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Actuated traffic signals usually use loop detectors. The current practice in many cities is to

install four consecutive loop detectors in each lane to reduce the chance of undetected

vehicles. Due to practical reasons, all four loop detectors in each lane and other detectors

referring to the same phase are spliced together. Thus, it is possible for several vehicles to

be counted as one single car. This way of detector wiring to the cabinet reduces the ac-

curacy of detectors for collecting traffic volumes. Our preliminary studies show cases with

an error greater than 75 percent. Therefore, the purpose of this paper is to provide a simple

method to obtain turning volumes from signal information in actuated non-coordinated

traffic signals without using loop detector data. To produce the required data, a simulation

was performed in VISSIM with different input volumes. To change turning volumes, a code

was developed in COM interface. With this code, the inputs did not have to be changed

manually. In addition, the COM code stored the outputs. Data were then exported to a

single Excel file. Afterwards, regression and the adaptive neural fuzzy inference system

(ANFIS) were used to build models to obtain turning volumes. The accuracy of models is

defined in terms of mean absolute percent error (MAPE). Results of our two case studies

show that during peak hours, there is a high correlation between actuated green time and

volumes. This method does not need extensive data collection and is easy to be employed.

The results also show that ANFIS produces more accurate models compared to regression.

© 2016 Periodical Offices of Chang'an University. Publishing services by Elsevier B.V. on

behalf of Owner. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Traffic volume studies are conducted to determine the num-

ber, movements, and classifications of roadway vehicles at a

given location. This data helps identify critical flow time pe-

riods and determine the influence of large vehicles or
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pedestrians on vehicular traffic flow. Manual counts are

typically used to gather data for determination of vehicle

classifications, turning movements, direction of travel, and

vehicle occupancy. Most applications of manual counts

require small samples of data at any given location.

The automatic count method provides a means for gath-

ering large amounts of traffic data using permanent or
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portable counters. The majority of signalized intersections

operate under some form of actuated control, and in that

intersection approaches (or lanes) have some type of induc-

tive loops. The new loop detector (also called loop amplifier)

and signal controller equipment now provide the ability to

collect traffic count information from the same loops used for

actuated controls on intersection approaches. The potential to

extract traffic counts from an existing signalized intersection

loop detection system provides the opportunity to collect data

with minimal costs. There are many benefits of collecting

traffic counts from loops at signalized intersections including

the low cost. However, there are also several issues that

reduce loop detector accuracy and reliability for collecting

automatic turning volumes, including variations among

transportation agencies in terms of signal loop placement,

layout and wiring, potential variations in methods of data

extraction based upon the type of technology and/or detector

manufacturer used, and loop maintenance issues.

This paper tries to provide a simple method to obtain

turning volumes from signal information in actuated non-

coordinated traffic signals without using loop detector data.

The two case study intersections are located in Reno, Nevada.

Because of simplicity, this method can be used in agencies

without any other equipment or changing the loop system

configuration.
2. Literature review

Very few efforts are reported in regard to the use of local traffic

detectors for systematic volume data collection. Some re-

searchers have investigated freeway loop detector errors

(Chen et al., 2007; Chen and May, 1987; Dailey, 1993; Jacobson

et al., 1990; May et al., 2004; May et al., 2005; Middleton et al.,

2006; Nihan, 1997; Nihan et al., 1990; Payne and Thompson,

1997; Rajagopal and Varaiya, 2007; Vanajakshi and Rilett,

2004). However, due to the significance of speed and space,

headway of vehicles on loops and freeway detecting loops

have different characteristics and accuracy compared to

intersection loops. Some cities, including Seattle, San Anto-

nio, and Toronto provide real-time or stored travel informa-

tion on selected freeways and arterials based on information

received at their traffic management centers from their

network of inductive loop detectors.

Metropolitan Toronto reported the development of a pro-

totype transit and traffic information system (Berinzon, 1993).

The goal was to incorporate freeway and arterial SCOOT data

into a complete user information data system. The system is

called COMPASS and is employed on some sections of the

Queen Elizabeth Way (QEW) and Highway 401 (Turner et al.,

1999). In this system, data is collected at 20 s intervals and

aggregated to 5 min, 15 min, 1 h, daily and monthly time

periods. Volume, occupancy and speed data are archived for

the 20 s and 5 min time intervals while only volume data is

archived.

