%. To end up with the fewest rules or exemplars as possible, we set the weight

for the number of rules to be extracted by the classifier to 5%.

4.1.3 Rule Extraction

After selecting the features to be used, we analyzed different machine learning

algorithms to perform OS classification. We used the WEKA tool [104] for clas-

sification. We utilized a set of algorithms in the WEKA tool, namely; J48, JRip,

Ridor, PART, DecisionTable, RandomForest, NaiveBayes, and MultilayerPercep-

tron.

4.2 Experimental Results

In this section, we provide the classification accuracy of different layer 3 (i.e.,

IP and ICMP), layer 4 (i.e., TCP and UDP), and layer 5 (i.e., HTTP, DNS, SSL,

SSH, and FTP) protocols. We demonstrate classification accuracy with all the

extracted features from the protocol header and with features selected by GA.

The fitness function for the GA tries to optimize the classification accuracy with

the smallest possible number of features and number of rules. Table 4.2 shows

the number of features that initially existed in our dataset along with the number

of GA-selected features for each protocol. As seen in the table, GA was able to

decrease the number of features immensely.
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TABLE 4.2: Number of selected features

Protocol All J48 JRip Ridor PART DT RF NB MP
IP 23 5 6 4 6 4 9 3 5

ICMP 20 4 10 5 3 1 5 5 5
TCP 62 7 8 7 12 4 10 12 -
UDP 7 1 3 1 1 3 1 2 2

HTTP 17 3 5 1 7 1 2 3 7
DNS 34 1 8 1 5 5 12 3 2
SSL 31 1 10 4 4 3 2 7 11
SSH 18 - - - - - - - -
FTP 4 - - - - - - - -

The use of GA for selecting features had a significant impact on the results that

we generated. As presented in Table 4.2, the number of features that algorithms

used for the classification of operating systems (OS) are much lower than the ini-

tial number of features. It can be expected for the classification accuracy to drop

when the number of features is immensely reduced. However, GA can select

the ones that are most helpful in identifying the OSes. As shown in the follow-

ing protocol evaluations, there are even cases where the classification accuracy

improves when a GA is used.

4.2.1 IP Protocol Headers

IP protocol is among the ones that provide an acceptable amount of unique-

ness to the classification of OSes as seen in Figure 4.1. Error bars present the

min and max accuracy of the algorithm while the bars present the average of

5 evaluations. On average of all algorithms, we observe 68.0% accuracy when

all features are considered, while accuracy becomes 67.5%, on average, when a

subset of features is utilized. At its best, it has 76.2% classification accuracy with

the J48 algorithm.
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FIGURE 4.1: IP Accuracy

Table 4.3 presents IP protocol features that were selected by different machine

learning algorithms. As seen in the table, among the features extracted from

the IP protocol packets, the Checksum (checksum) feature seems to be the most

preferred feature by all of the algorithms for determining the uniqueness of dif-

ferent OSes. In general, the checksum contains distinguishing information about

packets since it contains a summary of the protocol header.

TABLE 4.3: Selected IP Features

Features J48 JRip Ridor PART DT RF NB MP Σ
checksum X X X X X X X X 8

ttl X X X X X X X 7
id X X X X X X X 7
len X X X X X 5

proto X X X 3
opt.ra X X 2

dsfield.dscp X X 2
frag_offset X X 2
dsfield.ecn X 1

flags.df X 1
opt.type X 1
hdr_len X 1

opt.type.number X 1
checksum_bad X 1

Σ (features) 5 6 4 6 4 9 3 5
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Along with checksum, the ID and TTL features are among the most selected fea-

tures by the algorithms. IP ID is the identification number of a packet, and it is

often incremented for every packet sent from the OS. As long as its values do

not overlap for packets from multiple OSes, it is expected for the feature selec-

tion algorithms to detect it as a unique feature. One of the reasons for collecting

packets from multiple devices was to eliminate such biases, but it is challenging

to eliminate them entirely.

TTL is used to prevent infinite loops on the Internet where every router decre-

ments this value until it becomes 0 or reaches its intended destination. As the

second most common differentiator, it seems OSes prefer different initial val-

ues for this feature and hence TTL becomes useful to classify OSes based on IP

protocol header information.

The fourth most important feature is the Total Length (len) feature, which con-

tains the number of 32-bit words in the header. Depending on the content’s

uniqueness in every packet, this particular feature can aid in determining the

OS from which the packet is originated.

Even though the number of features GA extracted for each algorithm differs,

Ridor seems to perform well using only the four most popular features indicated

earlier. It was even able to outperform the RandomForest algorithm using less

than half of the features RandomForest selected.

According to [11], TTL, and Total Length are among the features open-source

tools use, and we can observe their importance in our evaluations as well. How-

ever, another feature that was mentioned in this section was the Don’t Fragment

bit, but a single algorithm only selected it in our experiments.
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FIGURE 4.2: ICMP Accuracy

4.2.2 ICMP Protocol Headers

ICMP protocol does not contribute much to the classification of OSes, as seen

in Figure 4.2. On average of all algorithms, we observe 51.6% accuracy when

all features are considered, while accuracy becomes 53.3%, on average, when a

subset of features is utilized. At its best, it has 58.8% classification accuracy with

the PART algorithm on selected features.

Similar to the IP protocol, the most preferred feature by the algorithms is the

checksum, as seen in Table 4.4. However, the results for the DecisionTable al-

gorithm show us that the accuracy of 54.4% can be achieved with just the iden-

tification feature. The identifier feature for an ICMP packet provides unique

classification, above the average of all algorithms that have additional features.
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TABLE 4.4: Selected ICMP Features

Features J48 JRip Ridor PART DT RF NB MP Σ
checksum X X X X X X X 7

type X X X X X 5
mpls.s X X X X 4

checksum_bad X X X 3
ext.class X X 2
ext.ctype X X 2
ext.length X X 2

ext.res X X 2
ext.version X X 2

ident X X 2
ext X 1

ext.checksum X 1
mpls.label X 1

seq X 1
code X 1

mpls.ttl X 1
mpls.exp X 1

Σ (features) 4 10 5 3 1 5 5 5

4.2.3 TCP Protocol Headers

TCP protocol has the most distinguishing header to accurately classify OSes,

as shown in Figure 4.3. Note that, MultilayerPerceptron algorithm could not

complete its classification due to its considerably high complexity and a large

number of features and TCP packets. Hence, it is omitted in TCP analysis. On

average of all algorithms, we observe 98.4% accuracy when all features are con-

sidered, while accuracy becomes 99.1%, on average, when a subset of features

is utilized. At its best, it has 99.9% classification accuracy with the PART, Ridor,

Jrip, and J48 algorithms with both all features and selected features. Overall, we

realize that TCP is a good differentiator of OSes as it is a complex protocol with

various features that are implemented differently by OSes.

Although the number of features used by certain algorithms can reach up to

12, as seen in Table 4.5, some algorithms were able to classify at a very close

accuracy rate with fewer features. For example, the DecisionTable algorithm
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FIGURE 4.3: TCP Accuracy

was able to perform classification at a rate of 99.4% using only four features,

which is just 0.5% less than the PART algorithm, which used 12 features. The

four features extracted by the GA using the DecisionTable algorithm are; the

source or destination port (port), analysis.out_of_order, analysis.retransmission,

and copy on fragmentation (options.type.copy).

According to [11], Window size (WS), TCP Max Segment Size Option* (MSS),

TCP Window Scaling Option Flag* (WSO), TCP Selective Acknowledgments

Options Flag* (SOK), TCP NOP Option Flag* (NOP) and TCP Timestamp Op-

tion Flag* (TS) are among the features open-source tools use. In our experi-

ments, however, the Window size was selected by only the PART algorithm,

and none of the algorithms selected TCP Max Segment Size Option. As for

the TCP Window Scaling Option Flag, similar to what the tools use, four of

the algorithms extracted the (window_size_scalefactor) feature. As opposed to

TCP Selective Acknowledgments Options Flag alone, our GA implementation

selected (options.sack.count), (options.sack_le), (options.sack_perm) and (op-

tions.sack_re) features. These features were also selected by single algorithms
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TABLE 4.5: Selected TCP Features

Features J48 JRip Ridor PART DT RF NB Σ
stream X X X X X 5

options.timestamp.tsval X X X X 4
window_size_scalefactor X X X X 4

port X X X X 3
srcport X X X 3

analysis.duplicate_ack_frame X X 2
analysis.duplicate_ack_num X X 2

analysis.out_of_order X X 2
analysis.rto_frame X X 2

flags X X 2
flags.reset X X 2

option_kind X X 2
nxtseq X X 2

flags.push X 1
option_len X 1

options.wscale.multiplier X 1
options.wscale.shift X 1

pdu.size X 1
ack X 1

segment.count X 1
seq X 1

dstport X 1
flags.cwr X 1

options.type.copy X 1
analysis.retransmission X 1

window_size_value X 1
options.sack_perm X 1

analysis.zero_window X 1
analysis.bytes_in_flight X 1
options.timestamp.tsecr X 1

options.sack.count X 1
checksum_good X 1

analysis.duplicate_ack X 1
options.sack_le X 1

reassembled.length X 1
options.sack_re X 1

hdr_len X 1
Σ (features) 7 8 7 12 4 10 12

individually. Four of utilized machine learning algorithms selected the (op-

tions.timestamp.tsval) feature, and this feature has an important impact on our

results.
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FIGURE 4.4: UDP Accuracy

4.2.4 UDP Protocol Headers

UDP protocol yielded different accuracy with different machine learning algo-

rithms, as shown in Figure 4.4. On average, we observe 71.1% accuracy when

all features are considered, while accuracy becomes 68.3%, on average, when a

subset of features are utilized. At best, it has 80.0% classification accuracy with

the J48 algorithm while several algorithms have very similar results.

Overall, there are only four UDP features utilized by the algorithms, as shown

in Table 4.6, these features allow classification at a rate of around 80%. Every al-

gorithm selects the checksum feature. As indicated earlier, this is likely because

the checksum contains a summary of the entire packet. Even though certain

TABLE 4.6: Selected UDP Features

Features J48 JRip Ridor PART DT RF NB MP Σ
checksum X X X X X X X X 8

srcport X X X 3
port X X 2

dstport X 1
Σ (features) 1 3 1 1 3 1 2 2
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FIGURE 4.5: HTTP Accuracy

algorithms also selected other features, the results for J48 shows that even the

checksum alone can achieve classification accuracy similar to other algorithms

that use additional features.

4.2.5 HTTP Protocol Headers

HTTP protocol is another protocol that yielded an acceptable accuracy with

most of the machine learning algorithms, as shown in Figure 4.5. On average,

we observe 78.7% accuracy when all features are considered, while accuracy be-

comes 78.0%, on average, when a subset of features is utilized. At its best, it has

87.7% classification accuracy with the RandomForest algorithm with a subset of

features.

For the HTTP protocol, as seen in Table 4.7, (prev_request_in) feature is selected

for the majority of algorithms. This feature is the previous request in a frame

and is represented as a frame number. There are a few other features that were
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TABLE 4.7: Selected HTTP Features

Features J48 JRip Ridor PART DT RF NB MP Σ
prev_request_in X X X X X X X 7
accept_encoding X X X X X 5

cache_control X X X X 4
request.method X X X 3

response X X 2
content_length X 1

connection X 1
content_length_header X 1

accept X 1
content_type X 1
notification X 1

prev_response_in X 1
request X 1

Σ (features) 3 5 1 7 1 2 3 7

selected by most of the algorithms, namely; (accept_encoding), (cache_control)

and (request.method).

4.2.6 DNS Protocol Headers

Among the protocols analyzed in this study, DNS protocol was unsuccessful

in correctly classifying the OS of the individual packets as seen in Figure 4.6.

On average, we observe 29.2% accuracy when all features are considered, while

accuracy becomes 30.0%, on average, when a subset of features is utilized. At its

best, it has 30.9% classification accuracy with the J48 algorithm.

The GA-selected features for the DNS protocol, as seen in Table 4.8, seem to be

distributed among different machine learning algorithms. This inconsistent be-

havior is reflected in the poor classification results in Figure 4.6. GA was unable

to find very distinguishing features, and therefore for each algorithm, selected

features do not necessarily have a pattern. J48 and Ridor algorithms reached

average accuracy by using only a single feature which is the (flags.truncated)
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FIGURE 4.6: DNS Accuracy

and (flags.rcode) fields, respectively. Hence, while the DNS header is not suffi-

ciently promising to be used by itself, certain features of the header can be used

TABLE 4.8: Selected DNS Features

Features J48 JRip Ridor PART DT RF NB MP Σ
soa.retry_interval X X X X 4

count.answers X X X 3
resp.cache_flush X X X 3

soa.serial_number X X X 3
flags.checkdisable X X 2

resp.len X X 2
flags.truncated X X 2

flags.conflict X X 2
flags.recdesired X X 2

qry.type X X 2
count.auth_rr X 1

flags X 1
flags.authoritative X 1

resp.class X 1
soa.expire_limit X 1

flags.opcode X 1
flags.recavail X 1

flags.authenticated X 1
resp.ttl X 1

flags.rcode X 1
qry.class X 1

soa.refresh_interval X 1
Σ (features) 1 8 1 5 5 12 3 2
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FIGURE 4.7: SSL Accuracy

to determine the OS of packets.

4.2.7 SSL Protocol Headers

On average, SSL protocol classification results were even lower than the DNS

protocol, as shown in Figure 4.7. The average accuracy over all algorithms is

25.0% when all features are considered and becomes 25.3% when a subset of

features are utilized. At best, it has 28.5% classification accuracy with the J48

algorithm.

Feature selection among different algorithms are also scattered around, and

there is no consistency among algorithms for the features, as shown in Table 4.9.

