
University of Nevada, Reno

Adaptive Path Following of the Biomorphic Hyper-Redundant Snake
Robot in Unconstructed Environment

A dissertation submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy in

Electrical Engineering

by

Weixin Yang

Yantao Shen, Ph.D., Dissertation Adviser

December-2019

© Copyright by Weixin Yang 2019

All Rights Reserved

THE GRADUATE SCHOOL

We recommend that the dissertation
prepared under our supervision by

Weixin Yang

entitled

Adaptive Path Following of the Biomorphic Hyper-Redundant Snake
Robot in Unconstructed Environment

be accepted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

Yantao Shen, Ph.D., Committee Chair

M. Sami Fadali, Ph.D., Committee Member

Hao Xu, Ph.D., Committee Member

Hung La, Ph.D., Committee Member

Wanliang Shan, Ph.D., Committee Member

Matteo Aureli, Ph.D., Graduate School Representative

David W. Zeh, Ph.D., Ph.D., Dean, Graduate School

December-2019

Abstract

The efficient movement of biological snakes in various environments is the

result of a long evolution. It is a challenge for researchers to make snake

robots gain high efficiency, athletic agility, and environmental adaptabil-

ity of snakes due to the complicated motion control issues caused by

under-actuation, high-dimension nonlinearity, and uncertainties in kine-

matics, dynamics and interactions with complex environments.

This work relies on a custom-built snake robot that can mimic the

locomotion capabilities of snakes, such as serpentine, sidewinding, and

rectilinear motions, which stems from our prior efforts on its modular

mechanical design, advanced electronic system, and efficient driving ca-

pabilities. Based on this robot system, we moved forward to study the

closed-loop control strategy for a class of snake robots and implemented

pathfinding and following, which is the challenging and practical problem

in control of snake robots.

In this dissertation, we first investigate straight line path-following

problems for a class of planar underactuated snake robots. For this pur-

pose, an adaptive controller that can autonomously drive the snake robot

moving on ground with unknown and varied friction coefficients is de-

signed and validated. Combining with time-varying Line of Sight (LOS)

and Parametric Cubic Spline Interpolation (PCSI) path planning meth-

ods, snake robots tracking arbitrary paths is further explored and the

i

comprehensive curve path following is realized. Last, the perception-

aware pathfinding and following for snake robots in unmodeled and un-

known environments are also studied, and a simple but efficient control

methodology is developed. The proposed method is validated by exten-

sive simulations and experimental results.

More importantly, in this dissertation, we addressed to achieve a

generic adaptive controller for motion control of a class of snake robots

with uncertain dynamics. The advanced controller is proved to be stable

and also it does not require a high gain for reaching ideal control perfor-

mance. With the proposed controller and path following methods, snake

robots are capable of improving mobility in different environments, which

promises the potential of using snake robots in diverse real-world appli-

cations, like the earthquake rescue, narrow space surveillance and even

overwater or underwater explorations.

Keywords: Bio-inspired, Snake Robot, Pathfinding, Path-following, Model-

based Control, Adaptive Controller, Underactuated.

ii

To my fimily

iii

Acknowledgements

This dissertation would not have been possible without the help, support

and guidance of many individuas. To start I would like to thank Dr.

Yantao Shen, my advisor for allowing me to join his lab when it was

first established. His patience and training in all aspects of being a good

research scientist are greatly appreciated and will not be forgotten. I also

would like to thank my committee members; Dr. M. Sami Fadali, Dr.

Hao Xu, Dr. Hung La, Dr. Matteo Aureli, and Dr. Wanliang Shan for

all their enthusiasm, suggestions and constructive criticism.

Being in Dr. Shen’s lab I had privilege of working with Dr. Gang

Wang, the research associate, and three exceptional students, Cong Peng,

Mehdi Rahimi, and Na Zhao. A special thank to Dr. Gang Wang for

helping on the control system design. I really enjoyed the conversations

on research and their good nature when things got difficult. And I also

would like to thank Ming Feng, Zejian Zhou, the members in Dr. Hao

Xu’s lab for their technical help in using lab equipment and facilities for

the experimental implementation.

Lastly, I would like to thank my family for their incredible support,

encouragement and understanding. I have been blessed by my parents

and their guidance, advice and support was always there when I needed

it most. Thank you to my girlfriend, Sirui Zhang, for her smile on bad

days and for her encouragement.

iv

Contents

1 Introduction 1

1.1 Research Background and Overview 1

1.2 The State-of-art of Snake Robots . 2

1.2.1 Current Snake Robots . 2

1.2.2 Snake Robot Control . 4

1.3 Methodology Review . 14

1.3.1 Snake Robot Kinematics and Dynamics 14

1.3.2 Parametric Cubic Spline Interpolation Based Curve Path Gen-

eration . 15

1.3.3 ERRT Based Path Generation 16

1.3.4 Time-varying LOS Guidance Law 17

1.3.5 Backstepping Enabled Path Follow Control 19

1.4 Research Problems, Challenges, and Our Solutions 19

1.5 Contributions . 20

1.6 Structure of the Dissertation . 21

2 The Snake Robot: Design and Locomotion Performance Validation 23

2.1 Snake Robot Mechanical Design . 24

2.1.1 Snake Robot Segment Design 24

2.1.2 Snake Robot Transmission System Design 30

v

2.2 Snake Robot Electronic System Design 36

2.2.1 Electronic Control Modules 37

2.2.2 Electronic Design of the Snake Robot Control Modules 42

2.2.3 Softwares and Programming Environment 48

2.3 Snake Robot Locomotion Performance Validation 54

3 Snake Robot Kinematics and Dynamics 61

3.1 Kinematics . 62

3.2 Gait Pattern . 65

3.3 Dynamics . 68

4 Adaptive Path Following of Snake Robots 73

4.1 Adaptive Straight Path Following . 73

4.1.1 Control Objective . 74

4.1.2 Adaptive Backstepping Controller Design 75

4.1.3 Simulations and experiments 83

4.1.3.1 Simulation Study . 83

4.1.3.2 Experimental Study 88

4.2 Parametric Curve Path Following Control 95

4.2.1 Parametric Cubic Spline Interpolation Based Curve Path Gen-

eration . 97

4.2.2 Time-varying LOS based Guidance Law Design 104

4.2.2.1 Time Varying LOS-Based Steering 104

4.2.2.2 Controller Design . 106

4.2.3 Monotonic Curve Path Following 109

4.2.4 Closed-loop Curve Path Following 115

4.2.5 Cross Curve Path Following 119

vi

vii

5 Perception-Aware Pathfinding and Following of Snake Robots in

Unknown Environments 128

5.1 Problem Statement . 129

5.2 LIDAR Searching Algorithm . 130

5.3 Executive Rapidly-Exploring Random Tree Path Generation 131

5.4 Path Smooth and Control Objective 135

5.5 Perception-Aware Pathfinding and Following 138

5.5.1 Simulation Study . 138

5.5.2 Experimental Validation . 141

6 Conclusions and Future Work 144

References 155

List of Figures

1.1 The world’s first snake robot developed by Prof. Shigeo Hirose in 1972

[19] . 5

1.2 The snake robot ACM R3 developed at Tokyo Institute of Technology

[44] . 5

1.3 The snake robot S5 developed by Dr. Gavin miller [2] 6

1.4 The snake robot ACM R5 developed at Tokyo Institute of Technology

[65] . 7

1.5 The snake robot Uncle Sam developed at Carnegie Mellon University

[63] . 8

1.6 A snake robot with a miniature joint mechanism developed at Tokyo

Institute of Technology [23] . 8

1.7 The OmniTread snake robot developed at the University of Michigan,

the robot has pneumatic joints and is covered by motorized tracks [5] 9

1.8 A snake robot with a skin drive propulsion system developed at Carnegie

Mellon University [42] . 10

1.9 The snake robot Kulko developed at the Norwegian University of Sci-

ence and Technology. Each joint module is covered by force sensors in

order to measure contract forces from the environment [34] 10

1.10 Snake robot kinematics [21]. 15

viii

ix

1.11 PCSI generated smooth curth path. 16

1.12 ERRT path generation method example. 17

1.13 Time-varying LOS guidance diagram. 18

1.14 The research roadmap of the dissertation. 22

2.1 Natural snake skeleton [62] . 25

2.2 Snake robot body upper part . 27

2.3 Snake robot body bottom part . 27

2.4 Passive wheel . 28

2.5 Passive wheel’s rubber ring . 28

2.6 Whole snake robot body part . 29

2.7 Two separate parts of servomotor compartment 31

2.8 Slots of the servomotor compartment 32

2.9 Power transmission gear set . 32

2.10 Gear sets connection . 33

2.11 Single joint of snake robot . 34

2.12 Snake robot head . 34

2.13 The whole snake robot . 35

2.14 Atmel SAMD21 MCU . 39

2.15 16-channel PWM controller . 40

2.16 9 DOF smart absolute orientation sensor 41

2.17 Digi XBee module allows for wireless transmission 43

2.18 MCU peripheral circuit schematic . 45

2.19 SPX3819M5-L3-3 voltage regulator 46

2.20 Wireless communication chip XBee peripheral circuit 46

2.21 BNO055 absolute orientation sensor 47

2.22 BNO055 absolute orientation sensor 48

x

2.23 PCB sanity . 49

2.24 Snake robot control PCB design . 50

2.25 The connection board schematic . 51

2.26 The connection board PCB layout . 52

2.27 Snapshot of snake robot serpentine locomotion 55

2.28 Trajectory plot of serpentine locomotion 56

2.29 x coordinates of the serpentine locomotion 56

2.30 y coordinates of the serpentine locomotion 57

2.31 Snapshot of snake robot sidewinding locomotion 58

2.32 Trajectory plot of sidewinding locomotion 58

2.33 x coordinates of the sidewinding locomotion 59

2.34 y coordinates of the sidewinding locomotion 59

3.1 Snake robot kinematic model . 64

3.2 Snake robot motion simulation with angle offset φ0 The joint offset

φ0 = −0.3rad when t = 120s, and φ0 = −0.6rad when t = 165s. . . . 67

3.3 For turning angle offset φ0, the snake robot makes a sharp turn at

waypoint EP4. 67

3.4 Symbols of snake robot kinematics and dynamics. (Adopted from [33]) 68

4.1 Structure of the proposed adaptive path following controller. 78

4.2 Trajectory of py. 85

4.3 Trajectories of θ and θ̄. 86

4.4 Velocities vt and vn. 86

4.5 Parameter estimates. 87

4.6 Comparative simulation result. 87

4.7 Snake robot employed in the experiment. 88

4.8 Trajectory of py in the comparative simulation. 88

xi

4.9 Trajectories of θ and θ̄ in the comparative simulation. 89

4.10 Path following of the snake robot under the proposed adaptive con-

troller on two different frictions terrains. 92

4.11 Trajectory of py. 93

4.12 Trajectories of θ and θ̄. 93

4.13 Parameter estimates. 94

4.14 Comparative experiment result. 94

4.15 Snake robot tracking trajectory on a monotonic curve. 110

4.16 Lookahead distance varies to achieve appropriate steering. 111

4.17 The errors es and cs converge to zero in a short time. 111

4.18 Monotonic curve path following experiment of the snake robot under

the proposed controller. The first frame is the customized mechanical

snake robot we used in the experiment. All these frames are taken

from an experimental movie. 113

4.19 Monotonic curve path following experiment repeated four times where

all trajectories pass through five waypoints. 116

4.20 Monotonic curve path following experiments results: es, cs, and ∆. . . 117

4.21 Snake robot tracking trajectory on a closed-loop curve. 117

4.22 The simulated time-varying LOS on a closed-loop curve. 118

4.23 Closed-loop path following simulation results: es and cs. 118

4.24 Closed-loop curve path following experiment repeated three times with

the first and last waypoint joined. 119

4.25 Closed-loop curve path following experimental results: es, cs, and ∆. 120

4.26 Closed-loop path following experiment of the snake robot under the

proposed controller. All frames are taken from a movie recording of

the experiment. 121

xii

4.27 Snake robot tracking trajectory on a cross-line curve. 122

4.28 Simulated time-varying LOS on a cross-line curve. 123

4.29 Cross-line path following simulation results: es and cs. 123

4.30 Cross-line path following experiment of the snake robot under the

proposed controller. All frames are taken from a movie recording of

the experiment. 125

4.31 Cross-line curve path following experiment repeated three times. The

snake robot passes through all waypoints. 126

4.32 Cross-line curve path following experimental results: es, cs, and ∆. . . 127

5.1 Gaussian distribution sampling strategy. The red dots represent sam-

ple points. 136

5.2 Tree expansions comparison for RRT and ERRT illustrating path op-

timality. Path from the blue initial point to the red target point is

shown in red. (a) Basic RRT solution, (b) ERRT solution. 136

5.3 Flow chart of the proposed perception-aware path following scheme. . 139

5.4 LIDAR based path following simulation 140

5.5 Experiment snapshots . 142

5.6 ERRT path search experiment repeated four times 143

Chapter 1

Introduction

1.1 Research Background and Overview

Snakes have survived on earth for millions of years and have developed many special

locomotion modes to provide traversability in irregular environments. Bio-inspired

snake robots are robotic mechanisms developed to mimic the excellent mobility ca-

pabilities of biological snakes. Snake robots typically consist of several joint modules

with the same mechanical structure, which allows such a device to possess many

degrees of freedom for moving in many complex and unstructured terrains. Snake

robots have therefore great potential in various applications in irregular and unstruc-

tured terrains, where a high degree of flexibility is needed. As the demand increases

for snake robots in numerous applications that range from fire fighting, rescue and

search, and the inspection of subsea oil and gas installations, the need for high in-

telligence of snake robots is obvious; therefore, an autonomous control method and

its path following strategy are expected. Unfortunately, due to the underactuated

nature of snake robots as well as its many degrees of freedom, stable closed-loop

control of the robot is a challenging problem.

1

2

1.2 The State-of-art of Snake Robots

1.2.1 Current Snake Robots

Inspired by the unique locomotion methods of the biological snake, snake robots have

the potential to provide mobility in different environments. The snake robots typi-

cally consist of serially connected joint modules capable of bending in one or more

planes. Many degrees of freedom make snake robots challenging to control but give

them the ability to travel in irregular and challenging environments where conven-

tional wheeled robots cannot reach. Research on snake robots has been conducted

for several decades. The early snake robot’s locomotion analysis has been reported

by Gray [15] in the 1940s. And Hirose developed the first snake robot in the world

in 1972 [18]. In the last 20 years, there have been many types of research focusing

on the analysis of snake robot’s locomotion methods. Many types of bionic locomo-

tion have been developed based on this research, which provide many suggestions for

building a model to develop and control the snake robots. Although the majority

of the literature on snake robots has focused on locomotion over flat surfaces, there

is a growing need for a snake robot that can move in the challenging environments

encountered in practical applications. Meeting this need is essential to realize snake

robots’ potential in the future.

Research on snake robots is inspired by the robust motion capabilities of biological

snakes. These amazing creatures have emerged through millions of years of evolution

to adapt to most of the different environments in the earth. Biomechanical studies

of snakes are, therefore, relevant to research on snake robots. One of the earliest

analytical studies of snake locomotion methods was proposed by Gray in 1940s, he

proposed a mathematical description of force acting when the snake is moving. His

studies gave properties of snake locomotion. One of Gray’s conclusions was that the

3

forward motion of a snake on a flat surface requires the existence of an external forces

acting in the average direction to the snake body. Hirose studied the biological snake

and built the mathematical model as a continuous curve that cannot move sideways.

A famous result proposed by Hirose is the serpentine curve (the most common form

of snake locomotion) equation. Hirose discovered that a close approximation to the

shape of a biological snake during lateral undulation is given by a planar curve whose

curvature varies sinusoidally. Hirose also proposed mathematical descriptions of how

external factors, such as ground friction or temperature, affect the snake locomotion

efficiency and the shape of the locomotion curve.

The world’s first snake robot was developed by Hirose as early as 1972. The snake

robot is shown in Fig. 1.1, which equipped with passive wheels. The friction between

passive wheels and ground enables Hirose’s snake robot to move forward on the flat

surface. Several other snake robots with passive wheels have been proposed over the

years. Illustrations are shown in Fig. 1.2, Fig. 1.3, and Fig. 1.4. Some of the robots

only have locomotion on a flat surface, while others have the ability to move their

links both horizontally and vertically. The two degrees of freedom of each modular

link enables the snake robot to have 3D locomotion, which improves the robot’s

adaptability to environments. Some robots have shielded joint modules that enable

motion in some special environments like mud and dust, and even enable locomotion

under water. A common feature of these snake robots is that, generally, they are

able to move across relatively flat surfaces since the passive wheels block the motion

in the cluttered environment. Such mechanisms are therefore limited to run in the

lab environment but not for practical application in a challenging environment.

Some snake robots do not have wheels,emphi.e., robots with straight links inter-

connected by motorized joints. Despite its lack of wheels, the snake robot maintains

anisotropic ground friction since the underside of each link has edges, or grooves, that

4

run parallel to the link. These robots can, therefore, move forward by lateral undu-

lation through purely planar motion. Robots whose ground friction properties are

isotropic, on the other hand, can move forward during lateral undulation by resorting

to sinus lifting, i.e., by slightly lifting the peaks of the body wave curve from the

ground. However, snake robots with isotropic friction are mostly used for studying

gaits other than lateral undulation, such as gaits based on sidewinding, inchworm

motion, or lateral rolling. Illustrations shown in Fig. 1.5 and Fig. 1.6 focuses on the

development of small, light-weight, and strong joint actuation mechanisms, which

are important for many future applications of snake robots. There are also some

snake robots equipped with active propulsion along the body. Such snake robots are

equipped with motorized wheels in each link or by installing tracks along the body

of the snake robot, or by employing a screw drive mechanism as shown in Fig. 1.7

and Fig. 1.8, respectively.

The environment sensing for snake robots in previous research is limited. Early

in 1972, Hirose equipped a snake robot with contact switches, which enable the

snake robot to have basic obstacle avoidance ability. In the latter research, some

snake robots with active wheels are equipped with a three-axial force sensor. The

translational forces are measured by the force sensor on the wheel axis based on

optical range measurements. The snake robot, shown in Fig. 1.9, is in ball-shape

joint modules equipped with force sensors mounted underneath the shell of each

module.

1.2.2 Snake Robot Control

Research endeavors on bio-inspired snake robots have extensively appeared for over

40 years since Hirose et al. designed the world’s first snake robot in 1972 [17]. Some

seminal works are [55, 38, 39], and [10]. And a comprehensive exposition of state

5

Figure 1.1: The world’s first snake robot developed by Prof. Shigeo Hirose in 1972
[19]

Figure 1.2: The snake robot ACM R3 developed at Tokyo Institute of Technology
[44]

6

Figure 1.3: The snake robot S5 developed by Dr. Gavin miller [2]

7

Figure 1.4: The snake robot ACM R5 developed at Tokyo Institute of Technology
[65]

8

Figure 1.5: The snake robot Uncle Sam developed at Carnegie Mellon University [63]

Figure 1.6: A snake robot with a miniature joint mechanism developed at Tokyo
Institute of Technology [23]

9

Figure 1.7: The OmniTread snake robot developed at the University of Michigan,
the robot has pneumatic joints and is covered by motorized tracks [5]

10

Figure 1.8: A snake robot with a skin drive propulsion system developed at Carnegie
Mellon University [42]

Figure 1.9: The snake robot Kulko developed at the Norwegian University of Science
and Technology. Each joint module is covered by force sensors in order to measure
contract forces from the environment [34]

11

of the art on bio-inspired snake robots can be found in survey papers [49, 60], and

references therein.

Controlling the planar snake robot is a challenging problem due to its intricate

dynamic model, which is highly coupled and possesses at least three degrees of under-

actuation. In the available studies, much attention has been paid for the snake robots

to duplicate the four main types of snake locomotion [39, 20, 47], which is actually

the open-loop control. However, autonomous closed-loop mobility is often required

in the applications of the robots. In the available studies, much attention has been

paid to open-loop control for the snake robots to duplicate the four main types of

snake locomotion [39, 20, 47]. However, autonomous closed-loop mobility is often

required in practical robot applications. The (from a control perspective) practical

path following problem for snake robots has been considered very rarely. There are

some efforts concerning the mathematical models of snake robots to improve control

efficiency in environments, which makes them close to real-life applications [40, 37].

As far as closed-loop control is concerned, further research is still required due to

the intricate dynamics of the snake robots that is highly coupled and carries many

degrees of under-actuation. In the context of uncertain dynamics, various solutions

have been obtained in robot control (see, e.g., [32]). Nevertheless, to the best of our

knowledge, the results on the control of uncertain snake robots are still limited due

to their inherent underactuated characteristic and high-coupling nonlinear dynamics.

In [45], it is assumed that the uncertainty is bounded by a known constant and a

sliding mode control is given to solve the velocity tracking and head-angle control

problem of the planar snake robot. Recently, controllability and stability analysis of

planar snake robot locomotion is intensively investigated in [36],any asymptotically

stabilizing control law for a planar snake robot to an equilibrium point must be time-

varying. A control method for straight line path following problem of snake robots

12

is proposed with the help of the Poincaré map. However, as emphasized in [49],

Poincaré map analysis is based on simulations and is not always feasible as there is

no general method to construct a Poincaré map. To overcome this obstacle, in light

of the stability of the cascaded system, the path following control of two-dimensional

snake robots is studied, and a perfect following performance is achieved and vali-

dated via simulations as well as experiments in [50]. A cascaded system with Line

of Sight (LOS) based navigation is studied to solve the path following problem for

a two-dimensional snake robot with known constant frictions [33]. Furthermore, by

using virtual holonomic constraints (VHCs) and reduction theorems, the problem of

path following control for a planar snake robot is approached in [43]. The VHCs are

also employed in neural-network control for the path following of snake robots [8].

More recently, the neural-network-based central pattern generator (CPG) brings a

snake robot closer to a biological snake. The CPG generates rhythmic patterns by

the coupled nonlinear oscillators instead of digital signals, which leads to the smooth

locomotion of a snake robot [64, 9].

Despite recent progress towards the control of planar snake robots, specific prob-

lems remain open. The results above are obtained requiring the assumption that the

friction coefficients in the dynamic model of the snake robot are precisely known.

However, friction forces are usually unknown and variable in practical operating en-

vironment. In addition, even for the same snake robot these coefficients depend on

the interactive terrains [3]. Assuming that friction coefficients are known and time-

invariant constants results in an inconsistency between both theoretical and in-field

performances. Therefore, research in snake robots without a priori knowledge of fric-

tion coefficients is of more practical significance. With further development of this

method for solving problems with unknown and varied friction, an adaptive control

algorithm has been provided in [61]. Nevertheless, these control approaches [33, 61]

13

are limited to the straight line paths following. Alternative solutions to curved path

following are presented in [53, 43], by employing hierarchical structure and maneu-

vering control.

