
University of Nevada, Reno

Generalized Task Structure Learning

for Collaborative Multi-Robot/Human-Robot

Task Allocation

A dissertation submitted in partial fulfillment of the

requirements for the degree of Doctor of Philosophy in

Computer Science and Engineering

by

Janelle J. Blankenburg

Dr. David Feil-Seifer/Dissertation Advisor

May 2020

We recommend that the dissertation

prepared under our supervision by

JANELLE JUNE BLANKENBURG

Entitled

Generalized Task Structure Learning for

Collaborative Multi-Robot/Human-Robot Task Allocation

be accepted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

David Feil-Seifer, Advisor

Monica Nicolescu, Committee Member

Mircea Nicolescu, Committee Member

Hung La, Committee Member

Anna Panorska, Graduate School Representative

David W. Zeh, Ph. D., Dean, Graduate School

May, 2020

THE GRADUATE SCHOOL

i

Abstract
by Janelle Blankenburg

The basis of this work is a control architecture for collaborative multi-robot systems

focusing on the problem of task allocation under hierarchical constraints imposed

upon a joint task. For these types of tasks, multiple robots need to dynamically

coordinate their execution during the task execution. However, due to the different

abilities between different robots, a single task definition is not sufficient to ensure

the task can be completely without faults. In order to alleviate these concerns,

we have developed a generalized task structure which is able to transfer skills of a

learned task to teams of heterogeneous robots. This system uses a small number

of human demonstrations to learn a hierarchical task structure on a single robot.

This structure acts as a skeleton for the task which has been adapted to work on

teams of heterogeneous robots through the development of a continuous-valued metric

which is able to account for the robots’ variable skills during the task execution.

Additionally, to further emphasize the collaboration of the multi-robot team, our

previous architecture is extended to include an interdependence constraint which

requires explicit cooperation between agents to complete the task.

Furthermore, to allow the task execution as well as the learning of the task structure

to be as generalizable as possible, several efforts were made to extend the previous

architecture to work with human-robot teams. First, a system was created to learn the

hierarchical tasks through verbal instruction. Second, a dialogue-based fault recovery

jjblankenburg@nevada.unr.edu

ii

system was developed to allow for a more robust task execution. Lastly, an intent

recognition system was incorporated into the architecture to allow for human-robot

teams to work collaboratively on a task.

Each of these extensions were validated separately through several experiments uti-

lizing either multi-robot or human-robot teams for pick and place tasks with hier-

archical constraints. The experiments included different environmental conditions in

order to show the robustness of the proposed extensions to the control architecture.

Combining each of these extensions together results in a generalized task structure

which enables collaborative task allocation for complex, hierarchical tasks for both

multi-robot and human-robot teams.

iii

Acknowledgements

I would like to thank Dr. David Feil-Seifer, Dr. Monica Nicolescu, Dr. Mircea

Nicolesu, Dr. Hung La, and Dr. Anna Panorska for being on my committee, with

special thanks to Dr. David Feil-Seifer for giving me the opportunity to complete this

research as part of the Socially Assistive Robotics Group (SARG) in the Robotics Re-

search Lab (RRL). I would also like to thank my lab-mates for their help with this

research: Bashira Akter Anima, Natalie Arnold, Santosh Balajee Banisetty, Eloisa

Burton, Muhammed Tawfiq Chowdhury, Luke Fraser, S. Pourya Hoseini A., Thor

Monteverde, Andrew Palmer, Nathaniel Rose, Stephen Michael Simmons, Gabrielle

Talavera. I would especially like to thank Mariya Zagainova and Matthew the teddy

bear for their help with this research. Without the assistance from Mariya and com-

fort from Matthew, neither the results of this work nor my sanity would exist. Lastly,

I would like to thank my friends and family for helping to support me through this

hectic time in my life. Special thanks goes to Becky Blankenburg, Rachel Ventayen,

Megan Dominguez, and Scott Tello for always being there for me when I needed it.

This material is based in part upon work supported by: The Office of Naval Research

under grant number(s) #N00014-16-1-2312 and #N00014-14-1-0776. Any opinions,

findings, and conclusions or recommendations expressed in this material are those of

the author(s) and do not necessarily reflect the views of the Office of Naval Research.

iv

Contents

Abstract i

Acknowledgements iii

List of Figures vii

1 Introduction 1

1.1 Multi-Robot Task Allocation . 3

1.2 Human-Robot Task Allocation . 5

1.3 Generalized Task Structure Learning 7

1.4 Contributions of Proposed Approach 11

1.5 Summary . 14

2 Background 19

2.1 Generalized Policy Learning . 20

2.1.1 Reinforcement learning for generalized policies 20

2.1.2 Imitation learning for generalized policies 22

2.2 Generalized Task Structure Learning 24

2.3 Multi-Robot Task Allocation . 27

2.3.1 Heterogeneous Robot Teams 29

2.3.2 Interdependence Constraints 30

2.4 Collaboration and Dialogue for Human-Robot Teams 32

2.4.1 Verbal Instruction . 33

2.4.2 Task Verification . 35

2.4.3 Task Allocation for Human-Robot Teams 37

2.5 Summary . 39

3 Prior Work 43

3.1 Distributed Collaborative Task Allocation Architecture 44

3.2 Summary . 50

4 Learning of Complex-Structured Tasks from Language Instruction 52

v

4.1 Learning of Task Controllers from Verbal Instruction 53

4.2 Learning of Basic and High-Level Tasks 59

4.3 Experimental Validation . 61

4.3.1 Robot Experiments . 61

4.3.1.1 Household Environment 62

4.3.1.2 IKEA EKET Base Assembly 64

4.3.2 General-Purpose Task Learning Experiments 66

4.3.2.1 Complex Task Execution Constraints 67

4.3.2.2 Use of Adjectives . 68

4.3.2.3 Use of Prepositions 69

4.4 Conclusion & Summary . 70

5 Human-Robot Collaboration and Dialogue for Fault Recovery on
Hierarchical Tasks 71

5.1 Control Architecture with Fault Recovery 72

5.1.1 Interfacing with the Control Architecture 73

5.1.2 Dialogue Module . 76

5.1.3 Fault Detection System . 81

5.2 Experimental Validation . 85

5.2.1 Task Execution . 88

5.2.2 Discussion of Experiment . 91

5.3 Conclusion & Summary . 92

6 Collaborative Human-Robot Hierarchical Task Execution 94

6.1 Human-Robot Collaborative Architecture 95

6.1.1 Human-In-The-Loop Hierarchical Architecture 96

6.1.2 Human Intention Recognition 97

6.1.3 Collision Detection and Handling 100

6.2 Experiment Design . 101

6.2.1 Results . 103

6.3 Conclusion & Summary . 105

7 Dynamic Hierarchical Task Allocation of Manipulation Tasks for
Heterogeneous Robot Teams 107

7.1 Task Allocation for Heterogeneous Teams with Dynamic Capabilities 109

7.1.1 Task Allocation using Activation Potential 109

7.1.2 Object Detection, Recognition and Grasping Pipeline 112

7.2 Experimental Validation . 115

7.2.1 Results and Discussion . 119

7.3 Conclusion & Summary . 123

vi

8 Interdependence Constraint for Collaborative Multi-Robot Task Al-
location Using a Distributed Control Architecture 125

8.1 Integration of WHILE into Architecture 126

8.1.1 Addition of interdependence Constraint 126

8.2 Integration of WHILE into Verbal Instructions 129

8.2.1 Command Parsing . 130

8.2.2 Command Converting . 134

8.3 Experimental Setup . 139

8.3.1 Architecture Integration Experiments 139

8.3.1.1 Validation Plan . 139

8.3.1.2 Experimental Validation 141

8.3.2 Verbal Instruction Integration Experiments 144

8.4 Conclusion & Summary . 147

9 Generalized Task Structure Learning 148

9.1 Problem Representation . 149

9.2 Generalized Task Learning Framework 151

9.2.1 Compression-based Encoding Scheme 152

9.2.2 Fitness Function . 154

9.2.2.1 Evaluation Method 158

9.2.3 Modified Genetic Algorithm 160

9.3 Experimental Validation . 163

9.3.1 Experiment for THEN constraint as root 164

9.3.2 Experiment for AND constraint as root 167

9.3.3 Experiment for OR constraint as root 168

9.4 Conclusion & Summary . 170

10 Conclusion & Future Work 174

10.1 Conclusion . 174

10.2 Future Work . 179

10.2.1 Multi-Robot Task Allocation 179

10.2.2 Human-Robot Task Allocation 180

10.2.3 Generalized Task Learning . 180

Bibliography 182

vii

List of Figures

3.1 The full task structure of a tea-time task experiment. The lighter
purple nodes represent the goal nodes of the task structure and the
darker purple nodes represent the behavior nodes. 45

3.2 Example of the multi-robot decision making process for non-overlapping
sub-tasks. Here robot 1 begins by choosing to place the bread for the
sandwich, while robot 2 begins by choosing to place the cup for the
tea. Initially, the nodes for PLACE-bread (on robot 1) and PLACE-
cup (on robot 2) check the status of the peer nodes on the other robot
(step 1) and wait for the peer status message (step 2). Since the peer
nodes indicate that the other robot does not intend to activate the
same node, each robot decides it can activate their respective nodes
and begin the sub-task execution. 48

3.3 Example of the multi-robot decision making process for overlapping
sub-tasks. Here both robots choose to work on placing the bread for
the sandwich. Initially (step 1) the nodes for PLACE-bread on both
robots check the status of the peer nodes and then wait for their status
message (step 2). The response messages indicate that both robots plan
to work on the same node, but have a timestamp indicating which robot
first initiated the activation. The robot that has the earliest activation
timestamp would then activate its node (steps 3-4), while the other
robot lowers its activation for the same sub-task (step 5). This enables
another node in robot 2’s network (e.g. PLACE-cup) to get a higher
activation level, and thus to begin working on another part of the task
(step 6) . 49

4.1 Stages of parsing verbal instructions to controllers. 54

4.2 Dictionary of relations (RELS) extracted for command generation. . . 56

4.3 Experimental setup. Left: household, Right: IKEA EKET base. . . . 62

4.4 Hierarchical representation for the household tasks. The left sub-tree
is the sandwich task. The right sub-tree is the tea task. These two
tasks are combined into a higher-level tea-time task represented by
the entire tree. 63

viii

4.5 Representation of the learned IKEA EKET assembly task. The PLACE
nodes contain the parameterizations for each object, i.e. the destina-
tion location and specifics of other objects involved. 66