Only Cipher Suites Length (handshake.cipher_suites_length) is used by half of

the algorithms for classification while Server Name length

(handshake.extensions_server_name_len) gives close to the average accuracy by

itself under the J48 algorithm.
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TABLE 4.9: Selected SSL Features

Features J48 JRip Ridor PART DT RF NB MP Σ
handshake.cipher_suites_length X X X X 4

handshake.extensions_server_name_len X X X 3
handshake.session_id_length X X X 3

handshake.ciphersuite X X X 3
handshake.extension.len X X X 3

change_cipher_spec X X 2
handshake.length X X 2

record X X 2
handshake X X 2

handshake.extension.type X X 2
handshake.extensions_elliptic_curves X X 2

record.version X X 2
record.content_type X X 2

record.length X X 2
alert_message.desc X 1
alert_message.level X 1

handshake.extensions_elliptic_curves_length X 1
handshake.type X 1

handshake.ciphersuites X 1
handshake.extensions_ec_point_format X 1

handshake.extensions_ec_point_formats_length X 1
handshake.extensions_length X 1

Σ (features) 1 10 4 4 3 2 7 11

4.2.8 SSH Protocol Headers

SSH protocol is the second least successful in the classification of the OSes from

the packet header, as shown in Figure 4.8. On average, over all algorithms, we

were able to correctly identify the OS of 22.5% of SSH packets. The reason for

such low accuracy maybe because most of the packets’ header information was

identical, which yielded very few unique packets to train the machine learn-

ing algorithms. We did not select features with the GA because an insufficient

amount of packets remained.
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FIGURE 4.9: FTP Accuracy

4.2.9 FTP Protocol Headers

FTP protocol is the worst protocol header for the classification of the OSes as

shown in Figure 4.9. On average, over all algorithms, we were able to correctly

identify the OS of 14.0% of FTP packets. Similarly to SSH, we did not select

features with GA due to an insufficient amount of packets remaining.
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4.2.10 Discussion

In this section, we presented the contribution level of popular protocols to clas-

sify the operating system (OS) of hosts from which the packets originated. We

also presented how well certain machine learning algorithms performed for the

operating system classification from TCP/IP protocol headers. By using ge-

netic algorithm (GA) to select most distinguishing features, we demonstrated

the amount of contribution that the selected features have in affecting the classi-

fication performance while reducing computation overhead in classifying OSes.

Since classification was performed individually on the packets, results obtained

are not bound to restrictions such as classification of certain packet types only

(e.g. SYN packets in TCP). Overall, with IP, ICMP, TCP, UDP, HTTP, DNS, SSL,

SSH, and FTP, protocol header information, on average, operating systems of

68.0%, 51.6%, 98.4%, 71.1%, 78.7%, 29.2%, 25.0%, 22.5%, and 14.0%, respectively,

packets were correctly classified. Among analyzed protocols, TCP provided the

best overall performance with all algorithms that completed analysis of TCP

headers and we obtained close to perfect classification with all but one algo-

rithm.
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Chapter 5

Operating System Fingerprinting via

Automated Network Traffic Analysis

In this section, we present improvements to our operating system (OS) classifi-

cation approach. Our approach has several unique features.

First, we generate our own set of signatures to perform OS classification on

newly seen packets and do not depend on other fingerprinting tools or their

databases.

Second, unlike other approaches to passive OS fingerprinting that manually se-

lect “useful” features like TTL, window size, and de-fragmentation flag, we have

no bias. The genetic algorithm (GA) generates the set of most useful features

based on the data collected and the specific bias of the machine learning ap-

proach used.

Third, existing tools such as p0f, ettercap and siphon seek a perfect exemplar

data match when classifying a packet [11], [23]. However, a non-perfect match

can occur in some cases. Rather than discarding such packets, the machine learn-

ing algorithms that we utilize learn to classify them.
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Fourth, the advantage of using machine learning techniques rather than depend-

ing on expert signatures is that we can dynamically adapt our generated mod-

els to different OSes and other dynamic environmental changes. By providing

training data from the newly introduced OSes, we can automatically re-generate

our classifier system’s set of signatures to include these new OSes. When newly

created proxy firewalls tamper with packet header information [11], our ap-

proach can learn to adapt.

Fifth, many passive fingerprinting tools such as p0f, ettercap, and siphon depend

on specific packet types such as SYN, ACK, or SYN-ACK [11]. Unlike systems

with such strong constraints, we can perform classification on any packet. We

also do not depend on specific network protocol packets for performing OS clas-

sification. Any TCP/IP header protocols can be used for performing OS classifi-

cation using our approach. In [14], we presented the protocols which contribute

the most for performing OS classification.

Finally, tools such as SinFP, Nmap, and p0f usually have a preset number of fea-

tures that they use to generate their signatures for OSes. A high preset number

has the potential to increase the number of redundant features that do not neces-

sarily contribute to the classification. The second-generation Nmap’s database

contains 4,766 signatures where 17% of these belong to different varieties of

Linux and introduce much redundancy [22]. A low preset number may lose

critical features and degrade accuracy. With our approach, the GA evolves the

number of features based on a fitness function that moves towards high clas-

sification accuracy and small feature subset size. The provided data and the

machine learning algorithm determine feature selection and signature size re-

ducing administrator burden.
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5.1 Methodology

The presented approach is an entirely automated machine learning-dependant

approach for classifying OSes using TCP/IP packets. We use genetic algorithm

(GA) feature subset selection to determine relevant packet header features for

learning to classify operating systems (OS). To the best of our knowledge, our

approach is the first to use GA for feature subset selection in OS fingerprint-

ing. In this section, we investigate classification accuracy using TCP, IP, and

UDP packets and extract features from these packet headers. Broadly speaking,

each member of the GA specifies the set of features to use for classification. The

fitness of this individual is obtained by running a classifier with the individual-

specified feature set on training data and using the accuracy obtained on a test

set as the fitness. We describe the process in more detail below.

5.1.1 Data Collection

We set up and used a local network consisting of three PCs, three Macs, and

three Raspberry Pis. To eliminate hardware bias, we collected packets from

three instances of each OS on each hardware platform. Each instance, on av-

erage, contains around 79K packets from a single machine for every protocol

and OS. We used Raspberry OS, Xubuntu 14.04, Windows 7, Windows 8, Mac

OS X El Capitan, and Mac OS X Lion. As shown in Figure 5.1, we dedicated two

instances for each OS for training and validation, and the third for testing.

We generated the data from these machines by visiting the top 10 websites men-

tioned on Alexa (http://www.alexa.com/topsites).
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These websites were;

http://www.google.com, http://www.youtube.com,

http://www.facebook.com, http://www.baidu.com,

http://www.yahoo.com, http://www.amazon.com,

http://www.wikipedia.org, http://www.twitter.com,

http://www.google.co.in and http://www.qq.com.

We also collected 30-second Youtube video streaming packets from every OS

on every device. To generate FTP and SSH protocol packets, we connected to

GoDaddy and CSE UNR’s servers (our department) and uploaded files to these

servers. To generate ICMP packets, we used the traceroute application to connect

to these top 10 websites mentioned above. We also performed ping tests on the

top 10 websites. However, since Amazon servers did not allow ping tests, we

used the 11th website on Alexa’s website list, www.live.com. We also performed

30-second Skype calls and sent e-mail, and received e-mail from these OSes.

Our setup enabled us to collect IP, ICMP, UDP, DNS, HTTP, IGMP, TCP, FTP,

SSH, and SSL protocol header packets. Our prior work has shown that IP, TCP,

and UDP are among the best protocols for OS fingerprinting [14]. In this study,

we classify OSes using these protocols’ header fields. The data collected is stored

in two pcap (a specific format for storing network data) files for each OS for
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training and one pcap file for testing. We extract all possible features for every

packet in the pcap files. These features are saved to files and converted to arff

format to make them compatible with the WEKA tool [104]. We then run a GA

for selecting relevant features.

5.1.2 Feature Selection

We use two instances of each OS for selecting features using GA. For maximum

classification accuracy, the fitness function used by our GA implementation is

Fitness =
n
∑

i=1
Accuracyi where n is the number of instances of OSes, Accuracy

is the classification accuracy with the provided machine learning algorithm.

For every chromosome that the GA wants to evaluate, an arff file for two out

of the three OS instances is created containing the GA specified features. Let us

call the first instance I1 and the second I2. Weka builds a classifier by training

on I1 and testing on I2. We then train on I2 and test on I1. Fitness is the sum

of testing the accuracy of the two combinations. The results presented in this

section are based on a single GA evolutionary process. However, we observed

the consistency in our results when we ran it multiple times.

The GA converges when we have five consecutive generations with no improve-

ment in classification accuracy. Although we investigated other termination cri-

teria, our strategy works well in practice.

We use a population size of 50 for the GA and simple binary encoding for the

chromosome. Each bit represents a feature; 1 means that the feature is selected

and 0 that it is not. The GA we used implements Elitism selection. Initially, the
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best individual is saved for the next population. For each of the remaining indi-

viduals in the population, two sets of 5 randomly selected individuals are cho-

sen, and the best ones among the two sets are selected for performing crossover.

Uniform crossover is used where bits are randomly exchanged between two in-

dividuals. The resulting individual is saved for the next population. Then each

of the newly generated individuals is looped over and mutated. For mutation,

each bit other than the best one is inverted with a probability. The mutation rate

is 0.015, and the crossover rate is 0.5.

5.1.3 OS Classification

We use the machine learning algorithms in the WEKA tool [104] for OS classi-

fication, and in this section, we provide the classification accuracy for J48, Ran-

domForest, OneR, and ZeroR algorithms. We generated four separate classifiers

in a two-level hierarchy, as shown in Figure 5.2. The first classifier learns to clas-

sify the OS genre: Linux, Windows, or Mac OS. Once we know a packet’s OS

genre, the packet is passed on to one of three next level classifiers. The three

two-level classifiers, one for each OS genre, learn to detect the OS version as-

suming that the packet belongs to a specific OS genre. If the classifier in the first

layer classifies a packet as Mac OS, then it is sent to the Mac OS classifier in layer

two to find out if it is Mac OS X El Capitan or Mac OS X Lion. This architecture
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improves classification accuracy since different protocols, and different machine

learning algorithms perform better than others for possible packet origin scenar-

ios.

5.2 Experimental Results

As mentioned in Sections 5.1.1 and 5.1.2, we dedicated three pcap files to each

operating system (OS) for training, validating and testing our approach’s accu-

racy. We used two of the pcap files to validate and train the machine learning

models. Validation is the process of determining relevant features using genetic

algorithm (GA), where we used one of two pcap files to train and the other to

test the classification accuracy with the GA selected subset of features. After

determining relevant features, we merged both of the pcap files used for valida-

tion into a single pcap file. We then used the merged file to train the machine

learning model with the selected subset of features and then tested with the re-

maining third pcap file, which is only used to test the overall accuracy. Since we

have three pcap files, there are three possible different combinations of selecting

among these pcap files (e.g., pcap 1 & 2 for training, pcap 3 for testing; pcap 1 &

3 for training, pcap 2 for testing; and pcap 2 & 3 for training, pcap 1 for testing).

We applied our approach for all three possible combinations and recorded the

average accuracy. The results presented in this section are averages of all three

combinations.

In this section, we present the results for the optimum accuracy for each of the

classifiers shown in Figure 5.2. The optimum case is the highest classification

accuracy of the classifiers with the data at hand. Since there are two levels of

classifiers, the optimum case is when the second layer classifiers receive packets



68

IP
TC
P

U
D
P

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

OneR

ZeroR

RF

J48

without GA with GA

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

OneR

ZeroR

RF

J48

without GA with GA

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

OneR

ZeroR

RF

J48

without GA with GA

FIGURE 5.3: Classification accuracy of IP, TCP and UDP protocols
for OS genre

from the first layer that belong to the OSes that the classifiers in the second layer

classify with 100% confidence.

5.2.1 OS Genre Results

For the classifier in the first layer, we merged packets that belong to the same

genre of OSes. After merging, the data contains packets that belong to three



69

classes: Linux, Mac OS, and Windows. Figure 5.3 shows the classification ac-

curacy of the genre classifier for IP, TCP, and UDP protocols, respectively. IP

packets generally give good results. Both J48 and RandomForest generate classi-

fication accuracy greater than 80%. However, we observed the highest accuracy

when TCP packets were used. J48, along with GA feature selection, was able to

generate the highest accuracy at the rate of 86%. Even though it was not as high

as J48, RandomForest was able to generate good accuracy at 84%. UDP, however,

was not as useful as the other two protocols. The highest accuracy was at 66%

with J48 using GA feature subset selection. The GA was able to select features

that significantly helped the classification accuracy in many cases. For IP, classi-

fication accuracy with GA selected features was either equal to or very close to

the classification accuracy using all features. For TCP, when the J48 algorithm

was used, the accuracy without GA feature selection was at 69% and with GA

was at 86%. When the OneR algorithm was used, the accuracy increased to 76%

from 35% using the GA feature selection. For UDP, GA selected features helped

improve the accuracy of J48, RandomForest, and OneR compared to accuracy

using all features.

5.2.2 Linux OS Results

Figure 5.4 shows the classification accuracy for Linux. For IP, features selected

by the GA appear to generate better results than the full set. For three of the

algorithms used, the GA selected feature set provides a similar classification ac-

curacy of 76%. We observed the highest accuracy with the OneR algorithm at

76.3%. For TCP, except for the Random Forest algorithm, the rest were able to

perform better when GA is used. However, the OneR algorithm results far sur-

pass the others at a rate of 95.3%, which is also the highest classification accuracy
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FIGURE 5.4: Classification accuracy of IP, TCP and UDP protocols
of Linux versions

among all three protocols. For UDP, the GA in most cases was unable to select

subsets of features that perform better than the full set except for with J48. We

observed the highest accuracy again by J48 at 75%. Since the highest accuracy

was achieved by the TCP protocol with OneR, as listed in Table 5.5, TCP along

with OneR were set to be used to perform classification for Linux OSes. For IP

packets, the GA was able to increase classification accuracy from 51% to 76% for

J48, from 64% to 76%, for RandomForest, and from 51% to 76% for OneR. For



71

TCP, the GA was able to perform the best with the OneR where the accuracy

was increased from 58% to 95%, which yielded the best accuracy for classify-

ing Linux OSes. Since the UDP protocol does not significantly contribute to OS

classification, GA was unable to find the optimal subsets for RandomForest and

OneR algorithms. However, GA for the J48 algorithm was still able to increase

the accuracy from 72% to 75%.

5.2.3 Mac OS Results

Figure 5.5 shows the classification accuracy for Mac OS. IP packets do not appear

to contain features usable by our machine learners to achieve good accuracy.

Deviation levels, as shown in the figures, are high for almost all the algorithms

indicating that IP packets may not be able to classify Mac OS versions reliably.

The deviation levels for TCP packet data are also high when all the features are

used. However, with the help of GA feature selection, deviation levels decrease

considerably, especially for J48. J48 is also the best performing algorithm for TCP

protocol at a rate of 96%. OneR also gives as nice results as J48 at a rate of 95%.