Path-planning is the prerequisite of path following, which pertains to regulating

a route when robots are moving from one location to the destination. Practically,

the path-planning initialization is to introduce several fixed points in space from a

start point to an end point, namely the waypoints. Then the desired curve path

is generated by joining successive straight lines that pass through these waypoints.

However, the aforementioned straight line path following strategy is not applicable to

the curve situation because such a path has a discontinuous first derivative (velocity

function) at each waypoint. One solution, namely Dubins path, is promulgated in

[56]. The Dubins method still considers a straight line between two waypoints but

achieves turning by inscribing circles at the waypoint. This solution, to the best of

our knowledge, gets little attention because the generated path cannot go through the

waypoint, which may lead to unpredictable problems with obstacle avoidance. Con-

sidering the aforementioned requirements (velocity continuity and passing through

the waypoint), Bézier curve is proposed in order to form a smooth curve in [22].

However, it also brings a high computational load to the onboard control system.

More recently, Parametric Cubic Spline Interpolation (PCSI) and Cubic Hermite In-

terpolation (CHI) have also been extensively studied in path-planning research [4],

[59]. Regarding the special characteristics of the snake robot mechanical structure,

PCSI is able to produce a smooth curve at the turning point, thus it is able to reduce

the power consumption of the servomotor.

It is noted that most current control strategies require the desired trajectories

or paths to be known a priori. Hence, exact knowledge of the global environment

in which the robot moves is needed to generate these trajectories or paths. Such a

14

requirement restricts the application of the developed strategies to a relatively small

class of applications. For most practical applications, it is highly desirable to explore

a path following strategy and design control algorithms by which the snake robot can

real-time plan the path, relying only on available local environmental information.

Algorithms for obstacle detection and path planning using a point cloud generated by

the LIDAR are studied in [30, 24], however, they cannot be applied to non-holonomic

robots.

1.3 Methodology Review

1.3.1 Snake Robot Kinematics and Dynamics

First, the kinematics of the snake-shaped robot were established. The simplified

models were proposed in [50] and [54], which greatly simplifies the existing planar

snake-like robot motion model. The model only captures the basic characteristics of

the snake’s movement, so the complexity is greatly reduced compared to the original

model used in the analysis [35]. The kinematics of the snake robot is shown in

Fig. 1.10. A complex and accurate model of the snake robot is considered in a

Lagrangian framework in [33]. Basically, the snake robot is composed of n rigid links

and n− 1 joints. Each link has a passive wheel on its center, which does not slip nor

slide sideways. With the coordinate of each center of mass of a link, it is possible

to specify the kinematic map of the snake robot [21]. Moreover, a simplified snake

robot is developed [37] to capture only these essential properties of snake locomotion,

thereby significantly reducing the complexity compared to the original model. The

dynamics of the planar snake robots will be expressed in Section 1.10.

15

Figure 1.10: Snake robot kinematics [21].

1.3.2 Parametric Cubic Spline Interpolation Based Curve

Path Generation

The previously described snake robot kinematics and dynamics are accurate enough

to control the snake robot. However, before we are going to design the controller, we

need to regulate a path which is suitable for the snake robot to traverse. Such that

we use the parametric cubic spline interpolation based curve path generation.

The path of the snake robot is specified in terms of n waypoints. The waypoints

pwpt(i), i = 1, . . . , n is defined by the coordinates pwpt(i) = (xwpt(i), ywpt(i)) ∈ R2,

and the set of waypoints can be expressed as

pwpt = {(xwpt(1), ywpt(1)), (xwpt(2), ywpt(2)),

. . . , (xwpt(n), ywpt(n))} .
(1.1)

The mission of path planning is to generate a desired path that from the starting

16

point pwpt(1) to the terminal point pwpt(n). PCSI and CHI are popular choices for

curve fitting for ease of data interpolation. The particular difference between these

two methods is how the slopes at waypoints are processed. In this work, the PCSI is

employed for the path generation for each pair of successive waypoints in the form of

(pwpt(i), pwpt(i+ 1)), i = 1, . . . , n− 1, which is also called a spline. A generated path

is a sequence of order splines. The generated curves are plotted in Fig. 1.11.

0 10 20 30 40
0

100

200

EP 1
EP 2

EP 3 EP 4
EP 5

0 10 20 30 40

y
(c
m
)

0

50

100

EP 1

EP 2 EP 3

EP 4

EP 5

x (cm)
0 50 100 150 200

0

50

100

EP 1

EP 2 EP 3

EP 4

EP 5

Figure 1.11: PCSI generated smooth curth path.

1.3.3 ERRT Based Path Generation

ERRT can adequately address the path planning problems in a high-dimensional

space with complicated constraints. Thus, the path planning algorithm based on

ERRT can avoid modeling of space by collision detection of sampling points in state

space. Thereby ERRT can find a feasible path from the starting point to the target

point, which is applicable to solve the path planning problem of snake robots in the

17

complex and unconstructed environment. The example of ERRT generated path is

demonstrated in Fig. 1.12.

Figure 1.12: ERRT path generation method example.

1.3.4 Time-varying LOS Guidance Law

To steer the snake robot to the desired path generated by the PCSI method in,

considering that the sideslip of snake robot may occur when friction varies, an integral

LOS based guidance law interpreted as the saturated control law is utilized [6]

θ̄ = − arctan

(
Kpes −Ki

∫ t

0

es(τ) dτ

)
, (1.2)

where es = py−yd is the cross-track error, Kp = 1/∆ with ∆ > 0 being the lookahead

distance. Ki > 0 represents the integral gain. The reference steering angle is now

proportional to the es with a constant gain Kp. Furthermore, integral control is

effective to compensate the steering angle if sideslip occurs [13].

For dynamically controlling when turning, a time-varying lookahead distance is

18

considered as ∆ = (∆max−∆min)e−K∆e
2
s+∆min, where K∆ > 0 is the convergence rate,

and ∆max and ∆min are, respectively, the upper and lower bounds of the lookahead

distance. Typically, ∆max = 1.3L and ∆min = 0.4L, where L is the length of snake

robot.

The LOS guidance ensures the snake robot to be directed toward the desired

endpoint (xi, yi) until it converges to the curve path, such that the control objective

(4.1) is satisfied. The time-varying LOS is shown in Fig. 1.13.

Figure 1.13: Time-varying LOS guidance diagram.

19

1.3.5 Backstepping Enabled Path Follow Control

Due to the fact that the snake robot model (1.10) possesses the higher-order non-

linear dynamics, the controller design will be performed by following a step-by-step

procedure known as backstepping technique [28]. The detailed design procedure is

given as follows.

Step 1: In this step we design the joint offset φo such that the heading angle θ con-

verge to the LOS guidance law (1.2).

Step 2: With the purpose of making the joints track φ̄i, we define the link angle error

z2 = φ− φ̄. Such that we make the actual joint angle follows the reference joint

angle.

Step 3: We set the actuator force control input to make the actual joint velocity

following the desired joint velocity.

1.4 Research Problems, Challenges, and Our So-

lutions

We consider the path following problem for a class of planar underactuated bio-

inspired snake robots in a complex environment with varying friction coefficients.

The snake robot has nonlinear dynamics ˙x = f(x,u), where x is the states and u

is the control inputs of the snake robot. Several constraints are imposed on the

snake robot such as control saturation, actuator lag, and speed bounds. These are

represented by x ∈ X and u ∈ U.

Our investigation starts on a path planning problem that generates a desired

path that from the starting point pwpt(1) to the terminal point pwpt(n). PCSI is

employed for the path generation for each pair of successive waypoints in the form

20

of (pwpt(i), pwpt(i + 1)), i = 1, . . . , n − 1, which is also called a spline. A generated

path is a sequence of order splines. By introducing the four constraints, we can solve

the PCSI cubic equations to generate a smooth path for snake robots. The LIDAR-

based ERRT allows snake robots a path finding ability by employing an initial point

as the root node to generate a random extension tree with randomly sampling the

leaf nodes. Then, we follow three steps to design the path following controller. Step

1: steer the snake robot towards the desired path where a time-varying LOS law

is utilized. Step 2: design the controller to make the actual joint angle follows the

reference joint angle. Step 3: design the actuator torque vector τ to make the actual

joint velocity following the desired joint velocity.

Note that, the operating environment is dynamic and uncertain, so the path

planning must be generated online. In addition, to quickly react to the sudden change

in situational awareness, the planning interval must be as short as 0.1 seconds.

1.5 Contributions

In this dissertation, we consider the path following problems of planar underactu-

ated bio-inspired snake robots on ground with uncertain friction coefficients. Benefit

from the PCSI path planner and the time-varying LOS guidance, snake robots can

traverse from one location to the destination through the arbitrarily planned smooth

curve. Specifically, based on the backstepping technique, we design a novel adaptive

controller that can compensate for unknown and varied friction coefficients online.

It is proved via LaSalle-Yoshizawa theorem that the following errors converge to

zero asymptotically, and all the parameter estimates are bounded. Furthermore, a

perception-aware path planning and tracking framework that makes the snake robot

reach a pre-defined target point in an unconstructed environment is proposed and

validated.

21

The main contributions of this dissertation can be summarized as follows:

• The uncertain friction coefficients of the snake robot are taken into account in

the controller design, which, however, have not been discussed up to now in the

relevant works. With compensating for uncertain frictions, our control meth-

ods do not require high-gain control to achieve an ideal control performance

compared with the maneuvering control of planar snake robots.

• Our proposed method can make the snake robot follow arbitrary curved paths,

which is more advanced in real-world applications.

• The improved LOS guidance method with a time-varying lookahead distance

is proposed, which helps achieve a faster convergence to the planned path than

that with constant lookahead distance in existing work.

• Compared with SLAM based mapping and navigation methods, the proposed

perception-aware method is a less complicated but efficient path searching and

navigation algorithm and possesses high operating efficiency in an the sense of

low computation.

• A modified rapidly-exploring random tree searching method that can adaptively

change the size of exploration steps, is proposed to improve the exploration

efficiency of the path finding for path following.

1.6 Structure of the Dissertation

The organization of this dissertation is as follows. Chapter 2 introduces the snake

robot mechanical design and the associated electrical control system. Chapter 3 de-

scribes the kinematics and dynamics of the underactuated snake robots. Chapter 4

presents the path-following methods for a class of bio-inspired underactuated snake

22

robots in known/modeled environment. Including the adaptive straight path fol-

lowing, parametric curve path following. Chapter 5 is about the LIDAR searching

based perception-aware pathfinding and following in unknown/unmodeled environ-

ment. Simulation and experimental results are illustrated on an 8-link snake robot to

validate our theoretical findings and investigations. We conclude the dissertation in

Chapter 6, and also point out the future work in this Chapter. Corresponding to the

structure, to guide for outlining the research work of this dissertation, the research

roadmap of the dissertation is illustrated in Fig. 1.14.

Snake Robot
Path

Following

Chap.2:
Snake Robot

Design

Chap.3:
Snake Robot

Modeling

Chap.3.1:
Kinematics

Chap.3.2:
Dynamics

Chap.4:
Adaptive

Path
Following

Chap.4.1:
Straight Path

Following

Chap4.2:
Curve Path
Following

Chap.5:
Perception-

Aware
Pathfinding

and Following

Chap.5.1:
LIDAR

Searching
Algorithm

Chap.5.2:
ERRT

Figure 1.14: The research roadmap of the dissertation.

Chapter 2

The Snake Robot: Design and

Locomotion Performance

Validation

Snakes have lived on the earth for hundreds of millions of years. They have evolved a

variety of locomotion patterns in order to survive in different landscapes. Our goal is

to use mechanical design to replicate as much as possible the way snakes move in the

natural world. Through the observation of natural snakes, we found that most snakes

use the S-shape to swing forward, and some snakes in the desert use the Sidewinding

method. The unique shape of the snake robot and its ability to navigate in highly

complicated environments make them suitable not only for rescue missions in urban

search but also for environmental monitoring missions in the ever-changing terrain.

However, only strong, well-designed, reliable snake-shaped robots can accomplish

these tasks.

23

24

2.1 Snake Robot Mechanical Design

Mechanical snake robots are a class of super-redundant mechanical devices that move

through internal shape changes. Many factors can affect the design of mechanical

snakes, such as size, power, and weight. Mechanical snake designs require complex

mechanical and electrical structures to meet these constraints. We have designed a

modular architecture that allows for the replication of multiple snake motion pat-

terns, even in the event of failure of one or more servo motors. The architecture

combines sophisticated mechanical design with state-of-the-art electronics and soft-

ware that can be used by machine snakes to perform tasks efficiently. We considered

the common faults of other modular robots and designed them accordingly. The

machine snake body part is an elliptical cylinder that is the intermediate connecting

parts used to connect the two power mechanisms. In order to facilitate maintenance

and disassembly, the snake body is divided into upper and lower parts and assembled

with screws.

The natural snake body consists of a huge number of vertebrae and other bones

shown in Fig. 2.1. The body is swung by the contraction of muscles to move forward

aginst the friction. Depending on the type of snake, the number of vertebrae of snakes

is between 140 and 500. A large number of vertebrae guarantee a lot of degrees of

freedom for natural snakes, which in turn forms a variety of sports patterns unique

to snakes.

2.1.1 Snake Robot Segment Design

In our design, the mechanical snake is a multi-joint multi-degree of freedom, which

can realize a mechanical structure that is bent in two vertical planes. The actuator

is used to replace the muscle to generate kinetic energy. Taking into account the

practical application of mechanical snakes and the installation of electronic control

25

Figure 2.1: Natural snake skeleton [62]
A natural snake has numerous vertebrates that enable the snake to generate motion
in multiple degrees of freedom.

26

components, such as detection sensors for environmental monitoring and transport

functions in complex geomorphology, a cavity is added between the two joints, which

is the body part of the snake. The upper part shown in Fig. 2.2, has a large internal

space that can be used to install the necessary electrical devices and sensors. The

bottom part touches the ground as shown in Fig. 2.3, the wall of the bottom part

is thicker than the upper part and can carry the weight of the whole snake robot.

Assemble snake robot body has an elliptical cross section geometry to approximate

the typical body shape of a snake, and prevent the snake robot from rolling during

movement. There are two passive wheels,shown in Fig. 2.4, mounting groove at the

bottom of the bottom part to allow the snake to pass through the smooth ground.

Each passive wheel is equipped with rubber tires, shown in Fig. 2.5, which increases

the lateral friction of the snake robot for better movement on smooth surface. Fur-

thermore, a pair of passive wheels are mounted at a 45 degree angle to further increase

friction. With these 4 separate accessories, we can assemble a complete snake robot

body part as shown in Fig. 2.6. The short body length leaves space for electrc in-

stallation and also guarantees high degree of flexibilty. A pair of passive wheels with

rubber tires increase friction for efficient locomotion on the flat plane. The final

snake robot body design is 30mm in length, and has an elliptical cross section with

a semi-major axis of 61.5mm, semi-minor axis of 48.08mm.

In order to achieve the gait sequence of natural snakes, the design of the joints

is crucial. The joints of the snake robot must be able to implement a board set of

S-shaped poses. Each joint must exhibit the ability to bend 90 degrees in both x and

y plane without significant distortion or rolling. The snake should be modular, as the

movement would require at least one pair of antagonistic actuators to be connected

in series, so each actuator must have a connection mechanism that does not require

excessive use of rigid components. To meet these requirments, servo motor DS75K

27

Figure 2.2: Snake robot body upper part
The snake robot upper part has large internal space for device installation.

Figure 2.3: Snake robot body bottom part
The snake robot bottom part wall is thicker than the upper one to carry weight.

28

SOLIDWORKS Educational Edition.
 For Instructional Use Only.

Figure 2.4: Passive wheel
A pair of passive wheels are mounted at a 45 degree angle.

Figure 2.5: Passive wheel’s rubber ring
The rubber ring is used to increase friction.

29

Figure 2.6: Whole snake robot body part
Short body length ensures high degree of flexibility in the movement of the snake
robot. The passive wheels allow the snake robot ot move efficiently on the plane.

from MKS is selected to provide bending power to both x and y direction. DS75K

is a powerful servo operating at 5V voltage with 1 cell LiPo battery and is able to

provide torque of 2.4kg/cm with operating speed of 0.13sec/60 DS75K has small

size of 23mm wide, 9mm thick, and 16.7mm high for easy installation. The reason

why snakes can perform flexible movements with high degrees of freedom is that

snakes have a lot of vertebrates. When designing snake robot joints, we try to mimic

the joint characteristics of natural snakes so that the length of joints is as short as

possible. Therefore, the servo motor DS75K is horizontally placed in the servomotor

compartment so that the joint length is significantly reduced. The joints of snake

snakes are used to connect all snake robot bodies and need to withstand the torsional

forces generated by servo motor rotation. So we thicken the walls of the joints so

that the joint can withstand two perpendicular directions of torque. Similar to the

body design of the snake robot, the joint is modularized. It is divided into two

30

detachable parts, as shown in Fig. 2.7 to facilitate the installation of the transverse

servo motor. Considering that the servo motor will withstand tremendous torque

during the movement of the snake robot, the servomotor power transmission gear

set may be damaged, so the detachable modular design facilitates installation and

maintenance. In addition, the channel for passing the signal line, the power line,

and the space for mounting the board is reserved in the servomotor compartment,

as shown in Fig. 2.8. The reasonable electrical layout makes the signal transmission

unaffected by the noise of the servomotor and also improves the stability of the

operation of the electronic system. For example, an electronic system can provide a

stable control output when a mechanical snake moves in different motions. The ball

bearings are used on both sides of the servomotor compartment to guide the rotary

motion of the cylindrical gear shaft and to withstand the load transmitted to the

snake robot by the circumference.

2.1.2 Snake Robot Transmission System Design

The snake robots swing the joints in the x and y plane through the rotation of

servomotors. We use the standard spur gear set to transmit the servomotor torque

to the snake robot joint. Spur gear transmission is a mechanical transmission that

uses two gear teeth to mesh with each other to transmit power and motion. The

spur gear set has high transmission efficiency, the closed transmission efficiency is

96%∼99%, and the structure is compact which requires small space size. The snake

robot requires to swing the body with high angular velocity to motion, which means

that the transmission gear set needs to output the servo motor torque at a high

angular speed. We choose the 1st gear as the spur gear set with the transmission

ratio of 1. The secondary gear is the power transmission of the increasing gear set with

the output ratio of 0.75. That is, the first gear group has the same number of teeth;

31

the second gear set can output a larger angular velocity. The power transmission

gear set contains 4 sets of gears as shown in Fig. 2.9. Considering that the snake

robot joints are only twisted within a certain angle, that is, -45°∼45°. Gears 1, 2, 3,

and 4 have different numbers of teeth, which are 24, 12, 9, and 32, respectively.h are

24, 12, 9, and 32, respectively. The different gear counts of the gear set are designed

to meet the power transmission requirements, making the gears tightly meshed and

saving space in the servomotor compartment. As shown in Fig. 2.10, the gear 1 is

coaxial with the servo motor, the gear 2 is coaxial with the gear 3, and the gear 4 is

coupled to the bearings of the servomotor nacelle to drive the snake robot to twist.

Figure 2.7: Two separate parts of servomotor compartment
Modularized servomotor compartment makes installation and maintenance easy.

The joint assembly diagram of the snake robot is shown in the Fig. 2.11. The

entire snake robot consists of 8 jdentical joints and a snake robot head. Like snakes,

the snake robot head contains all the necessary electronics to control body movements

and sense external information. Therefore, the snake robot head is divided into two

32

Power Cable Slot

Control Board Slot

Signal Line Slot

Servomotor
Connection Slot

Ball Bearing
Slot

Figure 2.8: Slots of the servomotor compartment
Reasonable allocation of servomotor compartment space to install more electronic
systems.

Figure 2.9: Power transmission gear set
Four sets of gear transmit power from servomotor to the snake robot joint. Gear 1
directly connects the servomotor, gear 2 and gear 3 are coaxial, and gear 4 connects
the ball bearings of snake robot joint.

33

Figure 2.10: Gear sets connection
Spur gear set connection diagram.

parts as shown in Fig. 2.12. The lower part is used to install the electronic control

board, and the upper part is used to connect the sensor that the snake robot senses

the surrounding environment. The design of each vacancy of the snake robot head

corresponds to the circuit board, which is convenient for installation and debugging.

We also have a universal wheel mounting groove under the snake robot head. We

abandoned the two passive wheel designs that are the same as the snake body and

used a universal wheel instead, because we want to leave more space for electronics

and it will not affect snake robot kinematic model.

The whole snakerobot consists eight the same joint shown in Fig. 2.13.

34

SOLIDWORKS Educational Edition.
 For Instructional Use Only.

Figure 2.11: Single joint of snake robot
A snake robot consists of 8 the same joint.

Figure 2.12: Snake robot head
A snake robot head is separated into 3 parts to contains more electrical components.

35

Figure 2.13: The whole snake robot
The whole snake robot consists 8 the same joins.

36

2.2 Snake Robot Electronic System Design

Snake robots are a class of super-redundant mechanical devices that move through

internal shape changes. Due to the multi-degree of freedom of the snake robot and

the compact mechanical design features, the design of the electronic control system

for the snake robot has become a problem. Many factors can influence the design

of electronic control systems for snake robots, such as size, power, and working

environment. So we designed complex electronic systems to meet these limitations.

This electronic system allows for open-loop remote control of snake robots, closed-

loop automatic control, and data acquisition and transmission. Damage to one or

more servomotors is also taken into account without causing the entire snake robot

to smash, and this multi-redundant electronic design does not result in increased

power or signal disturbances. We integrate all the necessary electronic modules on a

single circuit board through intelligent circuit design and PCB layout to be mounted

on the head of the snake robot. Each joint receives motion signals and transmits

power through signals and power adapter boards. The integrated design and flexible

routing allow the individual components on the board to work independently without

interfering with each other. All the IO ports that are not used by the microcontroller

are taken out, which ensures the expandability of the electronic control system. When

designing the electronic control system PCB, we considered the compact space inside

the snake robot. We used 3D-PCB design technology to arrange a reasonable layout

for each chip and the external circuit and the quad flat package (QFP) is used as well.

The 3D-PCB design technology ensures the stability of a single system by using the

3D model of the chip to properly place the external circuitry recommended by the

chip manual on the board. This stable-priority and structure-compact design ensure

that the various electronic modules on the chip work normally without interference.