4.6 Instruction: “Place the blue small plate then the small red apple or
the big yellow cup on the table.” . 67

4.7 Instruction: “Put the books then the pencil or the pen or the eraser
on the shelf.” . 67

4.8 Instruction: “Put the book and the pad then the pencil or the pen on
the table.” . 68

4.9 Sample sentences using prepositions. 69

5.1 The task tree for the IKEA EKET building task. The dark gray rect-
angles are goal nodes and the light gray ovals are behavior nodes. . . 73

5.2 State machine diagram of architecture flow upon issue detection. The
Node Update Loop state is the starting state in which the state machine
stays until a issue message is published. Node=done is the final state
which signals that the node’s behavior has finished executing. The
Dialogue initialized* transition is where the dialogue flow (Figure 5.3)
interfaces with this state machine. The resolution message can trigger
different actions. 75

5.3 High-level flow-chart of the dialogue initiated between robot and hu-
man when an issue is detected. Details of the dialogue are filled in
depending on which specific issue was detected. 79

5.4 Execution of the task with issues and assistance provided by the hu-
man. In (d) the human steals the pink bar before it is placed, resulting
in a dropped issue. The human then follows the dialogue to place it.
In (g) The human steals the yellow bar after it is picked, resulting in a
dropped issue. The human then follows the dialogue to allow the robot
to pick and place it again. In (j) the robot encounters a positioning
issue and asks for help from the human. In (l) the human steals the
blue leg before it gets picked up, resulting in a missed issue. The hu-
man then follows the dialogue to allow the robot to try again. In (q)
the robot encounters an unreachable error. The human then follows
the dialogue to hand the robot to the object so it can be placed. . . 86

6.1 Hierarchical task representation used for the collaborative human-robot
experiment. 95

6.2 A step-by-step description of the continuous hand detection system
from the Kinect image frame to infer the human intention 98

6.3 Human intention system with the contour of the hand detection. (a)
The system hasn’t detected the intention yet. (b) The system is de-
tecting the intention with a large red circle on the object. 100

ix

6.4 A sample view of the experimental setup used to perform a human-
robot collaborative task. 102

6.5 The timing diagrams of the tea-time task scenario on the human and
the Baxter. These show the times at which the state of a node in a
given task tree changed. Each row corresponds to a behavior node
named as its corresponding object. The horizontal axis is increasing
time. Brown → inactive, Orange → active, Green → working, and
Blue → done. 103

7.1 Representation of the joint task used in the experiments for the team
of heterogeneous robots. The blue nodes represent the goal nodes and
the orange nodes represent the behavior nodes. 108

7.2 The setup for the multi-robot task. The PR2 (left) and the Baxter
(right) are collaborating to complete a food serving task. The fruit
must be placed in the bowl, the tea-set should be placed next to the
bowl, and the sandwich and burger should be placed on the plate. . 109

7.3 Perception-manipulation pipeline. 115

7.4 Placement of objects for the different scenarios. Left to right: place-
ments for Scenario 1, placements for Scenario 2, placements for Sce-
nario 3. 115

7.5 The timing diagrams for Scenario 1. These diagrams represent the
times at which the state of a node in a given task tree changed. Top
row: Provides the timings for the PR2 and the Baxter using the
distance-only metric. Bottom row: Provides the timings for the
PR2 and the Baxter with the distance-and-grasp metric which uti-
lizes the heterogeneity component. Within each graph: Each row
corresponds to a behavior node named according to its corresponding
object. The horizontal axis is increasing time. Brown → inactive,
Orange → active, Green → working, and Blue → done. 116

7.6 The timing diagrams for Scenario 2. These diagrams represent the
times at which the state of a node in a given task tree changed. Top
row: Provides the timings for the PR2 and the Baxter using the
distance-only metric. Bottom row: Provides the timings for the
PR2 and the Baxter with the distance-and-grasp metric which uti-
lizes the heterogeneity component. Within each graph: Each row
corresponds to a behavior node named according to its corresponding
object. The horizontal axis is increasing time. Brown → inactive,
Orange → active, Green → working, and Blue → done. 117

x

7.7 The timing diagrams for Scenario 3. These diagrams represent the
times at which the state of a node in a given task tree changed. Top
row: Provides the timings for the PR2 and the Baxter using the
distance-only metric. Bottom row: Provides the timings for the
PR2 and the Baxter with the distance-and-grasp metric which uti-
lizes the heterogeneity component. Within each graph: Each row
corresponds to a behavior node named according to its corresponding
object. The horizontal axis is increasing time. Brown → inactive,
Orange → active, Green → working, and Blue → done. 121

8.1 Task tree illustrating WHILE functioning as a root node, with THEN,
AND, and OR constraints nested underneath WHILE. The left child
of the WHILE node (hold green block) is the HOLD behavior and the
right child of the WHILE node (THEN) is the action task that must
be completed. In this case, the action task is a compound node and
consists of the THEN node along with its entire sub-tree. 128

8.2 Task tree illustrating all four constraints (THEN, AND, OR, WHILE),
as well as the nesting capability of the WHILE, since it is nested under-
neath another THEN constraint. The left child of the WHILE node
(hold green block) is the HOLD behavior and the right child of the
WHILE node (place yellow block) is the action task that must be
completed. In this case the action task is a singular behvaior node. 140

8.3 The simulation used to validate the architecture. Blocks are objects
grabbed by the robots and circles are the robots themselves. 142

8.4 Heat map depicting the results from simulating the robots completing
the task corresponding in the task tree depicted in Figure 8.1 a total
of 30 times. The objects are shown on the left axis, the order in which
they were grabbed by the robots are on the bottom axis, and the
frequency in which they were grabbed in that order is shown on the
right axis. We see that the green block, which is the object that must
be held, was grabbed first each time, which is the correct behavior. . 144

8.5 Heat map depicting the results from simulating the robots completing
the task corresponding in the task tree depicted in Figure 8.2 a total
of 30 times. The objects are shown on the left axis, the order in which
they were grabbed by the robots are on the bottom axis, and the
frequency in which they were grabbed in that order is shown on the
right axis. Because THEN is a sequential ordering constraint, WHILE
is always activated first, which is the correct behavior. 145

xi

9.1 Experiment for the task tree with the THEN constraint at the root
and combinations of other constraints below. (a) The human-generated
task tree used for ground truth for the experiment. (b) The demon-
strations (both good demonstrations and bad demonstration) used as
input to teach the GA. (c) Three sample task trees generated by the
GA with the fitness of each sub-tree provided next. The total fitness
for the tree is given at the root in bold font. We see that the trees in
(c) resemble the tree in (a) so the GA is able to learn correct trees in
this case. 166

9.2 Experiment for the task tree with the AND constraint at the root and
combinations of other constraints below. (a) The human-generated
task tree used for ground truth for the experiment. (b) The demon-
strations (both good demonstrations and bad demonstration) used as
input to teach the GA. (c) Three sample task trees generated by the
GA with the fitness of each sub-tree provided next. The total fitness
for the tree is given at the root in bold font. We see that the trees in
(c) resemble the tree in (a) so the GA is able to learn correct trees in
this case. 169

9.3 Experiment for the task tree with the OR constraint at the root and
combinations of other constraints below. (a) The human-generated
task tree used for ground truth for the experiment. (b) The demon-
strations (both good demonstrations and bad demonstration) used as
input to teach the GA. (c) Three sample task trees generated by the
GA with the fitness of each sub-tree provided next. The total fitness
for the tree is given at the root in bold font. We see that the trees in
(c) resemble the tree in (a) so the GA is able to learn correct trees in
this case. 171

1

Chapter 1

Introduction

The basis of this work is a control architecture for collaborative multi-robot/human-

robot systems, focusing on the problem of task allocation under hierarchical con-

straints imposed on a joint task. Real-world tasks are not only a series of sequential

steps, but typically exhibit a combination of multiple types of constraints, where some

parts of the task are sequential, some have no ordering constraints, and others allow

for alternative paths of execution. Therefore, to enable multi-robot and human-robot

teams to complete joint tasks in the real world, the design of a generalized hierarchi-

cal control architecture which is able to encompass all of these types of constraints is

necessary. One primary example which illustrates this concept is a building task. In

order to correctly build a piece of furniture, certain parts have to be connected first

whereas others can be attached at various points in the process.

2

These tasks pose significant challenges even in the single robot domain, as enumer-

ating all the possible ways in which the task can be performed can lead to very large

representations and keeping track of the task constraints during execution is not triv-

ial. In previous work [1, 2] we developed an architecture that provides a compact

encoding of such tasks and validated it in a single robot domain. For more complex

building tasks however, multiple agents are needed to attach parts together as they

require more than one part to be manipulated at a time.

A central problem for task execution in multi-robot teams is the allocation of robots

to task(s). For building tasks, each agent must be allocated tasks to ensure they

can work together to build the entire structure. Finding an optimal solution to

this problem is an instance of the MT-MR problem (Multi-Task robots performing

Multi-Robot tasks) as defined in [3]. In order to tackle this problem, we extended

our previous architecture to work in the multi-robot domain [4]. This architecture

utilizes a distributed message passing system for communication between the robots

where each robot maintains a compact task encoding based off the encoding used in

the single robot domain. Extending this work to the multi-robot domain provided

the following contributions: i) it allows for on-line, dynamic allocation of robots to

various steps of the task, ii) it ensures that the collaborative robot system will obey

all of the task constraints and iii) it allows for opportunistic, flexible task execution

given different environmental conditions.

The aim of the proposed work is to develop a generalized task structure which enables

3

collaborative task allocation for complex, hierarchical tasks for both multi-robot and

human-robot teams. Therefore, the proposed extensions of this work fall into two

categories: multi-robot capabilities and human-robot capabilities. The relevance of

these extensions to the field are discussed in Sections 1.1 and 1.2. The status of the

field for generalized task structure learning is presented in Section 1.3. Lastly, the

proposed contributions are provided in Section 1.4.

1.1 Multi-Robot Task Allocation

The proposed contributions for the multi-robot domain focuses on task allocation for

MT-MR problems [3]. For these types of tasks, multiple robots need to dynamically

coordinate their execution during the task. The robots must work together to com-

plete the joint task to ensure that they are each working on separate parts and that

the constraints of the task are upheld throughout the execution. However, due to

the different abilities between different robots, a single task definition is not sufficient

to ensure the task can be completely without faults. In the case of heterogeneous

robot teams this becomes even more of a problem as the individual capabilities of

each robot can affect the outcome of the task if the task structure does not take their

respective capabilities into account. In order to alleviate these concerns, we developed

a generalized task structure which is able to transfer skills of a learned task to teams

of heterogeneous robots. This system uses a small number of human demonstrations

4

to learn a hierarchical task structure on a single robot. This structure acts as a skele-

ton for the task which has been adapted to work on teams of heterogeneous robots

through the development of a continuous-valued metric which is able to account for

the robots’ variable skills during the task execution.