Even though UDP packet data gives better results than IP, accuracy is still low

compared to TCP. The highest rate achieved was 55%, which is much worse than

what TCP provides. Therefore, for Mac OS classification, we used TCP along

with J48. It is also important to note that according to p0f v3 signatures [23],

p0f can identify Mac OS versions when they are either 10.x or 10.9. Mac OS

X Lion is version 10.7, and Mac OS X El Capitan is version 10.11. According

to these signatures, p0f cannot distinguish between Mac OS X Lion and Mac

OS X El Capitan where for the first signature both of these algorithms fall into

the same category, and in the second, only Mac OS X El Capitan falls into the

category. However, our approach can distinguish between these two versions at
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FIGURE 5.5: Classification accuracy of IP, TCP and UDP protocols
for Mac OS versions

a rate of 96%. GA was able to increase the classification in all algorithms for TCP

protocol packets. Specifically, GA feature selection was able to increase accuracy

from 67% to 96% for J48, 86% to 92% for RandomForest and 63% to 95% for OneR

algorithm. It should also be noted that when GA is used, the deviation levels

decrease significantly, which yields more reliable results. GA was also able to

increase the classification accuracy for UDP protocol packets.
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FIGURE 5.6: Classification accuracy of IP, TCP and UDP protocols
for Windows versions

5.2.4 Windows OS Results

Figure 5.6 shows the classification accuracy for Windows OS. As the results indi-

cate, the classification accuracy of distinguishing between Windows 7 and Win-

dows 8 are almost 50%, which suggests that the behaviors of these two versions

of OSes are very alike. p0f’s signature database also has a single label for clas-

sifying these two versions of Windows OSes, which indicates that the network
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libraries of these Windows versions have no distinguishing feature. Due to this

similarity, we merged Windows 7 and Windows 8 packets and considered them

to be Windows. However, if different versions of Windows OSes with distin-

guishable behaviors were included, our approach could be used to specify them

further.

In J48, the lowest entropy features contribute the most to the classification accu-

racy since they provide the most information gain. The lowest entropy feature

selected by the J48 algorithm for classifying the OS genres was related to the

TCP window size, which is consistent with the signatures of p0f as well. In

p0f’s signatures, the first term of the signatures is the window size. As it is

known, the OneR algorithm tries to find a single rule to perform classification.

The only rule selected by the OneR algorithm for classifying Linux OSes is also

the window size. Similarly, the lowest entropy feature selected by the J48 algo-

rithm for classifying Mac OSes is related to the TCP window size, which shows

that our approach can detect features that are known to aid in classifying OSes.

However, more specific features are selected further down the process in order

to better learn the differences in OS behaviors.

5.2.5 Feature Subset Selection

Tables 5.1, 5.2, 5.3 and 5.4 present the number of features that GA selected for

each protocol for OS genre, Linux, Mac OS and Windows respectively. Although

we have not specified the weight for reducing the number of features in our fit-

ness function, GA was still able to select smaller subsets for each scenario, which

shows that there exist many features that either contribute little or nothing to OS

classification.
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TABLE 5.1: Number of selected features for OS identification

Classifier Protocol Algorithm GA ALL

OS

IP
J48 10

17RF 8
OneR 9

TCP
J48 28

61RF 29
OneR 27

UDP
J48 5

7RF 4
OneR 3

TABLE 5.2: Number of selected features for Linux version identifi-
cation

Classifier Protocol Algorithm GA ALL

Linux

IP
J48 6

16RF 8
OneR 7

TCP
J48 27

59RF 24
OneR 26

UDP
J48 3

7RF 3
OneR 3

TABLE 5.3: Number of selected features for Mac OS version iden-
tification

Classifier Protocol Algorithm GA ALL

Mac OS

IP
J48 11

17RF 8
OneR 9

TCP
J48 25

59RF 33
OneR 26

UDP
J48 4

7RF 3
OneR 3
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TABLE 5.4: Number of selected features for Windows version iden-
tification

Classifier Protocol Algorithm GA ALL

Windows

IP
J48 7

17RF 8
OneR 5

TCP
J48 23

59RF 27
OneR 29

UDP
J48 1

7RF 1
OneR 2

After comparing the classification accuracy of different protocols with different

algorithms for each classifier, we selected the ones that yield the highest classifi-

cation accuracy. We present the protocols and algorithms each classifier uses in

Table 5.5.

We believe the reason behind certain algorithms performing better than the oth-

ers is due to both the inbuilt biases within each machine learning algorithm and

the selection of features. For example, for the Linux OS classification, the GA

selected a single feature for OneR, the TCP window size, while the GA selected

multiple features for J48 along with the TCP window size. Although features

other than TCP window size might yield better results during training, it may

not necessarily yield better results during testing.

TABLE 5.5: Classifier settings

Classifier Protocol Algorithm # of features Accuracy
OS TCP J48 28/61 85.9%

Linux TCP OneR 26/59 95.3%
Mac OS TCP J48 25/59 95.8%
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5.2.6 Discussion

We developed a genetic algorithm (GA) feature selection mechanism for ma-

chine learning for Operating System (OS) fingerprinting. With this approach,

we can perform single-packet OS classification with high classification accuracy.

The GA is able to find smaller and thus more efficient sets of features to per-

form OS classification. Unlike expert signature generation for OS classification,

our machine learning algorithms can automatically and dynamically generate

classification signatures. The fact that we use GA feature selection for machine

learning algorithms to generate classifiers, allows us to dynamically adapt our

approach to different OSes without expert input and unlike many available ap-

proaches to OS fingerprinting, we do not depend on specific types of packets to

perform classification. Our results show that GA feature subset selection was

able to increase OS classification performances significantly for OS genre classi-

fication for Linux and Macs. We were able to increase the overall classification

performance from 69% to 86% for the OS genre, 58% to 95% for the Linux OSes

and 58% to 95% for the Mac OSes. These results were achieved with much fewer

features than the initial set of features.
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Chapter 6

Operating System Identification

using Network Packet Headers

In this study, we present the Operating System IDentifier (OSID) tool, which em-

ploys machine learning and feature selection to build an automated OS classifier

using TCP/IP headers on packets passively collected from host devices [105]. In

particular, OSID analyzes TCP/IP protocol headers of IP and ICMP at the net-

work layer, TCP and UDP at the transport layer, and HTTP, DNS, and SSL at the

application layer. Note that OSID may work with any protocol suite as it is a

self-learning approach that is agnostic to any particular protocol.

OSID employs a genetic algorithm (GA) to analyze the contribution of each

packet header information and selects relevant header features for OS identi-

fication. GA considers each of the protocols independently or in an aggregated

manner (e.g., IP+ICMP, IP+UDP+DNS, IP+TCP+SSL, and IP+TCP+HTTP). GA

allows OSID to perform OS identification with fewer features at a higher classifi-

cation accuracy. Feature selection can increase the identification accuracy by pri-

oritizing the most contributing features and also by eliminating features which
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might introduce noise [56]. Also, having a fewer number of features to ana-

lyze reduces the computational overhead of OS identification. OSID employs

several machine learning algorithms (e.g., DecisionTable, J48, Artificial Neural

Networks, and PART) to perform OS identification using selected packet header

features and determines the best algorithm for each classification phase [14].

OSID can detect OS signatures without any expert knowledge and automati-

cally adapt to any new OS or protocol suite.

We analyzed the accuracy of single-packet OS identification to analyze the con-

tributions of specific protocols. We also used several machine learning algo-

rithms to analyze their classification accuracy. Based on our previous work [14],

we observed that several algorithms have higher accuracy when classifying OSes.

These algorithms are J48, OneR, DecisionTable, and PART.

OSID can detect OS-genres and Linux versions with over 99% accuracy using

ICMP protocol packets. Similarly, Linux distros are classified by ICMP proto-

col with 98% accuracy. Mac OS versions are detected with over 98% accuracy

using SSL packets. Note that neither of the existing similar tools can determine

Windows versions, and OSID’s results are not much better than random clas-

sification. Moreover, OSID is also able to reduce the number of features by

eliminating those which do not contribute to the classification. Feature selec-

tion provides the ability to achieve faster classification and to build more gen-

eral machine learning models. We also compared our results to p0f, one of the

most prominent passive OS identification tools. Although p0f can classify the

OS-genres of packets with as high accuracy as our results, we observed that it is

not as consistent when classifying distros and versions of OSes.

Unlike many of the available tools, OSID does not focus on specific features

such as; TTL, Window size, etc. as it detects useful features by analyzing the
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data using GA. Lack of expert input allows OSID to adapt itself to potential

changes in OS implementations. It can also automatically learn new OSes by

merely training with the data from OSes. Although OSID performs better with

packets belonging to specific protocols, OSID is not restricted to be used with

particular types of protocols such as the SYN packets, which is relied on by the

popular passive analysis tool p0f. OSID is also flexible in terms of the number of

features to be used for performing classification. With the help of GA, it detects

whether it can perform classification with a high accuracy using a fewer number

of features.

6.1 OSID: Operating System Identifier

This section presents Operating System Identifier (OSID), an entirely automated

machine learning system for classifying OSes from network packets. OSID em-

ploys a genetic algorithm (GA) for determining relevant features of TCP/IP pro-

tocol headers. To the best of our knowledge, OSID is the first to use a GA for

automated protocol feature selection in performing OS identification. Addition-

ally, OSID uses machine learning algorithms to generate a set of signatures based

on the selected features. For the fitness function implementation of GA, OSID

employs the wrapper method of feature selection approach where the fitness

function is determined by the accuracy that the feature combinations generated

with the machine learning algorithm itself. After determining which features to

use, machine learning algorithms generate a model for the classification of novel

TCP/IP packets. OSID tests various machine learning algorithms to determine

which algorithm generates the best results for OS identification at each level.
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6.1.1 Data Initialization

OSID is initially provided with the protocol header format so that it can parse

TCP/IP protocol header values from pcap network capture files. It eliminates

features that only contain null values. Certain classifiers in WEKA tool [104]

only work with numerical or ordinal features and not textual features. There-

fore, we excluded character string features such as HTTP Accept request-header

field and HTTP cookie to be able to use the WEKA tool for performing OS iden-

tification. Upon deciding which features to use, OSID extracts these features

from every packet and converts to arff format to make them compatible with

the WEKA tool. OSID then runs a GA for selecting relevant features as detailed

below.

6.1.2 Feature Selection

To reduce the computational complexity while keeping the classification accu-

racy as high as possible, OSID performs feature selection using a GA. Genetic

algorithms (GA) search space of solutions while testing the performance of can-

didate solutions [103]. They are based on the biological mechanisms of natural

selection and reproduction. GAs utilize a fitness function to evaluate the gain

that a particular solution yields.

GAs start with a specific number of populations where each population con-

tains a set of chromosomes (i.e., 0’s and 1’s). In the experiments, we set the

population size to 50, the default value in GA applications. This number can be

changed depending on the need for accuracy or speed. The GA initially gener-

ates a population of 50 chromosomes where each chromosome contains 0’s and

1’s, as many as the number of features in the dataset. If a particular bit in the



82

chromosome contains 0, it indicates that the corresponding feature is to be ig-

nored, and if it contains 1, then it is to be considered in the signature generation.

At the initial phase, the chromosomes are assigned random values. In each it-

eration, GA determines the chromosome(s) that yield the highest accuracy and

updates the population. This process is repeated at every iteration until a cer-

tain criterion is met. In OSID, the criteria are determined to be the generation of

n consecutive iterations that yield the same highest accuracy. The best result is

then selected as the optimal solution.

To calculate each chromosome’s accuracy, OSID runs the machine learning al-

gorithm with the selected features in the chromosome. The fitness function in-

dicates how well the chromosome performs. The fitness function considers not

only the machine learning classification accuracy with the selected features but

also the number of features selected. OSID selects a minimal subset of features,

while the identification accuracy is as high as possible. The fitness function is

formulated as:

Fitness = w1 × Accuracy +

w2 ×
(

1− |SelectedFeatures| − 1
|AllFeatures| − 1

)

where Accuracy is the classification accuracy with the selected features and the

provided machine learning algorithm, w1 is the weight for the accuracy and w2

is the weight for the feature reduction. Note that Accuracy is formulated as the

proportion of true positives, and true negative in all evaluated cases. We have

set the w1 weight for accuracy to 0.95 and w2 weight for feature reduction to

0.05. This balance gives a higher preference for accuracy than the minimization

of the number of features.
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OSID utilizes two data sets for training and validation of GA. Figure 6.1 shows

the use of the two data files for training and validation of the GA-selected fea-

tures. For every chromosome whose contribution GA wants to evaluate, arff

files contain only the features specified in the currently processed chromosome,

called Train1 and Train2. A classifier is built by training with the Train1 data

file using the specified machine learning algorithm and is then validated on the

Train2 data file. The same process is applied where the classifier is trained with

the Train2 file and then validated on the Train1 file. The average of the accu-

racy of both identifications is taken as the Accuracy in the fitness function. The

number of selected features is then calculated for the second term of the fitness

function. A GA uses the fitness function for every chromosome to converge to a

solution ensuring as high identification accuracy as possible while using as few

features as possible.
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Since the fitness function might not always yield a 100% accuracy, a termina-

tion criterion needs to be set to decide when to end GA execution. If the last n

solutions of the iterations are the same, then the system terminates the feature

selection process with the current best solution as the final solution. If the n pa-

rameter is set to a small number, the system could terminate with local optima.

However, if the parameter is set to a large number, the GA can loop redundantly

without any improvement. In this study, we have set n = 15, which yielded

good performance. After determining the relevant features, OSID performs OS

identification using machine learning algorithms, as detailed below.

6.1.3 OS Identification

OSID provides flexibility to choose among several machine learning algorithms

to perform OS identification. In this study, we used the machine learning algo-

rithms implemented in the WEKA tool [104] for classification. In the experimen-

tal results, we demonstrate that DecisionTable, J48, PART, and Artificial Neural

Network algorithms generate better results with certain classification levels.