The thickness of the entire PCB is also less than 5 mm. The electronic control

37

board chips and electronic components all use the QFP, which poses a considerable

challenge for our manual soldering. However, the machine welding can solve this

problem.

2.2.1 Electronic Control Modules

Based on our requirements for microcontroller computing power, microcontroller chip

resources, and microcontroller size, we chose Atmel ATSAMD21G18A-F (AMD21) as

the system micro-control unit. This ARM chip has many features that we need. The

Atmel R○ SAMD21 is a low-power microcontroller using the 32-bit ARM R○ Cortex R○-

M0+ processor, and 48 pins with 256KB flash and 32KB of SRAM. The SAMD21

devices operate at a maximum frequency of 48MHz. This MCU is designed for in-

tuitive and straightforward migration. It can be applied to devices with the same

peripheral module, hex compatible code, same linear address mapping, and pin com-

patible.

The Atmel SAMD21 shown in Fig. 2.14 provide the following features we need in

the electronic control system design. First, it supports in-system programmable flash,

which allows us to update the control program instantly. Then the programmable

interrupt controller accepts interruption events to change the snake robot motion

state it is moving. 48 I/O pins not only satisfy on-board electronic components

control but also meet the sensors’ expansion requirements. The 32-bit real-time clock

and calendar enable real-time running monitoring, which reduces the probability

of losing control. There are five 16-bit Timer/Counters (TC) that can be used to

generate time sequences to control other modules. This MCU provides one full-speed

USB2.0 embedded host and device interface for program updates. This feature also

allows us to use a thin standard micro-USB port for program download instead of

a bigger size of JTAG port. For connection of peripheral electronic devices, four

38

Serial Communication Modules (SERCOM) are available on-board that each can be

configured to act as a USART, UART, SPI, I2C. The on-board serial port always

provides highly reliable data transmission, even though the software-simulated serial

port is available to use with associated libraries. The Analog to Digital Converter

(ADC) is also prepared in this MCU, one twenty-channel 350ksps 12-bit ADC with

programmable gain is used to monitor servomotors running states. The SAMD21

has accurate and low-power external and internal oscillators that maintain a high

CPU frequency while reducing power consumption. The Atmel SAMD21 supports

Arduino programming, which is an open-source electronics platform based on easy-

to-use software. Compatible with Arduino means the supports of many available

libraries such that we can focus on logic programming. It is worth noting that the

Atmel SAMD21 is woking with the voltage of 3.3V; however, other on-board devices

require 5V voltage. We use a 5V to 3.3V voltage regulator SPX3819M5-L-3-3 to

provide power to MCU.

The multi-degree-of-freedom motion mode of the snake robot is formed by twisting

two servo motors perpendicular to each other on each joint. Our snake robot has eight

joints and 16 degrees of freedom, which means we need to control 16 servo motors

by Pulse Width Modulation (PWM). There are two ways to generate the required

PWM; one uses 16 I/O ports to simulate the PWM signal through the system clock

division. This method occupies a large number of system resources, and the accuracy

of the generated PWM signal depends on the operation speed and clock accuracy

of the MCU. Another method is to use the proprietary 16-channel PWM controller

PCA9685, as shown in Fig. 2.15. The PCA9685 is an I2C-bus controlled 16-channel

PWM controller. Each channel output has its own 12-bit resolution fixed frequency

individual PWM controller that operates at a programmable frequency from a typical

of 40Hz to 1000Hz with a duty cycle that is adjustable from 0% to 100% to allow

39

Figure 2.14: Atmel SAMD21 MCU
Atmel SAMD21 provies many features to control a snake robot.

40

the servomotor to be set to a specific rotation angle. All outputs are set to the

same PWM frequency. Each servomotor can be set at its individual PWM controller

value, which allows the complex motion of the snake robot. This PWM controller

communicates with the MCU through the I2C port with only two wires, which are

I2C clock pin and I2C data pin. Both of wires can either use 3V or 5V logic voltage.

The maximum output current is only 25mA, so it is not a good idea to use the MCU

5V pin to power the servos. Electrical noise and brownouts from excess current draw

can cause the MCU to act erratically, rest or overheat. External power source with

maximum 10A current supply is used to power all 16 servos. In our latest design,

a snake robot consists of eight joints with 16 servers. In the case of more joints

with over 16 servos required, multiple PWM controllers (up to 62) can be chained

to control still more servos with I2C port by assigning a unique address to each

controller.

Figure 2.15: 16-channel PWM controller
Each servo is controlled separately using the PWM controller.

41

The environment in which a snake robot works may be a GPS-denied closed

environment, such as collapsed house ruins, closed pipes, and caves. In these GPS-

denied environments, snake robots can only perceive external environments through

their sensors, such as vision systems and inertial measurement units (IMU). We have

reserved space for the vision system at the head of the snake robot, and the IMU

is integrated into the control circuit. We chose BNO055 as the IMU to provide

attitude information for the snake robot, as shown in Fig. 2.16. BNO055 is a smart

sensor with 9 degrees of freedom, which can output three-axis orientation based on a

360-degree sphere, three-axis angular velocity, and three-axis acceleration. The most

attractive point is that BNO055 does not need to process the collected data; it can

do sensor fusion itself so that we can get useful pose data directly. BNO055 uses the

I2C port for data transmission. Thanks to the rich scalability of the MCU, we can

use the I2C port on MCU to collect data from this IMU. If the later added sensors

also need to take the reuse I2C port, we can also control different components by

assigning unique addresses.

Figure 2.16: 9 DOF smart absolute orientation sensor
BNO055 provides orientation, angular velocity and acceleration information.

42

The fourth major chip is a wireless transmission chip, Digi XBee3 module, as

shown in Fig. 2.17, which is used for the command release of open-loop control and

transmission of information in closed-loop control. The Digi XBee3 has the size of

13mm*19mm. With its reduced size, weight, and power consumption, it is ideal for

wireless transmission in a compact snake robot head. Digi XBee3 offers a low-power

microcontroller capable of multi-level programmability, including dual-mode radios,

multi-module instant networking, and switching between a variety of protocols. It

also has the feature of easy over-the-air (OTA), which changes to devices in the

field for bug fixes and new features. OTA function also supports programming the

MCU wireless. Snake robot has many locomotion modes and running in complex

environments, which requires different communication configurations. Digi XBee3

can be dynamically reconfigured based upon the situation. In addition, it has built-

in support for advanced I/O, including I2C, SPI to drive sensors, and actuators. The

connection between XBee and the MCU is established by serial port. Although the

MCU has an additional serial port for XBee module, the PCB only has one micro-

USB port. Such that we have to program MCU and XBee separately. Furthermore,

Digi XBee3 has a perfect development kit and Arduino library, which saves us time

in snake robot development.

2.2.2 Electronic Design of the Snake Robot Control Modules

The previous section introduced the design of the snake robot electronic control sys-

tem, including Atmel-SAMD21 MCU, 16-channel PWM controller PCA9686, 9 DOF

smart absolute orientation sensor BNO055 and wireless transmission chip Digi XBee.

All chips can generally work without interference through intelligent circuit design

and the elegant PCB layout. Each chip has a peripheral circuit design recommended

by the chip datasheet. We designed the peripheral driver circuit for each chip in

43

Figure 2.17: Digi XBee module allows for wireless transmission
XBee module supports OTA function benefiting for snake robot reconfiguration.

strict accordance with the requirements of the chip manual and tested it through the

breadboard before integration. After completing the test, we use Altium Designer

to draw the circuit schematic and perform the PCB layout. PCB layout is the most

precise and most technically demanding in the circuit design process. A separate

system usually works, but you never know what happens when you integrate multi-

ple systems. Here are a few of our techniques in the PCB design process to ensure

the stability of the snake robot controller. Fortunately, the chips we choose are all

low-frequency digital chips that don’t cause too much interference.

The MCU is the core device, and its peripheral circuit is shown in the Fig. 2.18.

We placed the MCU on the top of the PCB near the Micro-USB interface, and the

crystal oscillator was placed next to the MCU to ensure the stable operation of the

MCU. A decoupling capacitor is added between the MCU power supply and the

ground line to provide a large current for the chip and to remove noise. It is to affect

the chip with as little power noise as possible, and the noise generated by the chip

44

does not affect the power supply. All the pins that are not used by the MCU are

taken out and placed on both sides of the PCB. On the left side is the digital IØ, and

on the right is the ADC interface. The digital signal and the analog signal must be

separated because the analog signal is highly sensitive, and the high-frequency digital

signal dramatically affects the quality of the analog signal. In order to ensure the

scalability of the snake robot electronic control system, we have introduced an I2C

interface and an SPI interface. The chip power supply and the servomotor supply

use the same power interface in parallel. We use the SPX3819M5-L3-3, shown in

Fig. 2.19, to generate 3.3V to power all chips on board. All ground and power lines

are widened to meet onboard power requirements.

The schematic diagram of XBee is shown in the Fig. 2.20. The wireless transmis-

sion chip XBee uses serial port 1 (pin 3 and pin 4) to communicate with the MCU.

The MCU supports four serial ports for simultaneous communication. However,

there is only one Micro-USB interface on the PCB. Considering that the configura-

tion of XBee and MCU serial communication does not occur at the same time, we

connect the MCU serial port 0 and the XBee serial port 1. In order to configure

XBee to the appropriate parameters, in the Arduino program, we use the example

SerialPassthrough to achieve the purpose of configuring XBee on the computer. The

SerialPassthrough example is to pass the data read by the MCU serial port 0 to the

XBee serial port 1. In order to prevent the data read by the MCU serial port 0 from

affecting the transmission and reception of XBee data, all the interfaces except the

serial port 1 and the power cable are grounded.

IMU, as shown in the Fig. 2.21, as the most critical attitude feedback device for

snake robots, which needs a good operating environment. The IMU is placed in the

center of the PCB, close to the wireless transmission chip XBee. Placing the IMU

in the center of the PCB ensures that IMU data is not affected by I/O. The short

45

Figure 2.18: MCU peripheral circuit schematic
Precise wiring ensures stable operation of the MCU.

46

Figure 2.19: SPX3819M5-L3-3 voltage regulator
5V voltage input is regulated to 3.3 for MCU power supply.

Figure 2.20: Wireless communication chip XBee peripheral circuit
In case of disturbances from serial port, all other pins are grounded except serial port
and power lines.

47

distance from the XBee chip ensures the reliability of data transmission. The crystal

oscillator is placed next to the IMU to avoid other signal interference from the clock

signal.

Figure 2.21: BNO055 absolute orientation sensor
IMU is reasonably placed to reduce the impact of interference on snake robot attitude
data.

PWM schematic is shown in Fig. 2.22. As the final execution chip of the control

command, the PWM controller is placed at the end of the PCB to facilitate the

DuPont cable connection. A snake robot consists of 8 joints with 16 servos, thus we

only put one PWM controller on PCB.

Taking into account the characteristics of each chip, we carefully arranged the

location of each chip. And through proper routing, the interference between the

various modules is significantly reduced, so that the entire system as a snake robot

controller can operate normally. As mentioned before, the use of QFP for all chips

and electronic components makes manual soldering more difficult. Although we use

48

Figure 2.22: BNO055 absolute orientation sensor
IMU is reasonably placed to reduce the impact of interference on snake robot attitude
data.

a mold to brush each pin and then heat-weld, it still has a success rate of 80%. PCB

size and chip position is shown in Fig. 2.23, PCB layout is shown in Fig. 2.24 (a).

After the soldering is completed, the PCB is shown as Fig. 2.24 (b).

The electrical connection of each joint is also achieved through the PCB. Com-

pared to the controller PCB of the snake robot head, the electrical connection PCB

is much simpler. The main function of the connection PCB is to transmit power and

control signals for each servo motor. Each connection PCB has two sets of power

interfaces and four sets of PWM interfaces for controlling four servo motors of the

two joints. The schematic of the connection board is shown in the Fig. 2.25. PCB

layout as shown in Fig. 2.26.

2.2.3 Softwares and Programming Environment

The snake robot control system software design is divided into two layers, the low-

level chip driver and the high-level algorithm implementation. For the low-level chip

driver programming, we use Arduino integrated development environment (IDE) to

49

Figure 2.23: PCB sanity
This figure shows the size of each element, and how we place those electronic elements.

50

Figure 2.24: Snake robot control PCB design
(a) is the PCB layout is carefully designed for the special working environment of the
snake robot. (b) is the completed PCB, Each element is QFP, making the thickness
of the entire PCB less than 5mm.

51

Figure 2.25: The connection board schematic
This board is used to trnsmit power and control signal to servos.

52

Figure 2.26: The connection board PCB layout
This board is used to trnsmit power and control signal to servos, it fits the shape of
servomotor compartment.

code each chip. Arduino is an open-source electronics platform based on easy-to-

use hardware and software. The Atmel-SAMD21 is campatible with Wiring [51]

based arduino programming language and Processing [46] based Arduino software.

Arduino IDE allows us easily program the I/O of the hardware with the supports

of many libraries. For developers, it is a good thing to use the chip’s functionality

without having to spend extra time debugging individual modules. For example, we

use the library ”AdafruitPWMServoDriver” to control all 16 channel servos. We use

the library ”AdafruitBNO055” to read data from the IMU BNO055. We reasonably

allocate MCU resource to a different module, MCU-SAMD21 can use these libraries

to control each module in a time-sharing manner. Wireless transmission chip Digi

XBee uses one serial port to communicate with others. The XBee also has the

support of the Arduino library. However, we do not use it for necessary wireless

communication. A software named XCTU is used for XBee configuration. XCTU

has unique features like graphical network view, which graphically represents the

XBee network along with the signal strength of each connection. Such that we can

53

config a communication network for a snake robot through the XBee easily.

Another software essential for the snake robot closed-loop control application is

Robot Operating System (ROS) [25]. ROS is robotics middleware, which provides

service designed for heterogeneous computer cluster such as low-level device control.

Running sets of ROS-based processes are represented in a graph architecture where

processing takes place in nodes that may receive, post and multiplex sensor data, con-

trol, state, planning, actuator, and other messages. ROS can be employed in multiple

platforms such as Linux, Windows, and some SOC systems, supporting control of all

devices of a snake robot through node message; even ROS is not a real-time operating

system. We decide to deploy ROS in Ubuntu operating system for high-level path

planning algorithm calculation. Benefit from the high-speed computation of the lap-

top and reliable wireless communication, a snake robot can use many high-level path

planning and navigation algorithms to motion in various environments. Since ROS is

an open-source operating system, ROS has a number of extensions that can be used

to scale applications as needed. For example, Gazebo [26] for simulation, YoLo3 [52]

for visual recognition, and TensorFlow [1] for machine learning. Depending on the

application of the snake robot, we can use different expansion packs to enhance the

task adaptability of the snake robot.

The snake robot’s trajectory can be obtained by the motion tracking system, the

Motive OptiTrack. OptiTrack is a real-time motion capture system with multiple

cameras and components, offering high-performance optical tracking. OptiTrack can

obtain the real-time robot’s coordinates in x, y, and z-axis, and also the yaw, pitch,

and roll angle data with a frequency of 120Hz. OptiTrack has a professional com-

munity to support and develop the software platform of this system. ROS package

is available to collect data and use it in the application algorithm. So with the

OptiTrack, we can easily take robot’s coordinates in real-time for the path follow-

54

ing algorithm. In the later LIDAR-based path following experiment, the trajectory

captured by the OptiTrack is used as path reference.

2.3 Snake Robot Locomotion Performance Vali-

dation

The serpentine locomotion is the most common snake movement. We can simulate

the snake’s wave motion by changing the relative angle of the snake robot, as follows:

φi = αsin(ωt+ (i− 1)δ) + φ0 (2.1)

where α, δ, andφ0 are the parameters that determine the shape of the serpentine curve

realized by the snake robot, and ω specifies how fast the serpentine wave propagates

along the body. Our hypothesis is that the serpentine gait is achieved when the

shape change of (2.1) is coupled with the environment through directional friction

characteristics. In this section, we experimentally verify that this assumption is

correct. Another purpose here is to confirm Hirose’s [17] observation of the snake

robot with wheels: the speed and direction of the snake-shaped movement are mainly

determined by ω and δ.

The experiment has been conducted to verify the serpentine locomotion mode.

We consider the snake robot with N = 8 links of mass m = 0.135kg. The model

parameters are adopted based upon the snake robot in the Robotics and Biomimetics

Laboratory of University of Nevada. We choose the gait parameters in (4.51) as

α = 0.1m, ω = 120◦/s, and δ = 40◦. The experiment snapshot is presented in

Fig. 2.27. It can be seen from the figure that the snake robot has always maintained

a complete sinusoidal curve during its movement, pushing the snake robot forward.

In order to observe the motion trajectory of the snake robot more intuitively, we

55

have added marks to the first joint, the second joint and the last joint of the snake

robot, and drawn the motion trajectory of the snake robot as shown in Fig. 2.28.

Point 1 and point 3 are the markers on the first two joints, point 2 is the snake

robot tail trajectory. It is obviously shown with the motion curve. Point 1 and

point 3 basically are sinusoidal waves with the same amplitude and frequency. And

they have different angle shift δ as described in (2.1). Point 2 has the most different

features compared with others. The point 2 curve also obeys a sinusoidal manner,

however, with different amplitudes. The reason is the snake robot tail does not have

the physical constraints as other joints. Such that, slide slip happens throughout the

locomotion on the last joint. Other two figures Fig. 2.29 and Fig. 2.30 present the x

and y coordinates of the motion. A snake robot shows different features in x and y

plane. We can conclude the high-efficiency motion along the x axis of the snake robot

due to the rising curves of x without any drawback, which indicates a movement of

continuous progress. The curve at y axis shows the sinusoidal motion manner.

Figure 2.27: Snapshot of snake robot serpentine locomotion

The next experimental validation conducts another widely observed snake loco-

motion mode, the sidewinding locomotion. In the sidewinding mode, the snake robot

56

Figure 2.28: Trajectory plot of serpentine locomotion

Figure 2.29: x coordinates of the serpentine locomotion

57

Figure 2.30: y coordinates of the serpentine locomotion

maintains two to three static contact (local rolling/peeling) with the substrate at all

times. During this movement, each segment of the robot is gradually laid to the

ground contact, peeled off into an arched segment, and then transferred forward into

a new ground contact segment. The sidewinding movement mode only requires two

or three points of the snake robot to touch the ground, and the snake robot is moved

forward by the body’s swing in 3-dimension space. Sidewinding is suitable for snakes

moving on the unstructured ground, and it also gives snake robots a certain obsta-

cle crossing function. During motion control, we assign each joint in the x plane a

sinusoidal wave, while assigning a cosine wave to the joints bending in the y plane.

Such that the snake robot is able to move in 3-dimension space. The snapshots of

the snake robot sidewinding locomotion are shown in Fig. 2.31. Unlike serpentine

locomotion, the sidewinding motion efficiency depends on the contact points. When

the snake robot swings the body, the contact points with physical constraints gen-

erate anisotropic friction force to drive the snake robot to move side by side. It is

clearly depicted in Fig. 2.32; the snake robot head has the lowest displacement be-

cause the head only has a universal wheel to provide anisotropic friction, while other

joints have two passive wheels split with 90◦ to provide bigger friction force. The

58

sidewinding locomotion efficiency also depends on the ground structure. The sand

ground or other ground with a high friction coefficient can provide anchor points for

snake sidewinding, that is why we can normally see the sidewinding locomotion in

the desert.

Figure 2.31: Snapshot of snake robot sidewinding locomotion

Figure 2.32: Trajectory plot of sidewinding locomotion

In this chapter, we introduce the model design of the snake robot, including the

body, the servomotor compartment, and the transmission system. The overall design

59

Figure 2.33: x coordinates of the sidewinding locomotion

Figure 2.34: y coordinates of the sidewinding locomotion

60

principle follows the joint characteristics of natural snakes, making each joint of the

snake robot as short as possible, which can generate more freedom of movement,

and the snake robot can be more flexible. Shorter joints mean shorter moments to

reduce wear on the servomotor, especially when the snake robot moves quickly. Each

component is modular and detachable for easy maintenance and installation of the

snake robot. The design of the snake robot electronic control system also follows the

principle of high integration, so that the electronic control PCB is only 5 mm thick

and can be mounted to the snake robot head. Each subsystem is reasonably placed

in different positions of the PCB according to its characteristics, and the subsystems

are allowed to work without interference by precise wiring. The external connection

of multiple sets of interfaces guarantees the scalability of the snake robot’s electronic

control board to meet the needs of future functional expansion. We use the open-

source software platform Arduino to complete the low-level driver programming of

each subsystem, using ROS to achieve path-planning, object tracking, path following,

and other high-level algorithms. We have mastered the hardware design and software

operation of the snake robot so that we can make corresponding changes according to

the needs of the task. We have mastered the hardware design and software operation

of the snake robot so that we can make corresponding changes according to the

needs of the task and enhance the adaptability of our snake robots under different

application requirements. In order to better control the customized snake robot,

experiments have been conducted to validate the snake robot locomotion efficiency

which laid the solid base for further control. In the next chapter, we will introduce

the kinematics modeling and dynamic modeling of the customized snake robot.

Chapter 3

Snake Robot Kinematics and

Dynamics

The contribution of this dissertation is to solve the problem of path following control

of a class of planar underactuated snake robots without nonholonomic velocity con-

straints by using virtual holonomic constraints. We constrain the state evolution of

the system to a metaspace submanifold, called a constrained manifold. The manifold

is defined by the geometric relationship between the generalized coordinates of the

system. This geometric relationship is called a virtual holonomic constraint. The

proposed feedback control law is designed to be an exponentially stable constrained

manifold, i.e., to perform a virtual holonomic constraint so that the snake robot

can converge to the desired path. As far as we know, model-based motion control

of snake robots based on a formal stability proof has received little attention in the

literature. In this dissertation, we use a non-simplified, more complex, and more

accurate snake robot model, and utilize virtual holonomic constraints to design path

following control for a class of planar underactuated snake robots. In the following

chapters, we propose a model-based straight-line path following control method, a

curve path following control method, and a perception-aware path finding and path

61

62

following method. All three control methods rely on accurate snake robot kinematics

and dynamics models. In this chapter, we derive the kinematic model and equation

of motion for the snake robot under the Lagrangian framework.