The collaborative control architecture in [4] assumes that the team of robots all had

the same grasping capabilities. In a team made up of heterogeneous robots, each

robot will have different capabilities. Therefore, the problem of task allocation for

heterogeneous teams is more complex due to these varying capabilities of the robots.

While numerous approaches have been developed for both collaborative task execution

and heterogeneous teams, we addressed these problems from a different perspective

with the aim of expanding the capabilities of heterogeneous multi-robot systems by

extending our control architecture to include a continuous grasp suitability score to

ensure the tasks are performed by the robots with the best suitability.

To best utilize the varying capabilities of heterogeneous robots, a interdependence

task constraint was added to the proposed generalised task structure. This con-

straint requires explicit cooperation between agents in order to complete the task.

Many tasks, such as building tasks, require robots with different capabilities to work

together to complete them. This constraint enables this capability by allowing for co-

operation between robots for manipulation tasks. The primary aim of this constraint

is to allow one agent to hold a part in place, while another agent attaches another

component. Thus, this constraint demonstrates the collaborative capabilities of the

5

proposed generalized task structure.

1.2 Human-Robot Task Allocation

To allow both the task execution and learning of the task structure to be as gener-

alizeable as possible, several efforts were made to extend the previously developed

control architecture to work with human-robot teams.

One focus for task allocation for human-robot teams is teaching the robot how to

perform tasks. Existing research on teaching robots by demonstration or verbal in-

struction focuses on learning tasks that mainly involve sequential constraints, building

representations that encode steps which have to be executed in order. In practice,

robot tasks may require more complex dependencies. For instance, some parts of

the task could be allowed to execute in any order (e.g., adding ingredients for mak-

ing cookies), leading to multiple ways in which the task can be performed. Other

parts of the task may have to be executed in a specific order (e.g., adding ingredients

before doing the mixing). Furthermore, other parts of the task could be achieved

through entirely different paths of execution (e.g.,could add either whole wheat, or

white flour, or almond flour in a recipe). Such tasks are difficult for a human to

teach by demonstration [5], as in order to capture the various different ways in which

a task may be executed, a learning system may need to be provided with multiple

demonstrations of the same task. In contrast, these types of complex dependencies

6

can be efficiently conveyed by use of conjunctions in verbal instructions in a single

command. This work proposes algorithms that process such instructions and produce

a hierarchical task representation that encapsulates the execution constraints and is

directly executable by the robot.

Another central focus of task allocation methods is how to determine the ordering of

sub-tasks that results in a completed task. In simple tasks, this focus is sufficient.

However, in very complex or precise tasks, ensuring correct execution of all sub-tasks is

just as important as identifying the order in which to complete them. In some cases,

correct execution cannot be ensured. In these cases an additional fault recovery

component is required to determine how to handle execution failures. For robotic

systems, this kind of fault recovery can be done through human-robot collaboration.

By allowing a robot to initiate a dialogue with a human, the robot can discuss how best

to handle a failure with its human teammate before taking action. The goal of this

capability is to extend the generalized task structure for hierarchical tasks to recover

from faults during execution through dialogue and human-robot collaboration. The

proposed architecture is cognizant of failures and upon failure initiates a dialogue to

resolve the issue. The architecture maintains an extended dialogue between the robot

and the human, rather than a single request for help, which allows for multiple ways of

resolving a given fault. Failures are autonomously detected with the robot’s on-board

sensors through a combination of views from multiple cameras. The architecture

ensures that the task constraints are adhered to throughout the entire task execution,

even during failures. This allows for a robust execution of a hierarchical task with

7

multiple types of constraints such as sequential, non-ordering, and multiple paths of

execution.

The final focus of this work is to extend the generalized task structure to allow for

human-robot teams to work together on a joint task. While autonomy and the abil-

ity of robots to perform complex tasks have significantly improved, the challenges

of operating in collaborative domains prevent current robotic systems from working

effectively alongside people as collaborators and assistants. We propose a solution

where the robot uses its own task structure (e.g., controller) both to plan its own

future actions, and to keep track of its human teammate’s current and future goals.

Another challenge in this domain is the resolution of conflicts in task allocation be-

tween the human and the robot. To allow for a smooth collaboration, the human

works independently alongside the robot on the available parts of the task. However,

this can result in a conflict occurring in which both agents attempt the same portion

of a task at the same time. Our proposed method resolves these conflicts through

dialogue, similar to the resolution method in the previous extension for task failures.

1.3 Generalized Task Structure Learning

The space of generalized learning can be broken down into two primary areas: gen-

eralized policy learning and generalized task structure learning.

8

Generalized policy learning focuses on learning a policy which is able to perform

a task in a generalized context. These types of policies tend to focus on low-level

methods which define how to complete a given task, such as how to pick up a block

and move it to a specified location [6, 7]. These types of policies are very good at

generalizing to unseen configurations of the task environment. However, since these

methods focus on learning a single policy for transfer to other agents, they are very

limited in the types of skills that are transferred. These approaches cannot adapt

these policies to robots with different capabilities, as is the case in heterogeneous

teams. The low-level policies learned by these approaches only factor in how to move

the robot arm to different locations, but do not know how to factor in the policy

for a different arm or gripper configuration. By extending our previously developed

control architecture, the proposed generalized task structure is able to factor in the

different capabilities of a robot which helps our learned tasks to generalize not only

to different environmental conditions but also to heterogeneous teams of robots.

In contrast to the policy learning work which learns a single policy, there has been

work done which learns the task structure instead. Generalized task structure learning

focuses on learning the underlying structure of a given task so that the task can be

generalized to other instances of the task. These types of methods focus on what

steps need to be completed in order for a task to be performed. Unlike generalized

policy learning methods, these approaches do not look at the low-level policies of how

to move the agent to perform a task, but instead focus on the bigger picture of the

ordering of steps necessary to complete the task. For example, these methods might

9

look at a building task and identify the order in which the parts need to be moved

to correctly build the given structure, instead of determining how exactly to move an

individual block. In other words, these methods focus on a form of task allocation

in which the task structure is being learned. However, most of this work focuses on

learning a sequential task representation. These types of representations are very

limited as they only allow a task to be completed in a single way. For collaborative

tasks performed by heterogeneous teams of robots, a single way of completing a task

may not be sufficient due to the varying capabilities of the different robots. One

robot may be tasked with a step along the sequence which it is not able to perform,

which then prevents the entire task from being completed. Therefore, by utilizing

our proposed generalized task structure, we are able to account for multiple ways to

perform the task, which allows us to allocate robots to different sub-tasks according

to their capabilities.

In current approaches for multi-robot control, a robot’s ability to perform certain

actions or tasks (i.e., the team’s heterogeneity) has been considered to be known in

advance, represented as a binary choice of whether the robot can or cannot perform

a task (without any other options in between), and with the assumption that these

capabilities are not changing over time (i.e., the robot has a fixed set of skills through-

out the entire task execution). In practical applications, it becomes apparent that the

degree to which a robot may perform a task covers a continuous spectrum instead of

just taking binary values. For instance, a robot with a dexterous hand may pick up

objects better than a robot with a 2-dimensional gripper; both are able to perform

10

the task, though with varying degrees of effectiveness. Having a continuous-valued

metric that encodes this information can be highly beneficial for task allocation in

a multi-robot team, as it would allow the selection of the robot best suited for a

given task. Furthermore, the value of this metric may vary continuously throughout

a task execution, as different environmental conditions may allow a robot to perform

actions that would otherwise be impossible. For example, a robot without a mobile

base cannot grasp a cup that is on a shelf in another room, but could pick up that

cup if it were placed on a table in front of it. The approach proposed in this work

utilizes a metric that encodes a robot’s ability to perform a particular task component

over a continuous spectrum; the metric is updated continuously during task execu-

tion, allowing for dynamic task allocation that takes into account the most recent

environmental conditions. Therefore, the proposed generalized task structure is able

to transfer learned skills to teams of heterogeneous robots while accounting for their

heterogeneity.

To enable generalization of the learned task, the structure of the task must be flex-

ible to allow for these variances in grasping capabilities for heterogeneous teams of

robots. Therefore, it is not sufficient to give a single, rigid task structure to a team

of heterogeneous robots and assume that they will be able to complete the task with-

out taking into account their own skill-sets. Instead of manually crafting a different

task structure for each robot in the team, we propose a method in which we are able

to learn the underlying task structure from a set of human demonstrations which

can be transferred to a robot and modified online with its own suitability for each

11

part of the task through the utilization of our previous developed hierarchical control

architecture.

1.4 Contributions of Proposed Approach

The aim of the proposed work is to develop a generalized task structure which

enables collaborative task allocation for complex, hierarchical tasks for

both multi-robot and human-robot teams. Therefore, the proposed contribu-

tions of this work fall into two categories: human-robot capabilities and multi-robot

capabilities.

Human-robot capabilities:

• A novel approach to robot task learning from verbal instruction.

– Development of a framework for directly mapping a complex verbal instruc-

tion to an executable task representation, from a single training experience.

– Allows the generalized task structure to be utilized to teach robots through

verbal instruction.

• A fault recovery system able to detect and inform users of failures and resolve

them through dialogue.

– Development of a hierarchical control architecture that 1) autonomously

detects and is cognizant of task execution failures, 2) initiates a dialogue

12

with a human helper to obtain assistance, and 3) enables collaborative

human-robot task execution through extended dialogue in order to 4) en-

sure robust execution of hierarchical tasks with complex constraints, such

as sequential, non-ordering, and multiple paths of execution.

– Allows the generalized task structure to be more robust to failures.

• An extension of our previously developed control architecture to facilitate col-

laboration by human-robot teams.

– Development of an architecture with the ability for dynamic allocation

of tasks in human-robot teams and opportunistic task execution given

different environmental conditions.

– Allows the generalized task structure to be utilized for human-robot teams

performing collaborative tasks.

Multi-robot capabilities:

• An extension of our previously developed control architecture for incorporating

the varying capabilities of a team of heterogeneous robots.

– Development of an architecture that enables collaborative execution of tasks

with hierarchical representations and multiple types of execution constraints

by teams of robots with variable heterogeneity.

– Allows the generalized task structure to incorporate the varying capabili-

ties of robots into the task allocation scheme.

13

• An extension of our previously developed control architecture for an interde-

pendence constraint which requires explicit coordination between agents.

– A WHILE constraint is incorporated into the control architecture to enable

explicit coordination between agents.

– Allows the generalized task structure to represent tasks which require ex-

plicit coordination between agents.