The San Antonio TransGuide program has been ware-

housing traffic information from over 300 detector stations

located on freeway mainline segments and ramps. Speed,

volume, and occupancy data are all stored in their database

(Turner et al., 1999).
Institute of Transportation Engineers (ITE) reports that four

cities, Nashua, NH; Fremont, CA; Minneapolis/St. Paul, MN;

and Bellevue, WA are collecting traffic counts using their loop

detector systems (ITE Traffic Engineering Council, 2007).

Nashua has mostly National Electrical Manufacturer's As-

sociation (NEMA) Standard TS1 cabinets. The initial thought

for collecting data at one intersection was to utilize the pre-

sent loops at the STOP line of all approaches. These loopswere

known to be working after detailed testing by the city's
maintenance and operations staff. However, after reviewing

the signal layout plans for the intersection and comparing the

functionality of available upstream 6 ft by 6 ft system loops

with the present loops, the conclusion was made to use the

system loops. Data was extracted from the controller using a

field laptop every 10 d during the desired data collection

period (ITE Traffic Engineering Council, 2007).

In Fremont, CA, data was collected from the system loops

and stored in andmanaged by the traffic signal controller. The

controller was programmed to configure each system loop

and determine how the collected data is grouped. Loops were

typically set up to collect traffic volume and occupancy data,

which were summarized in 15 min intervals, very similar to

traditional tube counts for collecting average daily traffic.

Fremont has standardized its traffic signals with the use of

National Electrical Manufacturers Association's (NEMA) TS2

traffic signal controllers and controller cabinets (ITE Traffic

Engineering Council, 2007).

In 1993, the Minnesota Department of Transportation (Mn/

DOT) began collecting loop detector counts on the instru-

mented part of the Twin Cities metropolitan freeway System.

The system now consists of 648 directional miles and 4300

inductive loop detectors. Both volume and occupancy were

recorded and achieved in 30 s intervals. Loop detector data

from traffic signals has always been available using the signal

controller proprietary software, but the data was difficult to

retrieve and analyze. In 2005, Mn/DOT began retrieving loop

detector data from the field, and then storing the data in a

format that could be easily analyzed. The data was stored on a

server in binary format that could be retrieved by anyone at

Mn/DOT. Tools were developed to allow the users to retrieve

data for numerous loop detectors over a given period (hours to

months). This data can then be averaged, smoothed, and

graphed.

Bellevue, WA, also similar to Nashua and Fremont, used

advanced loops located about 100e140 ft from the STOP line to

measure the volume and occupancy data of an approach. If

the approach roadway had more than one lane, the combined

traffic flow of that approach wasmeasured. At some locations

with heavy turning volumes or uneven lane distribution,

separate measurements for each movement were made. A

remote communication unit in the signal cabinet transmitted

the raw data back to the central signal computer in the TMC

(ITE Traffic Engineering Council, 2007).

North Carolina conducted a test at several locations in the

state and concluded that there was a high level of similarity

betweenmanual counts and the 6 ft by 6 ft stretch loop counts.

Therefore, they recommended that North Carolina begin

using stretch (far) loops for traffic counts by rewiring cabinets

and installing detector amplifierswith count outputs on an as-

needed basis. They did not recommend the use of

http://dx.doi.org/10.1016/j.jtte.2016.03.008
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Fig. 1 e MAPE (%) and RMSE (veh/15 min). (a) Kietzke/Moana intersection, Reno. (b) Sparks/Prater intersection, Sparks.
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quadrupoles. NCDOT does not need to replace every detector

amplifier with count-output units; rather, it can simply swap

them out as needed for counts. Finally, they essentially

observed no variation between rhombus, diamond, and

square shaped loops during their 2001 field investigation, but

it recommended that North Carolina retains the use of rect-

angular (square) 6 ft by 6 ft loop shapes (Milazzo et al., 2001).