3.1 Kinematics

The kinematics of the planar snake robot is illustrated in Fig. 3.1 [54]. We use

partial feedback linearization to transform the model to a simpler form for model-

based control design. In order to achieve the control objectives, we write the control

equations of the system in an implementable form. This is usually done by selecting a

local coordinate map and writing a system equation for these coordinates. According

to the illustration of the snake robot in Fig. 3.1, we choosse the generalized coordinate

vector of the N -link snake robot as x = [φ1, φ2, · · · , φN−1, θ, px, py] ∈ RN+2, where

φi ∈ {1, · · · , N−1} denotes the ith joint angle, θ denotes the snake robot head angle,

and the pair (px, py) are the coordinates of the Center of Mass(CM) of the snake

robot with respect to (w.r.t) the global x− y axes. Using these coordinates, we can

specify the kinematics of the robot. We select the first N elements of x, namely

(φ1, φ2, · · · , φN−1, θ), to describe the angular coordinates. The shape variables, i.e.

φs = (φ1, φ2, · · · , φN−1), describe the internal structure of the robot and are directly

controllable. The position variables, i.e. ps = (θ, px, py), are passive DOF of the

system. The coupling between the shape variable and the position variable results in

a displacement of the position variable, according to the cyclic motion of the shape

variable, i.e. the gait pattern. The snake robot velocities are vn and vt in normal

direction and tangential direction respectively.

The snake robot moves on a horizontal plane with a total of N + 2 degrees of

freedom. We define the robot’s motion relative to the two coordinate systems shown

in Fig. 3.1. The x − y coordinate system is a fixed global coordinate system. The

63

vn − vt frame is always aligned with the snake robot, that is, the vt axis and vn axis

always point to the tangential and normal directions of the robot, respectively. The

origins of both coordinate systems are fixed and coincide. We indicate the tangential

or positive robot direction of the vt axis, and the normal direction of the vn axis.

Note that the vn− vt frame is not fixed to the robot body. However, if a body frame

fixed to the robot is defined, its orientation will be the same as that of the vn − vt

frame.

The position of the snake robot is described by the coordinates of its center of

mass in the global frame px, py. The direction of the global coordinate system of

the robot is represented by the angle that the rotates from the positive direction of

x-axis in a counterclockwise direction. The angle between the global x axis and the

vt axis is also the same, because the vt− vn coordinate system is always aligned with

the robot. The position described in a frame that is always aligned with the snake

robot is inspired by a coordinate transformation similar to that of the robot.

The relationship between the vt − vn frame and the global frame is given by

pt = pxcosθ + pysinθ

pn = −pxsinθ + pycosθ
(3.1)

The forward velocity vt and normal velocity vn of the CM of the snake robot can

be written as

vt = ṗxcosθ + ṗysinθ

vn = −ṗxsinθ + ṗycosθ
(3.2)

Differentiating (3.1) with respect to time and insering (3.2) gives

ṗt = vt + pnθ̇

ṗn = vn + ptθ̇
(3.3)

64

We rewrite equations (3.1), (3.2, and (3.3) to obtain the snake robot kinematic

model

θ̇ = vθ, ṗx = vt cos θ − vn sin θ,

ṗy = vt sin θ + vn cos θ, v̇θ = −f1vθ +
f2

N − 1
vtē

Tφ
(3.4)

The heading angle is the average of all joint angles θ = 1
N

∑N
i=1 θi ∈ R. vθ ∈ R is

the angular velocity. vt ∈ R and vn ∈ R are, respectively, the tangential and normal

direction velocity of the robot. ē = [1, . . . , 1]T ∈ RN−1, and f1 and f2 are positive

constant friction parameters.

 ,x yp p

x

y

1

2

3

n

1n 1

2

1n

tvnv

Figure 3.1: Snake robot kinematic model
An illustration of the N -link snake robot. Kinematic parameters of the snake robot.

Most of the literature on snake robots and similar movable multi-body robot

structures (such as eel robots) used the Newton-Eulerian formula to derive the equa-

tions of motion, i.e. where the equations of linear motion and angular motion of the

individual link are described separately [57]. This is due to the fact that it is usually

difficult to integrate the anisotropic external dissipating forces acting on these com-

plex robotic structures, i.e. the ground friction, into their Euler-Lagrange equations.

However, ground friction has been shown to play a vital role in the movement of

snake robots. In this dissertation, we derive the equations of snake robot motion in a

Lagranigian framework, i.e. we analyze the snake robot motion curve with sinusoidal

curvature changes along the body axis [19, 66]. The change in the curvature of the

65

snake robot motion curve is described with the following equation.

k(s) =
2Knπφ

L
sin

2Knπ

L
S , (3.5)

where Kn is the number of the sinusoidal shape (S-shape); L is the wavelength of

the curve; φ is the joint angle. Thus, we can describe the snake robot S-shape

locomotion, called serpentine locomotion, with the curvature function. It is assumed

that the snake robot holds its shape on the serpentine curve. The relative angle

θi = (φi − φi−1) is derived by integrating the curvature function (3.5). Assuming

L = nl, where l is the length of individual joint, we have

θi =

∫ S+Spi−1+ 1
2
l

S+Spi+
1
2
l

k(u)du =

∫ S+(i−1)l+ 1
2
l

S+il+ 1
2
l

k(u)du

= −2αsin(
Knπ

n
)sin(

2Knπ

nl
s+

2Knπ

n
i), i = 1, 2, · · · , n− 1,

(3.6)

Defining b = 2Knπ
nl

, s = ct, ct+ bl, ct+ 2bl, · · · , ct+ (N − 1)bl, A = −2αsin(Knπ
n

), ω =

bc, β = bl, where c is a constant, gives the serpentine locomotion equation:

θi = Asin(ωt+ iβ) (3.7)

3.2 Gait Pattern

In the previous section, we show how a snake robot is moving forward with serpentine

locomotion. We now study how the snake robot performs steering movements when

advancing with serpentine locomotion. The latter can be considered as a wave com-

posed of horizontal waves transmitted from the snake’s head to its tail. Serpentine

locomotion is the most commonly used movement of snakes on the horizontal plane.

As in Equation (3.7), the serpentine motion mode of snakes is controlled by the sine

66

wave motion of the ith joint, i ∈ {1, · · · , N − 1}. Rewrite formula (3.7) as follows

φi = αsin(ωt+ (i− 1)δ) + φ0 (3.8)

where α and ω are the amplitude and frequency, respectively, of the sinusoidal joint

motion and δ determines the phase shift between the joints. The parameter φ0 is

a joint angle offset that controls the overall direction of locomotion. The effect of

this parameter is given in Fig. 3.2 and Fig. 3.3, which demonstrate the snake robot’s

turning motion with N = 10 links of length l = 0.14m. Fig. 3.3 shows the trajectory

of the snake head during the motion, while Fig. 3.2 is the turning angle. The snake

robot is under the control of (3.8) with α = 30◦, ω = 70◦/s, and δ = 40◦. The offset

angle is set to φ0 = −0.3rad during time interval t ∈ [110, 130] and φ0 = 0.6rad in

the time interval t ∈ [160, 170]. Fig. 3.3 clearly shows that the snake robot turns

smoothly at point EP3 with small angle offset φ0 = −0.3rad. while at point EP4,

the snake robot makes a sharp turn when φ0 = 0.6rad.

It can be seen from the figure that a positive (resp. negative) average joint angle

causes the snake robot to rotate counterclockwise (resp. clockwise). We also found

that the speed of the direction change is related to the amplitude of the average

joint angle. In summary, in the serpentine locomotion of a snake robot described

in (3.4), as long as the average joint angle is 0, the overall direction of movement is

unchanged. When the average joint angle is positive (resp. negative), the movement

direction changes counterclockwise (resp. clockwise). The magnitude of the average

joint angle determines how quickly the direction of motion changes.

The dynamic model is described in the next sub-section.

67

Figure 3.2: Snake robot motion simulation with angle offset φ0 The joint offset
φ0 = −0.3rad when t = 120s, and φ0 = −0.6rad when t = 165s.

Figure 3.3: For turning angle offset φ0, the snake robot makes a sharp turn at
waypoint EP4.

68

3.3 Dynamics

This section presents a model of the accelerations of the snake robot. [33, 50, 61]

Figure 3.4: Symbols of snake robot kinematics and dynamics. (Adopted from [33])

We can find the force balance for link i from Fig. 3.4 by

mẗi = ft,i + ht,i − ht,i−1

mn̈i = fn,i + ui + ui−1

(3.9)

where ft,i and fn,i are the ground friction forces defined by

fti = −c1ṫi + c2(φi−1 + φi)ṅi

fni = −c1ṅi + c2(φi−1 + φi)ṫi

(3.10)

The coefficient of viscous friction c1 is a measure of the friction component, which

resists tangential and normal link motions, while c2 determines the magnitude of

the tangential friction component and the normal friction component caused by the

normal and tangential link speeds, respectively. ht,i and ht,i−1 are the joint constraint

forces on link i from link i + 1 and link i − 1, respectively, and ui and ui−1 are the

actuator forces at joint i and joint i−1, respectively. The combined constraint forces

ht,i and ht,i−1 prevent the relative motion of the connecting rod in the tangential

69

direction, and the actuator forces ui and ui−1 to cause the relative motion of the

connecting rod in the normal direction. The force balance of all links can be written

in matrix form

mẗ = ft + DTht

mn̈ = fn + DTu
(3.11)

where D is the matrix

D =

1 −1 0 · · · 0 0

0 1 −1 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · 1 −1

∈ R(N−1)×N , (3.12)

ht = (ht,1, ·, ht,N−1) ∈ RN−1, and u = (u1, ·, uN−1) ∈ RN−1. Premultiplying (3.11) by

1
m

D gives

Dn̈ =
1

m
Dfn −

1

m
DDTu (3.13)

By differentiating the holonomic constraint Dn+φ = 0 twice with respect to time, we

show that Dn̈ = −φ̈. Therefore, we can write the snake robot body shape dynamics

as

φ̈ = − 1

m
Dfn +

1

m
DDTu (3.14)

Inserting the friction force normal direction, fn = −c1vne + c1Dφ̇ + c2vtdiag(ATφ)e

70

into (3.14), where matrix A is given as

A =

1 1 0 · · · 0 0

0 1 1 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · 1 1

∈ R(N−1)×N , (3.15)

and using the easily verifiable relations De = 0, DD = IN−1, and Ddiag(ATφ)e =

−ADTφ, we have

φ̈ = −c1

m
φ̇+

c2

m
vtADTφ+

1

m
DDTu (3.16)

The tangential acceleration and the normal acceleration of the snake-shaped robot

CM are represented by vt and vn, respectively, and the sum of the tangential and

normal forces applied to the connecting rod divided by the mass Nm of the snake-

shaped robot, respectively. This is written as

v̇t = − 1
Nm

(eTm(̈t)) = 1
Nm

eT ft,

v̇n = − 1
Nm

(eTm(̈n)) = 1
Nm

eT fn

(3.17)

where we note that when the link accelerations are added, the joint restraint force, ht,

and the actuator force u are eliminated, namely eTDT = 0. Inserting the friction force

in the tangential direction ft = −c1vte+c1Dφ̇+c2vtdiag(ATφ)e and the friction force

in the normal direction fn = −c1vne + c1Dφ̇+ c2vtdiag(ATφ)e into (3.17), and using

the easily verifiable relations eTdiag(ATφe) = 2e−Tφ, eTD = 0, and eTdiag(ATφ)D,

we get

v̇t = − c1
m
vt + 2c2

Nm
vnē

Tφ− c2
Nm

φTAD̄vφ,

v̇n = − c1
m
vn + 2c2

Nm
vtē

Tφ,
(3.18)

71

The apparent difference between a snake robot with rotating joints and a snake robot

with moving joints in the simplified model is the absolute orientation of the robot.

Snake robots with rotating joints do not have a clear direction because each link has

an independent link angle. However, the orientation of a robot with moving joints

is clearly defined by the scalar angle, which is also the angle of all the links. This

difference must be taken into account when we model angular acceleration, θ̈, for a

snake robot with moving joints. The model requires that when the average 1
N−1

e−Tφ

of the joint coordinates is non-zero, the direction of the forward movement changes

(that is, θ changes). A model that fits this attribute is

θ̈ = −c3θ̇ +
c4

N − 1
vte
−Tφ (3.19)

The rotation of the snake robot is realized by a viscous friction torque determined

by the friction coefficient c3. In addition, the joint coordinates produce a mean value

of the moment the robot passes the coefficient c4, and the expansion also passes the

forward speed vt. The induced torque must be multiplied by vt since the snake robot

would otherwise have a constant angular velocity while still lying on non-zero average

co-ordination. Although the θ̈ model is simplified, when the coefficients of c3 and c4

are correctly selected, the behavior of the model is very similar to that of a snake

robot with rotating joints.

72

We can write the complete model of the snake robot as

φ̇ = vφ, θ̇ = vθ,

ṗx = vt cos θ − vn sin θ,

ṗy = vt sin θ + vn cos θ,

v̇φ = − c1
m
vφ + c2

m
vtAD

Tφ+ 1
m
DDTu,

v̇θ = −c3vθ + c4
N−1

vtē
Tφ,

v̇t = − c1
m
vt + 2c2

Nm
vnē

Tφ− c2
Nm

φTAD̄vφ,

v̇n = − c1
m
vn + 2c2

Nm
vtē

Tφ,

(3.20)

where N represents the number of links, the link angle of the ith, i = 1, . . . , N link of

the snake robot is denoted by θi ∈ R, while the joint angle of joint i, i = 1, . . . , N − 1

is given by φi = θi+1 − θi, φ = [φ1, . . . , φN−1] ∈ RN−1 is the joint angle vector,

θ = 1
N

∑N
i=1 θi ∈ R denotes the heading angle of the robot, (px, py) ∈ R2 is the

planar position of the center of mass, vφ ∈ RN−1 is the joint velocity vector, vθ ∈ R

is the angular velocity, vt ∈ R and vn ∈ R are, respectively, the tangential and

normal direction velocity of the robot, u ∈ RN−1 is the vector of actuator torque, m

is the mass of a link, ē = [1, . . . , 1]T ∈ RN−1, D̄ = DT (DDT)−1 ∈ RN×(N−1), and

matrix (A) and (D) are given by (3.15) and (3.12), respectively. The parameters

ci, i = 1, 2, 3, 4 in (3.20) are positive scalar friction coefficients. Generally speaking,

the precise values of ci are difficult to determine due to the inevitable measurement

noise. Moreover, different terrains over which the snake robots carry out tasks also

affect the value of ci. In the next chapter, we develop model-based control methods

for a class of planar snake robot. Moreover, we solve the control problems of the

planar snake robot without prior knowledge of the friction coefficient.

Chapter 4

Adaptive Path Following of Snake

Robots

This section investigates path following problems for a class of planar underactuated

bio-inspired snake robots. Path following for multi-DOF robots, like snake robots

and eel robots, has always been a hard problem, especially in environments with

unknown and variable friction coefficient. In this section, we investigate the straight-

line path following problem and the curve path following problem for a class of planar

underactuated snake robot with external positioning device. An adaptive controller

is employed to drive the snake robot in the environment with unknown and variable

friction coefficients. Simulations and experiments on 8-link snake robots are carried

out to illustrate the effectiveness of the proposed methods.

4.1 Adaptive Straight Path Following

This section investigates the straight path following problem with unknown and var-

ied friction coefficients using the adaptive controller [61]. Existing works usually

design controllers that require knowledge of the exact values of friction coefficients.

73

74

The latter depend on the specific operating terrain and may not always be known a

priori. With the aid of backstepping control, we present a novel adaptive controller

that can actively compensate for unknown and varied friction coefficients. Moreover,

it is proved via LaSalle-Yoshizawa theorem that the tracking errors converge to zero

asymptotically and that all the parameter estimation errors are bounded. Our con-

tribution is significant for too reasons. First, the uncertain friction coefficients of

the snake robot are taken into account in the controller design, which has not been

discussed up to now in the relevant works [36, 33, 43], and [8]. Second, the cascaded

systems stability method [33] and the reduction theorems used in [43, 45], which play

vital roles in their control system design and analysis, cannot be applied to our case

because uncertain dynamics is involved. Furthermore, the adaptive controller pro-

posed in this dissertation is applicable to the systems considered in [33] as well as to

others for which their methodology is not applicable. Simulations and experiments

on 8-link snake robots are carried out to illustrate the effectiveness of the proposed

controller.

4.1.1 Control Objective

The goal of the control task is to design an adaptive controller for the planar snake

robot described in (3.20). The control task is to design an actuator torque vector

u of the form u = u(φ, θ, py, vφ, vθ, vt, vn) ∈ RN−1 for the snake robot (3.20) in the

presence of unknown friction coefficients ci, i = 1, 2, 3, 4 so that it can converge to

and finally track a straight-line path while maintaining a heading parallel with the

path, i.e.,

lim
t→∞

py(t) = 0 and lim
t→∞

θ(t) = 0. (4.1)

75

To achieve the control objective, we invoke the coordinate and state transformation

similarl to those in [11, 14]

p̄x = px + ε cos θ,

p̄y = py + ε sin θ,

v̄n = vn + εvθ,

(4.2)

where ε = −2(N−1)c2
Nmc4

. Then, we have

φ̇ = vφ, θ̇ = vθ,

˙̄py = vt sin θ + v̄n cos θ,

v̇φ = − c1
m
vφ + c2

m
vtAD

Tφ+ 1
m
DDTu,

v̇θ = −c3vθ + c4
N−1

vtē
Tφ,

v̇t = − c1
m
vt + 2c2

Nm
(v̄n − εvθ)ēTφ− c2

Nm
φTAD̄vφ,

˙̄vn = Xvθ + Y v̄n,

(4.3)

where X = ε(c1
m
− c3) and Y = − c1

m
.

Remark 1 The coordinate and state transformation (4.2) requires the parameter ε,

which is actually a function of unknown coefficients c2 and c4. However, as noted

in [50], c4 is only influenced by the propulsion coefficient c2. Thus, it is reasonable

to suppose that c2
c4

is an available constant and independent of the specific working

environment. Hence, in this dissertation, we treat ε as a known constant such that

the transformation (4.2) can be realized.

4.1.2 Adaptive Backstepping Controller Design

The gait pattern of the snake robot is presented in (3.7). Inspired by the sinusoidal

lateral undulatory gait introduced in [57] and [55], the reference trajectory for the

76

ith joint angle of the robot is described in (4.51).

Assumption 1 The snake robot executes lateral undulation and keeps a nonzero

and positive forward velocity vt. Furthermore, we assume that there exist two known

positive constants V and V̄ such that V ≤ vt(t) ≤ V̄ ,∀t ≥ 0.

Remark 2 Assumption 1 is standard and is also needed for the control of snake

robots even in the absence of uncertainties [33, 50, 37, 27]. The validity of Assump-

tion 1 can be verified by inspecting the equations of motion in (4.3).

To design an adaptive controller, the backstepping design methodology [29] is

adopted. The detailed design procedures are included below.

Step 1: To steer the snake robot toward the desired straight path, we utilize the

line-of-sight guidance law [14]

θ̄ = − arctan

(
p̄y
4

)
, (4.4)

where 4 is a positive design parameter that satisfies 4 > |X|
|Y | (1 + V̄

V
).

Remark 3 Because the friction coefficients c1 and c3 are unknown, X and Y are un-

known but bounded constants. Thus, in practical applications, we can always preselect

a large enough 4 such that 4 > |X|
|Y | (1 + V̄

V
).

The heading angle error variable is defined as

eθ = sθ − sθ̄, (4.5)

where sθ = θ + λθθ̇ and sθ̄ = θ̄ + λθ
˙̄θ with λθ is a positive constant. Taking the time

77

derivative of eθ, we obtain

ėθ = vθ + λθ(−c3vθ + c4
N−1

vtē
Tφ)− ṡθ̄

= vθ + λθ
(
−c3vθ + c4vtφo + c4vt

N−1
ēT (φ− φ̄)

)
−ṡθ̄ + λθc4vt

N−1

∑N−1
i=1 α sin(ωt+ (i− 1)δ).

(4.6)

Where, φ̄ = [φ̄1, · · · , φ̄N−1]T ∈ RN−1, we choose the joint offset φo as

φo = d̂3

vt
vθ + d̂4

λθvt
(−kθeθ − vθ + ṡθ̄)

− 1
N−1

∑N−1
i=1 α sin(ωt+ (i− 1)δ),

(4.7)

where kθ >
1
4

is the constant control gain, d̂3 and d̂4 are, respectively, the estimates

of c3
c4

and 1
c4

. The adaptive tuning laws for d̂3 and d̂4 are designed as

˙̂
d3 = −k3vθeθ,

˙̂
d4 = −k4(−kθeθ − vθ + ṡθ̄)eθ, (4.8)

where k3 and k4 are positive constant tuning gains. Substituting (4.7) into (4.6)

yields

ėθ = −kθeθ + λθc4vθ(d̂3 − c3
c4

) + λθ
c4vt
N−1

ēT (φ− φ̄)

+c4(−kθeθ − vθ + ṡθ̄)(d̂4 − 1
c4

).
(4.9)

We construct the following Lyapunov function candidate

V1 =
1

2
e2
θ +

λθc4

2k3

(
c3

c4

− d̂3)2 +
c4

2k4

(
1

c4

− d̂4)2. (4.10)

Differentiating V1 with respect to time and using (4.9), we get

V̇1 = −kθe2
θ + λθc4vt

N−1
eθē

T (φ− φ̄)− λθc4vθeθ(
c3
c4
− d̂3)

−c4(−kθeθ − vθ + ṡθ̄)eθ(
1
c4
− d̂4)

+λθc4
k3

(c3
c4
− d̂3)(− ˙̂

d3) + c4
k4

(1
c4
− d̂4)(− ˙̂

d4).

78

In view of (4.8), we can further obtain

V̇1 = −kθe2
θ +

λθc4vt
N − 1

eθē
T (φ− φ̄). (4.11)

Noting that |ēT (φ− φ̄)| ≤ ‖φ− φ̄‖1 ≤
√
N − 1‖φ− φ̄‖2, (4.11) can be further relaxed

to

V̇1 ≤ −kθe2
θ + λθc4vt√

N−1
|eθ|‖φ− φ̄‖2

≤ −(kθ − 1
4
)e2
θ +

λ2
θc

2
4v

2
t

N−1
‖φ− φ̄‖2

2,
(4.12)

where we have used the Young’s inequality λθc4vt√
N−1
|eθ|‖φ− φ̄‖2 ≤ 1

4
e2
θ +

λ2
θc

2
4v

2
t

N−1
‖φ− φ̄‖2

2

to obtain the second inequality.

Control Input (24)Joint Control (16)
Gait Pattern

(5)

Heading Control

(9)

Adaptive

Laws (10)

3 4
ˆ ˆ,d d

, ,

0

v

LOS (6)

yp

,

,v

 Snake Robot

(1)

Control Gain

(21)

u

Adaptive

Laws (25)

v

k̂

Step 1 Step 2 Step 3

1 2
ˆ ˆ,c c

Figure 4.1: Structure of the proposed adaptive path following controller.