• A novel method which is able to take sequences of demonstrations and learn a

hierarchical task representation.

– Development of a learning method which utilizes human demonstrations

to generate a hierarchical representation that can be directly executed by

a robot.

– Allows the generalized task structure to learn tasks from a small number

of human demonstrations.

Combining each of these major contributions together results in a generalized task

structure which enables collaborative task allocation for complex, hierarchical tasks

for both multi-robot and human-robot teams. By learning the underlying hierarchical

structure of a task we allow for skill transfer of the task to collaborative heterogeneous

teams through the utilization of our control architecture. Our extension of the control

architecture for the interdependence constraint allows for a wider range of tasks which

can be formulated in a manner capable of utilizing our control architecture. The task

14

structure can also be used to teach the robot to perform tasks both through human

demonstration as well as verbal instruction. Lastly, the generalized structure can be

used by human-robot teams for robust and collaborative execution of joint tasks.

1.5 Summary

The basis of this work is a control architecture for collaborative multi-robot/human-

robot systems, focusing on the problem of task allocation under hierarchical con-

straints imposed on a joint task. Real-world tasks are not only a series of sequential

steps, but typically exhibit a combination of multiple types of constraints, where some

parts of the task are sequential, some have no ordering constraints, and others allow

for alternative paths of execution. Therefore, to enable multi-robot and human-robot

teams to complete joint tasks in the real world, the design of a generalized hierarchi-

cal control architecture which is able to encompass all of these types of constraints is

necessary. One primary example which illustrates this concept is a building task. In

order to correctly build a piece of furniture, certain parts have to be connected first

whereas others can be attached at various points in the process. In previous work

[1, 2] we developed an architecture that provides a compact encoding of such tasks

and validated it in a single robot domain. We extended this architecture to work in

the multi-robot domain [4].

15

The proposed contributions for the multi-robot domain focuses on task allocation for

MT-MR problems. One of the major issues with this class of problems is that a new

task structure must be defined for each new task as well as each robot with different

capabilities. In order to alleviate these concerns, we developed a generalized task

structure which is able to transfer skills of a learned task to teams of heterogeneous

robots. To best utilize the varying capabilities of heterogeneous robots, a interde-

pendence task constraint was added to the proposed generalised task structure. This

constraint requires explicit cooperation between agents in order to complete the task.

Thus, this constraint demonstrates the collaborative capabilities of the proposed gen-

eralized task structure.

To allow both the task execution and learning of the task structure to be as gener-

alizable as possible, several efforts were made to extend the previous architecture to

work with human-robot teams. Firstly, development of a system which takes verbal

instructions, produces a hierarchical task representation that encapsulates the execu-

tion constraints, and is then directly executable by the robot. Secondly, extension of

the generalized task structure for hierarchical tasks to recover from faults during exe-

cution through the use of dialogue and human-robot collaboration. Lastly, extension

of the generalized task structure to allow for human-robot teams to work together on

a joint task.

The aim of the proposed work is to develop a generalized task structure which

enables collaborative task allocation for complex, hierarchical tasks for

16

both multi-robot and human-robot teams. Therefore, the proposed contribu-

tions of this work fall into two categories: human-robot capabilities and multi-robot

capabilities.

Human-robot capabilities:

• A novel approach to robot task learning from verbal instruction.

– Development of a framework for directly mapping a complex verbal instruc-

tion to an executable task representation, from a single training experience.

– Allows the generalized task structure to be utilized to teach robots through

verbal instruction.

• A fault recovery system able to detect and inform users of failures and resolve

them through dialogue.

– Development of a hierarchical control architecture that 1) autonomously

detects and is cognizant of task execution failures, 2) initiates a dialogue

with a human helper to obtain assistance, and 3) enables collaborative

human-robot task execution through extended dialogue in order to 4) en-

sure robust execution of hierarchical tasks with complex constraints, such

as sequential, non-ordering, and multiple paths of execution.

– Allows the generalized task structure to be more robust to failures.

• An extension of our previously developed control architecture to facilitate col-

laboration by human-robot teams.

17

– Development of an architecture with the ability for dynamic allocation

of tasks in human-robot teams and opportunistic task execution given

different environmental conditions.

– Allows the generalized task structure to be utilized for human-robot teams

performing collaborative tasks.

Multi-robot capabilities:

• An extension of our previously developed control architecture for incorporating

the varying capabilities of a team of heterogeneous robots.

– Development of an architecture that enables collaborative execution of tasks

with hierarchical representations and multiple types of execution constraints

by teams of robots with variable heterogeneity.

– Allows the generalized task structure to incorporate the varying capabili-

ties of robots into the task allocation scheme.

• An extension of our previously developed control architecture for an interde-

pendence constraint which requires explicit coordination between agents.

– A WHILE constraint is incorporated into the control architecture to enable

explicit coordination between agents.

– Allows the generalized task structure to represent tasks which require ex-

plicit coordination between agents.

18

• A novel method based on a genetic algorithm which is able to take sequences

of demonstrations and learn a hierarchical task representation.

– Development of a learning method based on a genetic algorithm which

utilizes human demonstrations to generate a hierarchical representation

that can be directly executed by a robot.

– Allows the generalized task structure to learn tasks from a small number

of human demonstrations.

19

Chapter 2

Background

The space of generalized learning can be broken down into two primary areas: gen-

eralized policy learning and generalized task structure learning. We briefly discuss

the differences between these two areas as well as the previous work done in each

area. More focus is given to the second category as our proposed work falls into

this category. Additionally, we provide a brief overview of the prior work done in

multi-robot task allocation in order to explain how our generalized task structure fits

in with the field. Lastly, we provide a brief overview of the prior work done in each

of the areas necessary to extend this generalized task structure to collaborative tasks

for human-robot teams.

20

2.1 Generalized Policy Learning

Generalized policy learning focuses on learning a policy which is able to perform

a task in a generalized context. These types of policies tend to focus on low-level

methods which define how to complete a given task, such as how to pick up a block

and move it to a specified location [6, 7]. These types of policies are very good at

generalizing to unseen configurations of the task environment. For instance, the block

may be placed anywhere in the robot’s reachable space and the policy will be able to

generalize from its trained examples in order to move the block to the desired location

even though it was not trained to pick the block up from that specific location.

Recently there has been a lot of work done in the area of generalized policy learning.

The majority of this work utilizes various machine learning algorithms in order to

learn a generalized policy. Two of the most used methods are reinforcement learning

(RL) and imitation learning. This section describes how RL and imitation learning

have been applied to this area in more detail.

2.1.1 Reinforcement learning for generalized policies

In recent years, there has been a huge push for using reinforcement learning in robotics

to learn policies that are able to complete simple tasks. Kober et al. discuss these

methods in their survey paper [8]. The majority of these methods focus on using RL

for single robot tasks. Some other recent notable work in the single robot domain

21

is the method called guided policy search proposed by Levine et al. in [9]. This

method has been used to train policies capable of performing a wide range of tasks

from arbitrary starting positions in several different application areas such as gait-

learning tasks [9], object manipulation tasks [6, 10], and peg insertion tasks [11].

Guided policy search is a prime example of the types of methods that fall under the

category of generalized policy learning. However, generalized policy learning does not

just encompass methods which learn a single policy at a time. This area also involves

methods which are able to generalize by learning multiple policies at the same time

such as the method proposed by Reidmiller et al. which uses sparse reward signals

to learn multiple auxiliary tasks simultaneously [7]. Nair et al. use a self-supervised

“practice” phase in which agents learn a set of self-generated goals [12]. Very recent

work in this area also illustrate how RL policies can be combined with model-based

representations of a task to improve the policies. Zhang et al. use a probabilistic

graphical model which infers the dynamics of the system in order to further improve

the learned RL policies [13]. Furthermore, this area encompasses methods proposed

for the multi-robot domain.

The concept of applying reinforcement learning to the multi-robot domain has not has

not had as much of a recent push as that of the single-robot domain. The majority of

these methods are over several years old, such as the methods described in the survey

paper by Matarić et al. [14]. The more recent applications instead focus on agents

in general, not specifically robotic agents. These methods fall under the term multi-

agent reinforcement learning (MARL). By focusing on a general agent instead of on

22

teams of robots, these methods are able to learn a wide variety of policies. Forester et

al. propose a method which learns communication policies between robots in order to

understand how best to transfer knowledge between teammates [15]. Ghavamzadeh et

al. propose a method in which agents learn three interrelated skills: how to perform

each individual sub-task, the order in which to carry them out, and how to coordinate

with other agents. However, the majority of works however focus on low-level motor

polices [16–18].

Each of these works, in both the single robot and multi-robot domains, effectively

utilize RL methods to generalize policies from a set of training configurations to

unseen configurations. However, these methods are not able to generalize to different

formulations of these learned tasks. By learning a specific policy, it restricts these

methods to execute the task in a specific ordering which means these methods are not

able to handle tasks which have multiple paths of execution. Additionally, because

these methods learn low-level policies, they are not able to generalize to sets of agents

with varying capabilities, such as a team of heterogeneous robots, as each agent would

require a different policy to reflect its specific capabilities.

2.1.2 Imitation learning for generalized policies

Similar to reinforcement learning methods, there has recently been a push in imitation

learning for generalized policy learning. Many of these methods focus on one-shot

imitation learning in which only a single example is needed to generalize to unseen

23

examples of a trained policy [19, 20]. Other methods focus on improving the learned

policy by gathering additional human demonstrations [21, 22]. All of these methods

focus on imitation learning in the the single robot domain. Very little work has

been done on generalized policy learning through imitation learning on multi-robot

systems. Freelan et al. focus of learning policies for a multi-robot team through a set

of hierarchical finite state automata [23]. Amato et al. uses finite state controllers

as policies in order to coordinate a multi-robot team [24]. Chernova et al. propose a

method that is able to teach multi-robot teams policies which are able to sort a set

of balls [22].

These methods do well at generalizing from provided demonstrations to similar yet

unseen scenarios. However, as in the RL work, these methods also restrict how a task

can be executed. Since these methods are learning from demonstrations, they will

only be able to learn to execute a task in a formulation which was represented in the

demonstrations. Therefore, these methods cannot utilize formulations which would

require multiple paths of execution to complete a task, unless every possible path was

provided in the demonstrations. Furthermore, these methods cannot easily generalize

to robots with different capabilities. These policies are trained using either a single

agent or teams of homogeneous agents. Therefore, the tasks learned by these agents

assume the agent performing the task will be able to execute the task the exact way

that it has been taught, which is not the case for teams of heterogeneous agents with

different capabilities.