Several researchers have studied accuracy of loop detector

counts and improvement algorithms. Vanajakshi and Rilett

(2004) and Bender and Nihan (1988) reviewed studies

regarding the accuracy of loop detector counts and

improvement algorithms. Jacobson et al. (1990) divided loop

detector data screening tests into two main categories:

microscopic and macroscopic. At the microscopic level,

detector pulses were scanned and checked for errors in the

field. At the macroscopic level, the volume from detectors

was collected from the sites and was compared with manual

counts. Some researchers have addressed loop detector data

errors, it's causes, and effects (Bikowitz and Ross, 1985; Chen

and May, 1987; Courage et al., 1976; Dudek et al., 1974;

Pinnell, 1976). Studies of loop detector data errors at the
microscopic level usually require reprogramming or

modification of the detector device and depend on the type

of loop detector (Chen and May, 1987; Coifman, 1999; Nihan

et al., 1990). However, macroscopic approaches are more

commonly adopted because they are independent of the

sensor type and are carried out at the data processing level

(Peeta and Anastassopoulos, 2002). Common macroscopic

studies compare volumes, occupancies, or speeds with

specific threshold values (Cleghorn et al., 1991; Jacobson

et al., 1990; Payne and Thompson, 1997). The main

disadvantage of single-parameter threshold tests, which

typically consider only one parameter at a time, is that they

assume the acceptable range for a parameter is independent

of the values of the other parameters. Because combinations

of parameters are not tested, single-parameter threshold

tests cannot identify unreasonable combinations. Typically,

the combinations of parameter tests take advantage of the

relationships among the three parameters: mean speed,

volume, and occupancy (Cleghorn et al., 1991; Coifman and

Dhoorjaty, 2002; Jacobson et al., 1990; Payne and Thompson,

1997; Turner et al., 2000; Turochy and Smith, 2000).

http://dx.doi.org/10.1016/j.jtte.2016.03.008
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Based on our researches, all these approaches used de-

tector data for determining turning movements. However, it

will be shown in the next section that detector data is not a

reliable source for estimating turning movement volumes in

many cases. As a result, it is usually recommended to change

the loop or wiring configuration which is very costly. This

paper proposes a method for obtaining automated turning

movement volumes, which does not need detector data and

relies only on signal log data.
3. Problem statement

The best source to obtain intersection turning volumes is

signal-controlling detectors. They are in place for operation of

the signals so they can be used for obtaining counts without

any extra cost. ITE report proves that loop detectors can pro-

duce excellent counts if location and wiring of loops are

appropriate (ITE Traffic Engineering Council, 2007). However,

they usually do not have these ideal configurations and as a

result, count errors are significant. To show the accuracy of

loop detectors for collecting turning movement counts, a

study was conducted on two intersections in Reno and

Sparks, NV. Accuracy of detectors can be expressed using

one of the following two error quantity values (Middleton

et al., 2006).

(1) Mean absolute percent error (MAPE) (Eq. (1)).

(2) Root mean squared error (RMSE) (Eq. (2)).

MAPE ¼
Pn

i¼1

���Di�Bi
Bi

���
n

(1)
Fig. 2 e Signal log from intersection of Virg
RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1ðDi � BiÞ2
n

s
(2)

where MAPE is mean absolute percentage error, RMSE is root

mean squared error, Di is detector data value, Bi is reference

(base) data value, n is total number of intervals.

Detector data (Di) is obtained from detector logs in data

bases of city of Reno and city of Sparks. Reference (base) data

(Bi) is obtained from manual counting. The data intervals are

15min counts and are obtained during peak hours ofmorning,

noon, and afternoon. The total number of intervals (n) is 24.

At the Kietzke Ln andMoana Ln intersection in Reno, MAPE

is up to 35% and in the Sparks intersection (Sparks Blvd and

PraterWay), it is up to 75% (Fig. 1). RMSE in this figure is vehicle

per 15 min (veh/15 min). In the Reno intersection, RMSE is as

high as 100 veh/15 min and in Sparks, it is up to 180 veh/

15 min. These measures show very high errors that indicate

loop detectors are not reliable for obtaining turning

movements. The main reason of detector errors is the way

detectors are wired. Both cases in Reno and Sparks have four

consecutive loops at stop bar which are spliced together. This

means one set of four connected loops counts only one

vehicle when several vehicles are on them at the same time.