Step 2: The following design is to make the joint angle error between φ and φ̄ as

small as possible. The error variable eφ is introduced as

eφ = φ− φ̄.

79

Computing the derivative eφ, we can obtain

ėφ = vφ − ˙̄φ. (4.13)

Choose the following virtual controller vφ̄ as

vφ̄ = −k̂φeφ + ˙̄φ, (4.14)

where k̂φ is a time-varying control gain to suppress the unknown bounded function

λ2
θc

2
4v

2
t

N−1
. Then, (4.13) can be rewritten as

ėφ = −k̂φeφ + (vφ − vφ̄). (4.15)

Define a Lyapunov function candidate at this step as

V2 = V1 +
1

2
eTφeφ +

1

2γ
(kφ − k̂φ)2, (4.16)

where γ is a positive constant tuning gain, kφ is a positive scalar to be determined

later. Differentiating V2 with respect to time and using (4.12) and (4.15) can obtain

V̇2 = V̇1 + eTφ ėφ + 1
γ
(kφ − k̂φ)(− ˙̂

kφ)

≤ −(kθ − 1
4
)e2
θ − (k̂φ −

λ2
θc

2
4v

2
t

N−1
)eTφeφ

+ 1
γ
(kφ − k̂φ)(− ˙̂

kφ) + eTφ (vφ − vφ̄).

(4.17)

Choose kφ to be sufficiently large such that kφ ≥
λ2
θc

2
4V̄

2

N−1
+σφ with σφ being a positive

constant. Thus, (4.17) becomes

V̇2 ≤ −(kθ − 1
4
)e2
θ − σφeTφeφ − (k̂φ − kφ)eTφeφ

+ 1
γ
(kφ − k̂φ)(− ˙̂

kφ) + eTφ (vφ − vφ̄).
(4.18)

80

Choosing

˙̂
kφ = γeTφeφ, (4.19)

we deduce that

V̇2 ≤ −(kθ − 1
4
)e2
θ − σφeTφeφ + eTφ (vφ − vφ̄). (4.20)

Step 3: In this step, we can design the actuator torque vector u to make the error

ev = vφ − vφ̄ as small as possible. Taking the time derivative of ev and using (4.3)

we obtain

ėv = −c1

m
vφ +

c2

m
vtAD

Tφ+
1

m
DDTu− v̇φ̄. (4.21)

We propose the following adaptive controller for (3.20) with unknown friction coef-

ficients

u = m(DDT)−1(ū+
ĉ1

m
vφ −

ĉ2

m
vtAD

Tφ), (4.22)

where ĉ1 and ĉ2 are, respectively, the estimates of c1 and c2, and

ū = −kvev + v̇φ̄ − eφ

with kv being the positive control gain. The adaptive tuning laws for ĉ1 and ĉ2 are

designed as

˙̂c1 = −k1
eTv vφ
m

, ˙̂c2 = k2
vte

T
v

m
ADTφ, (4.23)

where k1 and k2 are positive constant tuning gains.

Substituting (4.22) into (4.21) yields

ėv = −kvev −
vφ
m

(c1 − ĉ1) +
vt
m
ADTφ(c2 − ĉ2)− eφ. (4.24)

81

Choose the following Lyapunov function candidate

V3 = V2 +
1

2
eTv ev +

1

2k1

(c1 − ĉ1)2 +
1

2k2

(c2 − ĉ2)2. (4.25)

Differentiating V3 with respect to time and using (4.20) and (4.24) yields

V̇3 = V̇2 + eTv ėv + 1
k1

(c1 − ĉ1)(− ˙̂c1) + 1
k2

(c2 − ĉ2)(− ˙̂c2)

≤ −(kθ − 1
4
)e2
θ − σφeTφeφ − kveTv ev

+eTv (−vφ
m

(c1 − ĉ1) + vt
m
ADTφ(c2 − ĉ2))

+ 1
k1

(c1 − ĉ1)(− ˙̂c1) + 1
k2

(c2 − ĉ2)(− ˙̂c2).

(4.26)

Then substituting (4.23) into (4.26), we have that

V̇3 ≤ −(kθ −
1

4
)e2
θ − σφeTφeφ − kveTv ev, (4.27)

which is obviously negative definite.

Now we have completed the controller design procedure for the snake robot with

unknown friction coefficients ci, i = 1, 2, 3, 4. The overall adaptive path following

control structure is shown in Fig. 4.1.

The main result of this dissertation can be stated in the following theorem. The

LaSalle-Yoshizawa theorem [29] that is used in our stability analysis is recalled next.

Lemma 1 Let x = 0 be an equilibrium point of ẋ = f(x, t) and suppose f : Rn ×

R+ → Rn is locally Lipschitz in x uniformly in t. Let V : Rn × R+ → R+ be a

continuously differentiable function such that

γ1(|x|) ≤ V (x, t) ≤ γ1(|x|),

V̇ (x, t) = ∂V
∂t

+ ∂V
∂x
f(x, t) ≤ −W (x) ≤ 0,

∀t ≥ 0, ∀x ∈ Rn, where γ1 and γ2 are class of K∞ functions and W is a continuous

82

function. Then, all solutions of ẋ = f(x, t) are globally uniformly bounded and satisfy

lim
t→∞

W (x(t)) = 0.

In addition, if W (x(t)) is positive definite, then the equilibrium x = 0 is globally

uniformly asymptotically stable.

Theorem 1 For the system (3.20), under Assumption 1, the path following con-

troller defined by (4.51), (4.7), and (4.22) with adaptive tuning laws (4.8), (4.19),

and (4.23) achieves the control objective (4.1).

Proof 4.1.1 By the definition of V3 in (4.25) along with (4.10) and (4.16), it can

be concluded from (4.27) that eθ, eφ, ev, (c1− ĉ1), (c2− ĉ2), (c3
c4
− d̂3), (1

c4
− d̂4), and

(kφ−k̂φ) are bounded. Since ci, 1, 2, 3, 4 and kφ are positive constants, the boundedness

of the estimates ĉ1, ĉ2, d̂3, d̂4, and k̂φ can be ensured. In addition, applying Lemma

1 to (4.27) can result in limt→∞ eθ(t) = 0, limt→∞ eφ(t) = 0, and limt→∞ ev(t) = 0.

Recalling (4.5) and sθ = θ+ λθθ̇ and using Lemma 3 in [58], it can be easily verified

that limt→∞(θ(t)− θ̄(t)) = 0 and limt→∞(vθ(t)− ˙̄θ(t)) = 0. Therefore, employing the

similar arguments of Theorem 1 in [7], we have limt→∞ p̄y(t) = 0 and limt→∞ v̄n(t) =

0 due to the asymptotic convergence of (θ(t)− θ̄(t)) and (vθ(t)− ˙̄θ(t)). It then follows

from (4.4) that limt→∞ θ̄(t) = 0. As an immediate result, limt→∞ θ(t) = 0. Finally,

by (4.2), we can draw a conclusion that limt→∞ py(t) = 0, which completes the proof.

Remark 4 In [50] and [7], path following control problems of underactuated mech-

anisms with known dynamics such as snake robots and surface vessels were studied.

The cascaded systems stability theory was employed to deduce the asymptotic conver-

gence of the tracking errors. However, the absence of uncertainties in these systems

prevents the application of such a scheme in path following problems for snake robots

with unknown friction coefficients that are addressed in this dissertation. To tackle

83

this issue, a novel methodology combining the backstepping with adaptive control is

introduced to actively compensate for unknown friction coefficients.

4.1.3 Simulations and experiments

In this section, some simulations and experiments are carried to illustrate the per-

formance of the proposed adaptive controller.

4.1.3.1 Simulation Study

The model of the snake robot (3.20) and the path following controller are defined

by (4.51), (4.7), and (4.22) with adaptive tuning laws (4.8), (4.19), and (4.23) are

conducted by the MATLAB ‘ode45’ method. We consider the snake robot with 8

links. The model parameters are adopted based upon the snake robot in the Robotics

and Biomimetics Laboratory of University of Nevada as shown in Tab. 4.1. The

control parameter in (4.5) is selected as λθ = 2.2. The control gains in (4.7) and

(4.22) are chosen as kθ = 0.3 and kv = 17. The adaptive tuning gains in (4.8), (4.19),

and (4.23) are k1 = 0.0002, k2 = 0.05, k3 = k4 = 0.0005, and γ = 0.6. To obtain

˙̄θ, ¨̄θ, ˙̄φ, and ¨̄φ that are required for the controller (4.51), (4.7), and (4.22), 3rd-order

low-pass filter reference models are imposed, whose details can be found in Chapter 5

in [12]. The parameters of the reference models are selected as ωn = π/3 and ζ = 1.

All the initial conditions of estimates are set to zero. Simulation results are

obtained and showed in Figs. 4.2-4.5. In spite of the presence of unknown friction

coefficients ci, i = 1, 2, 3, 4, Theorem 1 implies that the state variables py and θ

converge to zero.

Further, to underline the capability of the proposed controller to accommodate

unknown friction coefficients that vary with the operating terrain, we compare the

cascaded approach controller [33] and our method when applied to the 8-link snake

84

Table 4.1: Table
Symbol Description Value
N Number of links 8
m Mass of a link 0.135kg
c1, c2, c3, c4 Friction coefficients 0.45, 3, 0.5, 20
δ Lookahead distance 1.2m
φ Joint coordinates 0◦

θ Orientation of the robot 90◦

(px, py) ∈ R CM position of the robot (0,1)m
vφ Joint velocities 0◦/s
vθ Angular velocity of the robot 0◦/s
(vt, vn) Translational velocity of the robot (0.2m/s, 0m/s)
α Amplitude of gait 0.1m
ω Frequency of gait 120◦/s
δ Phase shift 40◦

robot. Specifically, the friction coefficients are set as

c1 = 0.45, c2 = 3, c3 = 0.5, c4 = 40︸ ︷︷ ︸

Terrain 1

, If x ≤ 18m

c1 = 0.54, c2 = 1.8, c3 = 1.75, c4 = 24︸ ︷︷ ︸
Terrain 2

, If x > 18m

The friction coefficients required for the controller [33] are fixed at c1 = 0.45, c2 = 3,

c3 = 0.5, and c4 = 40 over both terrains, while the specific values of these coefficients

are not needed in our method. The simulation is run for 100s. Comparative results

are shown in Fig. 4.6. It can be observed that, under both control methods, the

snake robot can perfectly track the desired path, i.e., x−axis, over Terrain 1. The

asymptotic convergence over Terrain 2 can still be achieved under our control method

after a short delay. The simulation results confirms that the proposed controller

tracks the desired path with unknown friction coefficients.

The comparative simulation with different parameters has been conducted to

demonstrate the situation, which is closer to the real experiment. The comparative

85

simulation friction coefficients are c1=0.3, c2=2.4, c3=0.4, and c4=16. The friction

coefficients are selected smaller than the first simulation. Furthermore, the tangential

velocity is vt = 1.5m/s instead of 0.2m/s is closer to the snake robot moving velocity.

Other parameters are the same as the first simulation. All the initial conditions of

estimates are set to zero. Simulation results are obtained and shown in Fig. 4.8 and

Fig. 4.9.

It can be easily observed from comparative simulation results that both the tra-

jectory py and the snake robot heading angle converge to zero at around 40s, which

is much longer than the first simulation. The comparative simulation is closer to

the experiment; the snake robot can not converge to the desired path as quick as

the simulation due to the mechanical limitation, i.e. mechanical snake robot can

not move with very high speed. This simulation well explains the gap between the

simulation and the experiment.

0 10 20 30 40
-1

-0.5

0

0.5

1

1.5

2

Figure 4.2: Trajectory of py.

86

0 10 20 30 40
-50

0

50

100

Figure 4.3: Trajectories of θ and θ̄.

0 10 20 30 40
-15

-10

-5

0

5

10

15

Figure 4.4: Velocities vt and vn.

87

0 5 10 15 20 25 30 35 40
-0.1

0

0.1

0.2

0.3

0.4

0

5

10

15

20

25

Figure 4.5: Parameter estimates.

-10 0 10 20 30 40 50
-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 4.6: Comparative simulation result.

88

4.1.3.2 Experimental Study

Figure 4.7: Snake robot employed in the experiment.

Figure 4.8: Trajectory of py in the comparative simulation.

89

Figure 4.9: Trajectories of θ and θ̄ in the comparative simulation.

Experimental setup: The performance of the adaptive controller presented in Sec-

tion 4.1.2 was investigated experimentally for the straight line path. The customized

mechanical snake robot employed in the experiment is pictured in Fig. 4.7, of which

the detailed physical parameters have been reported in the simulation section. The

snake robot containing the metal gears is computer-assisted designed and built by

the 3D printer, whose module is equipped with a pair of passive wheels to provide

anisotropic ground friction properties during motion. A pair of snake robot wheels is

assembled with tires and split in 90◦ to decrease the sliding motion. Two pulse-width-

modulation controlled servo motors are invoked for each gear to generate locomotion

in the x− y and the y− z planes (in this experiment, the snake robot only moved in

the x − y plane). An absolute orientation sensor mounted on the snake robot head

is used to measure the snake robot heading angle as θ. During the experiments, we

set the coordinate transformation parameter ε in (4.2) to ε = 0, i.e., p̄y = py as in

[33]. To obtain the accurate position information (px, py), a high-speed motion track-

90

ing system, the OptiTrack, was configured to capture the three fluorescent spherical

markers (12.7mm in diameter) mounted on the snake robot head, shown in Fig. 4.7.

This system consisting of 13 cameras and with a sampling rate of 120 frames per

second can render the tracking resolution to the millimeter level.

The control objective is to force the snake robot to converge to and finally tracking

the desired straight line. The desired line, i.e., the global x-axis, is marked with a

yellow line on the floor (see, e.g., Fig. 4.10). The initial conditions of the snake

robot are (px, py) = (−2.1520, 1.0748)m, θ = −8.1◦, φ = 0◦, vθ = 0◦/s, vφ = 0◦/s,

vt = 0.05m/s, and vn = 0m/s. Like [33], we only carried out the adaptive joint

angle controller given by (4.7), since accurate torque control cannot be gauged by

the servo motors installed in the snake robot. The guidance distance 4 in (4.4) is

set as 4 = 52.5cm, which is calculated from half of the length of the snake robot.

The gait parameters in (4.51) for the joint angle are α = 13.5◦, ω = 25◦/s, and

δ = 20◦. The control parameter λθ in (4.5) is selected as λθ = 5. The control gain

in (4.7) is chosen as kθ = 40. The adaptive tuning gains in (4.8) are k3 = 0.008 and

k4 = 0.0005. The initial conditions of estimates d̂3 and d̂4 are set to zero.

Experimental results: The trajectory of py over the same terrain is pictured in

Fig. 4.11 with a dashed line. To demonstrate the capacity of the proposed controller

to accommodate unknown and varied friction coefficients, the experimental site is

specified with two different frictions terrains. The tangential and normal direction

friction coefficients between the robot and the rough terrain (the black ground in

Fig. 4.10, i.e., x ≤ 1.5m) are, respectively, 0.37 and 0.61, and those of the glossy

terrain (the green ground in Fig. 4.10, i.e., x > 1.5m) are, respectively, 0.21 and

0.34. The experiment results are obtained and presented in Figs. 4.10-4.13. The

experimental results with the proposed adaptive controller are provided in Fig. 4.10,

which shows that the robot converged perfectly to and moved along the desired path

91

despite the variation of the friction coefficients. The trajectories of heading angle θ

and the reference angle θ̄ are shown in Fig. 4.12, which shows that θ oscillates nicely

around θ̄. The controller [33] without the adaptive law was also implemented, and

the comparative experimental results are plotted in Fig. 4.14. Under both control

methods, the snake robot can practically track the desired path, i.e., x−axis, over

Terrain 1. Better tracking performance over Terrain 2 is achieved wit our adaptive

control method. The experimental result are consistent with the simulation results

(e.g., the section of the x-axis from 5m to 30m in Fig. 4.6 and support the conclu-

sion that the proposed adaptive controller can handle ground with unknown friction

effectively.

Remark 5 Compare with the simulation results, the experimental curves have gaps

with the simulations due to the mechanical limitation. For instance, the snake robot

is moving forward with a sinusoidal manner rather than a smooth curve in the sim-

ulation, as shown in Fig. 4.12 and Fig. 4.3. Such that the cross-track errors and

the heading errors are also changing with a sinusoidal way. The error vibrations

around zero conduct the friction force estimation updating all the time Fig. 4.13 but

not converging to a particular value, as shown in the simulation. In addition, the

snake robot consists of 16 servo motors, which ideally have the same mechanical fea-

tures. However, a tiny difference of each servo may be accumulated to significant

errors, such that our proposed controller keeps updating the friction force estimation

to compensate for the errors caused by the servos. Besides, the snake robot mov-

ing velocity also affects the convergence rate, as shown in the simulation results in

Fig. 4.8 and Fig. 4.9. Both the trajectory at y-axis and the heading angle spend more

time to converge to zero due to the slow velocity. We can conclude from the gaps be-

tween the simulation and experimental results that the proposed controller can drive

the snake robot approaching the desired path with varied and unknown friction coef-

92

Figure 4.10: Path following of the snake robot under the proposed adaptive controller
on two different frictions terrains.

93

0 20 40 60
-0.5

0

0.5

1

1.5

Figure 4.11: Trajectory of py.

0 10 20 30 40 50 60 70
-80

-60

-40

-20

0

20

40

Figure 4.12: Trajectories of θ and θ̄.

94

0 10 20 30 40 50 60 70
-40

-20

0

20

40

60

Figure 4.13: Parameter estimates.

-2 -1 0 1 2 3

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 4.14: Comparative experiment result.

95

ficient. However, the snake robot can not converge to the straight path as perfect as

the simulation, converge to the path quickly with zero errors, due to the mechanical

limitation and different parameter selection.

In this section, an innovative adaptive path following control method has been

presented for planar underactuated snake robots to following a straight path. All

friction coefficients have been assumed to be unknown. The proposed controller

can compensate for unknown friction coefficients actively and ensure the asymptotic

convergence of following errors and the boundedness of parameter estimates. Simu-

lations and experiments on 8-link snake robots were conducted to demonstrate the

effectiveness of the proposed controller. Moreover, in the next section, we will discuss

the curve path following problem for the snake robot, which makes the snake robot

control more helpful in practical applications.

4.2 Parametric Curve Path Following Control

This section investigates a curve path following problem for a class of planar under-

actuated bio-inspired snake robots. Existing studies mainly focus on straight line or

monotonic curve path following problems in relatively simple environments. Based

on a time-varying line-of-sight (LOS) guidance law and parametric cubic spline in-

terpolation (PCSI) path-planning method, we propose a solution that can make the

snake robot follow an arbitrarily formed curve path on a variety of terrains. The

improved LOS helps the snake robot to steer aggressively at a sharp turning point.

To avoid the side-slip caused by the ground friction change, an integral controller is

introduced in the design of the heading reference. Simulations and experiments on

an 8-link custom-built snake robot are conducted, and the results demonstrate and

validate the effectiveness of the proposed curve path following algorithm.

96

As mentioned in Section 4.1, a cascaded system with LOS based navigation is

studied to solve the path following problem for a two-dimensional snake robot with

unknown and varied frictions. An adaptive control algorithm was proposed in our ear-

lier work [61]. Nevertheless, these control approaches [33, 61] are limited to straight-

line path following. Alternative solutions that can also be used for curved path fol-

lowing are presented in [53, 43], are based on hierarchical structure and maneuvering

control.

Path-planning, which determines a route when robots are moving from an ini-

tial location to their destination, must precede path following. Path-planning selects

several fixed points in space from a start point to an end point, namely the way-

points. Then the desired curve path is generated as a series of successive straight

lines that pass through the waypoints. However, the aforementioned straight line

path following strategy is not applicable to curve following because such a path has

a discontinuous first derivative (velocity function) at the waypoint. They are many

method to generate a continuous curve in two-dimensional, like Dubins path [56],

Bézier curve [22]. However, these path generation techniques either do not pass

through the waypoint or require heavy computation. PCSI and Cubic Hermite In-

terpolation (CHI) have been extensively studied in path-planning research [4], [59].

For the snake robot mechanical structure, PCSI can produce a smooth curve at the

turning point and thus reduce power consumption of the servomotor.

We investigate the curve path following problems of planar underactuated bio-

inspired snake robots. Specifically, based on the backstepping technique and PCSI

generated path, we design a stable controller with a time-varying LOS guidance sys-

tem by which the snake robot can traverse from its inital location to the destination

through a planned smooth curve. Moreover, the sideslip of the snake robot, caused

by the change of friction, is eliminated by the integral control of the LOS method

97

[41]. We conducted experiments using our algorithm where the snake robot was able

to follow an arbitrarily formed curve path, e.g., a closed-loop path, and a cross curve.

4.2.1 Parametric Cubic Spline Interpolation Based Curve

Path Generation

The path of the snake robot is specified in terms of n waypoints. The waypoints

pwpt(i), i = 1, . . . , n are defined by the coordinates pwpt(i) = (xwpt(i), ywpt(i)) ∈ R2,

and the set of waypoints can be expressed as

pwpt = {(xwpt(1), ywpt(1)), (xwpt(2), ywpt(2)),

. . . , (xwpt(n), ywpt(n))} .
(4.28)

The mission of path planning is to generate a desired path that from the starting

point pwpt(1) to the terminal point pwpt(n). PCSI and CHI are popular choices for

curve fitting for ease of data interpolation. The two methods use different formulas to

compute the slopes at waypoints. In this dissertation, the PCSI is employed for the

path generation for each pair of successive waypoints in the form of (pwpt(i), pwpt(i+

1)), i = 1, . . . , n− 1, which is also called a spline. A generated path is a sequence of

order splines. This entails the introduction of the independent variable s, which is

defined as ṡ = f(s, t). For the formulation of one separate spline, the corresponding

path variable is denoted as si, i = 1, . . . , n−1. Based on [4], the cubic polynomials of

a desired curve fd between two waypoints (xwpt(i), ywpt(i)) and (xwpt(i+1), ywpt(i+ 1)),

is denoted as fd(s) = (xd(s), yd(s)), where (xd(s), yd(s)) is the position of the desired

curve

xd(s) =a3(s− si)3 + a2(s− si)2 + a1(s− si) + a0, (4.29)

yd(s) =b3(s− si)3 + b2(s− si)2 + b1(s− si) + b0, (4.30)

98

where si is the value of the independent variable s at the beginning of the spline.