We generated four classifiers in two levels to perform OS identification, as shown

in Figure 6.2. The first layer contains a single classifier that tries to tell which OS

family the input packets belong to (i.e., Linux, Windows or Mac OS). The second
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layer contains three classifiers, one for each OS family. After the first layer, the

classifier determines the OS family of the packet, then the corresponding clas-

sifier in the second layer identifies the specific version of the OS. For instance,

if the first classifier identifies a packet as coming from a Mac system, then it is

sent to the Mac OS classifier in the second layer to find out if it is El Capitan or

Lion. Having four separate classifiers in two layers allows OSID to select differ-

ent algorithms and set of features for each classifier. This approach considerably

improves the overall accuracy as compared to a single classifier, as analyzed in

our preliminary study [27].

We performed the feature selection and identification processes for each of these

classifiers to achieve the best set of features along with the best machine learning

algorithm for each of these classifiers. We observed that different classifiers tend

to perform better with each of the classifiers. Therefore, OSID generates a model

for each of the classifiers using different machine learning algorithms, which

gives OSID the flexibility to perform OS identification where the system adapts

itself not only with selecting the most discriminative features in the OS versions

but also with selecting different machine learning algorithms that obtain the best

identification accuracy for each OS-genre.

6.2 Experimental Results

In this section, we present the accuracy of OSID over a sample data set with

three OS families.
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6.2.1 Data Collection

We obtained network packet captures from three different devices for each of the

Mac OS X versions of El Capitan and Lion; Linux versions of Xubuntu 14.04 and

Raspberry Pi 3b; and Windows versions of 7, 8 and 10. To avoid any network

interface card (NIC) dependent behavior, each PC was equipped with a different

NIC (except for Raspberry Pis hosting the Broadcom 5720).

To obtain uniform network traffic from each of the systems, we performed the

same set of activity after the new initialization of each OS. We visited the top

10 websites listed on the Alexa http://www.alexa.com/topsites. These

websites were;

http://www.google.com, http://www.youtube.com,

http://www.facebook.com, http://www.baidu.com,

http://www.yahoo.com, http://www.amazon.com,

http://www.wikipedia.org, http://www.twitter.com,

http://www.qq.com and http://www.live.com.

We also pinged each of these servers and performed a traceroute to them. We also

initiated 30 seconds of Skype calls and streamed 30 seconds of YouTube video

from each OS. Finally, we sent and received e-mails to web-based university

e-mail servers from these OSes.

We utilized layer 3 and higher layer’s protocol headers (i.e., network, transport,

and application layers) in the OS identification. We ignored link-layer headers

as they change at each hop and would not reflect the source system’s network

characteristics unless it was obtained in the first hop.

We dedicated three pcap files from each OS for training, validating, and testing

the OSID system’s accuracy. Each pair of datasets were used to validate and
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train the system. Validation is the process of determining relevant features us-

ing a genetic algorithm (GA) where we used one dataset to train and the other

to test the identification accuracy of the GA-selected features. After determin-

ing important features, we merged both of the datasets used for validation into

a single input file. The merged file is then used to train the system with the

selected subset of features, and the system is tested with the remaining third

dataset, which is only used to test the overall system accuracy. Since we have

three datasets, there are three possible different combinations of selecting these

datasets to run the OSID system. We performed identification with each of the

three possible combinations and recorded their accuracy. The results presented

in the text are typically the averages of these three batches.

Additionally, since a GA initially randomizes the chromosomes, it can find dif-

ferent results at every run. Therefore, we made sure to run every test ten times

and recorded the results. The results presented in Sub-sections 6.2.2 and 6.2.3

are the averages of these 10 runs. However, in Sub-section 6.2.4, the best of the

results within these ten runs are used to obtain the best accuracy. In addition to

performing OS identification using GA-selected features, we also ran the OSID

system using every feature that existed in every protocol to be able to compare

results without any selection.

6.2.2 Individual Protocol Classification Results

First, we analyzed the contribution of every protocol to the identification of

OSes. We analyzed IP and ICMP protocols at the network layer; TCP and UDP

at the transport layer; and HTTP, DNS, and SSL at the application layer. We
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FIGURE 6.3: IP Performance

perform each analysis with and without GA using each of the machine learn-

ing algorithms. As GA initially randomizes the bits in the chromosomes, we

performed ten experiments with a GA and provided the min-max and the aver-

age results. For each classifier, different protocols can yield better identification

rates. Hence, OSID selects the best performing machine learning algorithm for

every classifier, which assures the highest identification accuracy at every step of

the OS identification. Note that as there are three OS families, the purely random

classification would yield a 33% accuracy. Similarly, there are three Windows

versions but two Mac OS and Linux versions.

For IP protocol, there were 17 features in total. On average, GA was able to

reduce the number of features selected to an average of 1 to 2 features. Fig-

ure 6.3 presents OS identification accuracy using IP protocol alone. Note that

each marker indicates the results for each of the datasets as the test data. We

observed that for OS-genre detection, an average accuracy of 76% is obtained

using GA selected features, and 81% accuracy is obtained using all IP protocol

fields with the PART algorithm. We also observed that the next highest accuracy

achieved using IP protocol headers is with the identification of Linux distros
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TABLE 6.1: Selected IP Features

Features OS Linux Mac OS Windows
ip.checksum.status X X

ip.dsfield X X X X
ip.dsfield.dscp X X X X
ip.dsfield.ecn X X X

ip.flags X X X X
ip.flags.df X X X X
ip.flags.mf X X
ip.flags.rb X X

ip.frag_offset X X
ip.hdr_len X X X X

ip.len X X X X
ip.proto X X X X

ip.ttl X X X X
ip.version X

Σ (features) 14 8 9 13

at an average of 72% with GA using the PART algorithm and 74% with all the

fields using Artificial Neural Network (ANN). However, the IP protocol is not

able to distinguish Mac OS versions or Windows versions with high accuracy.

While certain protocols can distinguish Mac OS versions, none of the analyzed

protocols could distinguish Windows versions 7, 8, and 10 at high rates due to

the similarity in their behavior.

Additionally, Table 6.1 tabulates IP fields selected for classification. Header

fields such as the Time-to-live (ip.ttl), Header length (ip.hdr_len), and Explicit

Congestion Notification (ip.dsfield.ecn) are among the GA-selected header fields.

The time-to-live field is used to determine the maximum number of hops a

packet can be traversed on the Internet before being dropped. The initial value

set by OSes for this parameter varies [17], [25], [106], [107], and many OS iden-

tification tools rely on it. Some OSes use different values for different protocols
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FIGURE 6.4: ICMP Performance

as well. For example, BSD distros use 64 in TCP and 255 in ICMP. We also ob-

served that the header size has a significant contribution in distinguishing OSes,

and OSID was able to capture these differences.

ICMP protocol had 13 features in the header fields. It is the best of the analyzed

protocols in classifying OS-genres and Linux distros as seen in Figure 6.4. ICMP

header fields help classify OS-genres at an average accuracy of 99% using GA-

selected features and the DecisionTable algorithm. When all of the features are

used, ANN was able to classify the packets at an accuracy of 97%. ICMP pro-

tocol header fields help detect particular Linux distros with high accuracy in all

but one test dataset with the majority of experiments. OSID was able to detect

Linux versions at an accuracy of 99% using GA selected features and the J48 al-

gorithm. The average accuracy when all of the features are used was 82% using

the DecisionTable or ANN algorithms, which shows that GA was able to find a

smaller subset of features while increasing the identification accuracy consider-

ably. OSID achieved an average accuracy of 84% when all of the features or a

subset of the features were used for detecting the Mac OS versions. Windows

OS versions were identified with an accuracy of 52%. While this is better than
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TABLE 6.2: Selected ICMP Features

Features OS Linux Mac OS Windows
icmp.checksum X X X

icmp.checksum.status X
icmp.code X

icmp.data_time_relative X
icmp.ext.checksum X X

icmp.ext.res X
icmp.ident X X X X

icmp.length X
Σ (features) 5 2 2 5

random classification (i.e., 33%), it is not of much value.

Since ICMP protocol is used to convey control information to source hosts, it

provides OSes to have more control over its content, which enables us to cap-

ture more uniqueness across OSes. Table 6.2 enumerates selected ICMP fea-

tures. One of the most distinguishing features is the Identifier (icmp.ident),

which specifies whether big-endian (BE) or little-endian (LE) format is used.

Linux OSes use a unique identifier for every ping process which makes these

features a candidate for detecting OS uniqueness. The GA was able to include

these features in the selected subset of features. Another important feature is

the (icmp.data_time_relative), which is the RTT of the ECHO request. Although

Mac and Linux OSes contain a value for this feature, the Windows OS does

not, which helps OSID detect whether a packet is from a Windows OS or not.

Also, for the Mac and Linux OSes, the range of the values contained in this fea-

ture helps distinguish them as well. When classifying Xubuntu and Raspberry

OS, we also observed that Raspberry OS’s RTT is much faster than Xubuntu,

which helps distinguish these distros as well. However, since this feature is

time-dependent, relying solely on this feature can introduce bias in the classifi-

cation, especially when trying to distinguish Mac OS and Linux versions.
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FIGURE 6.5: SSL Performance

DNS protocol is among those which do not contain much unique information in

its header. Therefore DNS does not classify different OSes for accurate identifi-

cation. Note that while Chang et al. [70] utilized DNS logs for OS identification,

individual DNS packets do not have unique characteristics to reveal the OS. The

average identification accuracy for detecting the OS family, Mac OS versions,

and Windows versions is between 40%-55%. Only in Linux distro, the identifi-

cation accuracy is the highest at 63%.

While HTTP is a more complex protocol with different options, it did not pro-

vide high classification results as we eliminated textual features. After filtering

features, we had 11 features left for the classification. While individual datasets

yielded around 90% accuracy of OS identification at best, other instances had a

much lower accuracy of 30% and 50%. Similarly, the identification rate using

the HTTP protocol headers was around 65% when classifying Mac OS versions

with a smaller variance.

The most contribution that the SSL protocol makes is when trying to distinguish

the Mac OS versions, as shown in Figure 6.5. OSID achieved an average accuracy

of 98% with ANN. The GA was able to achieve as high identification rate as
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when all of the features are used by selecting 3 of the 40 features. The second-

highest identification accuracy was achieved with the classification of the Linux

distros with 76% accuracy using 6 of the features and at 78% using all of the

features. We observed that one of the test datasets performs much worse than

the other two, indicating it had different parameters with the selected set of

features than the other two samples.

The SSL handshake is used to establish the secret keys between the client and

server to communicate securely. During the handshake process, both parties

exchange information such as the protocol version and crypto algorithms to be

used as well as the digital certificates for authentication purposes. Hence, the

handshake fields in the SSL header contribute the most for classifying OSes as

different OSes have a differing set of crypto algorithms and defaults. As seen in

Table 6.3, GA was able to detect such signatures and select handshake options

for OS identification.

TCP protocol is one of the most complex protocols in the TCP/IP protocol suite.

It has ambiguous fields and different default values selected by different OS

versions. Hence, OS implementations have unique values in the TCP protocol

headers. One of the protocols where the use of GA feature selection proves

its contribution the most is the TCP protocol. TCP protocol when using GA-

selected features is the most contributing for detecting the Mac OS and Linux

versions. Using 23 of the 70 features in the TCP protocol, OSID was able to

increase the Mac OS version identification rate from 48% to 98% as shown in

Figure 6.6, which indicates that the TCP protocol contains features that cause

noise in the data for OS identification. GA feature selection was able to ignore

such features and significantly improve identification accuracy. Most of the OS

fingerprinting tools rely on the TCP SYN packets for detecting OSes since TCP
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TABLE 6.3: Selected SSL Features

Features OS Linux Mac OS Windows
ssl.alert_message X X X X

S.H.ext_server_name_len X X X X
ssl.change_cipher_spec X X X

S.H.ext_server_name_list_len X X
ssl.handshake (S.H) X X X X

S.H.ext_server_name_type X X X
S.H.ciphersuite X X X

S.H.ext_status_request_exts_len X X X X
S.H.ciphersuites X X X

S.H.ext_status_request_responder_ids_len X X X
S.H.cipher_suites_length X X X X

S.H.ext_status_request_type X X X
S.H.comp_method X X X X
S.H.extension.type X X X
S.H.comp_methods X X X X

S.H.length X X X X
S.H.comp_methods_length X X X X

S.H.sig_hash_alg X X X X
S.H.extension.len X X X X

S.H.sig_hash_alg_len X X X X
S.H.ext_alpn_len X X X
S.H.sig_hash_algs X X X
S.H.ext_alpn_list X X X X

S.H.sig_hash_hash X X X X
S.H.ext_alpn_str_len X X X X

S.H.sig_hash_sig X X X
S.H.ext_ec_point_format X X X X

S.H.type X X
S.H.ext_ec_point_formats_length X X X

S.H.version X X X
S.H.ext_elliptic_curve X X X X

ssl.record X X X X
S.H.ext_elliptic_curves X X X X
ssl.record.content_type X X X

S.H.ext_elliptic_curves_length X X X
ssl.record.length X X X
S.H.ext_length X X X X

ssl.record.version X X X X
S.H.ext_reneg_info_len X X

Σ (features) 31 36 33 35
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FIGURE 6.6: TCP Performance

SYN packet headers of different OSes contain distinguishing values. OSID was

able to extract uniqueness within other TCP packets as well to classify OS-genre

as well as Linux and Mac OS versions.

OSID was able to perform OS-genre identification with an average accuracy

of 82% using ANN with all of the 28 features. For Linux distro detection, the

accuracy of 97% was achieved using seven GA-selected features and the Deci-

sionTable algorithm. Similarly, Mac OS versions were detected with an accuracy

of 97% using the ANN on all of the features. The reason for the decrease in ac-

curacy in classifying OS-genres is that the features in TCP protocols that many

tools depend on detecting their uniqueness are in the header fields of TCP SYN

packets. When any TCP packet is used, it becomes more challenging to capture

this uniqueness.

As shown in Table 6.4, GA was able to select features that are used by the state-

of-the-art tools for OS identification. p0f, a popular passive OS identification

tool, considers the TCP options order, the maximum segment size, the window

size, window size scale-factor, and TCP timestamps within TCP SYN packets.