Therefore especially during peak hours this configuration,

which is a very common practice, counts less vehicles.

The unreliability of loop detectors for producing turning

movements was the incentive to develop a method to obtain

automated intersection turning volumes without using de-

tector data. Except from detectors, the only remaining source

of available automated data is signal logs. Fig. 2 shows a signal

log sample from the intersection of Virginia St and McCarran

Blvd in Reno, NV. Table 1 also shows the signal configuration

for this intersection. The following sections will answer this

research question: Can turning volumes be estimated based

on this signal information without using loop detector data?
inia St and McCarran Blvd, Reno, NV.

http://dx.doi.org/10.1016/j.jtte.2016.03.008
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Table 1 e Signal configuration of intersection of Virginia St and McCarran Blvd, Reno, NV.

ID: 164

Name: Virginia & McCarran North

Configuration: Standard

Param Phs 1 Phs 2 Phs 3 Phs 4 Phs 5 Phs 6 Phs 7 Phs 8

Walk 0.0 7.0 0.0 7.0 0.0 9.0 0.0 8.0

Ped clearance 0.0 20 0.0 25.0 0.0 30.0 0.0 22.0

Min green 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0

Passage 2.5 3.0 2.5 3.0 2.5 3.0 2.5 3.0

Max1 38.0 38.0 39.0 32.0 28.0 39.0 38.0 32.0

Max2 23.0 19.0 27.0 37.0 19.0 23.0 19.0 37.0

Yellow 3.0 4.3 3.0 4.7 3.0 4.3 3.0 4.7

Red 1.0 0.5 1.0 1.0 1.0 0.5 1.0 1.0

Red revert 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0

Added initial 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Max initial 4.0 6.0 4.0 6.0 4.0 6.0 4.0 6.0

Time before reduce 4.0 6.0 4.0 6.0 4.0 6.0 4.0 6.0

Cars before reduce 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Time to reduce 21.0 23.0 23.0 18.0 15.0 23.0 23.0 18.0

Reduce by 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Min gap 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5

Dynamic max limit 48.0 65 60.0 42.0 38.0 65.0 50.0 42.0

Dynamic max step 10.0 5.0 10.0 5.0 5.0 5.0 10.0 5.0

Startup RED RED RED GREEN RED RED RED GREEN

Enable On On On On On On On On

Auto entry Off Off Off On Off Off Off On

Auto exit Off Off Off On Off Off Off On

Non act1 Off Off Off Off Off Off Off Off

Non act2 Off Off Off Off Off Off Off Off

Lock call Off Off Off Off Off Off Off Off

Min recall Off On Off On Off On Off On

Max recall Off Off Off Off Off Off Off Off

Ped recall Off Off Off Off Off Off Off Off

Soft recall Off Off Off Off Off Off Off Off

Dual entry Off Off Off Off Off Off Off Off

Sim gap enable Off Off Off Off Off Off Off Off

Guar passage Off Off Off Off Off Off Off Off

Rest in walk Off Off Off Off Off Off Off Off

Cond service Off Off Off Off Off Off Off Off

Add init calc Off Off Off Off Off Off Off Off

Ring 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0
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4. Methodology

The methodology of estimating intersection turning volumes

from traffic signal information is shown in Fig. 3. To produce

the required data, a simulation should be performed in

VISSIM. The reason for choosing this software is its ability to

produce high-resolution outputs that are required in this

method. In this simulation, turning volumes from 50 to

1250 vph with the interval of 100 were entered for each

signal configuration parameter. To change turning volumes,

a code was developed in COM interface. With this code, the

inputs do not have to be changed manually. A sample of

VISSIM output is shown in Fig. 4. In this output for each

phase, one column shows the state of signal (green by j,
yellow by y, and red by a dot) and other columns show the

state of detectors (occupied by? and otherwise by a dot).