The constant parameters are a0, a1, a2, a3, b0, b1, b2, and b3. The first-order derivative

of fd(s) with respect to s is ḟd(s) = (ẋd(s), ẏd(s))

ẋd(s) = 3a3(s− si)2 + 2a2(s− si) + a1, (4.31)

ẏd(s) = 3b3(s− si)2 + 2b2(s− si) + b1. (4.32)

Furthermore, the second-order derivative of fd(s) with respect to s is f̈d(s) = (ẍd(s), ÿd(s))

ẍd(s) = 6a3(s− si) + 2a2, (4.33)

ÿd(s) = 6b3(s− si) + 2b2. (4.34)

The CHI needs the first-order derivative ḟd(s) to be continuous at the waypoint

pwpt(i). The PCSI is developed from standard cubic spline interpolation (CSI), and it

has the second-order derivative f̈d(s) continuous at the waypoint pwpt(i). In addition,

PCSI also allows choosing boundary conditions for special curve [4]. For instance, in

the case of a closed-loop, the first and last waypoints are subjected to the same first

and second derivative compatibility constraints. Practically, PCSI allows generating

arbitrary smooth curves for snake robot to move from one position to the destination.

Considering the specificity of snake robot mechanical structure, we choose PCSI

to generate curve paths. A cubic polynomial (4.29) is considered to obtain the

governing equation for cubic spline, In order to solve the four unknown parameters

of (4.29) (we similarly for solve the four unknown parameters of polynomial (4.30)),

four constraints must be satisfied:

1. The path through the waypoints (xwpt(i), ywpt(i)) and (xwpt(i+ 1), ywpt(i+ 1))

must satisfy xd(si) = xwpt(i) and xd(si+1) = xwpt(i+ 1).

99

2. At the waypoints, the slopes (first derivatives) must be equal, which means

that the slope between two intervals at the waypoint must be continuous, i.e.,

ẋd(si) = ẋd(si+1).

3. The slopes of the first and the last interval at the waypoint are equal, that is,

ẋd(s1) = ẋd(sn).

4. The second derivatives of the first and the last intervals at waypoint are equal,

namely, ẍd(s1) = ẍd(sn).

For PCSI, the first two conditions must be used in the parameter calculations

while the last two constraints can be specified by different curves. In contrast, CHI

has only one constraint to customize. PCSI is selected to illustrate a closed-loop

path by determining the third and fourth conditions, which are used later in the

experiment. The governing equation for cubic splines can be derived by considering

the first two splines xd(s1) and xd(s2), and the corresponding si are xwpt(1) and

xwpt(2), respectively. The 4 unknowns can be obtained by imposing the constraint

that ÿd(s) = ÿd(s1) at xwpt(1) and ẍd(s) = ẍd(s2) at xwpt(2), which can be expressed

as

ẍd(s1) = 6a3(xwpt(1)− xwpt(1)) + 2a2, (4.35)

ẍd(s2) = 6a3(xwpt(2)− xwpt(1)) + 2a2. (4.36)

By substituting (4.35) into (4.36), the values of a3 and a2 are calculated:

a2 =
ẍd(s1)

2
, (4.37)

a3 =
ẍd(s2)− ẍd(s1)

6h1

, (4.38)

where hi = xwpt(i + 1) − xwpt(i) is the point space. Next, we utilize the constraint

100

that each polynomial must pass through the waypoints, i.e., xd(s1) = xwpt(1) and

xd(s2) = xwpt(2)

xwpt(1) =a3(xwpt(1)− xwpt(1))3 + a2(xwpt(1)−

xwpt(1))2 + a1(xwpt(1)− xwpt(1)) + a0,

xwpt(2) =a3(xwpt(2)− xwpt(1))3 + a2(xwpt(2)−

xwpt(1))2 + a1(xwpt(2)− xwpt(1)) + a0,

(4.39)

which leads to

a1 =
xwpt(2)− xwpt(1)

h1

− h1(ẍd(s2)− 2ẍd(s1))

6
, (4.40)

a0 = xwpt(1). (4.41)

Finally, we impose the constraint that the slope must be equal at the waypoint, i.e.,

ẋd(s1) = ẋd(s2) at xwpt(2). That is

3a3(xwpt(2)− xwpt(1))2 + 2a2(xwpt(2)− xwpt1)) + a1

= 3a∗3(xwpt(2)− xwpt(2))2

+ 2a∗2(xwpt(2)− xwpt(2)) + a∗1,

(4.42)

where a∗1, a
∗
2, and a∗3 are the parameters of spline two. From the above equations

(4.43) we can obtain the governing equation for PCSI

h1ẍd(s1) + 2(h1 + h2)ẍd(s2) + h2ẍd(s3)

=6

[
xwpt(3)− ywpt(2)

h2

− xwpt(2)− xwpt(1)

h1

]
.

(4.43)

The PCSI governing equation results in a general tri-diagonal set of linear equa-

tions AX = b, where X is the unknown second derivatives ẍd(si), A is the left-hand

101

side of the governing equation (4.43), and b is the right-hand side of (4.43). For

simplification, an equal point space (i.e., h1 = h2 = · · · = hi = h) is used

? 0

1 4 1

1 4 1
. . .

. . .

. . . 1

1 4 1

0 ?

ẍd(s1)

ẍd(s2)

...

...

...

ẍd(sn−1)

ẍd(sn)

=

6/h2

?

xwpt(3)− 2xwpt(2) = xwpt(1)

xwpt(4)− 2xwpt(3) = xwpt(2)

...

...

xwpt(n)− 2xwpt(n− 1) = xwpt(n− 2)

?

.

(4.44)

The first and the last equations (denoted by ?) represent the boundary conditions of

the free ends of spline that must be determined. For demonstrating an experimental

closed-loop path passing through 5 waypoints, the first boundary condition, ẋd(s1) =

ẋd(s5), can be used to derive the following equation

2hẍd(s1) + hẍd(s2) + hẍd(s4) + 2hẍd(s5)

=
6(xwpt(2)− xwpt(1)− xwpt(5) + xwpt(4))

h2
.

(4.45)

102

The last boundary condition, ẍd(s1) = ẍd(s5), can be written as

ẍd(s1)− ẍd(s5) = 0. (4.46)

Substituting equations (4.45) and (4.46) in the tri-diagonal linear equation (4.44), the

values of second derivatives of ẍd(s) are calculated. Furthermore, we can determine

all the coefficients of the polynomials xd(s) through equations (4.37), (4.38), (4.40),

and (4.41). Replacing x with y, we can obtain the parameters of yd(s) in the same

manner.

This section presents a path generation method PCSI in details. The PCSI allows

two degrees of freedom of the boundary conditions to be specified to form different

curves. For instance, a so-called nature boundary condition is used to achieve the

total minimum curvature ẍd(s) = ÿd(s) = 0, a zero slope boundary condition, ẋd(s) =

ẏd(s) = 0, and the boundary condition we used in the experiment of the closed-

loop path following ẍd(s1) = ẍd(sn). The PCSI is employed in this dissertation

to: 1) generate a curved path for snake robot with continuous first and second

order derivatives between the successive waypoints, which ensures a smooth velocity

function along the path, and 2) prove the stability of the time-varying LOS described

in Section 4.2.2 when the snake robot is converging to the desired curved path.

With the snake robot kinematic model described in section (3.1) and the afore-

mentioned snake robot dynamic model (3.3), the snake robot curve path following

control objective is presented. The control objective is to drive the snake robot

to approach the curved path generated in Section 4.2.1 using the LOS steering

law. First, the values of the independent variable s of the desired curve path

fd(s) = (xd(s), yd(s)) must be determined. The Newton-Raphson method is em-

ployed to find the root of the third-order cubic polynomial for s̄. The x-coordinates

of the snake robot px(t) is matched with the x-coordinates of the desired curve xd(s̄)

103

to set the along-track error as(t) = px(t)−xd(s̄) to zero. The position of snake robot

at time t is (px(t), py(t)). Our control objective is to minimize the normal distance

between the snake robot and the desired curve path which is defined as the magni-

tude of the cross-track error es(t) = py(t) − yd(s). This subsection is to derive the

analytical expression of es(t).

Since we only consider the problem of minimizing the distance in the normal

direction, the normal line through the point (xd(s), yd(s)) can be expressed by

py(t)− yd(s) = − ẋd(s)
ẏd(s)

(px(t)− xd(s)). (4.47)

Then we calculate the x-coordinate of the line going through the point (px(t), yd(s̄))

with a slope of ẏd(s̄). Following equation (4.47), we have ẏd(s̄)(py(t) − yd(s̄)) =

−ẋd(s̄)(px(t) − xd(s̄)). This equation is used to iteratively solve for the roots of the

third-order cubic function to obtain s̄. It is shown in Section 4.2.1 that the slope

(first derivative ẏd(s̄)) is continuous at the waypoint except for the initial and the

final points. The Newton-Raphson method must quickly converge with

s̄j+1 = s̄j −
yd(s̄j)

ẏd(s̄j)
, (4.48)

where j is the iteration number. By choosing a reasonable initial value close to

the true root, the algorithm converges rapidly after a few iterations. The normal

line from the point (xd(s̄), yd(s̄)) on the path through the point (px(t), py(t)) defines

the cross-track error es(t) = py(t) − yd(s̄). Multiplying the cross-track error by the

transition matrix in the global coordinate system, we have the expression of es(t)

es = −(px(t)− xd(s̄)) sin(α) + (py(t)− yd(s̄)) cos(α), (4.49)

104

where α = arctan(ẏd(s̄), ẋd(s̄)). As mentioned at the beginning of this section, the

control goal is to minimize the cross-track error with the help of the LOS system,

which is

lim
t→∞

es(t) = 0. (4.50)

We use the Newton-Raphson method to minimize the cross-track error. We pro-

gram the snake robot to have an initial velocity to avoid singularity when we use the

Newton-Raphson method to find the root of the cubic polynomials in Section 4.2.1.

4.2.2 Time-varying LOS based Guidance Law Design

4.2.2.1 Time Varying LOS-Based Steering

Before presenting the procedure of snake robot curve path following controller, the

snake robot gait pattern is described. Inspired by the snake sinusoidal creeping

locomotion [48, 39], the reference for the ith joint angle of the robot is described as

φ̄i = Am sin(ωt+ (i− 1)δ) + φo, (4.51)

where Am and ω denote, respectively, the amplitude and frequency of the sinusoidal

locomotion, δ is the phase shift between the joints, and φ0 is the joint offset to steer

the snake robot.

To steer the snake robot to the desired path generated by the PCSI method of

Section 4.2.1 and because sideslip of the snake robot may occur when friction varies,

an integral LOS based guidance law interpreted as the saturated control law is utilized

[13]

θ̄ = − arctan

(
Kpes −Ki

∫ t

0

es(τ) dτ

)
, (4.52)

where es = py−yd is the cross-track error, Kp = 1/∆ with lookahead distance ∆ > 0,

105

and Ki > 0 is the integral gain. The reference steering angle is now proportional to es

with a constant gainKp. The LOS steering law ensures that the snake robot’s heading

angle is directed toward the waypoint (xn, yn) until the snake robot converges to the

designed curve path. Furthermore, integral control compensates for the steering angle

if sideslip occurs [13].

To achieve smooth snake robot steering control, a time-varying lookahead distance

is considered as

∆ = (∆max −∆min)e−K∆e
2
s + ∆min (4.53)

where K∆ > 0 is the convergence rate, and ∆max and ∆min are, respectively, the

upper and lower bounds of the lookahead distance. Typically, ∆max = 1.3L and

∆min = 0.4L, where L is the length of the snake robot.

LOS guidance ensures the snake robot is directed toward the desired waypoint

(xi, yi) until it converges to the curve path and the control objective (4.50) is satisfied.

Differentiating the cross-track error (4.49) with respect to time, we have

ės =− [ṗx − ẋd(s̄)] sin(α) + [ṗy − ẏd(s̄)] cos(α)

− [px − xd(s̄)] cos(α) · α̇− [py − yd(s̄)] sin(α) · α̇

=−ṗx sinα + ṗy cosα︸ ︷︷ ︸
term1

+ ẋd(s̄) sinα− ẏd(s̄) cosα︸ ︷︷ ︸
term2

−α̇([px − xd(s̄)] cosα + [py − yd(s̄)] sinα).︸ ︷︷ ︸
term3

(4.54)

Equation (4.54) is divided into 3 terms. Transforming term 1 in amplitude-phase

form, we have term1 =
√
ṗ2
x + ṗ2

y sinα = V sinα. Similarly, term 2 is expressed as

term2 =
√
ẋ2
d + ẏ2

d sin(α + ς), where ς is designed as ς = arctan(−vn, vt) = −α thus

term 2 equals zero. Term 3 is the along-track error which is also zero. If the snake

106

robot tracks the curve path perfectly, replace α by θ̄

α = − arctan

(
Kpes −Ki

∫ t

0

es(τ) dτ

)
. (4.55)

If the integral part of the equation (4.55) is a non-zero term, we obtain ės =

V sin(arctan (es +Kieint)/∆)). Using the trigonometric identities, we have ės =

−V es+Kieint√
∆2+(es+Kieint)2

, where the derivative of eint is expressed as

ėint =
V es√

∆2 + (es +Kieint)2
(4.56)

We construct the following Lyapunov function candidate L1 = e2
s/2+Kie

2
int/2, whose

derivative with respect to time is

L̇1 = −V e2
s + esKieint√

∆2 + (es +Kieint)2
+Kieintėint

=
−V e2

s√
∆2 + (es +Kieint)2

−Kieint

(
esV√

∆2 + (es +Kieint)2
− ėint

) (4.57)

Substituting equation (4.56) into equation (4.57), we finally have

L̇1 = −V e2
s√

∆2 + (es +Kieint)2
≤ 0 (4.58)

4.2.2.2 Controller Design

Because the dynamics of the snake robot modeled by (3.20) is high-order and non-

linear with a mismatched condition, the control design is performed by following a

step-by-step procedure known as backstepping technique [28]. The detailed design

procedure is given as follows.

107

Step 1: Design the joint offset φo such that the heading angle θ converge to the

LOS guidance law (4.52). To do so, the heading angle error variable is defined as

z1 = ζθ − ζθ̄, ζθ = θ + κθ̇, ζθ̄ = θ̄ + κ ˙̄θ, (4.59)

where κ is a positive constant. Taking the time derivative of z1, we obtain

ż1 = vθ + κ(−c3vθ + c4
N−1

vtē
Tφ)− ζ̇θ̄

= κ(−c3vθ + c4vtφo + c4vt
N−1

ēT (φ− φ̄)) + η,
(4.60)

where η = vθ − ζ̇θ̄ + λc4vt
N−1

∑N−1
i=1 α sin(ωt+ (i− 1)δ).

We choose a Lyapunov function candidate for this step as L2 = z2
1/2. Taking the

derivative of L2 along (4.60) gives

L̇2 = κ(−c3vθ + c4vtφo +
c4vt
N − 1

ēT (φ− φ̄))z1 + ηz1. (4.61)

We choose the joint offset φo as

φo = c3
c4vt

vθ + 1
c4κvt

(−λ1z1 − η), (4.62)

where λ1 is a positive control gain. Substituting (4.62) into (4.61) gives

L̇2 = −λ1z
2
1 +

κc4vt
N − 1

ēT (φ− φ̄)z1. (4.63)

Now we have completed the design of the joint reference coordinates φ̄i given by

(4.51).

Step 2: Define the link angle error z2 = φ− φ̄. and select the Lyapunov function

108

candidate L3 for this step as L3 = L2 + 1
2
zT2 z2. From (3.20) and (4.63), we have

L̇3 = −λ1z
2
1 +

κc4vt
N − 1

ēT z2z1 + zT2 (vφ − ˙̄φ). (4.64)

We then choose the virtual joint velocity v̄φ as

v̄φ = − κc4vt
N − 1

ē+ ˙̄φ− λ2z2. (4.65)

where λ2 is a positive constant. Substituting (4.65) into (4.64) yields

L̇3 = −λ1z
2
1 − λ2z

T
2 z2 + zT2 (vφ − v̄φ). (4.66)

Step 3: Set the actuator forces as follows

u = m(DDT)−1(˙̄vφ − λ3z3 − z2 +
c1

m
vφ −

c2

m
vtAD

Tφ), (4.67)

where z3 = vφ − v̄φ, λ3 is a positive constant.

Choose the Lyapunov function for the overall system as

L4 = L2 + L3 +
1

2
zT3 z3. (4.68)

From (4.63), (4.66), and (4.67), we can obtain

L̇4 = −λ1z
2
1 − λ2z

T
2 z2 − λ3z

T
3 z3 ≤ 0. (4.69)

Theorem 2 For the system (3.20), the path following controller defined by (4.62)

and (4.67) meets the control objective.

Proof. Applying the LaSalle-Yoshizawa theorem to (4.69), it follows that limt→∞ z1(t) =

109

0. Recalling (4.59), we conclude that limt→∞ θ(t)− θ̄(t) = 0. The rest of the proof is

the same as that of [61], but omitted here.

4.2.3 Monotonic Curve Path Following

Simulation Setup: Using the snake robot dynamics (3.20) studied in Section 3.3, with

the integral time-varying LOS guidance law (4.52), the performance of the proposed

controller (4.62) is investigated through MATLAB simulation. We illustrate the

curve path following function by passing through five waypoints, which comprise

three types of curves by the PCSI method introduced in Section 4.2.1, i.e., monotonic

curve, closed-loop curve, and cross-line curve. For a snake robot, these three types of

curves meet the path planning requirements of most of practical applications. The

snake robot in our Robotics and Biomimetics Laboratory has a length of L = 100cm,

8 links of massm = 1.08kg. The initial tangent and normal velocity of snake robot are

given by vt(0) = 20cm/s and vn(0) =12cm/s. To initialize the LOS guidance system,

the parameters are chosen as: convergence rate K∆ = 2, proportional constant gain

Kp = 0.3 and integral gain Ki = 0.01. Newton-Raphson method is used to find

the roots of the third-order cubic function for the independent path variable s. The

algorithm must converge after few iterations of equation (4.48). We use an initial

value of s = 100, and stop the iteration after the change is less than 10−3.

Experimental Setup: The performance of the controller proposed in Section 4.2.2

is evaluated experimentally in this subsection. Corresponding to the simulations of

three types of curve paths following, the snake robot must follow the three curves

to validate the effectiveness of the proposed path following system. A mechanical

snake robot in the first frame of Fig. 4.18 is employed in experiments whose physical

parameters are given in the simulation section. Each joint has a power system that in-

cludes two pulse-width-modulation (PWM) controlled servomotors DS450. Two sets

110

of metal gears drive each joint to generate motion both on (x− y) and (y− z) planes

(in this experiment, only (x − y) plane motion is considered). Two passive wheels

assembled with tires are equipped with a split angle of 45◦ to provide anisotropic

ground friction properties during the motion. An Arduino-M0 micro-controller along

with a ZigBee wireless transmission chip, and an Inertial-Measurement-Unit (IMU)

chip are integrated in a single customized Printed Circuit Board (PCB) to provide

the control signal for each servomotor.

The first simulation demonstrates that a snake robot follows a monotonic curve

consisting of 5 waypoints, i.e., xwpt(i+1) > xwpt(i), i = 1, . . . , 4. This could occur at a

scenario where the snake robot passes through obstacles to reach its destination. For

the aforementioned snake robot dynamics, the initial position is set as (px(0), py(0)) =

(5, 25). The simulated snake robot’s path following trajectory, time-varying LOS

and tracking error (including cross-track error and along-track error) are plotted in

Fig. 4.15, Fig. 4.16, and Fig. 4.17, respectively. In the simulation, the snake robot

0 50 100 150 200
0

20

40

60

80

100

120

Start point

ep1

ep2

ep3

ep4

ep5

Actual Trajectory
Planned Path

Figure 4.15: Snake robot tracking trajectory on a monotonic curve.

111

0 50 100 150 200 250
0

50

100

150

Time Varying Lookahead Distance
Constant Lookahead Distance

Figure 4.16: Lookahead distance varies to achieve appropriate steering.

0 50 100 150 200 250
-30

-20

-10

0

10

20
Cross-track Error
Along-track Error

Figure 4.17: The errors es and cs converge to zero in a short time.

112

converges to the desired monotonic curve path within 30s and continues to follow

the smooth curve generated by the PCSI. The curvature changes dramatically at

waypoint ep3 and ep4. With time-varying LOS, the snake robot achieves aggressive

steering at waypoint ep4 as shown in Fig. 4.16. The snake robot follows the path

with a small error. The slope of the path connecting ep3 and ep4 has a different sign

from the slope of the path connecting ep4 and ep5, which leads to a small tracking

error at the waypoint ep4. The tracking error shown in Fig. 4.17 also validates

that the snake robot does not change its position and orientation very fast and

demonstrates the effectiveness of the path following control. The proposed method

improves performance when more difficult maneuvering is required. Ignoring the

along-track error (it is indeed zero all the time due to the Newton-Raphson method),

the cross-track error is almost zero all the time except at the steering waypoint

ep4. As for the shape of the path, the PCSI produced curve passes through all

the selected waypoints and the x-coordinates of the curve monotonically increase

between each pair of waypoints without wiggling of zigzagging. This is attributed to

the aforementioned first-order constraint and the second-order constraint in Section

4.2.1, which results in a more practical and tractable path.

The experiments are conducted to demonstrates the snake robot path follow-

ing function in a monotonic curve route. Due to the difference of the coordinate

system, five points are set as ep1 = (−218, 8.19)cm, ep2 = (−123,−105.2)cm,

ep3 = (17,−15)cm, ep4 = (143, 38)cm, and ep5 = (280, 0)cm. To obtain accurate

snake robot position information, a high-speed motion capture system, OptiTrack,

is used. OptiTrack is able to capture the motion of snake robot at the rate of 120Hz

with three fluorescent spherical markers (12.7mm in diameter) mounted on the snake

robot head, shown in the first picture of Fig. 4.18.

The algorithm runs on the computer with Ubuntu 16.04 operation system for

113

Figure 4.18: Monotonic curve path following experiment of the snake robot under
the proposed controller. The first frame is the customized mechanical snake robot
we used in the experiment. All these frames are taken from an experimental movie.

114

instant data feedback. The control objective is to force the snake robot to approach

the desired monotonic curve path, which is marked as a yellow dash line on the floor.