24

These generalized policy learning methods focus on learning how to physically perform

a given task. Although this type of generalization is important, the focus of the

proposed work are the steps that need to be done in order to complete the task,

i.e., how to determine the underlying structure of a given task. Therefore, we must

examine the area of generalized task structure learning.

2.2 Generalized Task Structure Learning

Generalized task structure learning focuses on learning the underlying structure of

a given task. This learned structure can then be utilized for similar tasks. These

types of methods focus on what steps need to be completed in order for a task to

be performed. Unlike generalized policy learning methods, these approaches do not

look at the low-level policies of how to move the agent to perform a task, but instead

focus on the bigger picture of the ordering of steps necessary to complete the task.

For example, these methods might look at a building task and identify the order

in which the parts need to be moved to correctly build the given structure, instead

of determining how exactly to move an individual block. The ordering also reflects

constraints of the task which might require a hierarchical component, such as in a

building task where certain blocks must be placed first so others can be stacked on

top. In other words, these methods focus on a form of task allocation in which the

task structure is being learned.

25

There has been a lot of work done that focuses on task allocation. Many of these

methods use an auction type of scheduling algorithm [25, 26]. Some work extends

this auction type of scheduling to allow task allocation on multi-robot teams [27, 28].

These methods focus on learning how to allocate sub-tasks to robots in order to

complete the overall tasks. Although these methods are simply learning when to

complete a task, and not necessarily the underlying constraints behind a task, they

still fall into the generalized task structure learning category. However, by simply

learning to schedule tasks, these methods are learning a sequential ordering of tasks,

which means that they are limited in the types of tasks that they can learn. For

instance, these methods cannot deal with multiple choices within a task such as

in cases where only sub-task A or sub-task B need to be completed but not both.

For these types of problems, a sequential representation is not sufficient. For this

reason, there has been a substantial amount of work done on learning hierarchical

task representations.

Methods presented in many papers focused on learning a generalized hierarchical task

representation use a hierarchical task network (HTN) for their task representation

[29], [30]. Although these methods are able to handle more diverse constraints such

as temporal constraints and alternate forms of tasks, the main limitation of these

methods is that they are only designed for the single-robot domain and therefore do

not take into account the possibility of varying capabilities on a robot. Other methods

focus on using behavior network representations [31, 32]. This type of representation

is the basis for our proposed generalized task structure. However, these methods

26

also are limited to the single-robot domain. The closest method to our proposed

work is the work by Browne et al. [33]. This work uses a small number of task

demonstrations in order to learn a finite state machine which encodes a wide variety

of constraints between different parts of the task. Although this work is able to

encode all of the types of constraints that we are looking at, including conditional

constraints, this work is only formulated to work in the single robot domain and

therefore does not take into account the possibility of varying capabilities of a robot.

Since these methods only work in the single robot domain, it is unclear how they

would perform in the multi-robot domain for teams of robots which have varying

capabilities. Due to the formulations of these methods, it would be very difficult to

encode any suitability metric on the constraints which would be necessary for a team

of heterogeneous robots. This kind of metric greatly affects the flow of the learned

task as it ensures robots only perform tasks which they are best at. However, as the

methods are proposed in the single robot domain, they do not have a method to deal

with this type of dynamic constraint for multi-robot teams. Therefore, one of the

main contributions of the proposed work is that the learned task can be performed

by a set of heterogeneous robots with a dynamic capability constraint, unlike the

previous methods explored in this area.

27

2.3 Multi-Robot Task Allocation

Multi-robot systems gained momentum in the 80’s and 90’s when a series of projects

were implemented successfully such as ACTRESS [34], ALLIANCE [35] and MUR-

DOCH [36]. These projects proposed the efficient use of multi-robot systems over

a single powerful robot. To date, a wide range of distributed approaches have been

developed for task allocation in multi-robot systems.

Several approaches fall under the category of behavior-based systems [37]. These ap-

proaches perform computations on internal representations in order to decide what

action to take. They consist of a collection of parallel, concurrently executing behav-

iors devoid of a centralized arbiter [38]. Our proposed architecture is such a behavior-

based system, relying on activation spreading and peer-behavior communication for

task allocation. Parker et al. [35] proposed one of the first behavior-based archi-

tectures for the multi-robot task allocation problem called ALLIANCE and a related

L-ALLIANCE architecture [39]. These approaches focus on fault tolerant and efficient

control. Werger [40] presented a distributed behavior based approach to the problem

of Cooperative Multi-Robot Observation of Multiple Moving Targets (CMOMMT).

The architecture used cross-inhibition and cross-subsumption between peer behav-

iors on each robot in order to determine allocation of robots to targets. Unlike these

approaches, our architecture incorporates various types of ordering constraints and

multiple paths of execution which allows for a more diverse application to multi-robot

28

collaboration tasks, such as building or manufacturing, instead of navigation-based

tasks as in these earlier approaches.

Other approaches focus on a market-based architecture for allocating tasks distribu-

tively [41]. In these approaches, the team seeks to optimize an objective function

based upon individual robot utilities for performing particular tasks [42]. Gerkey et al.

[36] proposed a novel dynamic task allocation approach for a group of heterogeneous

robots utilizing a publish/subscribe messaging system to carry out auctions called

MURDOCH. Wang et al. [43] proposed a market-based task allocation algorithm

which utilizes a task evaluation function based on distance fitness and urgency. [44]

designed CeCoTA, a market based algorithm for simultaneous allocation of multiple

tightly couple multi-robot tasks to coalitions of heterogeneous robots. The approach

was validated in a simulated environment with simple (atomic) tasks. Trigui et al.

[45] proposed two auction-based distributed algorithms for task allocation namely

DMB and IDMB. Coalition formation is a prevalent approach for handling team het-

erogeneity, enabling multiple robots to build small teams that allow them to perform

a larger overall task. An approach that uses a model to predict the time to execute

a task is presented in [46]. Unlike these approaches, our control architecture defined

in [4] does not use a complicated utility function or an explicit auction system with

a coordinator and bidders. Our hierarchical architecture uses activation-spreading

based on distance to the robots’ grippers to identify which tasks to complete.

29

2.3.1 Heterogeneous Robot Teams

Coalition formation is a prevalent approach for handling team heterogeneity, enabling

multiple robots to build small teams that allow them to perform a larger overall task.

ASyMTRe enables the sharing of sensory and computational capabilities [47] in a

navigation task in which only one of the robots has localization capabilities. This

approach was extended in [48], demonstrating formation of coalitions in tightly cou-

pled multi-robot tasks that need to maintain a set of given sensor constraints, in a

domain in which robots need to navigate to various goals. Similar coalitions have

been demonstrated in cooperative manipulation tasks: [49] demonstrate an approach

based on two-robot leader/follower coalitions to carry a box. Furthermore, [50, 51]

present CAMPOUT, a Control Architecture for Multi-robot Planetary Outposts vali-

dated on physical experiments of coordinated object transport and team cliff traverse.

However, these types of coalition formation methods assume that the tasks are atomic

behaviors which do not have any inter-task constraints. These inter-task constraints

are the focus of our tasks which contain complex hierarchical constraints between the

tasks.

Methods that aim to handle more complex task representations have been shown

in [52, 53], which focus on the execution of tightly coupled tasks. In [52], the task

allocation problem is modeled as a mixed integer linear programming (MILP) problem

and a centralized anytime algorithm is developed to provide an optimal solution

that handles the allocation, scheduling and path planning for a search and rescue

30

task with spatial constraints. Due to the centralized nature of the algorithm, the

method is dependent on prior knowledge of a static environment and produces fixed

allocations that do not change during the course of the task. The Petri Net Plan

framework developed in [53] can represent multi-robot plans using sensing, loops,

concurrency, non-instantaneous actions, action failures, and different types of action

synchronization. This does not consider heterogeneity as a factor for task allocation.

Furthermore, this method was tested on a homogeneous team of robots (AIBO’s)

with equivalent capabilities.

The proposed heterogeneity metric is highly similar to the utility functions computed

by the above market-based approaches or to the motivation factors used in the AL-

LIANCE architecture [35]. It incorporates task specific utility (such as a distance to

a target object) with both continuous utility (perceived grasp effectiveness) and dis-

crete information about the robots’ skills (ability/inability to grasp a given object).

The proposed work contributes this metric for hierarchically structured tasks, that

exhibit a combination of complex constraints such as sequential, non-ordering, and

alternative paths of execution by a team of heterogeneous robots.

2.3.2 Interdependence Constraints

To allow for explicit cooperation between multiple robots, an interdependence con-

straint must be used which requires several parts of a task to be completed together.

One type of task which requires explicit cooperation is building tasks. These tasks

31

require one agent to hold a part in place while another agent connects another piece.

Our proposed work is focused on these types of manipulation tasks which require a

holding behavior while another task component is completed.

Saeedvand et al. proposed a robust Multi-Objective Multi-Humanoid Robots Task

Allocation (MO-MHTA) [54] algorithm which is a variant of the Multi-Robots Task

Allocation (MRTA) problem. This work utilizes four objectives, namely energy con-

sumption, total tasks’ accomplishment time, robot’s idle time, and fairness which

were optimized in an evolutionary framework in MO-MHTA. However, this work fo-

cuses on a different application than our proposed work, namely rescue applications.

The objectives used to allocate tasks are regarding the operation conditions which

have interdependence due to time constraints and other factors. Our work focuses on

pick and place tasks with a hierarchical nature which require explicit cooperation to

complete the tasks.

Interdependence constraints have also been explored in task learning. Santucci et

al. propose a robot control architecture which allows for autonomous open-ended

learning of multiple tasks which may be interdependent [55]. This system is validated

on a humanoid robot learning interdependent multiple reaching tasks. There are two

major differences between this work and ours. The first is that this work is focused

on learning whereas ours is focused on task execution. The second is that this work

focuses on tasks which can be accomplished by a single robot whereas our work is

primarily focused in the multi-robot domain with tasks which require multiple agents

32

to coordinate to complete the tasks.

Another common area of interdependence that is explored in multi-robot and human-

robot teams is focused on creating frameworks which enable to robot agent to be

interdependent on the other agents. Johnson et al. propose a coactive design to

address the desire for robots to perform like interdependent teammates [56]. The

major difference between this work and ours is that the interdependence on our work

is focused on relations between the tasks themselves, not the roles of the agents in

the task.

2.4 Collaboration and Dialogue for Human-Robot

Teams

In order to extend the proposed generalized task structure to the human-robot do-

main, three major components are explored: 1) using verbal instruction to teach the

robot to perform tasks, 2) development of a task verification system to detect and

inform users of failures, and 3) a system to allow the human and robot to work along-

side each other on a joint task is explored. Prior work done in each of these areas are

discussed below.