Then, for each phase, all green times and their

corresponding volume should be extracted. Each row in this

data set includes traffic volume passing by during green
time (gt), cycle length (cl), minimum green (mg), vehicle

extension (ve), min recall (discrete variable with yes or no as

values), max recall (discrete variable with yes or no as

values), and side street traffic volume (sv). Because side

street hourly volume (sv) is unknown in reality, time of day

or different time intervals regarding traffic condition (i.e.

night, off-peak, and peak) should be replaced with this

variable. Table 2 shows a sample of the prepared data set. In

this table, some variables are removed because they are the

same for all the data set. For example, minimum green (mg)

is not usually necessary because it does not change during

different times. The next step is to make a model for each

phase/movement. For the model, the green time volume (gv)

is selected as a dependent variable while the other

parameters are defined as independent variables.

Afterwards, a prediction model is built for each phase/

movement. Two methods were adopted to build the models:

regression and adaptive neural fuzzy inference system

(ANFIS). ANFIS is a class of adaptive networks that is

http://dx.doi.org/10.1016/j.jtte.2016.03.008
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Fig. 3 e Methodology of estimating intersection turning volumes from traffic signal information.
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functionally equivalent to fuzzy inference system; however,

in ANFIS, the user does not need to define the rules. Rules

are generated using an artificial neural system. In this study,

the ANFIS built in function of MATLAB was used. VISSIM

outputs are used for training and manual counts for

validating. The following section explains the ANFIS

approach briefly. A detailed description and discussion can

be found in Negnevitsky (2004) and Yen and Langari (1999).
4.1. ANFIS

ANFIS combines the fuzzy inference system (FIS) and artificial

neural networks (ANN) where the FIS is used to model
Fig. 4 e Sample of VISSIM ou
relationship between non-linear variables and ANN is used to

optimize input and output membership function parameters.

FIS canbedefinedasaprocessofmapping fromagiven input to

an output using the theory of fuzzy sets andANN is an artificial

neural network that consists of a number of very simple and

highly interconnected processors, also called neurons. The

neurons are connected by weighted links passing signals from

one neuron to another. ANN adjusts the weights to bring the

network input/output behavior into line with that of the

training data. There are two well-known fuzzy inference sys-

tem: Mamdani-style inference and Sugeno-style inference

(Negnevitsky, 2004). The Sugeno fuzzy model was used for a

systematic approach to generating fuzzy rules from a given
tput for phases 2 and 8.

http://dx.doi.org/10.1016/j.jtte.2016.03.008
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Table 2 e A sample of signal information from VISSIM
simulation.

Cycle No. Green time Volume per cycle Hourly volume

1 20.6 12 Night

2 20.7 12 Night

3 20.7 12 Night

« « « «

12,373 18.6 8 Peak

12,374 14.8 7 Peak

12,375 13.0 6 Peak
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inputeoutput data set. A typical Sugeno fuzzy rule can be

expressed as follows
IF Green time is Medium

AND Minor (intersecting) street volume

(time intervals)

is Peak-hour

THEN Green time volume is High
The ANFIS adopted in this paper is represented by a six-

layer feedforward neural network (Negnevitsky, 2004). Fig. 5

shows the ANFIS architecture that corresponds to the first-

order Sugeno fuzzy model.

Layer 1 is the input layer. Neurons in this layer simply pass

external crisp signals to Layer 2. That is,

yð1Þ
i ¼ xð1Þ

i (3)

where xð1Þ
i is the input, yð1Þ

i is the output of input neuron i in

Layer 1.

Layer 2 is the fuzzification layer. Neurons in this layer

perform fuzzification. For sake of simplicity of diagram, Fig. 5

shows only two fuzzy members for each variable. For

example, two fuzzy members of variable green time (x1) can

be defined as Low (A1) and High (A2). B1 and B2 are also

different levels for variable minor street volume (x2).

However, the actual members for both variables are more

than two. In this paper, for fuzzification neurons, bell

activation function and trapezoid activation function were

tested.