Without any expert knowledge, GA was able to select the header fields of TCP
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TABLE 6.4: Selected TCP Features

Features OS Linux Mac OS Windows
tcp.analysis X X X X
tcp.flags.res X X X X

tcp.analysis.flags X X X X
tcp.flags.reset X X X X

tcp.analysis.initial_rtt X X X X
tcp.flags.syn X X X

tcp.analysis.window_update X X X X
tcp.flags.urg X X X X

tcp.checksum X X X X
tcp.hdr_len X X X X

tcp.checksum.status X X X X
tcp.len X X X

tcp.dstport X X X X
tcp.option_kind X X X X

tcp.flags X X X X
tcp.option_len X X X
tcp.flags.ack X X X X
tcp.srcport X X X X

tcp.flags.cwr X X
tcp.stream X X X X

tcp.flags.ecn X X X X
tcp.urgent_pointer X X X X

tcp.flags.fin X X X X
tcp.window_size X X X X

tcp.flags.ns X X X
tcp.window_size_scalefactor X X X X

tcp.flags.push X X X
tcp.window_size_value X X X X

Σ (features) 25 27 28 25

SYN packets in a completely automated way. OSID selected unique features for

other TCP packets as well. There are six flags in TCP header which are used to

determine whether a packet contains data, initiation or termination for a con-

nection. Since these flags can be combined in multiple ways, they help capture

uniqueness in OSes. Another vital feature that OSID was able to select using GA

was the Window size value. This value determines the additional bytes of data

that the sender can accept. Many OS fingerprinting tools also heavily rely on
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FIGURE 6.7: UDP Performance

this value since the values used for this field vary across OSes. Another relevant

field in TCP headers that help distinguish OSes is the TCP options field. Ev-

ery TCP option takes 8 bits, and multiple options can be used when generating

packets. These options are appended to the original 20-byte long TCP header.

As expected, the number of TCP options used along with the values set for each

of them becomes crucial in capturing the uniqueness of OSes. Similar to the use

of multiple columns in database tables to form a unique primary key, this shows

that GA was able to detect uniqueness further using features from both of the

protocols.

UDP is a connectionless protocol and therefore does not provide as complex

header information as the TCP protocol. The highest identification rate with

UDP was achieved when classifying Linux versions with an average accuracy

of 72%.

Overall, we observed that IP, ICMP, SSL, and TCP protocols had the most dis-

criminative header fields between different OSes and their versions. While HTTP

is a protocol with many header options, filtering textual features diminished its

utility for OS identification.
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FIGURE 6.8: IP & TCP Performance

6.2.3 Individual Packet Classification Results

As presented in the previous section, different protocols yield different identi-

fication rates for each classifier. It is, however, possible for the combination of

various protocols to yield higher accuracy in OS identification. When multiple

protocols’ features are merged, it is possible to catch a unique fingerprint for

the OSes. In this section, we analyze the classification accuracy when layer 3 to

layer 5 protocols of a packet are combined. In particular, we focus on analyzing

the combination of protocols within a single packet. These protocols are: IP &

TCP, IP & TCP & HTTP, IP & TCP & SSL, IP & UDP, and IP & UDP & DNS.

When combining IP & TCP protocols within TCP packets, OSID yields an av-

erage of 96% when all the features are used for detecting Mac OS versions and

97% for detecting Linux versions as shown in Figure 6.8. However, IP & TCP

protocols do not yield as high identification rates for detecting OS families as

it provides an average accuracy of 89% when all the features are used. Don’t

fragment is an IP header field that became useful with the TCP packet. Don’t

fragment bit is used to set whether the IP datagram is to be fragmented or not.
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FIGURE 6.9: IP & TCP & HTTP Performance
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FIGURE 6.10: IP & TCP & SSL Performance

Many operating systems set this value by default mostly with the TCP SYN

packets.

Figure 6.9 presents the accuracy when IP & TCP & HTTP protocol features are

merged for an HTTP packet. Using all of the features of HTTP packets, OSID

was able to achieve an average accuracy of 89% when classifying OS-genres.

OSID determined Mac OS versions and Linux distros with an average accuracy

of 97% and 86%, respectively.

Similarly, when IP & TCP & SSL protocols of an SSL packet are merged, OSID
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FIGURE 6.11: IP & UDP Performance

yields high results for Mac OS and Linux version detection. Figure 6.10 shows

that OSID obtained 97% and 98% identification accuracy for Mac OS and Linux

versions, respectively. In Mac OS version detection, a subset of features selected

by GA yielded a lower identification rate than the original set of features. Hence,

it is essential to fine-tune the parameters for GA and the weights in the fitness

function for optimal classification accuracy.

As seen in Figures 6.11 and 6.12, the identification rates for IP & UDP of UDP

packets and IP & UDP & DNS of DNS packets are very similar. Although they

do not contribute much in detecting Linux and Mac OS versions, these protocols

help detect OS-genres. OSID was able to classify OS-genres at 90% when GA

selected features were used and 94% when all the features were used with the

J48 algorithm.

We analyzed the results OSID obtained from every protocol and determined the

most suitable protocols and algorithms for each classifier to assure the high-

est identification in each of them. The best performing protocols, along with

the algorithms, are provided in Table 6.5. As seen, for the OS family classifier,

we observed that the highest identification rate when GA is used was achieved



101

TABLE 6.5: Protocols Selected for Flow Analysis

Classifier Protocol Algorithm Accuracy

O
S

ICMP DecisionTable 99.4%
IP & UDP & DNS J48 94.0%

IP & UDP PART 93.0%

Li
nu

x

ICMP J48 99.3%
IP & TCP & SSL DecisionTable 97.7%

TCP DecisionTable 97.2%
IP & TCP DecisionTable 97.0%

M
ac

O
S

SSL ANN 98.3%
IP & TCP & SSL ANN 97.2%

TCP ANN 97.0%
IP & TCP ANN 96.3%

IP & TCP & HTTP ANN 95.0%

W
in

do
w

s UDP J48 48.5%
DNS DecisionTable 48.3%
SSL ANN 48.0%
TCP DecisionTable 47.4%
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FIGURE 6.12: IP & UDP & DNS Performance

with the ICMP protocol and the DecisionTable algorithm at a rate of 99%, which

means that by receiving any single ICMP packet from a system, OSID can detect

whether it is running Mac OS, Linux, or Windows at a rate of 99%. The highest

identification of Mac OS versions was achieved at a rate of 98% when SSL pro-

tocol and the ANN algorithms were used, which means that if a target system is

using a Mac OS, we were able to tell whether it was using Mac OS X Lion or Mac

OS X El Capitan at a rate of 98%. p0f is unable to yield such detailed information
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in terms of detecting the specific version of a Mac OS that is being used. We also

observed that when trying to determine the Linux distros, OSID could achieve

a rate of 99% when the ICMP protocol and J48 algorithm are used.

Similarly, this allows OSID to distinguish Raspberry and Xubuntu OSes with

less than 1% error. The identification rate of detecting Windows versions, how-

ever, is low since Windows uses a very similar behavior across its OS versions.

The highest rate of identification we achieved was at 49% when UDP protocol

and J48 algorithm is used.

6.2.4 Network Flow Classification Results

In this section, we present the accuracy of detecting the OS-genre and the OS ver-

sion from a sequence of packets originating from a single device. After analysis

of individual packet classification results, OSID selects the best discriminating

packet types and algorithm for each classification level. In particular, for the an-

alyzed data, OSID selected the set of protocols listed in Table 6.5 to determine

the OS and version of a given network flow. When considering a sequence of

packets, OSID ignores packets with protocols that have low classification accu-

racy to obtain high classification accuracy.

For every packet belonging to the selected protocols, OSID determines the num-

ber of instances classified for each class and chooses the one with the most num-

ber of classification to be the class of the device. Table 6.6 shows the confusion

matrix, i.e., the actual OS and the predicted OSes by OSID, for each of the data

sets. In sampled data sets, OSID detected the OS-genre for Mac OS devices with

99%, Linux devices with 82% and Windows devices with 100% reliability. The

reason for lower reliability with Linux devices is due to its behavior’s similarity
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TABLE 6.6: OSID Confusion Matrix

OS Distro Classified as Data 1 Data 2 Data 3

Li
nu

x Raspberry
Raspberry 100% 100% 96%
Xubuntu - - 4%

Xubuntu Xubuntu 100% 100% 100%
M

ac
O

S Lion
Lion 100% 100% 100%

El Capitan - - -

El Capitan
Lion 0.8% 1.1% 4.4%

El Capitan 99.2% 98.9% 95.6%

W
in

do
w

s

Windows 10
Windows 10 2.8% 2.8% 4%
Windows 7 15.5% 27.4% 3.9%
Windows 8 81.7% 69.8% 92.1%

Windows 7
Windows 10 4.8% 1.6% 3.9%
Windows 7 0.7% 11.1% -
Windows 8 94.5% 87.3% 96.1%

Windows 8
Windows 10 0.4% 18.3% 1.4%
Windows 7 0.4% - -
Windows 8 99.2% 81.7% 98.6%

to Mac OS. However, since OSID accepts the class with the majority of classifi-

cation instances, it was able to detect the genres of OSes with 100% accuracy.

Additionally, OSID was able to detect the Mac OS versions such as the Mac OS

X Lion with 96% and the Mac OS X El Capitan with 97% reliability. OSID was

also able to detect the Linux versions such as the Raspberry OS with 98% and

the Xubuntu with 98% reliability. Although OSID was able to detect the OS-

genre for Windows OSes with 100% reliability, it was not able to distinguish the

specific versions of Windows OSes with more than 49% reliability, which is due

to the usage of the same network libraries across the Windows OSes and neither

of existing similar tools can distinguish them from their packets.

6.2.5 TCP SYN results

In this section, we analyze the classification accuracy of OSID only using TCP

SYN packets and p0f, state-of-art passive OS identification tool. p0f is one of
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FIGURE 6.13: TCP SYN Packet Performance

the most prominent passive OS identification tools, and hence, we analyzed the

results of the p0f tool using our sampled data.

Many OS fingerprinting tools [23] rely on the IP & TCP header fields of the

TCP SYN packets to detect the OS of a system. TCP SYN packets are used to

initiate a TCP session. In this section, we present the identification accuracy of

OS detection using only the TCP SYN packets. As seen in Figure 6.13, OSID was

able to detect OS-genre with a very high accuracy. Although all of the classifiers

were able to perform identification at almost 100%, the highest accuracy was

when GA selected features were used or when all the features were used with

the ANN. However, as shown in Figure 6.13, we observed that TCP SYN packets

are not very helpful in detecting the versions of OSes.

Table 6.7 shows the actual OS and the predicted OSes by p0f for each of the

data sets. We also present the percentage of packets that p0f classified for each

OS label. We observed that when determining the Linux distros or Mac OS

versions, p0f detects the kernel version. p0f even associates Mac OS X Lion with

the iPhone or iPad. As far as we can tell from these results, p0f can only detect

whether a packet is from a Mac OS or not. We observe similar results with OSID
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TABLE 6.7: p0f Confusion Matrix

OS Distro Classified as Data 1 Data 2 Data 3

Li
nu

x

Raspberry Linux 3.1-3.10 100% 100% 100%

Xubuntu

Linux 3.1-3.10 98.4% - -
Linux 3.x 1.6% - -

Linux 2.2.x - 1.2% -
Linux 3.1 and newer - 98.8% 98.6%

Linux 2.2.x-3.x - - 1.4%

M
ac

O
S Lion

Mac OS X 10.x 98.7% 100% 99.5%
iPhone iOS or iPad 1.3% - -

Mac OS X - - 1.3%

El Capitan
Mac OS X 93% 91% 97.6%

??? 7% 9% 1.1%
Mac OS X 10.x - - 1.3%

W
in

do
w

s

Windows 10
??? 0.6% 0.4% 0.3%

Windows NT 5.x 87.8% 92.2% 93.5%
Windows NT 11.6% 7.4% 6.2%

Windows 7
Windows 7 or 8 25.3% 100% 98.4%

Windows XP 73% - -
Windows NT 1.7% - 1.6%

Windows 8
Windows 7 or 8 89% 80.2% 88%

Windows NT 5.x - 18.6% -
Windows NT 11% 1.2% 12%

when only TCP SYN packets were used. For Windows detection, p0f confuses

the OSes with a wide range of possible OSes such as Windows NT, XP, 7 or 8.

However, we see that p0f uses the same label for Windows 7 and 8.

OSID was able to generate high identification accuracy in detecting OS-genres

when using TCP SYN packets only. The main advantage of OSID is that it can

automatically detect the uniqueness in the data without any expert input. How-

ever, OSID can perform further detection than p0f and identify which Mac OS

version the packet belongs to with very high confidence. p0f uses TCP SYN

packets only, but OSID does not have such restriction and can perform classifi-

cation on packets belonging to multiple protocols with high identification rates.
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6.3 Discussion

We tested different combinations of header features for analysis of the contri-

bution of different protocols and the header fields in these protocols. However,

this is a computationally costly task. For example, in IP & TCP & SSL protocols,

there exist 88 features, and the unique number of combinations is 288. Since it

is impractical to try this many numbers of runs, we needed a faster but accu-

rate way of determining relevant combinations of features. A genetic algorithm

(GA) became useful in searching for useful features without full exploration.

We compared the results of both the GA-selected features and all the features

available in every protocol to determine a subset of features that are the most

contributing ones to the classification. Another advantage of the selection of a

subset of features is the ability to perform classification with much less compu-

tational overhead. We also observed that the identification accuracy improves

in many cases when the machine learning algorithms are fed with only the rel-

evant features as opposed to dumping all of the information available due to

possible noise in the data.

Many of the available tools focus on predetermined features such as; TTL, Win-

dow size, De-fragmentation flag, etc. OSID, however, is not fixated on the par-

ticular header fields of protocols or implementations by particular OSes for clas-

sification. With the help of a GA, OSID uses features that contribute most to

the identification of OSes of packets, whether they are well-known for perform-

ing OS identification or not. As long as they help perform identification at high

identification rates, they will get selected, which helps OSID extract as much

relevant information as possible to increase the identification accuracy.

Another advantage of merely depending on machine learning techniques such
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as the OSID system is that it can dynamically adapt itself to different OSes. OSID

can automatically re-generate a set of signatures after including training data for

a newly introduced OS. Also, it is possible for proxy firewalls to temper with

packet header information [11]. Therefore, having a dynamic system can be

beneficial in order for the system to adapt itself to changes and still be able to

perform classification with as high identification accuracy as possible.

Many of the passive identification tools such as p0f, ettercap, and siphon depend

on specific packet types such as SYN, ACK, or SYN-ACK [11]. Unlike such sys-

tems, OSID tries to perform OS identification using any packet it is provided.