33

2.4.1 Verbal Instruction

Numerous approaches have been designed for translating natural language instruc-

tions into control structures, focusing on various aspects of grounding linguistic in-

formation onto physical actions, objects or other relevant attributes. In this work, we

focus on the two specific problems: 1) learning representations that encode complex

execution constraints (provided through conjunctions) and 2) parameterizing learned

tasks from information provided by adjectives and prepositions.

Despite the rich spectrum of instruction-based task learning approaches, existing

methods encapsulate mostly sequential constraints, as a series of individual steps

that have to be performed in a particular given order. Lauria et al. [57] show a

first example of controlling a robot using instructions given in natural language. The

system uses an explicitly defined grammar that is domain dependent, restricting the

robot to understanding only instructions related to navigation. Similarly, [58] and [59]

present systems that focus on guiding a robot through natural language to navigate

in the environment, focusing on issues related to spatial representation of the world

and navigation actions. Other approaches have focused on problems such as pick-

and-place [60], grasping [61], blocks worlds [62], building of motion controllers [63],

or navigation, delivery and validation tasks [64]. Chang [65] presents an approach

to increase the flexibility of a speech-based interface, by having the system learn

to associate complex desired configurations with particular simple instructions (such

as what lights need to be turned on and to what level for ”reading mode” or ”TV

34

mode”). However, the configurations are specified by the user (by actively performing

the operations needed for that configuration) and are next associated with a simpler

command that is used to identify that situation. Arumugam et al. [66] present a

method for grounding verbal instructions at varying degrees of specificity using a

deep neural network language model that selects the appropriate level of a planning

hierarchy. A related approach for one shot learning of actions and new objects from

language instruction has been proposed in [67], in which new tasks are learned as

sequences of individual actions. In this work we aim to use the flexibility of natural

language that can concisely include multiple dependencies in a single command (for

example, ”Do a THEN b OR c OR d”) to enable the learning of more complex task

representations.

Recent work closely related to our goals is presented in [68]. The approach relies on

a library of verb-environment-instructions built from a data set of task descriptions,

which represents all possible instructions for each verb in that environment. Rely-

ing on this, a model dependent on an energy function resolves ambiguities based on

appropriate environment context and task constraints. A framework on Generalized

Grounding Graphs (G3) is presented in [69], for both navigation and object manip-

ulation. The framework allows for dynamic instantiation of a probabilistic graphical

model for a given natural language command, taking into account the hierarchical

and compositional semantic structure of the instruction. The method relies on a cor-

pus of sentences specific to the manipulation task to infer the most likely meaning

of the instruction. We propose a method that does not require training or a corpus

35

specific to a particular task: we use the argument information provided by a semantic

parser [70] to automatically generate task controllers for an unrestricted set of action

verbs. Furthermore, the focus of this work is not on handling the full spectrum of

unstructured linguistic instructions and ambiguities, but rather on handling a more

restricted domain that is typical for teaching by instruction in which the teacher aims

to convey the information to the learner as clearly as possible, aiming to minimize

ambiguity in order to facilitate the learning process.

2.4.2 Task Verification

Joint assembly tasks employ several elements in order for the system to acquire/learn

a model of the task, to monitor its progress, and to repair the system when things do

not go according to plan. Task construction is an essential part of this process. Dia-

logue has been used for task construction for human-robot collaboration systems [71].

Similarly, dialogue-based systems can be used for hierarchical task construction [72].

These systems used human dialogue to construct a model of a given task for the robot

to then execute. Conversely, Hayes and Scassellati used human demonstrations in or-

der to learn a hierarchical plan [30]. These systems made task training a one-time

activity which then provided a robot a plan to execute. Finally, a task description

can be manually specified, as was done in [73], by using a graphical user interface.

However, failure resolution was not done when collisions occurred in these works; the

robots would generally defer to what their partner wanted to do.

36

Allocating tasks among multiple agents is required in order to avoid conflicts over

resources, such as space or tools. Tasks can be assigned implicitly based upon envi-

ronmental conditions, capabilities, or what other agents are doing. One such example

uses monitoring of the scene in order to implicitly assign tasks to agents [74]. Our own

prior work has used a hierarchical task representation along with distributed com-

munication to forestall conflicts and assign tasks based on jointly-optimal proximity

to goals [4]. As in the above works however, these methods also did not incorporate

failure resolution during the task execution.

Several studies have successfully had robots initiate communication with humans

when a problem arose [75–77]. Fong et. al. had a robot explore a room via teleoper-

ation and ask a remote human through a mobile device about how to proceed when

confronted with uncertainty [75]. The control system framed the human’s role as a

limited resource. Extensions of this work had a team of robots conduct a surveillance

task, leading the authors to conclude that dialogue improved the human’s ability to

deal with context switching [76]. Both [75, 76] focused on collaborative teleoperation

based tasks. These studies primarily focused on how humans interact with robots

asking questions. However, humans primarily offered additional information to the

robot but were not capable of helping the robot complete the task, which our work

does allow.

37

2.4.3 Task Allocation for Human-Robot Teams

Human-robot collaboration is becoming increasingly important as more robots are

incorporated into daily activities and industry settings. The focus of this work is

to enable robots to work safely alongside humans by developing an intent recogni-

tion system to monitor the human’s actions. Intent recognition encompasses many

domains, including: entertainment [78]; museum documents [79]; personal assistants

[80]; health care [81]; space exploration [82]; police SWAT teams [83]; military robotics

[83]; and rescue robotics [84]. The proposed work demonstrates the ability for dy-

namic allocation of tasks in human-robot teams based on intent recognition, while

also observing hierarchical constraints.

Many approaches exist for recognizing human intent. In [85], weighted probabilis-

tic state machines were used to complete a recognition task that was split into two

categories: explicit intention communication and implicit intention communication.

Wang et al. used Recurrent Convolutional Neural Networks (RCNNs) to recognize

the intention of humans manipulating objects [86]. Li et al. used Neural Networks to

develop an online estimation method to handle the nonlinear and time-varying prop-

erties of using a limb model for estimating human intention. Human-aware motion

planning was examined in [87] and [88]. The ability of a robot to work with a human

in close proximity without collisions was demonstrated in [89]. In [90], human mo-

tion was modelled using a Gaussian Mixture Model (GMM). Unlike these methods,

our work focuses primarily on hand detection to infer the human’s intent which is

38

then used by the robot to directly update the status of the joint task through our

hierarchical architecture.

A collaborative robot should be able to execute complex tasks, be aware of its team-

mates’ goals and intentions, as well as be able to make decisions for its actions based

on this information. Recent work addresses these challenges using a probabilistic ap-

proach for predicting human actions and a cost based planner for the robot’s response

[91]. Tasks are represented as Bayes networks and prediction of human actions is per-

formed using a forward-backward message passing algorithm in the network. However,

this inference process is dependent on knowledge of the full conditional probability

table for the task, which increases computational complexity for large tasks and limits

adaptability to changes in the task at run-time. This approach has been extended

in [92], with a new task representation that can encode tasks with multiple paths of

execution. The initial representation for the task is a compact AND-OR tree struc-

ture, but for action prediction and planning, it has to be converted into an equivalent

Bayes network, which has to explicitly enumerate all possible alternative paths. Our

work is able to utilize a compact encoding of a task throughout the entire execution,

thereby avoiding the overhead needed to enumerate all possibilities which is required

by this work.

39

2.5 Summary

The space of generalized learning can be broken down into two primary areas, gener-

alized policy learning and generalized task structure learning. We briefly discuss the

differences between these two areas as well as the previous work done in each area.

Additionally, we provide a brief overview of the prior work done in multi-robot task

allocation in order to explain how our generalized task structure fits in with the field.

Lastly, we provide a brief overview of the prior work done in each of the areas neces-

sary to extend this generalized task structure to collaborative tasks for human-robot

teams.

Generalized policy learning focuses on learning a policy which is able to perform

a task in a generalized context. These types of policies tend to focus on low-level

methods which define how to complete a given task, such as how to pick up a block

and move it to a specified location [6, 7]. These types of policies are very good at

generalizing to unseen configurations of the task environment.

Generalized policy learning is a prominent area of research focus. The majority of

this work utilizes various machine learning algorithms in order to learn a generalized

policy. Two of the most used methods are reinforcement learning (RL) and imitation

learning. These generalized policy learning methods focus on learning how to phys-

ically perform a given task. Although this type of generalization is important, the

focus of the proposed work is about what steps need to be done in order to complete

40

the task, i.e. how to determine the underlying structure of a given task. Therefore,

we must examine the area of generalized task structure learning.

Generalized task structure learning focuses on learning the underlying structure of a

given task so that the task can be generalized to other instances of the task. These

types of methods focus on what steps need to be completed in order for a task to

be performed. Unlike generalized policy learning methods, these approaches do not

look at the low-level policies of how to move the agent to perform a task, but instead

focus on the bigger of picture of the ordering of steps necessary to complete the task.

For example, these methods might look at a building task and identify the order in

which the parts need to be moved to correctly build the given structure, instead of

determining how exactly to move an individual block. In other words, these methods

focus on a form of task allocation in which the task structure is being learned.

There has been a lot of work done which focuses on task allocation. However, by

simply learning to schedule tasks, these methods are learning a sequential ordering

of tasks, which means that they are limited in the types of tasks that they can

learn. Additionally, there has been substantial work done on learning hierarchical

task representations. Although some methods are able to encode all of the types

of constraints that we are looking at, these methods are formulated to work in the

single robot domain and therefore do not take into account the possibility of varying

capabilities on a robot, which is one of the primary contributions of the proposed

work.

41

To date, a wide range of distributed approaches have been developed for task alloca-

tion in multi-robot systems. Several approaches fall under the category of behavior-

based systems [37]. Other approaches focus on a market-based architecture for allo-

cating tasks distributively [41]. Each of these methods treat tasks as atomic behaviors

without complex representations or temporal constraints, which is the focus of our

work.

The proposed work contributes a heterogeneity metric for hierarchically structured

tasks, that exhibit a combination of complex constraints such as sequential, non-

ordering, and alternative paths of execution by a team of heterogeneous robots. This

metric is most similar to the utility functions computed by the above market-based

approaches or to the motivation factors used in the ALLIANCE architecture [35].

To allow for explicit cooperation between multiple robots, an interdependence con-

straint must be used which requires several parts of a task to be completed together.

One type of task which requires explicit cooperation is building tasks. These tasks

require one agent to hold a part in place while another agent connects another piece.

Our proposed work is focused on these types of manipulation tasks which require a

holding behavior while another task component is completed.