For experimental repeatability, we manually select the start point p0 = (−220, 60)cm

although the algorithm converges from any start point. The snake robot is initialized

with parameters of equation (4.51) that Am = 13.5cm, ω = 25◦/s, δ = 20◦, θ = 30◦,

vθ = 0◦/s, vφ = 0◦/s, vt = 5cm/s, and vn = 0cm/s. The Newton-Raphson method

introduced in Section 4.2.1 is employed to find the roots of the third-order cubic

equations (4.29-4.30) for s. As indicated in the Newton-Raphson equation (4.48),

ẏd(s̄) and ẋd(s̄) cannot be zero to avoid singularity. Referring to equations (4.32),

(4.34), and (4.40), the system must satisfy three conditions to avoid singularity:

1. Point space hi 6= 0,

2. x-coordinates of two successful waypoints are not equal, i.e., xwpt(i + 1) 6=

xwpt(i),

3. y-coordinates of two successful waypoints are not equal, that is, ywpt(i + 1) 6=

ywpt(i),

The snake robot is programmed to avoid a singularity. All other parameters are

exactly the same as those in the simulation.

Experimental results: The monotonic curve path following experimental results

with the proposed algorithm are presented in Fig. 4.18. The curve trajectory of the

snake robot passing through all five waypoints is shown in Fig. 4.19. As expected,

the trajectories of four repeated experiments almost completely coincide except at

the steering waypoints ep2 and ep4. The slope sign at waypoint ep2 is opposite to

that at ep4, which results in a different deviation. this can also be verified from the

cross-track error es shown in Fig. 4.20. The es error departs from zero at 7s and 20s

but goes back to zero after 25s. It can be concluded that the proposed controller

115

converges quickly with no significant error. It is worth noting the shape change of es

before the first approach. The simulation indicates that it is normal to see a sudden

increment or drop in the error before the snake robot reaches the desired path. That

is because the actual heading of the snake robot is not equal to the desired heading,

and the heading dynamic will take more time to converge. This conclusion also can be

found in the plot of time-varying LOS ∆ shown in Fig. 4.20. ∆ decreases right after

it reaches the maximum at around 2.5 second, because the snake robot deviate a bit

after it reaches the desired path, the ∆ varies to help the snake robot turning. Since

the cross-track error es is deviates from zero at 7s and 20s depicted in Fig. 4.20, the

∆ decreases at these two points to achieve aggressive steering angles. The proposed

method promises improved performance to provide good maneuverability for snake

robots. As the Newton-Raphson method indicates, the along-track error is kept near

zero as shown in Fig. 4.20. Due to the compensation of integral action and the

advanced design of tire equipped passive wheels, sideslip does not occur during the

experiments. The results of the experiments are consistent with the simulation and

confirm the effectiveness of the proposed algorithm.

4.2.4 Closed-loop Curve Path Following

The snake robots’ closed-loop path following algorithm shows that the snake robot

passes through 5 waypoints and finally returns to the original point, i.e., the first way-

point and the last waypoint are joined. In the closed-loop path following simulation,

the snake robot dynamic parameters and control coefficients are the same as that

in the first simulation, except that the initial position is selected as (px(0), py(0)) =

(0, 0). The tracking trajectory of the simulation results are shown in Fig. 4.21.

The PCSI generated path is separated into two parts by the waypoint ep3. The

x-coordinates of the first part of the path from ep1-ep3 monotonically increase. In

116

-300 -200 -100 0 100 200 300
-150

-100

-50

0

50

100

Start point

ep1

ep2

ep3

ep4

ep5

Figure 4.19: Monotonic curve path following experiment repeated four times where
all trajectories pass through five waypoints.

contrast, the x-coordinates of the second part, ep3-ep5 decrease. The sign of slope

also changes at the waypoint ep3, which leads to a small tracking error. The corre-

sponding time-varying LOS, shown in Fig. 4.22, varies from ∆ = 140cm to ∆ = 40cm

to achieve aggressive steering at waypoint ep3. This is critical for applications of the

snake robot, especially when the snake robot is working in a challenging environ-

ment. With a variable LOS, the snake robot is able to hit the desired path sligtly

faster than the constant lookahead distance. It also can be verified in Fig. 4.21,

that the cross-track slightly deviates from zero and back to zero in a few seconds.

This simulation demonstrates potential possibilities for the snake robot to explore

an unstructured environment.

Additional experiments validate the snake robot closed-loop path following func-

tion as shown in Fig. 4.26. The snake robot follows the regulated closed-loop path,

which is the yellow dashed line in the figure. The experiment was repeated three

117

0 5 10 15 20 25

-20

0

20

0 5 10 15 20 25

-100

0

100

0 5 10 15 20 25

100

150

Figure 4.20: Monotonic curve path following experiments results: es, cs, and ∆.

Figure 4.21: Snake robot tracking trajectory on a closed-loop curve.

118

Figure 4.22: The simulated time-varying LOS on a closed-loop curve.

Figure 4.23: Closed-loop path following simulation results: es and cs.

119

times to verify the effectiveness of the proposed LOS guidance law. The results are

shown in Fig. 4.24. Although the blue trajectory deviates slightly from curves of the

other two experiments, the peak value of the deviation is even smaller than the other

two curves shown in the first two pictures of Fig. 4.25. Overall, the experimental

results for closed-loop path following with time-varying LOS highly agree with the

simulation results.

Figure 4.24: Closed-loop curve path following experiment repeated three times with
the first and last waypoint joined.

4.2.5 Cross Curve Path Following

The third simulation demonstrates that the snake robot passes through all four

quadrants to form a cross-line. Furthermore, a challenging start point is given as

(px(0), py(0)) = (160, 20), which is above the first waypoint ep1 as shown in Fig. 4.27

so that the difference between the snake robot’s initial heading angle and the de-

sired angle is over 90◦. We import the snake robot dynamics and coefficients from

120

Figure 4.25: Closed-loop curve path following experimental results: es, cs, and ∆.

121

Figure 4.26: Closed-loop path following experiment of the snake robot under the
proposed controller. All frames are taken from a movie recording of the experiment.

122

the second simulation. As expected, the snake robot’s LOS vibrates sharply in the

first 15s, which varies from ∆ = 140cm to ∆ = 6cm as shown in Fig. 4.28. The

corresponding along-track error and cross-tracking error shown in Fig. 4.29 are also

higher than the first two simulations in the first 15s. This is because the proposed

controller is trying to regulate the snake robot heading to follow the desired angle.

The overshoot occurs when the snake robot first hits the desired path. Subsequently,

the snake robot follows the desired path continually with the help of varied LOS as

can be verified by the zero cross-track error shown in Fig. 4.29.

-200 -100 0 100 200
-150

-100

-50

0

50

100

150

Start point

ep1

ep2
ep3

ep4

ep5

Actual Trajectory
Planned Path

Figure 4.27: Snake robot tracking trajectory on a cross-line curve.

The experiments implement the cross-line path following function for the snake

robot. We adjust the position of the waypoints based on the requirements of the

motion capture coordinate system. Comparing to the cross-line path following sim-

ulation, the start point is set in the fourth quadrant instead of the first quadrant to

make the snake robot pass through all 4 quadrants of the local coordinate system.

The experimental results presented in Fig. 4.30 show good tracking performance for

123

0 50 100 150 200 250
0

50

100

150

Time Varying Lookahead Distance
Constant Lookahead Distance

Figure 4.28: Simulated time-varying LOS on a cross-line curve.

0 50 100 150 200 250
-25

-20

-15

-10

-5

0

5

Cross-track Error
Along-track Error

Figure 4.29: Cross-line path following simulation results: es and cs.

124

the snake robot with the cross-line path following algorithm. The snake robot passes

through all 5 regulated waypoints in a shorter time than the closed-loop path ex-

periment. The motion capture results are pictured in Fig. 4.27. The stability of

the controller is experimentally validated by the superimposed tracking curves. The

cross-line path has high curvature that exerts pressure on the snake robot steering

system. As expected, the cross-tracking error es is around zero before the third way-

point ep3 because the curvature between the waypoints ep1 and ep4 is small. The

amplitude of the curvature oscillates and the sign of curvature changes after the way-

point ep3. The corresponding time-varying LOS decreases to the lowest boundary

to keep the snake robot following the desired cross-line. With the regulation of the

proposed controller, es returns to zero when the snake robot is on the way to the fifth

waypoint ep5. The changes in es with time-varying LOS are depicted in Fig. 4.32.

It is worth noting the shape vibrations at the beginning of the three demonstrated

simulations. The snake robot aggressively turns in the first 30s before converging to

the desired curve. It is normal to see snake robots to steer aggressively, and the

correlated ∆ vibrate dramatically, especially when the snake robot first approach

the desired path. The reason is that the snake robot’s heading angle is not equal

to the desired angle when it hits the path and he snake robot heading takes time to

converge. The snake robot’s trajectory will deviate a bit when it first reaches the

desired path, and the ∆ reacts to adjust the heading of the snake robot.

We present a new curve path following algorithm for planar underactuated snake

robots in this section. The algorithm is an innovative combination of the improved

LOS guidance law and the PCSI path planning method, which can drive multi-

degrees-of-freedom snake robots to follow curve paths while eliminating sideslip. Both

simulation and experiments conducted on an 8-link custom-built snake robot demon-

strate the effectiveness of the proposed algorithm, that is, the snake robot can follow

125

Figure 4.30: Cross-line path following experiment of the snake robot under the pro-
posed controller. All frames are taken from a movie recording of the experiment.

126

-300 -200 -100 0 100 200 300
-200

-150

-100

-50

0

50

100

150

Start point

ep1

ep2

ep3

ep4

ep5

Figure 4.31: Cross-line curve path following experiment repeated three times. The
snake robot passes through all waypoints.

the planned curve paths (waypoints) very well. Future work will focus on the snake

robot path following in more challenging environments with complicated curve paths

on rough terrains.

127

0 10 20 30 40 50

-0.5
0
0.5

0 10 20 30 40 50

-100

0

100

0 10 20 30 40 50
0

100

200

Figure 4.32: Cross-line curve path following experimental results: es, cs, and ∆.

Chapter 5

Perception-Aware Pathfinding and

Following of Snake Robots in

Unknown Environments

In the previous two sections 4.1 and 4.2, we investigated different path following

problem of a planar snake robot, namely, straight path following and 3 types of

curve path following. Simulations and experiments demonstrate the efficiency of

the proposed methods. However, path following is achieved with the support of

an external motion tracking system, OptiTrack described in Section 2.2.3, which

limits the applicability of the snake robot. In this section, we investigate perception-

aware planning and tracking control for a class of snake robots in an unmodeled and

unknown environment. First, the onboard LIDAR sensor mounted on the head of the

snake robot is utilized to reconstruct a model of the local environment. This is used

by the modified rapidly-exploring random tree to construct a feasible path from the

current position of the robot to a local selected target position. Then, the parametric

cubic spline interpolation path-planning method and potential functions are applied

to make the path more smooth and to prevent the robot from hitting obstacles.

128

129

A time-varying line-of-sight control law is adopted to ensure that the robot moves

to the local target position following the generated path by the perception-aware

method. The robot repeatedly performs the above search strategy until it reaches

the final predefined target point. Simulation and experimental results are provided

to illustrate the performance of the proposed path-planning and control approach.

5.1 Problem Statement

The kinematic model of snake robot, described in (3.1) can be presented in the

following form [33, 61]. [33, 61]

θ̇ = vθ, ṗx = vt cos θ − vn sin θ,

ṗy = vt sin θ + vn cos θ, v̇θ = −f1vθ +
f2

N − 1
vtē

Tφ
(5.1)

where (px, py) ∈ R2 is the position of the center of mass of the snake robot and N is

the number of links, with N = 8 in our experiment. The ith link angle, i = 1, . . . , N ,

of the snake robot is denoted by θi ∈ R. The joint angle φi, i = 1, . . . , N − 1, is

given by φi = θi+1 − θi. The joint vector is φ = [φ1, . . . , φN−1] ∈ RN−1. The heading

angle is calculated as the average of all joint angles θ = 1
N

∑N
i=1 θi ∈ R. vθ ∈ R is

the angular velocity. vt ∈ R and vn ∈ R are, respectively, the tangential and normal

velocity of the robot. ē = [1, . . . , 1]T ∈ RN−1, and f1 and f2 are positive constant

friction parameters.

The primary control objective is to force the snake robot to reach the target point

from the starting position. The main obstacle lies in two aspects. The first is that

the robot possesses many degrees of underactuation and has highly coupled nonlinear

dynamics. The second is that the motion environment is unmodeled and lacks global

information for planning paths. Thus, before we move to the path planning and

130

control of the robot, the LIDAR scanning algorithm to reconstruct the unstructured

local environment is introduced.

5.2 LIDAR Searching Algorithm

The LIDAR carried by the snake robot is a 360-degree scanning sensor that can

receive data within a range of 12 meters around the robot. In order to make the

robot move more efficiently toward the target point, we introduce a reward function.

The function is adopted to calculate the reward value of each point explored by the

LIDAR and identify the point ph (not necessarily unique) with the highest reward

value. Then, the number of ph can be obtained in each quadrant, and the quadrant

with the largest number of ph is where the snake robot is directed. The detailed

LIDAR scanning algorithm is given below.

Algorithm 1 LIDAR Scanning Algorithm.

1: LIDAR Scan(Position,Angle)
2: for j = 1, j < 5, i+ + do
3: died end(j)← is quadrant died end()
4: end for
5: if !died end() then
6: for i = 1, i < 360, i+ + do
7: connected flag(i)← Connected(Position, Target)
8: angle weight(i)← Angle weight(Angle, Target)
9: distance weight(i)← Distance weight(Position, Target)

10: reward value(i) ← died end(i) × (ar × angle weight(i) + br ×
connected flag(i)–cr × distance weight(i))

11: return reward value
12: end for
13: end if

In the above algorithm, line 1 is to use LIDAR scanning to get all points within

the range of 12 meters and 360-degrees. A full rotation of the LIDAR is divided into

four quadrants, and line 3 judges which of these cannot be passed (each quadrant

contains 90 points, and it is unreachable if the graph that consists of these 90 points

131

has a closed boundary). Line 7 determines whether each point obtained by the

scan can be directly connected to the final pre-defined target point, i.e., there is no

obstacle between the point and the target. Line 8 is the angle information. The

scanning point must be in the direction of the vector formed by the robot and the

target point. For simplicity, we only consider the situation when the snake robot

moves. For example, if the target point is in the 30 degree direction of the robot,

the point LIDAR Position in the -90 to 90 degree direction of the robot will get

more reward. Line 9 represents the distance information. The distance between

LIDAR Position and the target is added as a weight to the reward function. Line

10 is the addition to obtain the total weight. The parameters ar, br, and cr denote

the angle information, the connectivity and the distance information, respectively.

In practice, we can obtain different forward strategies by choosing different weights.

Finally, line 11 returns the reward value for path planning.

5.3 Executive Rapidly-Exploring Random Tree Path

Generation

Traditional path planning algorithms include the artificial potential field method, the

fuzzy rule method, genetic algorithm, neural network, simulated annealing, and ant

colony optimization. However, these methods model obstacles in a specific space.

Since the computational complexity is exponentially related to the robot’s degrees

of freedom, they are not suitable for solving the path planning problem of multi-

link snake robots with many degrees of freedom. RRT can adequately address path

planning problems in a high-dimensional space with complicated constraints. Thus,

the path planning algorithm based on RRT can avoid space modeling by collision

detection using sampling points in state space. RRT can find a feasible path from

132

the starting point to the target point and solve the path planning problem of snake

robots in a complex and unconstructed environment. The basic RRT [16] is an

efficient planning method in multidimensional space and uses an initial point as the

root node to generate a random extension tree by randomly sampling the leaf nodes

(see Algorithm 2).

Algorithm 2 Basic RRT Algorithm.

Require: The initial point Xinit, and the target point Xtarget

Ensure: The planned path finalpath
1: Tinit(Xinit)
2: for k = 1 to n do
3: Xrand ← Random State(obstacles)
4: Xnear ← Nearst Neighbor(Xrand, T)
5: if collision then
6: Back to 3
7: end if
8: Xnew ← Xrand

9: Tadd vertex(Xnew)
10: Xadd edge(Xnear, Xnew)
11: if arrivetarget(T,Xtarget) then
12: finalpath← export(T)
13: end if
14: end for

We modify the RRT by introducing a waypoint cache for snake robot path plan-

ning. In the processing of the RRT, all the states are updated in the cache whenever

the path is determined. Due to the modification of the basic RRT, the new algorithm

can search and save a feasible path from the initial point to the target point for snake

robots. The waypoint cache modification of RRT is shown in Algorithm 2.

Furthermore, we take the path cost into account to select each new node more

close to the target waypoint. By including the path cost in the calculation, the algo-

rithm can select the lower cost paths to the target. The generated path is more close

to the feasible path rather than basic RRT. RRT shapes the probability distribution

to select a potential node based on its Voronoi region and the path progress toward

133

Algorithm 3 Waypoint Cache Extension.

1: p = randomin[0.0 · · · 1.0]
2: i = randomin[0 · · ·NumOfWayPoint− 1]
3: if 0 < p < Ptarget then
4: Xrand ← target
5: if Ptarget < p < Ptarget + PWayPoint then
6: Xrand ← WayPointCache[i]
7: if Ptarget + PWayPoint < p < 1 then
8: Xrand ← RandomNode()
9: end if
10: end if
11: end if
12: Xnew ← Xrand

the node. We introduce an additional measure Υ to estimate the path cost from the

potential nodes to the target node, which is computed as

Υ = 1− λvertex − λopt
λmax − λopt

. (5.2)

Here λvertex denotes the sum of the integrated cost along the path and the estimated

path cost from this node heading toward to the target node, λopt is the estimated

cost of the optimal path from the initial point to the target point, and λmax is the

maximum path cost through all possible nodes. Each parameter is calculated via the

distance. The value of the measurement Υ is a direct measure of the condition of

the path, in comparison to the optimal path. The algorithm structure is described in

Algorithm 3. All extensions of previous RRT work improve replanning efficiency and

Algorithm 4 Path Cost Extension.
1: Xnew ← Xrand

2: Tadd vertex(Xnew)
3: Xadd edge(Xnear, Xnew)
4: Calculate Path Cost(Xnew)
5: if arrivetarget(T,Xtarget) then
6: finalpath← export(T)
7: end if

134

Table 5.1: Performance Comparsion of RRT and ERRT

Method
Total

tree nodes
Total

path cost
Computation

time(s)
RRT 943 117.87 4.32

ERRT 334 41.75 1.53

the quality of generated path. The novel execution extended RRT is called as ERRT.

ERRT is successfully applied to the snake robot to demonstrate its ability to search

for a feasible path in unconstructed domains more efficiently and dynamically than

basic RRT. Table 5.1 shows that the computational efficiency of ERRT is around

three times higher than that of basic RRT. The comparison of basic RRT and our

ERRT is shown in Fig. 5.2.

We employ an artificial potential function to prevent the spanning tree from

reaching obstacles. The function takes the following form [31]

U =
1

2
µ

(
1

ρ(pc, pobs)
− 1

ρ0

)
(5.3)

where µ is a positive scaling factor, ρ(p, pobs) is the minimal distance between the

robot and the obstacle, p is the position of the robot, pobs denotes the closest point

on the obstacle to the robot, and ρ0 is the width of the robot.

For traditional RRT, the exploration step size ls for each exploration is fixed,

which leads to inefficient RRT exploration. To solve this issue, we redesign ls such

that it dynamically changes according to the exploration complexity. More specif-

ically, ls changes according to the relative distance between the current position of

the robot and the target point. That is, when the robot is far away from the target

point, ls becomes longer to enable it to explore the surrounding environment more

quickly, and when the robot is close to the target point, ls becomes shorter so that

135

the target can be accurately found. ls is proposed as

ls = lmin +
k(lmax − lmin)

1 + e−spe
U (5.4)

where lmin and lmax are, respectively, the shortest step and the longest step, k ∈ (0, 1)

and s ∈ (0, 1) are constants that can adjust the speed of exploration, pe is the position

error. Each sample point p̄ = [xs, ys]
T is generated with respect to reference position

pd = [xd, yd]
T and heading θd by

 xs

ys

 =

 xd

yd

+

 r cos β

r sin β

 (5.5)

with r = δr|nr|+ r0 and β = δθ|nθ|+ θd, where nr and nθ are Gaussian random num-

bers, δr and δθ are the standard deviations in the radial direction and the standard

deviation in the tangential direction, respectively. The forward direction is obtained

through the LIDAR scanning algorithm. We then use random Gaussian sampling to

obtain sampling points for the ERRT so that the path planning algorithm can reach

the target point quickly. The Gaussian distribution sampling strategy is demon-

strated in Fig. 5.1.

Note that due to the random changes in the RRT path, the path generated by

ERRT is still not applicable for snake robot locomotion. The PCSI method is then

proposed to smooth the generated path for following controller design as presented

in the next section.

5.4 Path Smooth and Control Objective

The snake robot can search for a path from the initial point to the target point

through the proposed ERRT. However, the path is non-smooth and cannot be fol-

136

Figure 5.1: Gaussian distribution sampling strategy. The red dots represent sample
points.

Figure 5.2: Tree expansions comparison for RRT and ERRT illustrating path opti-
mality. Path from the blue initial point to the red target point is shown in red. (a)
Basic RRT solution, (b) ERRT solution.

137

lowed by a snake robot. PCSI, described in Section 4.2.1, is employed to smooth

the path consisting of the waypoints picked from the waypoints cache. Based on

the ERRT-PCSI planned path, a time-varying LOS guidance law Section 4.2.2 is

introduced to steer the snake robot.

We specify the control objective to drive the snake robot to follow the ERRT-

PCSI designed path using the time-varying LOS steering law. More specifically, we

minimize the distance between the snake robot trajectory and the designed path in

the normal direction. The cross-track error es is defined as the normal line from the

point (xd(s), yd(s)) on the designed path through the snake robot’s actual position

(px, py). Multiplying es with the transition matrix in the global coordinate, we have

the expression for es of (4.49)

In the sequel, we design the joint offset φo such that the heading angle θ converges

to the LOS guidance law of (4.52). To start, we define the heading angle error variable

as

ψ = ζ − ζ̄ (5.6)

where ζ = θ + `θ̇ and ζ̄ = θ̄ + ` ˙̄θ with ` > 0. The time derivative of ψ is

ψ̇ = vθ + `(−f1vθ + f2

N−1
vtē

Tφ)− ˙̄ζ

= `(−f1vθ + f2vtφo) + ξ
(5.7)

with ξ = vθ − ˙̄ζ + `f2vt
N−1

∑N−1
i=1 α sin(ωt + (i − 1)δ). We choose a Lyapunov function

candidate as V = ψ2/2. Taking the derivative of V along (5.7) gives

V̇ = `(−f1vθ + f2vtφo)ψ + ξψ. (5.8)

138

We choose the joint offset φo as

φo = f1

f2vt
vθ + 1

f2`vt
(−ηψ − ξ) (5.9)

where η is a positive control gain. Using (5.9), the time derivative of V becomes

V̇ = −ηψ2 ≤ 0. (5.10)

The design of the joint coordinates φi given by (4.51) is complete.