A bell activation function, which has a regular bell shape, is

specified as

yð2Þ
i ¼ 1

1þ
�

x
ð2Þ
i

�ai
ci

�2bi
(4)

where xð2Þ
i is the input and yð2Þ

i is the output of neuron i in Layer

2, ai, bi and ci are parameters that control the center, width and
Fig. 5 e A
slope, respectively, of the bell activation function of neuron i.

Trapezoid activation function is specified by its four corners.

Layer 3 is the rule layer. Each neuron in this layer corre-

sponds to a single Sugeno-type fuzzy rule. A rule neuron re-

ceives inputs from the respective fuzzification neurons and

calculates the firing strength of the rule it represents. In an

ANFIS, the conjunction of the rule antecedents is evaluated by

the operator product. Thus, the output of neuron i in Layer 3 is

obtained as follow

yð3Þ
i ¼

Yk

j¼1
xð3Þ
ji (5)

where xð3Þ
ji is the input and yð3Þ

i is the output of rule neuron i in

Layer 3.

yð3Þ
P1 ¼ mA1 þ mB1 ¼ m1 (6)

where the value of m1 represents the firing strength, or the

truth value, of rule 1, which refers the first rule of the Layer 3.

Layer 4 is the normalization layer. Each neuron in this layer

(N1eN4) receives inputs fromall neurons in the rule layer and

calculates the normalized firing strength of a given rule. The

normalized firing strength is the ratio of the firing strength of a

given rule to the sum of firing strengths of all rules. It repre-

sents the contribution of a given rule to the final result.

Thus, the output of neuron i in Layer 4 is determined as

follow

yð4Þ
i ¼ xð4Þ

iPn
j¼1x

ð4Þ
ji

¼ miPn
j¼1mj

¼ mi (7)

where xð4Þ
ji is the input from neuron j located in Layer 3 to

neuron i in Layer 4, n is the total number of rule neurons.

For example

yð4Þ
N1 ¼

m1

m1 þ m2 þ m3 þ m4

¼ m1 (8)

Layer 5 is thedefuzzification layer. Eachneuron in this layer

is connected to the respective normalization neuron and also

receives initial inputs, x1 and x2. A defuzzification neuron cal-

culates theweighted consequent value of a given rule as follow

yð5Þ
i ¼ xð5Þ

i ðki0 þ ki1x1 þ ki2x2Þ ¼ m1ðki0 þ ki1x1 þ ki2x2Þ (9)

where xð5Þ
i is the input and yð5Þ

i is the output of defuzzification

neuron i in Layer 5, ki0, ki1, and ki2 are the set of consequent

parameters of rule i.

Layer 6 is represented by a single summation neuron. This

neuron calculates the sum of outputs of all defuzzification

neurons and produces the overall ANFIS output, y.
NFIS.

http://dx.doi.org/10.1016/j.jtte.2016.03.008
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y ¼
Xn

i¼1
xð6Þ
i ¼

Xn

i¼1
m1ðki0 þ ki1x1 þ ki2x2Þ (10)

It is often difficult or even impossible to specify a rule

consequent in a polynomial form. Conveniently, it is not

necessary to have any prior knowledge of rule consequent

parameters for an ANFIS to deal with a problem. An ANFIS

learns these parameters and tunes membership functions.

4.2. Count estimation procedure

After making the models for each phase/turning movement,

green time of signal logs would be used as the input of the

models (Fig. 2). For each green time, models estimate a

volume. Then these volumes can be summed up to produce

15 min or hourly counts.

To verify the models for each phase, real turning volumes

are compared with model outputs. The detector accuracy is

defined in terms of MAPE. Then if MAPEs are satisfactory,

models can be used for future turningmovement estimations.
Fig. 6 e Intersection of E 2nd St (eastewest) a

Fig. 7 e Intersection of McCarran Blvd (eastewes
5. Case studies

The intersection of E 2nd St (eastewest, as major street) and

Kirman Ave (northesouth, as minor street) (Fig. 6), and the

intersection of McCarran Blvd (eastewest) and N Virginia St

(northesouth) in Reno, NV (Fig. 7) were selected for case

studies. The first intersection represents a majoreminor

intersection and the second one represents a majoremajor

intersection. Fig. 8 shows scatter plots of green time per

cycle and volume per cycle at E 2nd St during different

times. Twenty four hours were categorized into five different

time intervals from very low volume, which refers to

midnight hours, to very high volume, which refers to peak

hours. This figure shows that during off-peak hours, there is

not a high correlation between actuated green time and

volumes. This is because the signal continues in green time

until max green and a call from the side street. Close to peak

hours, the flow rate becomes closer to saturation flow rate

and green time shows more correlation with volume. During
nd Kirman Ave (northesouth), Reno, NV.