Lastly, the prior work in three major components related to extending the proposed

generalized task structure to the human-robot domain are discussed. First, using ver-

bal instruction to teach the robot to perform tasks is discussed. Second, development

of a task verification system to detect and inform users of failures is discussed. Third,

42

a system to allow the human and robot to work alongside each other on a joint task

is discussed.

43

Chapter 3

Prior Work

The goal of the proposed work is to develop a generalized task structure which enables

collaborative task allocation for complex, hierarchical tasks for both multi-robot and

human-robot teams. In order to develop this generalized task structure, several major

extensions to our existing control architecture are described in Chapters 4-9. Since

the existing architecture is the backbone of the major contributions proposed in this

work, the details of the architecture are described in this chapter. Many capabilities

of the architecture are referenced and extended throughout the remaining chapters of

this work.

44

3.1 Distributed Collaborative Task Allocation Ar-

chitecture

Many of the proposed extensions are built upon a previously developed distributed

multi-robot control architecture which allows for dynamic allocation of tasks between

multiple robots as well as for opportunistic task execution given different environ-

mental conditions [4]. The architecture uses a behavior-based paradigm [37] and it

provides an efficient and compact encoding of tasks with various types of constraints

(such as sequential, non-ordering, and alternative paths of execution), allowing the

robots to dynamically decide which execution path to follow using an activation

spreading mechanism that relies on environmental conditions. The execution con-

straints can be incorporated into a single behavior network task representation such

as that presented in Figure 3.1, encoding a task for making a sandwich and tea.

A behavior network task is built of the following two types of nodes:

• Goal Nodes: These are the base goal control behaviors of the hierarchical task

structure, and include the THEN, AND, and OR nodes that are used internally

in the tree to encode the task constraints:

– THEN: This is a n-ary node which is used to encode sequential constraints

(the left child must execute before the children to its right can execute).

45

Figure 3.1: The full task structure of a tea-time task experiment. The lighter
purple nodes represent the goal nodes of the task structure and the darker purple

nodes represent the behavior nodes.

– AND: This is a n-ary node which is used to encode non-ordering con-

straints (children can be executed in any order).

– OR: This is a n-ary node which is used to encode alternative paths of

execution (only one of the children will be executed).

• Behavior Nodes: These are the leaf nodes in the task tree structure and

encode the physical behaviors that the robot can perform, e.g. a PickAnd-

Place(Cup) behavior will control the arm of the robot to pick up a cup from

the table in front of it and place it in another location.

In order to maintain communication and connectivity between the nodes in a task

tree, each node in the architecture maintains a state consisting of several components:

46

• Activation Level: a number provided by the node’s parent and represents the

priority placed on executing and finalizing a given node

• Activation Potential: a number representing the node’s perceived efficiency,

which is sent to the parent of the node,

• Active: a boolean variable that is set to true when the node’s activation level

exceeds a predefined threshold, indicating that the behavior is currently exe-

cuting

• Done: a boolean variable that is set to true when the node has completed its

required work.

The above state information is continuously maintained for each node and is used

to perform top-down and bottom-up activation spreading that ensures the proper

execution of the task given the constraints. To execute a task, activation spreading

messages are sent from the root node of a task toward its children. These messages

spread the activation level throughout the task tree in a top-down manner. At the

same time, each node sends status messages, which encode a node’s current state, to

its parent node. These messages spread the activation potential throughout the tree

in a bottom-up fashion. The state of each node in the task structure is maintained

via an update loop which runs at each cycle. This loop performs a series of checks of

the node’s state and updates the various components of the state accordingly. The

full details of this approach are presented in [1].

47

To enable cooperative execution of team tasks, each robot is equipped with its own

instance of the task tree structure, identical to that of the other robots, which encodes

the joint team task. Equivalent nodes in the task structures across robots are called

peers. These peers are the means of communication between the robots and allow

nodes to keep track of other robots’ progress on the task. While the task hierarchy is

uniform across robots, the activation potential and activation levels for each node in

each tree are calculated individually by each robot. In addition to the state compo-

nents used in the single robot case above, the multi-robot state of each node contains

two new variables

• peer active: a boolean variable that is true when either the node is active or

the node’s peer is active

• peer done: a boolean variable that is true when either the node is done or the

node’s peer is done.

These additional state variables are required for collaboration between the robots

because they allow each robot to identify if the node is currently being worked on

or was already completed by another robot. This information is necessary to ensure

there is no overlap in the sub tasks that the robots perform. By identifying what tasks

are being worked on by its teammates and which tasks are already completed, each

robot is able to determine the next step it should perform based on the activation

spreading mechanism within its own task tree structure as well as its own state. This

process allows the robots to maintain and communicate the states of all of the nodes

48

AND

THEN

PLACE

bread

OR

PLACE

meat

PLACE

lettuce

PLACE

bread

THEN

THEN

PLACE

cup

AND

PLACE

sugar

PLACE

tea

AND

THEN

PLACE

bread

OR

PLACE

meat

PLACE

lettuce

PLACE

bread

THEN

THEN

PLACE

cup

AND

PLACE

sugar

PLACE

tea

Robot 1 Robot 2

1. check peer
node on R2

1. check peer
node on R1

2. wait for peer
status message

2. wait for peer
status message

3. activate

3. activate

Figure 3.2: Example of the multi-robot decision making process for non-
overlapping sub-tasks. Here robot 1 begins by choosing to place the bread for
the sandwich, while robot 2 begins by choosing to place the cup for the tea. Ini-
tially, the nodes for PLACE-bread (on robot 1) and PLACE-cup (on robot 2) check
the status of the peer nodes on the other robot (step 1) and wait for the peer sta-
tus message (step 2). Since the peer nodes indicate that the other robot does not
intend to activate the same node, each robot decides it can activate their respective

nodes and begin the sub-task execution.

to their corresponding peer nodes on the other robots in order to ensure that the

robots can work collaboratively to complete the task in a manner that follows its

constraints.

Figure 3.2 shows the steps of node activation for situations in which the robots choose

to work on different sub-tasks: robot 1 begins by choosing to place the bread for the

sandwich, while robot 2 begins by choosing to place the cup for the tea. Initially,

the nodes for PLACE-bread (on robot 1) and PLACE-cup (on robot 2) check the

status of the peer nodes on the other robot (step 1) and wait for the peer status

message (step 2). Since the peer nodes indicate that the other robot does not intend

49

AND

THEN

PLACE

bread

OR

PLACE

meat

PLACE

lettuce

PLACE

bread

THEN

THEN

PLACE

cup

AND

PLACE

sugar

PLACE

tea

AND

THEN

PLACE

bread

OR

PLACE

meat

PLACE

lettuce

PLACE

bread

THEN

THEN

PLACE

cup

AND

PLACE

sugar

PLACE

tea

Robot 1 Robot 2

1. check peer
node on R1/R2 6. R2 starts working on

different subtask

3. The node on the robot that first initiated activation becomes active

2. wait for peer
status message

5. activation
level is lowered4. activate

Figure 3.3: Example of the multi-robot decision making process for overlapping
sub-tasks. Here both robots choose to work on placing the bread for the sandwich.
Initially (step 1) the nodes for PLACE-bread on both robots check the status of the
peer nodes and then wait for their status message (step 2). The response messages
indicate that both robots plan to work on the same node, but have a timestamp
indicating which robot first initiated the activation. The robot that has the earliest
activation timestamp would then activate its node (steps 3-4), while the other robot
lowers its activation for the same sub-task (step 5). This enables another node in
robot 2’s network (e.g. PLACE-cup) to get a higher activation level, and thus to

begin working on another part of the task (step 6)

to activate the same node, each robot decides that it can activate their nodes and

begin the sub-task execution (step 3).

Figure 3.3 shows the node activation process when the robots decide to work on the

same sub-task: in this scenario both robots choose to work on placing the bread for

the sandwich. Initially (step 1) the nodes for PLACE-bread on both robots check

the status of the peer nodes and then wait for their status message (step 2). The

response messages indicate that both robots plan to work on the same node, but have

a timestamp indicating which robot first initiated the activation. The robot that has

50

the earliest activation timestamp would then activate its node (steps 3-4), while the

other robot lowers its activation for the same sub-task (step 5). This enables another

node in robot 2’s network (e.g. PLACE-cup) to get a higher activation level, and

thus to begin working on another part of the task (step 6).

From both the overlapping and non-overlapping examples, we see that the architec-

ture is able to complete the tasks in a joint manner with minimal disruptions to

the execution. Altogether, this architecture provides an efficient and compact encod-

ing of tasks with various types of constraints (such as sequential, non-ordering, and

alternative paths of execution) and allows the robots to dynamically decide which

execution path to follow using an activation spreading mechanism that adapts to

different environmental conditions.

3.2 Summary

The goal of the proposed work is to develop a generalized task structure which enables

collaborative task allocation for complex, hierarchical tasks for both multi-robot and

human-robot teams. In an effort to develop such a generalized task structure, several

major extensions are proposed in this work which utilize our previously developed

control architecture as their backbone. Many capabilities of the previously developed

architecture are referenced and extended throughout the remaining chapters of this

work.

51

The previously developed distributed multi-robot control architecture allows for dy-

namic allocation of tasks between multiple robots as well as for opportunistic task ex-

ecution given different environmental conditions [4]. The architecture uses a behavior-

based paradigm [37] and it provides an efficient and compact encoding of tasks with

various types of constraints (such as sequential, non-ordering, and alternative paths

of execution), allowing the robots to dynamically decide which execution path to fol-

low using an activation spreading mechanism that relies on environmental conditions.

Many execution constraints can be incorporated into a single, complex, hierarchical

task representation. In order to maintain communication and connectivity between

the nodes in a task tree, each node in the architecture maintains a state which is used

to perform top-down and bottom-up activation spreading that ensures the proper

execution of the task given the constraints.

To enable cooperative execution of team tasks, each robot is equipped with its own

instance of the task tree structure, identical to that of the other robots, which encodes

the joint team task. Equivalent nodes in the task structures across robots are called

peers. These peers are the means of communication between the robots and allow

nodes to keep track of other robots’ progress on the task. By utilizing this setup, the

robots are able to maintain and communicate the states of all of the nodes to their

corresponding peer nodes on the other robots in order to ensure that the robots can

work collaboratively to complete the task in a manner that follows its constraints.