Theorem 3 For the snake kinematic model (5.1), the path following controller de-

fined by (5.9) meets the control objective (4.50).

Proof. Applying the LaSalle-Yoshizawa theorem to (5.10) shows that limt→∞ ψ(t) =

0. By additionally noting (5.6), we have limt→∞ θ(t)− θ̄(t) = 0. The rest of the proof

is the same as that of [61] but is omitted here.

5.5 Perception-Aware Pathfinding and Following

5.5.1 Simulation Study

The performance of the LIDAR scanning algorithm, the ERRT path-planning, and

PCSI path smoothing algorithm are examined through MATLAB simulation. The

controller proposed in Section 5.4 is adopted to navigate the snake robot to the

target. First, the proposed LIDAR-based map searching method finds the highest

rewards quadrants that are most likely to approach the target. In the simulation,

we choose the strategy to approach the target quickly. The angle information ar,

the connectivity br, and the distance information cr are given as 1.0, 0.8, and 0.6,

respectively. Second, we use ERRT to generate a path from the starting point to the

139

Figure 5.3: Flow chart of the proposed perception-aware path following scheme.

highest rewards quadrant with Gaussian sampling. The Gaussian sampling ensures

that ERRT expands nodes to the highest rewards quadrant. The standard deviation

δr and δθ are selected as 12 and π/2, respectively. The offsets are set as r0 = 3

and θd = 0.4π. Various maneuvers are generated by changing these parameters

according to the robot location and the approaching strategy. Varying the step size

improves the ERRT searching speed, and the potential function creates a boundary

tolerance area. The shortest step lmin and longest step lmax are assigned values like

lmin = 2, lmax = 10, respectively. For the potential function, the parameters are

given as µ = 0.4 and ρ0 = 2.5. The PCSI method is adopted to smooth the ERRT

path. Considering the computation load and the algorithm execution efficiency, we

pick three waypoints from the ERRT for PCSI smoothing. The snake robot in our

Robotics and Biomimetics Laboratory has a length of L = 100cm, and eight links of

massm = 1.08kg. In order to avoid singularity, we give the snake robot initial tangent

140

velocity vt(0) = 20cm/s and normal velocity vn(0) =12cm/s. The LOS guidance

method is initialized with convergence rate K∆ = 2 and constant proportional gain

Kp = 0.3. The Newton-Raphson method is used to find the roots of the cubic

polynomials (4.29) and (4.30). With the Newton-Raphon method, path following

can converge within a few iterations. The simulation results are shown in Figure 5.4.

Figure 5.4: LIDAR based path following simulation
The perception-aware path planning and following simulation results. The red dot is
the starting point and the green dot is the target point. The grey area is unknown,
and the white space is LIDAR scanned. RRT node results are depicted by blue line,
and the RRT path is shown with the pink line; the red line is PCSI smoothed; the
snake robot’s actual trajectory is the broad cyan line.

As manifested by the theoretical analysis, the LIDAR scanning algorithm directs

the search area toward the target. The ERRT generates a path for the snake robot,

plotted with a pink line. A feasible path for snake locomotion, shown as a red dashed

line, is formed by the PCSI method. The cyan line shows the trajectory of the snake

robot.

141

5.5.2 Experimental Validation

The proposed search based algorithm is implemented with experiments in a maze

built by paperboard. The labyrinth is the same as that utilized in the simulation with

the dimension of 300×400cm. A LIDAR system called RpLIDAR s1 is mounted on

the head of the snake robot to obtain the local map information with 10Hz scanning

frequency, such that 9200 points are collected in one second. When the LIDAR is

scanning with 10Hz rate, the angular resolution is 0.391◦. As a result of the high

update rate from the LIDAR, sector mapping can be utilized to create a cost map and

to estimate 2D position. Our ERRT path planner provides feasible path information

to the move base node for navigation. The generated paths are slightly different

due to the random propriety of ERRT. The proposed controller framework uses a

local planner to accomplish its global navigation task, which allows the autonomous

navigation of a snake robot in a maze. In our setup, the high-level computer is

running a Linux distribution (Ubuntu 16.04). The robot operation system (ROS) is

the middleware that ensures communication between different entities of the snake

robot through various nodes. With the proposed LIDAR scanning algorithm and

ERRT method, the snake robot can find a path to the target and follow it. The

parameters for initializing the snake robot are A = 13.5cm, ω = 25◦/s, δ = 20◦,

θ = 30◦, vθ = 0◦/s, vφ = 0◦/s. To avoid slippage, the snake robot travels slowly at a

speed of vt = 5cm/s, and vn = 0cm/s during the straight-line motion and at a speed

of 5◦/s during turning motion. Other parameters are the same as those used in the

simulation.

The results of the path searching experiments are presented in Figure 5.6. The

entire locomotion lasts 75 seconds due to low movement speed. We repeat the op-

eration four times to test the algorithm’s reliability. The snake robot successfully

reaches the target four times, even though the four times trajectories are different,

142

as shown in Fig. 5.6. The results show that the randomness of the ERRT does not

affect its reliable path planning for the snake robot. In this section, we presented

Figure 5.5: Experiment snapshots

a perception-aware path planning and tracking framework to make the snake robot

approach a pre-defined target point without requiring exact knowledge of the envi-

ronment. The proposed framework consists of the following four main components:

(1) LIDAR scanning algorithm, which reconstruct the local environment; (2) ERRT,

which find a feasible path from current point to a local selected target position based

on locally searched information; (3) PCSI based curve path smoothing solution, which

provide a smooth desired path for the snake robot; and (4) LOS based controller,

which steers the robot toward and subsequently along the generated path. As the

path is planned in real time based on local scanned environmental information, the

143

Figure 5.6: ERRT path search experiment repeated four times

proposed approach has the potential for incorporating other desirable features such

as avoiding moving objects. Experimental and simulation results are included to

illustrate the performance of the proposed framework.

Chapter 6

Conclusions and Future Work

In this dissertation, we explored the path following solutions of snake robots in a va-

riety of situations, including the straight-line path following with unknown and vari-

ous friction coefficients; path following under arbitrarily generated curve in a known

environment; and a perception-aware path planning and tracking in an unknown en-

vironment. To deal with the problems in the path following, we firstly proposed an

innovative adaptive path-following controller to compensate for unknown friction co-

efficients and ensure the asymptotic convergence of path tracking. An improved LOS

guidance law and the PCSI path-planning method were further investigated in order

to drive the snake robot to follow an arbitrarily planned curve path and eliminate

the sideslip. Last, we used a LIDAR searching algorithm to real-time reconstruct

the local environment and generate a live path with ERRT algorithm, so that the

snake robot can reach the target by finding and following the live path. Extensive

simulation and experimental results are demonstrated to prove the performance of

the proposed methods and solutions.

Our future work can be pointed out as follow. First of all, we realized that the

simplified model cannot completely reflect the system of the snake robot we used.

In the simulation, we did not add the gait of the snake robot to the kinematics

144

145

modeling, this results in that the snake robot can quickly make the tracking error

converge to zero, that means, the snake robot followed the desired path without gait

patterns in the simulation. While in the experiment, the snake robot follows the

path with the generated gait and friction estimation. This makes the differences

between simulation and experimental results. In order to eliminate the differences,

a more sophisticated model needs to be defined and applied to both simulations and

experiments for validation. In addition, the serpentine gait of the snake robot needs

to be included in the simulation model. In future work, we will improve the model

accuracy by analyzing experimental outcomes, and will update and further verify the

model in both simulations and experiments. In addition to updating the snake robot

mathematical model, we will also optimize the snake robot’s mechanical structure

and electronic control module. Being an effort, we will make each joint of the snake

robot shorter, which conforms to the skeletal structure of natural snakes so as to

increase the motion smoothness and certain flexibility of the snake robot. Each joint

can be equipped with a more powerful servo motor and precision gear system to

reduce motion errors caused by the servo system.

We will continue to explore the autonomous navigation function in complex en-

vironments and expand the snake robot’s locomotions from two-dimension space

to three-dimension space, making it more adaptative to environments and real-world

tasks. For this purpose, we will facilitate more motion modes of snake robots, such as

sidewinding, rectilinear locomotion modes, combined with machine learning methods,

to achieve autonomous navigation in three-dimension and complex environments.

Overwater and underwater snake robots will be an extension of current research.

There are many applications of overwater and underwater snake robots, including

hydrological information detection and underwater ocean bridge quality detection.

In this extension, both mechanical and electronic systems of the snake robot need to

146

be improved for a waterproofed consideration. To deal with the complex overwater

or underwater environment, the robot gait pattern and path following controller need

to be re-designed to fit the water-relevant environments based on hydrodynamics and

swimming motion dynamics of the snake robot.

Snake robots certainly offer great potential in many autonomous applications.

We believe that our research efforts will advance the progress of snake robots and

their applications.

References

[1] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.

Tensorflow: A system for large-scale machine learning. In 12th {USENIX}

Symposium on Operating Systems Design and Implementation ({OSDI} 16),

pages 265–283, 2016.

[2] Joseph Ayers Joel L Davis Alan et al. Neurotechnology for biomimetic robots.

MIT press, 2002.

[3] Brian Armstrong-Helouvry, Pierre Dupont, and Carlos Canudas De Wit. A

survey of models, analysis tools and compensation methods for the control of

machines with friction. Automatica, 30(7):1083–1138, 1994.

[4] R.H. Bartels, J.C. Beatty, and B.A. Barsky. An Introduction to Splines for Use

in Computer Graphics and Geometric Godeling. Morgan Kaufmann Series in

Computer Graph Series. M. Kaufmann Publishers, 1987.

[5] Johann Borenstein and Malik Hansen. Omnitread ot-4 serpentine robot: new

features and experiments. In Unmanned Systems Technology IX, volume 6561,

page 656113. International Society for Optics and Photonics, 2007.

[6] E. Borhaug, A. Pavlov, and K. Y. Pettersen. Integral LOS control for path

following of underactuated marine surface vessels in the presence of constant

147

148

ocean currents. In 2008 47th IEEE Conference on Decision and Control, pages

4984–4991, Dec 2008.

[7] Even Børhaug, Alexey Pavlov, Elena Panteley, and Kristin Y Pettersen. Straight

line path following for formations of underactuated marine surface vessels.

19(3):493–506, 2011.

[8] Zhengcai Cao, Qing Xiao, Ran Huang, and Mengchu Zhou. Robust neuro-

optimal control of underactuated snake robots with experience replay. IEEE

transactions on neural networks and learning systems, 29(1):208–217, 2017.

[9] Alessandro Crespi and Auke Jan Ijspeert. Amphibot II: An amphibious snake

robot that crawls and swims using a central pattern generator. In Proceed-

ings of the 9th international conference on climbing and walking robots, number

BIOROB-CONF-2006-001, pages 19–27, 2006.

[10] Alessandro Crespi and Auke Jan Ijspeert. Online optimization of swimming and

crawling in an amphibious snake robot. 24(1):75–87, 2008.

[11] KD Do and Jie Pan. Global tracking control of underactuated ships with off-

diagonal terms. In 42nd IEEE International Conference on Decision and Control

(IEEE Cat. No. 03CH37475), volume 2, pages 1250–1255. IEEE, 2003.

[12] Thor I Fossen. Marine control systems: guidance, navigation and control of

ships, rigs and underwater vehicles. Trondheim: Marine Cybernetics, 2002.

[13] Thor I. Fossen, Morten Breivik, and Roger Skjetne. Line-of-sight path following

of underactuated marine craft. IFAC Proceedings Volumes, 36(21):211 – 216,

2003.

149

[14] E Fredriksen and Kristin Ytterstad Pettersen. Global κ-exponential way-point

maneuvering of ships: Theory and experiments. Automatica, 42(4):677–687,

2006.

[15] J. Gray. The mechanism of locomotion in snakes. Journal of Experimental

Biology, 23(2):101–120, 1946.

[16] Guo Haitao, Zhu Qingbao, and Xu Shoujiang. Rapid-exploring random tree

algorithm for path planning of robot based on grid method. Journal of Nanjing

Normal University (Engineering and Technology Edition), 2(14), 2007.

[17] S. Hirose. Biologically inspired robots: Snake-like locomotors and manipulators.

Oxford: Oxford University Press, 1993.

[18] Shigeo Hirose and Makoto Mori. Biologically inspired snake-like robots. In 2004

IEEE International Conference on Robotics and Biomimetics, pages 1–7. IEEE,

2004.

[19] Shigeo Hirose and Hiroya Yamada. Snake-like robots [tutorial]. IEEE Robotics

& Automation Magazine, 16(1):88–98, 2009.

[20] David L. Hu, Jasmine Nirody, Terri Scott, and Michael J. Shelley. The mechan-

ics of slithering locomotion. Proceedings of the National Academy of Sciences,

106(25):10081–10085, 2009.

[21] Masato Ishikaway, Katsuya Owaki, Masahide Shinagawa, and Toshiharu Sugie.

Control of snake-like robot based on nonlinear controllability analysis. In

2010 IEEE International Conference on Control Applications, pages 1134–1139.

IEEE, 2010.

150

[22] K.G. Jolly, R. Sreerama Kumar, and R. Vijayakumar. A Bézier curve based path

planning in a multi-agent robot soccer system without violating the acceleration

limits. Robotics and Autonomous Systems, 57(1):23 – 33, 2009.

[23] Tetsushi Kamegawa, T Yarnasaki, Hiroki Igarashi, and Fumitoshi Matsuno. De-

velopment of the snake-like rescue robot” kohga”. In IEEE International Confer-

ence on Robotics and Automation, 2004. Proceedings. ICRA’04. 2004, volume 5,

pages 5081–5086. IEEE, 2004.

[24] Soren Kammel and Benjamin Pitzer. Lidar-based lane marker detection and

mapping. In 2008 IEEE Intelligent Vehicles Symposium, pages 1137–1142. IEEE,

2008.

[25] Jackie Kay. Proposal for implementation of real-time systems in ros 2, 2016.

[26] Nathan Koenig and Andrew Howard. Design and use paradigms for gazebo,

an open-source multi-robot simulator. In 2004 IEEE/RSJ International Con-

ference on Intelligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566),

volume 3, pages 2149–2154. IEEE, 2004.

[27] Anna M Kohl, Kristin Ytterstad Pettersen, Eleni Kelasidi, and Jan Tommy

Gravdahl. Planar path following of underwater snake robots in the presence of

ocean currents. IEEE Robotics and Automation Letters, 1(1):383–390, 2016.

[28] Miroslav Krstic, Ioannis Kanellakopoulos, Petar V Kokotovic, et al. Nonlinear

and adaptive control design. New York: Wiley, 1995.

[29] Miroslav Krstic, Ioannis Kanellakopoulos, and Peter V Kokotovic. Nonlinear

and adaptive control design. New York: Wiley, 1995.

151

[30] Jacoby Larson and Mohan Trivedi. Lidar based off-road negative obstacle de-

tection and analysis. In 2011 14th International IEEE Conference on Intelligent

Transportation Systems (ITSC), pages 192–197. IEEE, 2011.

[31] Jean-Claude Latombe. Robot motion planning. Norwell, MA: Kluwer, 1991.

[32] F L Lewis, Suresh Jagannathan, and A Yesildirak. Neural network control of

robot manipulators and non-linear systems. London: CRC Press, 1998.

[33] P̊al Liljeback, Idar U Haugstuen, and Kristin Y Pettersen. Path following control

of planar snake robots using a cascaded approach. IEEE Transactions on Control

Systems Technology, 20(1):111–126, 2011.

[34] P̊al Liljebäck, Kristin Y Pettersen, and Øyvind Stavdahl. A snake robot with a

contact force measurement system for obstacle-aided locomotion. In 2010 IEEE

International Conference on Robotics and Automation, pages 683–690. IEEE,

2010.

[35] P̊al Liljebäck, Kristin Y Pettersen, Øyvind Stavdahl, and Jan Tommy Gravdahl.

Controllability analysis of planar snake robots influenced by viscous ground fric-

tion. In 2009 IEEE/RSJ International Conference on Intelligent Robots and

Systems, pages 3615–3622. IEEE, 2009.

[36] P̊al Liljeback, Kristin Y Pettersen, Øyvind Stavdahl, and Jan Tommy Gravdahl.

Controllability and stability analysis of planar snake robot locomotion. IEEE

Transactions on Automatic Control, 56(6):1365–1380, 2010.

[37] P̊al Liljebäck, Kristin Y Pettersen, Øyvind Stavdahl, and Jan Tommy Grav-

dahl. A simplified model of planar snake robot locomotion. In 2010 IEEE/RSJ

International Conference on Intelligent Robots and Systems, pages 2868–2875.

IEEE, 2010.

152

[38] Shugen Ma. Analysis of snake movement forms for realization of snake-like

robots. In Proc. IEEE Int. Conf. Robot. & Automat., volume 4, pages 3007–

3013, 1999.

[39] Shugen Ma. Analysis of creeping locomotion of a snake-like robot. Advanced

Robotics, 15(2):205–224, 2001.

[40] F. Matsuno and H. Sato. Trajectory tracking control of snake robots based on

dynamic model. In Proceedings of the 2005 IEEE International Conference on

Robotics and Automation, 2005.

[41] L. McCue. Handbook of marine craft hydrodynamics and motion control. IEEE

Control Systems Magazine, 36(1):78–79, 2016.

[42] James C McKenna, David J Anhalt, Frederick M Bronson, H Ben Brown,

Michael Schwerin, Elie Shammas, and Howie Choset. Toroidal skin drive for

snake robot locomotion. In 2008 IEEE International Conference on Robotics

and Automation, pages 1150–1155. IEEE, 2008.

[43] Alireza Mohammadi, Ehsan Rezapour, Manfredi Maggiore, and Kristin Y Pet-

tersen. Maneuvering control of planar snake robots using virtual holonomic

constraints. IEEE Transactions on Control Systems Technology, 24(3):884–899,

2016.

[44] M. Mori and S. Hirose. Development of active cord mechanism acm-r3 with

agile 3d mobility. In Proceedings 2001 IEEE/RSJ International Conference on

Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the

the Next Millennium (Cat. No.01CH37180), volume 3, pages 1552–1557 vol.3,

Oct 2001.

153

[45] Joyjit Mukherjee, Sudipto Mukherjee, and Indra Narayan Kar. Sliding mode

control of planar snake robot with uncertainty using virtual holonomic con-

straints. IEEE Robotics and Automation Letters, 2(2):1077–1084, 2017.

[46] Joshua Noble. Programming interactivity: a designer’s guide to Processing,

Arduino, and OpenFrameworks. ” O’Reilly Media, Inc.”, 2009.

[47] Y. Ohmameuda and Shugen Ma. Control of a 3-dimensional snake-like robot

for analysis of sinus-lifting motion. In Proceedings of the 41st SICE Annual

Conference., volume 3, pages 1487–1491 vol.3, 2002.

[48] Jim Ostrowski and Joel Burdick. Gait kinematics for a serpentine robot. In

Proceedings of IEEE International Conference on Robotics and Automation, vol-

ume 2, pages 1294–1299. IEEE, 1996.

[49] Kristin Y. Pettersen. Snake robots. Annual Reviews in Control, 24:19–44, 2017.

[50] Kristin Y Pettersen, Ãyvind Stavdahl, and Jan Tommy Gravdahl. Snake robots:

modelling, mechatronics, and control. Springer London, 2012.

[51] Casey Reas and Ben Fry. Processing: a programming handbook for visual de-

signers and artists. Mit Press, 2007.

[52] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv

preprint arXiv:1804.02767, 2018.

[53] Ehsan Rezapour, Andreas Hofmann, and Kristin Y Pettersen. Maneuvering

control of planar snake robots based on a simplified model. In Proc. IEEE Int.

Conf. Robot. Biomimetics, pages 548–555. IEEE, 2014.

154

[54] Ehsan Rezapour, Kristin Y Pettersen, P̊al Liljebäck, Jan T Gravdahl, and Eleni

Kelasidi. Path following control of planar snake robots using virtual holonomic

constraints: theory and experiments. Robotics and biomimetics, 1(1):3, 2014.

[55] Masashi Saito, Masakazu Fukaya, and Tetsuya Iwasaki. Modeling, analysis, and

synthesis of serpentine locomotion with a multilink robotic snake. IEEE control

systems magazine, 22(1):64–81, 2002.

[56] Madhavan Shanmugavel, Antonios Tsourdos, Brian White, and Rafa l Żbikowski.

Co-operative path planning of multiple UAVs using Dubins paths with clothoid

arcs. Control Engineering Practice, 18(9):1084 – 1092, 2010.

[57] Shugen. Analysis of creeping locomotion of a snake-like robot. Advanced

Robotics, 15(2):205–224, 2001.

[58] Shize Su and Zongli Lin. Distributed consensus control of multi-agent systems

with higher order agent dynamics and dynamically changing directed interaction

topologies. 61(2):515–519, 2016.

[59] Lianfang Tian and Curtis Collins. An effective robot trajectory planning method

using a genetic algorithm. Mechatronics, 14(5):455–470, 2004.

[60] Aksel Andreas Transeth, Kristin Ytterstad Pettersen, and P Liljeback. A survey

on snake robot modeling and locomotion. Robotica, 27(7):999–1015, 2009.

[61] Gang Wang, Weixin Yang, Yantao Shen, Haiyan Shao, and Chaoli Wang. Adap-

tive path following of underactuated snake robot on unknown and varied fric-

tions ground: theory and validations. IEEE Robotics and Automation Letters,

3(4):4273–4280, 2018.

[62] Wikiversity. Nature snake skeleton. https://www.popsugar.com/family.

155

[63] Cornell Wright, Aaron Johnson, Aaron Peck, Zachary McCord, Allison Naakt-

geboren, Philip Gianfortoni, Manuel Gonzalez-Rivero, Ross Hatton, and Howie

Choset. Design of a modular snake robot. In 2007 IEEE/RSJ International

Conference on Intelligent Robots and Systems, pages 2609–2614. IEEE, 2007.

[64] Xiaodong Wu and Shugen Ma. CPG-based control of serpentine locomotion of

a snake-like robot. Mechatronics, 20(2):326 – 334, 2010.

[65] Hiroya Yamada. S. development of amphibious snake-like robot acm-r5. In the

36th International Symposium on Robotics (ISR 2005), Tokyo, 2005.

[66] Weixin Yang. Biomorphic hyper-redundant snake robot: Locomotion simula-

tion, 3D printed prototype and inertial-measurement-unit-based motion track-

ing. Master Thesis, University of Nevada, Reno, 2016.