t) and N Virginia St (northesouth), Reno, NV.

http://dx.doi.org/10.1016/j.jtte.2016.03.008
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Fig. 8 e Scatter plot of green time per cycle and volume per cycle in E 2nd St during different times. (a) Very low volume. (b)

Low volume. (c) Medium volume. (d) High volume. (e) Very high volume (peak hour). (f) All times.
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peak hours, there are enough calls from the side street to

terminate green after gap out on the major street. Therefore,

almost in all cycles, a certain number of vehicles can pass

through the intersection within a given green time before

gap out happens. In the side street, because green

terminates after gap out or maximum green, there is high

association between green time and volume at all times.

Similar scatter plots were produced for the intersection of

McCarran Blvd. and N Virginia St However, in this intersec-

tion, both streets are major streets and therefore, it is only

during peak hours or close to peak hours that green time

shows correlationwith volume. Section 6 describes the results

of applying the proposed method on these intersections.
6. Results

Table 3 demonstrates a sample of fuzzy sets of variable

green time for the intersection of McCarran Blvd and

Virginia St during peak hours. The name above each

trapezoid means the number of variable and membership
function. Intersecting street volume was not significantly

improving the results. Therefore, for sake of simplicity, it

was omitted from the modeling process. There are

applications that can be used to facilitate the usage of

ANFIS models. One of them is anfisedit graphical user

interface (GUI) in MATLAB. For each approach, all

information of fuzzy sets should be entered into anfisedit

GUI. Both bell shaped and trapezoid membership functions

were tested for approaches. Bell shaped membership

functions, despite of their complexity, could not make

models significantly better than trapezoid membership

function. In Table 3, all phases have four members in their

fuzzy sets. Having four members means each variable has

been categorized into four categories that are: very low,

low, medium, and high. The numbers inside the brackets

show the four corners of trapezoid members. For example,

member medium in Phase 1 has been defined by 17.30,

23.46, 27.55, and 30.72. This means that membership of

volumes less than 17.30 and bigger than 30.72 are zero in

this category, and one from 23.46 to 27.55. Other volume

ranges have a membership between zero and one.

http://dx.doi.org/10.1016/j.jtte.2016.03.008
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Table 3 e Sample of fuzzy sets of intersection McCarran Blvd and Virginia St during peak hours.

Phase Membership functions Parameters

1 [3.747 6.920 12.610 16.840]

[10.14 15.05 20.60 24.60]

[17.30 23.46 27.55 30.72]

[27.59 30.72 35.48 38.65]

2 [3.747 6.920 12.610 16.700]

[10.21 15.21 21.19 25.20]

[17.30 23.07 29.39 33.71]

[29.40 32.10 35.48 46.53]

3 [2.91 6.39 12.30 18.04]

[9.00 14.68 20.96 26.50]

[18.35 24.70 29.50 33.26]

[26.77 32.64 37.71 41.19]

4 [12.03 19.27 30.20 36.70]

[30.13 37.43 48.23 55.46]

[48.23 55.47 66.33 73.57]

[66.33 73.57 84.43 91.67]

5 [6.503 7.930 10.080 11.430]

[8.999 11.390 13.580 15.270]

[12.57 14.88 17.22 18.66]

[17.20 18.64 20.77 22.20]

6 [6.117 12.050 19.420 29.180]

[17.78 24.66 38.34 44.70]

[35.44 43.87 50.36 56.40]

[50.21 56.30 65.45 71.38]

7 [4.45 7.05 11.11 15.34]

[9.001 13.400 17.490 20.990]

[15.88 19.93 23.87 26.57]

[23.71 26.48 30.45 33.05]
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Table 3 e (continued )

Phase Membership functions Parameters

8 [8.81 17.89 29.32 40.38]

[29.81 37.80 54.20 63.32]

[54.09 63.28 76.91 85.99]

[76.91 85.99 99.61 108.70]
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However, users do not need to engage in this calculation

since anfisedit GUI produces all output results.