Tools such as SinFP, Nmap, p0f, etc. are usually limited in terms of the number

of features they use to generate their signatures for OSes. If the number of fea-

tures is preset to a high number, there might exist redundant, non-contributing

features to the classification. If the number of features is preset to a small num-

ber, certain distinguishing information might be lost. OSID does not require the

number of features to be specified. The system initially is provided with every

possible feature for the selected protocol, and with the help of a GA, OSID au-

tomatically selects as small subset of features as possible while trying to keep

the identification accuracy as high as possible. Therefore, both the number of

features and the number of signatures are determined according to the data pro-

vided.

Although it is time-consuming to determine the relevant features with GA, it can

be distributed among a cluster of computers and executed off-line. As training

is a single time process, the generated signatures can be employed in a network

with any subset of the trained OSes. Even though the system can adapt itself

to the data at hand for performing OS identification, the data used for the train-

ing should be as representative of network layer behaviors of different OSes as
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possible in order for the OSID system to be usable across different networks.

Although we have not tested it, OSID allows performing OS identification both

actively and passively. For example, after making an ICMP request to the tar-

geted system, OSID can perform detection of the OS family and the Linux ver-

sion by classifying the packet that it receives as a response. Since we observed

that OSID achieves higher accuracy when detecting the Mac OS versions us-

ing the SSL protocol, after determining the OS family with the responded ICMP

packet, further detection can be performed on the device’s OS on an SSL packet

by sniffing. Such a hybrid approach can also be implemented within OSID to

make sure to benefit from the advantages of both approaches.

Finally, even though we have not implemented, as long as header fields are

extracted similar to the IPv4 packets, the OSID system can perform identification

of IPv6 packets as well.
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Chapter 7

Automated IoT Device Identification

from Network Traffic

Network administrators can automate the process of identifying attached de-

vices using device fingerprinting. Device fingerprinting is the process of re-

motely detecting the kind of device from its network traffic [27]. There exist two

general approaches to device fingerprinting, active and passive. Active finger-

printing probes the system and analyzes the response it receives. Passive finger-

printing sniffs packets generated by the system and analyzes the information

extracted from the network traffic.

In this section, we introduce an automated IoT device fingerprinting system

called SysID. SysID uses GA to determine the features that provide the most

information-gain for extracting fingerprints of IoT devices. It uses machine

learning algorithms to generate models that later are used to classify newly seen

data. SysID is applicable to both active and passive fingerprinting. However,

the data considered in this section was passively collected, and hence, the dis-

cussion is for passive fingerprinting.

In our analysis, depending on the packet content, we detected 212 features in
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the data used, which means that 2212 unique combinations could be considered

for classification. With fewer features, a lower classifier complexity would be

possible. Therefore we analyze both the number of features that is possible to

reduce and also the possible increase in our classification accuracy using GA.

In an earlier study, we analyzed the contribution of various machine learning

algorithms and identified J48, DecisionTable, OneR, and PART, among the best

algorithms for Operating System classification using network traffic [27]. For

every classifier that we build, we analyze the accuracy of all these algorithms

and select the one with the best accuracy to optimize the overall classification of

SysID. Rule-based algorithms such as PART and J48 also allow us to analyze the

features and their contributions to fingerprint IoT devices.

7.1 Methodology

In this section, we present SysID, an entirely automated system to generate de-

vice fingerprints and classify IoT devices using a single TCP/IP packet. We use

a GA for feature subset selection to determine unique packet header features for

device fingerprinting among a large number of possible packet headers. To the

best of our knowledge, our approach is the first to automate IoT device finger-

printing without expert input. SysID considers the network layer (i.e., IP and

ICMP), the transport layer (i.e., TCP and UDP) and the application layer (e.g.,

DNS, HTTP, and SSL) protocols to determine the most significant protocol fea-

tures among the protocols’ header fields. SysID then runs a machine learning

algorithm to determine the classification accuracy based on the set of features

determined by the GA.
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FIGURE 7.1: Validation/Training

7.1.1 Feature Selection

We created three groups of pcap network captures for training, validating, and

testing the accuracy of GA-selected features, as shown in Figure 7.1. In each

group, we merged the pcap files into a single file and converted it to the arff file

format that is compatible with the WEKA tool. After this process, we ended up

with three arff files where we used two of them to train and validate the machine

learning models, and the remaining one for testing. We named the arff files

for training as Train1.arff and Train2.arff and the arff file for testing as Test.arff.

Rather than only training with Train1.arff and validating it on Train2.arff, we

wanted to make sure that the GA-selected features were sufficiently general for

our classifiers when either of these two sets of packets was used for building a

model, which helps us adapt our classifier to possible unexpected cases in the
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testing data. We did not perform 10-fold cross-validation since we observed the

occurrence of over-fitting with the classifiers when we merged the data [27].

We used a population size of 30 chromosomes in our GA implementation. A

chromosome is a series of 0’s and 1’s, at the same length as the number of fea-

tures in the arff file. If the arff file, for example, contains 100 features except for

the class, then the chromosome’s length is 100. The values 0 and 1 for each bit of

the chromosome determines whether to exclude or include a specific feature in

machine learning. We set the GA to initially populate 30 chromosomes contain-

ing random 0’s and 1’s. For each of these chromosomes, the GA runs the fitness

function to determine their strength with machine learning. Depending on the

fitness values that the GA obtains for each chromosome, it tries to converge to

the as optimal solution as possible by repeating the same process.

For our fitness function implementation, we considered two metrics to deter-

mine the most suitable set of header features. To perform classification with

as high accuracy as possible with the smallest subset of features possible, we

considered two metrics that represent these values in our fitness function. The

fitness function returns a fitness value between 0 and 1, where 1 means the most

contributing. As shown in the fitness function below, we used a weight of 0.9 for

the accuracy and 0.1 for the reduction of the number of selected header fields.

Fitness = 0.9× Accuracy +

0.1×
(

1− |SelectedFeatures| − 1
|AllFeatures| − 1

)

If the number of features selected is equal to the number of features in the

dataset, the component returns 0, which indicates that all header fields in the

dataset are needed without any selection. However, if the number of features
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selected is 1, it indicates the contribution of this single header feature is suffi-

cient for classification.

The accuracy in the fitness function is calculated by applying machine learn-

ing to the selected features in a chromosome. This term tells us how well the

selected features in the chromosome classifies the testing dataset when the ma-

chine learning model is trained using these features. To calculate this compo-

nent, we train a machine learning model on the Train1.arff dataset using only

the features selected by the chromosome. Then we test the model on Train2.arff

and record the classification accuracy.

Additionally, we swap train datasets and train the model using Train2.arff using

only the features selected by the chromosome to be tested on the Train1.arff. Af-

ter getting the accuracy for both cases, we calculate the average, which is used

as the accuracy component in our fitness function.

The fitness function returns a value between 0 and 1 to tell GA how different

a particular chromosome is from the others. GA tries to optimize this fitness

value to converge to the best solution it can find, which then helps us find a set

of features that are used for classification.

Since it is not guaranteed for GA to converge to the optimum set of features

yielding the highest fitness value, it needs a termination point to prevent itself

from going into an infinite loop of space exploration. In our case, we employed

the decision of stopping the exploration after n consecutive occurrences of the

same set of features being selected by the GA. If n is too low, the GA can quit

before converging to a better possible set of features. If n is too high, depending

on the implementation of the GA, it is possible for GA to either enter an infinite

loop or to take a very long time to converge to a solution. We observed that n = 5
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was sufficient for GA termination in our case. Additionally, the GA can converge

to different sets of features in each run because it is randomly initialized. Hence,

rather than relying on the outcome of a single run, we run the GA 10 times and

select the features that produce the highest classification accuracy.

7.1.2 IoT Device Classification

For the classification of packets, we use machine learning algorithms in the

WEKA tool [104]. WEKA provides a variety of machine learning libraries, and

we used DecisionTable and J48 Decision Trees, OneR, and PART. We observed in

our previous work [27] that in most cases, the rule-based algorithms outperform

other approaches in classifying packets using the header fields. Since rules are

generated based on the actual attribute values of the packets, algorithms may

catch unique header features to classify devices. They also allow us to observe

the exact values of attributes used for classification, which helps us analyze the

behavior of a device by investigating the features used for identification and

identifying the values of features that are distinctive between devices.

7.2 Experimental Results

In this section, we present the accuracy of System IDentifier (SysID) using 20

measurements from 23 IoT devices that include home sensors, coffee makers,

power switches, and lights.
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7.2.1 Data

In this section, we use a dataset collected for a similar study [77]. The dataset

contains packets captured from numerous IoT devices. We used the data for 23

IoT devices that contained 20 measurements. The devices are: Aria, D-LinkCam,

D-LinkDayCam, D-LinkDoorSensor, D-LinkHomeHub, D-LinkSensor, D-LinkSiren,

D-LinkSwitch, D-LinkWaterSensor, EdimaxPlug1101W, EdimaxPlug2101W, Ednet-

Gateway, HomeMaticPlug, HueBridge, HueSwitch, iKettle2, Lightify, MAXGateway,

SmarterCoffee, TP-LinkPlugHS100, TP-LinkPlugHS110, WeMoLink, and Withings.

For consistency reasons, we removed four devices that were included in [77] as

they had less than 20 measurements.

We separated the pcap network captures into training (14 measurements for each

device, i.e., 70% of datasets) and testing (remaining six measurements, i.e., 30%)

data. In each group, we merged the pcap files and extracted all possible fea-

tures for every one of their packets. Then we removed the IP address and the

IP checksum (which correlates with IP address) to remove any bias that may oc-

cur in classifying the devices. We then ran GA to select relevant features with

each machine learning algorithm (i.e., J48, DecisionTable, OneR, and PART) and

recorded the algorithm with the highest accuracy.

7.2.2 One-level Classification

We first performed a classification of all devices and tried to detect individual

device types using SysID. Figure 7.2 presents the classification accuracy of a sin-

gle packet for each device. Because the PART algorithm performed classification
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TABLE 7.1: Confusion Matrix
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Withings 334 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Lightify 0 1931 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

D-LinkSiren 0 0 1397 0 1199 348 5 0 0 3 0 1 121 1 0 0 8 4 0 0 0 0 121
Aria 0 0 0 237 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

D-LinkWaterSensor 0 0 727 0 1575 508 10 0 0 5 0 0 167 1 0 0 11 4 0 0 0 0 271
D-LinkSensor 0 0 1007 0 345 1589 7 0 0 7 0 1 106 1 0 1 7 3 0 0 0 0 336

TP-LinkPlugHS100 1 0 3 0 2 1 209 0 1 91 0 2 13 0 0 3 1 1 0 0 0 0 1
MAXGateway 0 7 0 0 0 0 0 308 0 0 0 0 0 16 0 0 0 0 0 0 0 0 0

EdimaxPlug2101W 0 0 1 0 0 17 3 2 125 2 2 0 0 0 0 1 0 0 0 0 0 128 0
TP-LinkPlugHS110 0 0 3 0 3 9 98 0 1 204 0 0 6 0 0 6 0 0 0 0 0 0 5

D-LinkDayCam 0 0 0 0 0 2 12 0 0 0 73 0 1 0 0 0 0 0 0 0 0 0 0
D-LinkCam 0 0 5 6 5 30 3 0 0 9 0 933 13 0 0 7 0 1 0 0 0 0 5

D-LinkHomeHub 0 0 175 0 106 204 7 0 0 16 0 10 3284 9 0 2 56 54 0 0 0 0 352
HueSwitch 0 0 1 0 1 0 0 0 0 0 0 0 1 10762 0 230 0 0 0 0 0 0 0

SmarterCoffee 0 1 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0
HueBridge 0 0 0 0 0 6 0 1 0 13 0 0 2 520 0 7026 0 1 0 0 7 0 1

D-LinkDoorSensor 0 0 19 0 10 23 8 0 1 0 0 1 148 1 0 1 865 95 0 0 0 1 30
WeMoLink 0 10 0 0 6 2 1 0 2 0 0 0 2 0 0 8 5 2775 0 0 0 0 4

HomeMaticPlug 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 165 0 0 0 0
iKettle2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0

EdnetGateway 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 5 0 0 0 0 294 0 0
EdimaxPlug1101W 0 0 0 0 0 15 5 0 53 1 0 0 0 2 0 2 1 0 0 0 0 191 0

D-LinkSwitch 0 0 310 0 146 393 7 0 0 7 0 4 649 1 0 0 32 13 0 0 0 0 1828

at higher accuracy than other algorithms, it was used in the classification of de-

vices. Although numerous devices were classified correctly with high accuracy,

some devices yielded a lower accuracy.

Table 7.1 presents the confusion matrix of SysID where rows show the actual

device and columns show the predicted classification. The optimal case is when

all packets are at the intersection of the same class, both for actual and predicted

classes. For example, for the “Withings” packets, 334 packets were classified as

“Withings”, but only one packet was classified as “EdimaxPlug2101W”, which

is an error. However, when we inspect “HueSwitch” and “HueBridge” packets,

we observe that most of the packets were classified as either of these two de-

vices. For “HueSwitch”, 10762 packets were correctly classified, but 230 of the

packets were classified as “HueBridge”. Similarly, for “HueBridge”, 7026 were

correctly classified as “HueBridge”, but 520 of the packets were incorrectly clas-

sified as “HueSwitch”, which indicates that the machine learning had difficulty
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FIGURE 7.2: Overall classification accuracy

distinguishing between the behaviors of these two devices.

Overall, we observed that the machine learning had difficulty in distinguishing

the behaviors of several groups, namely {EdimaxPlug1101W, EdimaxPlug2101W},

{HueBridge, HueSwitch}, {TP-LinkPlugHS100, TP-LinkPlugHS110} and {D-LinkCam,

D-LinkDayCam, D-LinkDoorSensor, D-LinkHomeHub, D-LinkSensor, D-LinkSiren,

D-LinkSwitch, D-LinkWaterSensor}. These groups of devices are from the same

vendors and hence most likely utilize similar network libraries. While {iKettle2,

SmarterCoffee} belonged to the same vendor, their network packet headers were

distinguishable.



118

7.2.3 Two-level Classification

As IoT devices from the same vendor were confused by the machine learning

classifiers, we decided to perform two-level classification where in the first layer

we determine the device vendor, then in the second layer differentiate between

devices from the same vendor. Hence, we generated six separate classifiers in

a two-level hierarchy, as shown in Figure 7.3. The first classifier learns to clas-

sify either the device itself, if there is only one device from the vendor (i.e., Aria,

EdnetGateway, HomeMaticPlug, Lightify, MAXGateway, WeMoLink, and With-

ings), or the device genre if there are multiple devices from the same vendor

(i.e., D-Link, EdimaxPlug, Hue, TP-LinkPlug and Smarter). If the packet’s class

is determined to be one of the devices themselves, then that is the label that the

classifier returns. If the packet is determined to belong to one of the genres, then

the packet is forwarded to the corresponding classifier in the second layer for

further processing to detect the actual device. This hierarchical structure allows

us to detect the best classification algorithm in each classifier, which helps im-

prove overall classification accuracy. Different protocols and different machine

learning algorithms can perform better for different packet sources.

Figure 7.4 presents the classification accuracy for each class in our dataset when

the PART algorithm is used. The figure also shows the individual device classifi-

cation accuracy of IoT Sentinel [77], marked with blue. The lowest classification

accuracy is at 95% for MAXGateway. We observe that SysID can obtain similar

accuracy as IoT Sentinel, which uses 12 packet sequence in classification with

expert input. As for the individual vendors with multiple devices, SysID can

tell if a device is a Hue device at 99.8%, D-Link at 99.7%, EdimaxPlug at 98.9%,

TP-LinkPlug at 96.2% and Smarter at 96.4%.
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FIGURE 7.4: Device genre classification accuracy

We then identify devices belonging to the same vendor. The PART algorithm

was able to differentiate between Hue devices with high accuracy, as shown in
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FIGURE 7.6: TP-LinkPlug devices classification accuracy

Figure 7.5. SysID can classify any individual packet originated from a HueSwitch

with a rate of 98.8% and a HueBridge with a rate of 95.9%.

Similarly, the PART algorithm provided the best identification of TP-LinkPlug

devices in Figure 7.6. We observed that SysID could determine TP-LinkPlugHS110

with an accuracy rate of 89.3% and TP-LinkPlugHS100 with 42.2% accuracy. We

observed that the classifier has difficulty in distinguishing these two devices.

Note that IoT Sentinel was unable to identify these devices with high accuracy

either. The reason for one of these two devices to have a higher classification

accuracy is due to the order of rules that the classifier uses.

Additionally, the J48 algorithm provided the best identification of EdimaxPlug

devices in Figure 7.7. SysID can distinguish EdimaxPlug1101W at an accuracy

rate of 70% and EdimaxPlug2101W at a rate of 72%. Although the classifier

cannot make a perfect distinction between these two devices, it can still tell them

apart at a rate of 70%, which is higher than the one-level classification results of

Section 7.2.2.

J48 algorithm also provided the best identification of D-Link devices in Fig-

ure 7.8. SysID achieved identification accuracy of 94.2% for D-LinkCam, 86.4%
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FIGURE 7.7: EdimaxPlug devices classification accuracy
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FIGURE 7.8: D-Link devices classification accuracy

for D-LinkDayCam, 84.5% for D-LinkHomeHub. However, the remaining de-

vices perform at lower classification rates indicating the possibility of similar

single packet behavior. Note that IoT Sentinel had a higher classification rate for

D-LinkDayCam, D-LinkHomeHub, and D-LinkDoorSensor. The possible rea-

son for this is that IoT Sentinel considers a sequence of 12 packets, and this may

be helpful to identify the distinctive behavior of these devices.

Finally, the J48 algorithm provided the best identification of Smarter devices in

Figure 7.9. SysID can determine if a packet originated from an iKettle2 with

an accuracy of 93% or from a SmarterCoffee with a rate of 100%. These results

tell us that these two devices have very distinguishable behaviors that were not

captured by IoT Sentinel.
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FIGURE 7.9: Smarter devices classification accuracy

TABLE 7.2: Number of selected features

Classifier Algorithm GA ALL %
Device genre PART 93 212 44%

Hue J48 78 147 53%
TP-Link PART 43 115 37%

EdimaxPlug J48 51 123 41%
D-Link J48 90 204 44%
Smarter J48 8 55 15%

7.2.4 Feature Subset Selection

SysID aims to increase fingerprinting accuracy by removing possible noisy data

and decreasing complexity by reducing the number of features considered using

GA. Table 7.2 provides the number of features selected by GA for each classifier.

Except for Hue devices, using less than half of the features leads to better clas-

sification accuracy than when all of the features are used. SysID was able to

fingerprint Smart devices at an average accuracy of 96% while using only 15%

of the packet header features.

GA helps to automatically select a subset of features that contribute to the fin-

gerprinting the most. However, for every classifier, the set of selected features

differs. Table 7.3 presents the top 10 features selected by the classification al-

gorithms for device genre and each vendor classifier. We indicate whether a

particular packet header feature was selected for each classifier. We observe that

udp.checksum is the most preferred feature as it was selected among the top 10
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TABLE 7.3: Selected Features
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udp.checksum X X X X X X
dns.qry.class X X X

ip.len X X X
tcp.window_size X X X

tcp.flags X X X
icmp.checksum X X

ip.dsfield X X
dns.resp.len X

ip.flags X
ip.id X X

ip.proto X
ip.ttl X X X

tcp.seq X X
tcp.ack X

tcp.options.timestamp.tsval X X X
tcp.port X X X

tcp.stream X X
tcp.window_size_scalefactor X X

udp.dstport X X
udp.stream X
ip.flags.df X

tcp.option_len X
tcp.dstport X
tcp.hdr_len X

tcp.window_size_value X
tcp.analysis.acks_frame X

tcp.flags.push X
udp.srcport X

ip.dsfield.dscp X
dns.flags X

dns.flags.response X
dns.qry.name.len X

tcp.options.timestamp.tsecr X
Σ (features) 9 10 10 9 10 10 1
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by all the classifiers except for Hue devices. We believe udp.checksum can cap-

ture a unique periodic packet from these devices because the UDP checksum is

calculated over the data as well as the IP and UDP header fields.

7.3 Discussion

SysID’s accuracy is similar to the IoT Sentinel. The average classification accu-

racy for the cumulative of all the devices were 79% for IoT Sentinel and 82%

for SysID. IoT Sentinel was able to achieve these results using a sequence of 12

packets whereas SysID uses only a single packet for fingerprinting. IoT Sentinel

benefits from investigating a sequence of packets, whereas we benefit from in-

vestigating the header field content. Another possible bias that IoT Sentinel may

have is the consideration of link-layer packets. In SysID, we ignored link-layer

protocols since it is highly likely for these protocol contents to have informa-

tion specific to devices in a network. We aimed to generate a comprehensive

model-based system that can be applied to different networks.

Overall, SysID has several general advantages and unique features. First, certain

device fingerprinting tools depend on specific information extracted from net-

work protocols. The downside of these approaches is that in case of a change of

the behavior of the protocol or its fields, these approaches would not be able to

perform fingerprinting correctly. Although we detect and use such distinguish-

ing features from the protocols, SysID can re-process new data after protocol

change to re-extract new distinguishing features without expert supervision.

Since we extract features directly from the standard protocol header fields, the

fingerprints that we extract are stable. Such fingerprints can be used when a

different environment or even the mobility of devices is considered. Depending
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on which protocol header fields are used, SysID can generate fingerprints that

are either very general or very specific depending on the need.

Different from other approaches, we do not hand-select useful features such as

packet size, port number, or IP header options. GA helps SysID to automatically

detect the set of the most useful features in a given dataset. Although the dataset

used in this study contained fewer than 50 packets for some devices, SysID was

still able to detect the unique behaviors of IoT devices and obtain very high

classification accuracy.

In particular, SysID performs a single-packet fingerprinting of devices using any

of the packets generated from the device. Single-packet fingerprinting is useful

for both reducing the complexity of classification and also for reducing expec-

tations from the targeted device in terms of both the number of packets and a

sequence of packets to be generated.
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Chapter 8

Automated Quantization of

Numerical Features using K-means

and Genetic Algorithms

In this section, we propose an automated approach to determining the quanti-

zation levels for numerical features in inductive learning. For each numeric fea-

ture, we use k-means to determine the clusters and their ranges. As known, it

is essential to initially specify the number of clusters when running the k-means

algorithm. One possible approach is to start with k = 1, k being the number

of clusters, and to keep incrementing until a certain number is reached to find

the optimal number of clusters. However, different numbers of clusters for each

numeric feature can yield different classification accuracy. For example, if the

maximum number of clusters for each feature to be considered is 10, there could

be up to 10n number of combinations to process where n is the number of fea-

tures within a dataset. Depending on what the value of n is, it could be very

computationally intensive to find an optimal solution.

We use a genetic algorithm (GA) to determine the number of clusters for each
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numeric feature in a given dataset to select as optimal solution as possible. GA

helps reduce the enormous amount of a possible number of cluster combinations

for numeric features. It also helps determine the most information-gaining ones

in order to provide as high classification accuracy as possible.

Every time GA selects a potential solution, the number of clusters for each nu-

meric feature is determined from the selected chromosome. Then, a portion of

the dataset is trained using the SILEA algorithm with the number of clusters pro-

vided as a parameter. The user can adjust the portion of the dataset dedicated

to training and testing. The generated rule set is then used to perform classifi-

cation on the remaining portion of the data to obtain the classification accuracy.

The accuracy retrieved from this execution is returned as the fitness value for the

considered solution and is used by GA to compare different solutions to find the

best solution.

In this section, we automate the process of finding the number of clusters for

each numeric feature to determine as optimal quantization levels as possible

to increase the classification accuracy of the SILEA algorithm. We use a GA to

determine the most information-gaining combination of the number of clusters.

Then we use the k-means algorithm to determine the ranges for these clusters for

each feature. Our approach allows us to completely automate hyper-parameter

optimization using GA for inductive learning algorithms, precisely the SILEA

algorithm.
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8.1 K-means Clustering

The most important problem with the quantization of numeric features is to

determine where to split the data points. SILEA employs a straightforward ap-

proach where the data points are split up in equal sizes of chunks in the number

provided by the user manually. The downside of this approach is that the data

is very unlikely to be split in such equal chunks. We needed to optimize the start

and endpoints for each cluster based on the data. Therefore, we employed the

k-means algorithm to be able to split the data points into clusters dynamically.

K-means clustering is an unsupervised learning algorithm. K-means is usually

used on datasets which are not labeled. K-means tries to cluster the data based

on a similarity measure.

For each numeric feature, we initially sort the values incrementally and run the

k-means algorithm to determine the clusters for the considered feature. Once

the clusters are determined, we determine the ranges for each of these clusters

and make sure that the data points for the feature considered are replaced with

the ID of the cluster whose range they fall. Assume there exist 2 clusters within

a feature and they range between 1-5 and 20-30. Every data point within the

feature that is between 1-5 are replaced with the ID of this cluster, which is 1,

and every data point that is between 20-30 are replaced with the ID of 2, which

allows SILEA to extract more general rules. This transformation, however, is

stored in the model file to be able to map the data points to clusters when run-

ning the algorithm on a testing dataset. However, the k-means algorithm re-

quires the number of clusters to be manually set. A different number of clusters

provided as an input may generate different results which could yield differ-

ent classification accuracy. The reason for that is, for certain features, having
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too general rules does not always help catch uniqueness. Therefore, selecting a

suitable number of clusters as input when k-means is run can be very crucial in

terms of achieving high classification accuracy. One possible way is for the user

to try different values manually until the desired accuracy is obtained. How-

ever, this can be very time-consuming, especially if there exist many numeric

features in the dataset. If the user would like to test m number of clusters for

each feature and if there are n number of features in the dataset, there could be

up to mn possible number of clusters to run the algorithm, which is not very

practical. Therefore, we employed a genetic algorithm (GA) both to increase the

speed and accuracy of searching within such a large domain.

8.2 Genetic Algorithm Optimization

In order for a genetic algorithm (GA) to be able to validate the contribution of

a potential solution to the classification of the dataset, we need a portion of the

training data to be used for validation. We initially randomly sort the examples

within the dataset provided. Then, we split the dataset into two parts, where

the first portion is used to train, and the second portion is used to validate the

GA. The percentage of the dataset to be used to train and validate is a parameter

and can be adjusted by the user. After trying several percentages of the data

for training and validation, we observed nice results when we used 60% for

training and 40% for testing, which also assures an acceptable amount of data

for validation for GA to rely on.

In our GA implementation, we used a population size of 50 chromosomes, a

uniform rate of 0.5 and a mutation rate of 0.05. A chromosome is a series of 0’s

and 1’s. Since the necessary information for the number of clusters to be used
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is embedded into a chromosome, the number of bits within a chromosome is

proportional to the number of numeric features within the dataset. Depending

on how large or small the search space is desired to be kept, the number of bits

dedicated to one feature can be adjusted by the user. However, it is essential to

keep in mind that if this number is too small, it may not be possible to find a

fine-tuned set of number of clusters for the dataset and if it is too large, it may

take a very long time for GA to converge to a solution. To find a more fine-

tuned and information-gaining solution for the dataset we used, we dedicated

5 bits in a chromosome for each numeric feature. Therefore, the length of a

chromosome in our implementation is 5n, where n is the number of numeric

features in the dataset. As mentioned earlier, this parameter can be adjusted

by the user. Five bits for a feature means that GA can select a cluster number

ranging between 0 and 25 − 1 = 31, which means that for each numeric feature,

a value between 0 and 31 can be used as the number of clusters to be fed to

the k-means algorithm when a solution is being tested. However, we observed

that a difference of 1 for the number of clusters does not help with the accuracy

much since there exist features in the dataset with a large range of possible data

points. Therefore, rather than using these values as the number of clusters with

such small increments, we multiplied the decimal value represented by 5 bits

with 10, which means that the possible number of clusters used for each numeric

feature ranges between 0 and 310 with an increment of 10.

Every potential solution selected by GA is tested using a fitness function to de-

termine how much contribution they make to the classification of the dataset

using SILEA. In our implementation of the fitness function, every time GA tests

a potential solution; we split the chromosome into 5 bits of chunks. For each

chunk, we determine the value they represent as a decimal number. Then, we
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multiply these values by 10. After this process, there exist n number of clus-

ters. Then, for each numeric feature, we run the k-means algorithm initiated

with the number of clusters determined from the chromosome. After determin-

ing the clusters and their ranges for each numeric feature, SILEA replaces the

data points in the training portion of the dataset with the ID of the clusters and

extracts the rules. Then, we use the rules extracted on the validation portion

of the dataset and determine the accuracy achieved when classifying the exam-

ples in this portion. The fitness function returns the accuracy retrieved as the

fitness of the solution provided as an input. GA utilizes the fitness values for

each chromosome to find as optimal solution as it can.