Fig. 9 shows the accuracy of applying the proposedmethod

on the intersection of E 2nd St and Kirman Ave in Reno, NV.

Fig. 9(a) illustrates MAPE of regression and ANFIS for both

training and test data sets during different conditions. The

training data is a data set from which models are built and

test data is used to validate the models. The dash line

demonstrates regression and the bold line shows ANFIS
Fig. 9 e Results of intersection of E 2nd St and Kirman Ave, Reno

levels. (b) ANFIS improvements over regression for different vo
results. In almost all conditions, ANFIS produces better

results. Two extreme conditions are at major streets during

low volume hours. While regression produces 53.8% and

55.7% MAPE for training and test data respectively, ANFIS

MAPEs are 7.6% and 7.4%. This shows that when there are

enough training sets, ANFIS can learn the hidden patterns of

data and produce much better models compared to

regression. As it was expected, during peak hours errors are

lower than other hours and decrease to less than 15%. Fig.
, NV. (a) MAPE of regression and ANFIS for different volume

lume levels.

http://dx.doi.org/10.1016/j.jtte.2016.03.008
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Fig. 10 e Results of intersection of McCarran Blvd and N Virginia St, Reno, NV. (a) MAPE of both ANFIS and regression for

different times. (b) ANFIS improvement over regression for different times.
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9(b) shows ANFIS improvements over regression. As it can be

seen, ANFIS produces better results of up to 48% compared to

regression.

Fig. 10 contains similar diagrams for the intersection of

McCarran Blvd and N Virginia St in Reno, NV. Here, models

were built for eight phases. Time intervals (i.e., intersecting

street volume replacement) were categorized into night, off-

peak, and peak hours. Because both streets are major

streets, during night hours errors are extremely high. This is

because green times are not based on volume. However, by

increasing the volume during off-peak and peak hours, the

accuracy of models also increases. ANFIS produces the

following MAPE for phases 1 e 8 during peak hours: 10%,

19%, 9%, 20%, 7%, 22%, 8%, and 25%. Therefore, phases 1, 3,

5, and 7 have errors less than 10% while phases 2, 4, 6, and 8

have errors close to 20%. This means all left turn phases

have almost half the error compared to through phases. The

reason for this is the fact that left-turn green times are

based on gap out. That means they are highly related to

volume. Similar to Figs. 9 and 10 also shows that this

method is not accurate during off-peak hours. The second

diagram of this figure also shows the improvement of ANFIS

over regression that can be more than 25%. ANFIS

improvement is more significant during night and off-peak

hours. The reason is that during these hours, there are more

irregularities in data sets and ANFIS is able to learn and

consider them.
7. Summary and conclusion

Current detectors in Nevada produce unreliable counts. In this

study, amethod is proposed to estimate turning volumes from

signal information without using detector data. In this

method, at first a simulation model is built in VISSIM with

different volume inputs. Then, based on this simulation a data

set is produced which contains green times in each cycle

during the simulation period and their corresponding volume.

Amodel is developed for each phase/turningmovement based

on this data set and if errors of these models are acceptable,

they can be used for future count estimation. For modeling,

regression and ANFIS are used. Results show that during peak

hours there is a high correlation between actuated green time

and volumes at the major street. Minor street green termi-

nates after gap out, or maximum green. Therefore, it is

feasible to estimate volume from prediction models at all

times. From the results, it can be also concluded that when

there are enough records for modeling, ANFIS produces more

accuratemodels compared to regression. MATLAB has a built-

in toolbox for ANFIS that facilitates utilization of this powerful

modeling method.

Themethodproposed in this paper does not need extensive

data collection and due to VISSIM's detailed outputs and ca-

pabilities, it is easy to be employed. Also, there is no need to

install newequipment or changeandmodifyexisting facilities.
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