GA is not guaranteed to converge to the optimum solution that would yield the

highest fitness value. Therefore, we limit the number of generations that is run

by GA and terminate GA to prevent an infinite loop. We make sure that the

GA keeps running as long as the highest fitness value achieved with a gener-

ation is higher than the previous one, which means that GA is most likely to

keep increasing its accuracy by running new generations. However, if we ob-

serve repetitive occurrences of the same accuracy with consecutive generations,

we terminate GA. The critical point here is to determine how many consecutive

occurrences of the same accuracy should make GA terminate. We chose to ter-

minate GA after five consecutive occurrences of the same accuracy. It is essential

to choose this value carefully since a low value may terminate GA before reach-

ing a higher accuracy yielding solution, and a high value may take a very long

time for GA to converge. We observed in our previous work that selecting 5 for

this value yields both high accuracy results and for GA to converge to a solution

in an acceptable amount of time [27], [29].
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FIGURE 8.1: Device genre classification performance

8.3 Classification

After determining the best possible number of clusters to be used for each nu-

meric feature, we determine how well our classifier performs with a testing

dataset. As mentioned earlier, the genetic algorithm (GA) initially uses a por-

tion of the training dataset to train and the other portion to validate. However,

after GA completes searching and selecting a suitable solution, we use the entire

examples in the training set to train our model. We run the k-means algorithm
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on numeric features using the number of clusters selected by GA and extract

rules. Then, we use the rules extracted to classify the examples on a testing

dataset which is never used until this point.

8.4 Experimental Results

In this section, we present the classification accuracy of SILEA with automated

quantization using data measurements from 23 IoT devices. These devices con-

sist of home sensors, coffee makers, power switches, and light bulbs. We also

compare our results with some of the state-of-the-art inductive learning algo-

rithms.

8.4.1 Data

In this study, we used the dataset collected by [77]. The authors perform de-

vice fingerprinting by extracting a fingerprint for each device from their net-

work traffic. Among the packets collected, we utilized the data for 23 IoT de-

vices. For consistency reasons, data belonging to 4 devices were removed since

they did not have as many number of measurements as the rest. The devices

whose data we used are: Aria, D-LinkCam, D-LinkDayCam, D-LinkDoorSensor, D-

LinkHomeHub, D-LinkSensor, D-LinkSiren, D-LinkSwitch, D-LinkWaterSensor, Edi-

maxPlug1101W, EdimaxPlug2101W, EdnetGateway, HomeMaticPlug, HueBridge, HueSwitch,

iKettle2, Lightify, MAXGateway, SmarterCoffee, TP-LinkPlugHS100, TP-LinkPlugHS110,

WeMoLink, and Withings.

There are 20 measurements for each of the devices we used in our analysis. We

dedicated 70% of these runs for training and validation, and the remaining 30%
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for testing the accuracy of our approach. For each packet, we extracted fea-

tures for the following protocols: DNS, HTTP, ICMP, IP, SSL, TCP, and UDP. If a

packet does not contain header fields for any of these protocols, we add a ’null’

value. To avoid bias, we removed the IP address and the IP checksum from

every packet.

8.4.2 Classification Accuracy

We perform single-packet IoT device identification using SILEA with an auto-

mated quantization approach. We extract rules with the SILEA algorithm from

TCP/IP packet headers which are later used to identify which specific vendor

and version the device which sent this packet belongs.

We initially tested the accuracy when k-means was used with a preset number of

clusters for every numeric feature in the dataset. Then, we compared our results

when the number of clusters is automatically selected using a genetic algorithm

(GA). For consistency reasons, when we set the number of clusters for k-means

to try the accuracy without a GA, we used the maximum possible number of

clusters which would have been selected by the GA, which is 310. As seen in 8.6,

when detecting the genre of the IoT devices, we observed a maximum of 87% ac-

curacy. However, when GA is used, the accuracy increases to 92%. We observed

an increase from 65% to 76% in the accuracy when determining the TP-LinkPlug

device version and almost 10% increase from 52% to 61% when classifying the

EdimaxPlug devices. For D-Link device identification, we observed the least in-

crease in accuracy from 31% to 33%, which is due to the similarities of libraries

used by the D-Link devices. We observed the highest increase in classification
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when classifying Smarter devices. We were able to increase the classification ac-

curacy almost twice as much from 54% to 96%. There is also a case where GA

was not able to generate the highest accuracy. When classifying Hue devices,

although the accuracy is still high, we observe a 2% reduction in the accuracy

from 98% to 96%, which shows that there are cases which might require a better

fine-tuning and a more prolonged execution of the GA. One of the parameters

to achieve higher accuracy is to increase the number of repetitions in the occur-

rences of generations before termination. With a higher termination point set,

it would allow GA to explore longer, which could help achieve a higher accu-

racy yielding solution. Especially if the data points in the dataset are further

apart from each other, selecting a higher number of clusters would be a require-

ment. Therefore, another parameter that needs to be optimized is the maximum

number of clusters that the chromosome can represent.

As seen, GA can determine a more suitable number of clusters for the dataset

at hand and provide higher accuracy than when a preset number of clusters are

used. We also compared the classification accuracy of our approach with some

of the state-of-the-art inductive learning algorithms. We compared our results

with C4.5, DecisionTable, and PART algorithms. Due to the initial randomiza-

tion of the population in GA, we made sure to run GA at least five times and

selected the best result for each of the algorithms.

In Figure 8.1, we provide the accuracy of detecting the vendor of the devices

from a single packet classification. We provide the accuracy for each vendor

from the dataset and also provide the average accuracy for each classifier. As

seen, on average, SILEA was able to distinguish the vendor of the devices cor-

rectly at a rate of 92%. C4.5 and PART algorithms were able to classify at a rate

of 99%, and DecisionTable was able to classify at a rate of 97%. As seen, for IoT



136

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

average

edimaxplug1101w

edimaxplug2101w

SILEA C4.5 DecisionTable PART
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FIGURE 8.3: Hue classification performance

device genre classification, SILEA was not able to achieve as high classification

results as the rest.

Similarly, as seen in Figure 8.2, SILEA was not able to perform as well as the

others in determining the specific versions of the EdimaxPlug devices. SILEA’s

classification accuracy was at 61%, C4.5 was at 69%, DecisionTable was at 72%,

and PART was at 68%.

However, as seen in Figure 8.3, when classifying the device versions for Hue,

Smarter and TP-LinkPlug devices, SILEA was able to perform as high or even

higher than the other algorithms. For classifying Hue devices, SILEA and PART

were able to classify with the highest accuracy of 96%. The classification accu-

racy of C4.5 and DecisionTable were at 89%.

As seen in Figure 8.4, when classifying the Smarter devices, all of the algorithms

were able to perform classification at the same rate of 96%. One of the reasons

why all algorithms perform at the same rate is due to the number of instances



137

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

average

smartercoffee

ikettle2

SILEA C4.5 DecisionTable PART

FIGURE 8.4: Smarter classification performance
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FIGURE 8.5: TP-LinkPlug classification performance

belonging to Smarter devices. Smarter devices, when the data was collected,

seems not to have created as much traffic as the others. Therefore, Smarter de-

vices have the least amount of packets in the dataset. Also, the devices were

easily distinguishable using merely the UDP checksum. Therefore all of the al-

gorithms were easily able to capture this uniqueness.

The classification of TP-LinkPlug devices is where SILEA excels all the other

algorithms. As seen in Figure 8.5, on average, SILEA was able to achieve 76%

accuracy. The DecisionTable algorithm achieved the closest accuracy at 57%.

C4.5 and PART algorithms, however, performed the worst at the rates of 45%

and 47%, respectively.

We observed that, although there are cases when SILEA performs as well and

even better than the other algorithms, there are cases where it does not perform

as well as the others. One of the reasons why SILEA cannot outperform the
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other algorithms is that SILEA makes sacrifices in considering certain combina-

tions of features to reduce the complexity. However, we expect the classification

accuracy to increase when the size of the chromosome to represent a more com-

prehensive set of ranges for numeric features is increased. Also, by increasing

the number of repetitions allowed for the termination point, it is expected for

GA to be able to search for a better solution. Although SILEA with k-means

might require more time to run, it has the advantage of generating the model

that is fine-tuned for the dataset.
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Chapter 9

Conclusion

In this dissertation, we first presented SILEA, a simple yet accurate inductive

learning algorithm. SILEA tries to minimize the enormous amount of possible

consideration of instances, i.e., O(n.n!), to a reasonable number, i.e., O(n2), with-

out sacrificing from its accuracy. Two factors employed in the algorithm recov-

ers the expected accuracy drop from minimizing the number of combinations of

attributes to be considered. The first is that the algorithm, for the given combina-

tion, extracts all the rules and selects those that can classify the most examples.

During the selection phase, the algorithm also discards any rules that are made

obsolete by other rules with higher classification capabilities. The second is that,

since the algorithm favors certain attributes over others when performing com-

bination reduction, it is made sure that these biased attributes are those which

excel over all others based on their entropy values. SILEA, however, does not

guarantee the most general rules for a given dataset. Even though the algorithm

assures the generation of the most general rules for the considered combination,

it can miss more general rules regarding the overall extraction since it eliminates

certain combinations in each iteration. We compared the classification accuracy

of SILEA to some of the well-known algorithms in the inductive learning field

using five different datasets.
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On average, SILEA was 8.8% better than RULES3, 12.1% better than RULES3-

Plus, 4.2% better than C4.5, 5.8% better than CN2, 9.8% better than RIPPER,

14.4% better than RIDOR, 4.4% better than PART, 13.7% better than DecisionTable,

and 8.0% better than RandomTree algorithms.

We then presented OSID which is an entirely automated, machine learning, and

Genetic Algorithm (GA) techniques dependent operating system (OS) identifi-

cation system. OSID can perform any single-packet OS identification with high

accuracy. It uses GA to select smaller and more efficient sets of protocol header

features to perform OS identification. It generates signatures (i.e., models of

protocol header characteristics) with the help of various machine learning algo-

rithms. The use of GA and machine learning algorithms allows OSID to adapt

itself to new OS implementations. Unlike current tools for OS identification,

OSID does not necessarily depend on specific types of packets to perform iden-

tification. Although the system can be restricted to process specific protocols to

assure the highest possible identification results, it can also perform high identi-

fication rates when considering packets belonging to various protocols. A single

packet approach allows OSID to perform identification on any packet.

In our analysis, we observed that OSID could achieve up to 99% average accu-

racy when detecting the OS family using ICMP packets, 99% when detecting the

Linux distros using ICMP packets and 98% when detecting the Mac OS versions

using SSL packets. We also compared our results to one of the most prominent

passive OS identification tools, p0f. We observed that OSID was able to distin-

guish the OSes and their versions more reliably with lesser restrictions.

Next, we present SysID, a completely automated single-packet IoT device classi-

fier using machine learning and GA. GA helps in determining relevant features

in packet headers to both increase classification accuracy and reduce complexity.
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In most cases, we were able to use less than half of the features in packet headers

to classify devices at a rate higher than when all the features were used. GA also

helps eliminate noisy features that negatively affect classification accuracy. We

also analyzed multiple machine learning algorithms to determine the best clas-

sifiers to fingerprint devices at each layer of classification. Overall, SysID was

able to classify devices at a minimum accuracy rate of 95%. In some cases, SysID

could distinguish between devices from the same vendor due to the similarity

of their network behaviors.

We also presented the contribution levels of popular protocols to classify the

OS of hosts and IoT vendors from which the packets originated. We examined

how well certain machine learning algorithms performed for classification from

TCP/IP protocol headers. By using GA to select the most distinguishing fea-

tures, we demonstrated the contribution levels of various features in classifying

OSes and IoT devices while reducing computation overhead. Since classification

was performed individually on the packets, the results obtained are not bound

to restrictions such as classification of certain packet types only (e.g., SYN pack-

ets in TCP).

In general, it is time-consuming to generate signatures due to the complexity of

GA. However, feature selection can be performed offline on High Performance

Computing (HPC) platforms. Also, the training is performed once and only

needs to be repeated with the introduction of a new OS or device. After generat-

ing the signatures, the models for the machine learning algorithms can be shared

across users. Another possible restriction is the lack of representative data. Since

OSID and SysID extract models from the data, the data needs to be as represen-

tative of real-life scenarios as possible. Although our data for OS classification

was not too large, we were still able to observe very high classification results.
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Chapter 10

Future Work

The presented SILEA inductive learning algorithm can be improved for differ-

ent scenarios by incorporating other approaches. For instance, the algorithm

can employ a better range calculation technique to handle continuous attributes

more accurately. Another improvement can be made on the rule extraction pro-

cess by introducing error tolerance in the rules it generates. Every time new

training data is used to train the model, the entire process is required to be re-

peated with the previous data. An incremental version of SILEA could help

address this issue by allowing the models to be updated without the need to re-

generate rules from the data that has already been processed. For future work,

we will investigate these improvements to SILEA.

Although OSID can classify OSes with very high accuracy using a single-packet,

an improved packet sequence classification approach could help increase ac-

curacy even further. An important area of research to perform classification

with packet sequence is to determine weights for each protocol’s packets. In

this study, we observed that UDP protocol packets do not contribute much to

the classification of OSes, but TCP protocol does. Therefore, regardless of how

many packets belonging to the UDP protocol are observed within a sequence,
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we need a weight-based mechanism which will give higher precedence to proto-

cols such as TCP over others. We also believe that by considering textual features

in packet headers, we can increase our classification accuracy. We would also

like to test the classification accuracy of background traffic and user-generated

network traffic. We will include mobile devices and other versions of the OS

families in the future. Note that even though we have not tested our approach

on IPv6, we believe that it can be applied to perform classification on IPv6 pack-

ets as well.

We also would like to analyze packet sequences for IoT device fingerprinting,

which would possibly allow higher classification accuracy. We would also like

to extend our analysis to optimize GA. As we observed, some of the selected fea-

tures were not utilized by machine learning algorithms; we believe that SysID

could have achieved higher accuracy. We want to analyze time-related features

to detect actual behaviors of devices rather than merely performing packet clas-

sification. We believe such an approach will provide more accurate fingerprints

for IoT devices and also provide the ability to extract unique fingerprints even

when numerous devices are introduced.
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