52

Chapter 4

Learning of Complex-Structured

Tasks from Language Instruction

This chapter presents a novel approach to robot task learning from language-based

instructions, which focuses on increasing the complexity of task representations that

can be taught through verbal instruction. The major proposed contribution is the

development of a framework for directly mapping a complex verbal instruction to an

executable task representation, from a single training experience. The executable task

representation is based upon a previously developed framework which is described in

Section 3.1. The verbal instruction method can handle the following types of complex-

ities: 1) instructions that use conjunctions to convey complex execution constraints

(such as alternative paths of execution, sequential or non-ordering constraints, as well

as hierarchical representations) and 2) instructions that use prepositions and multiple

53

adjectives to specify action/object parameters relevant for the task. Specific algorithms

have been developed for handling conjunctions, adjectives, and prepositions as well

as for translating the parsed instructions into parameterized executable task repre-

sentations. The work describes validation experiments with a PR2 humanoid robot

learning new tasks from verbal instruction, as well as an additional range of utter-

ances that can be parsed into executable controllers by the proposed system. The

development of this verbal instruction system allows the proposed generalized task

structure, modified from Section 3.1, to be utilized to teach robots to perform tasks

through verbal instruction. This outcome is one of the main components needed to

enable collaboration between humans and robots for complex, hierarchical tasks using

a generalized task structure.

4.1 Learning of Task Controllers from Verbal In-

struction

We assume that the robot is equipped with a set of basic skills (or behaviors), each of

which has a mapping to the teacher’s instruction vocabulary. In addition, the robot

has knowledge of various objects (and their attributes) that can be appropriately

recognized and manipulated. The teacher’s instruction is parsed and mapped into an

executable controller as outlined in Figure 4.1.

54

“Place the pink bar and the yellow bar on the
green leg.”

Voiced utterance

Sentence Analysis

Parsed
sentence (ACE):

Command
Generation

Robot task controller

Recognized
string:

Speech
Recognition

[LTOP: h0
INDEX: e2 [e SF: comm TENSE: pres MOOD: indicative PROG: - PERF: -]
RELS: < [pronoun_q<0:55> LBL: h4 ARG0: x3 [x PERS: 2 PT: zero] RSTR: h5 BODY: h6]
[pron<0:55> LBL: h7 ARG0: x3]
[_place_v_1<0:5> LBL: h1 ARG0: e2 ARG1: x3 ARG2: x8 [x PERS: 3 NUM: pl] ARG3: h9]
[udef_q<6:37> LBL: h10 ARG0: x8 RSTR: h11 BODY: h12]
[_the_q<6:9> LBL: h13 ARG0: x14 [x PERS: 3 NUM: sg IND: +] RSTR: h15 BODY: h16]
[_pink_a_1<10:14> LBL: h17 ARG0: e18 [e SF: prop TENSE: untensed MOOD: indicative PROG: - PERF: -] ARG1: x14]
[_bar_n_1<15:18> LBL: h17 ARG0: x14]
[_and_c<19:22> LBL: h19 ARG0: x8 L-INDEX: x14 R-INDEX: x20 [x PERS: 3 NUM: sg IND: +]]
[_the_q<23:26> LBL: h21 ARG0: x20 RSTR: h22 BODY: h23]
[_yellow_a_1<27:33> LBL: h24 ARG0: e25 [e SF: prop TENSE: untensed MOOD: indicative PROG: - PERF: -] ARG1: x20]
[_bar_n_1<34:37> LBL: h24 ARG0: x20]
[_on_p<38:40> LBL: h26 ARG0: e27 [e SF: prop TENSE: untensed MOOD: indicative PROG: - PERF: -] ARG1: x8 ARG2: x28 [x PERS: 3 NUM: sg IND: +]]
[_the_q<41:44> LBL: h29 ARG0: x28 RSTR: h30 BODY: h31]
[_green_a_2<45:50> LBL: h32 ARG0: e33 [e SF: prop TENSE: untensed MOOD: indicative PROG: - PERF: -] ARG1: x28]
[_leg_n_1<51:55> LBL: h32 ARG0: x28] >

HCONS: < h0 qeq h1 h5 qeq h7 h9 qeq h26 h11 qeq h19 h15 qeq h17 h22 qeq h24 h30 qeq h32 >]

(AND
(PLACE pink_bar green_leg ON)
(PLACE yellow_bar green_leg ON)

)

Place the pink bar and the yellow bar on
the green leg.

Parenthesized
command:

Task Code
Generation

Controller: Executable controller (YAML format)

Spoken
command:

Figure 4.1: Stages of parsing verbal instructions to controllers.

The speech recognition module takes as input a voice command from the user through

the PocketSphinx [93] package in ROS [94] and produces a string representing the

user’s command.

The sentence analysis module takes the command string and produces a parsed rep-

resentation of the command. This is then used by the command generation module,

which produces a parenthesized version of the command. In turn, this is next used

by the task code generation module that produces the executable controller, in the

form of a YAML file. These modules are described in more detail below.

For sentence analysis, in order to represent the semantic roles of each used utterance,

we use minimal recursion semantics (MRS), which are based on the English Resource

Grammar open source project [95, 96]. In MRS the links between meaningful words

are shown through argument roles and handle links, which can capture some scope

55

ambiguity. To extract the MRS representations of the verbal command, we used the

Answer Constraint Engine (ACE) tool available at [70]. The engine also tags each

word with part-of-speech information, which will be used in the next step of our

processing and will be described in detail below.

The command generation module takes as input the parsed sentence representation,

and produces a parenthesized form of the command (Figure 4.1) as follows. The

semantic representation produced by ACE is parsed to extract relational information

for each of the words in the sentence, which is then organized in a dictionary of

relations (RELS) with the following structure: Handle: [category, word,[arguments]],

as shown in Figure 4.2. The Handle is a unique identifier given to the word by the

ACE analyzer consisting of a letter and a number (the ARG0 of each relation, for

example, x10 corresponds to the noun bar). The category represents the part of

speech of the word (e.g. noun, verb, conjunction, etc.) and the arguments is a list

of relations (ARG0-ARGn) to other words in the sentence. Each part of speech has

a different number of arguments, as follows. Conjunctions have two arguments, each

pointing to the items that they connect. For example, the conjunction ‘and’ has

arguments x10, x16 (representing the first, and respectively the second noun ‘bar’ it

connects). Verbs have three arguments, but only the second one (ARG2) is relevant

for our purpose: this argument points to the handle of either a noun or a preposition

that links several nouns. For example, the verb ‘place’ has ARG2=x4, which is

the conjunction ‘and’ that links two nouns. Prepositions have two arguments, but

only the second one (ARG2) is relevant, indicating the object of the preposition. For

56

instance, the preposition ‘on’ has ARG2=x24, which is the noun ‘leg’. Adjectives have

only one argument ARG1, which indicates the object they refer to (e.g., adjective e21,

representing ‘yellow’, refers to relation x16, which is the noun ‘bar’). Nouns do not

have any arguments, except for their ARG0 name.

{'e2': ['verb', 'place', ['i3', 'x4', 'h5']],
'e14': ['adjective', 'pink', ['x10']],
'x10': ['noun', 'bar', []],
'x4’: ['conj', 'and', ['x10', 'x16']],
'e21': ['adjective', 'yellow', ['x16']],
'x16': ['noun', 'bar', []],
'e23': ['preposition', 'on', ['x4', 'x24']],
'e29': ['adjective', 'green’, ['x24']],
'x24': ['noun', 'leg', []]}

Figure 4.2: Dictionary of relations (RELS) extracted for command generation.

Algorithm 1, MRSCrawling(sentence, RELS) takes as input the parsed sentence pro-

duced by ACE and the RELS dictionary and starts by finding the sentence index

(e2 in our case), and the semantic relation to which it corresponds. In our sentence

this is represented by the verb ‘place’, which should correspond to one of the robot’s

basic behaviors (lines 1-3). Next, adjectives are appended to their corresponding

nouns, indicated by their REL1 argument, as shown in Algorithm 2, ConnectAdjec-

tives(RELS). After this processing, the word fields for the nouns in the dictionary

become ‘pink bar’,‘yellow bar’, and ‘green leg’.

Algorithm 3, HandlePrepositions(RELS) processes all the prepositions in the dictio-

nary to build relations of the type < subject object preposition >. The object of the

57

Algorithm 1 MRS Crawling(sentence, RELS)

1: index = sentence.INDEX //chose sent. index
2: look for semantic relation (in RELS)

with rel.ARG0 == index
3: verb = rel //(this is the action verb)
4: ConnectAdjectives(RELS)
5: HandlePrepositions(RELS)
6: command = BuildCommand(RELS, verb)

Algorithm 2 ConnectAdjectives(RELS)

1: for all rels in RELS do
2: if rel.category == adjective then
3: //get handle for noun
4: noun handle = rel.ARG1
5: //append adjective to noun
6: noun handle.word + = “ ” + rel.word
7: end if
8: end for

preposition is obtained from the preposition’s ARG2. The subject of the preposition

is found in ARG0, and can be either a single noun or a conjunction (as in the example:

both the pink bar and yellow bar are the subjects placed on the green bar). Conjunc-

tion objects are recursively found by Algorithm 4, FindAllSubjects(rel), which takes

as input one of the relations in the RELS dictionary. After this processing stage,

the word field for the preposition’s subject nouns in the dictionary become ‘pink bar

green leg on’, ‘yellow bar green leg on’.

The controller construction module takes as input the parenthesized form of the task

representation and translates it into a robot controller that can automatically be

executed by the robot, using the procedure shown in Algorithm 5. The input to the

58

Algorithm 3 HandlePrepositions(RELS)

1: for all rels in RELS do
2: if rel.category == preposition then
3: mainsubject = rel.ARG1 //get source of preposition
4: subjects = FindAllSubjects(main subject)
5: object = rel.ARG2 //get object of preposition
6: for all sbj in subjects do
7: //append preposition and subject noun
8: sbj.word + = “” + object.word + “” + rel.word
9: end for

10: end if
11: end for

Algorithm 4 FindAllSubjects(rel)

1: for all arg in rel.ARG0 do
2: if rel.category == noun then
3: Appendreltosubjects //append source noun
4: else if rel.category == conjunction then
5: //recursively find conjunction-connected subjects
6: subjects list = FindAllSubjects(rel.arg)
7: Append subjects list to subjects
8: end if
9: end for

algorithm is a fully parenthesized string (Figure 4.1) and the output is a node with

its corresponding list of children. The GetCrtToken() function just reads from the

string the next relevant element (either a parenthesis, a node label such as THEN,

OR, etc. or a parameter such as cup, tea, etc.). The AdvanceToNextToken() advances

to the next token in the string command. The algorithm proceeds with extracting

the opening parenthesis, then the node label, and initializes the list of children to

be empty (lines 1-6). After this, the algorithm repeatedly processes the next tokens

until reaching a closing parenthesis ‘)’. The new tokens could be either new nodes

59

Algorithm 5 CreateNode(cmd)

1: new node // create new node object
2: token = GetCrtToken(cmd) // must be ‘(’
3: AdvanceToNextToken(cmd)
4: node.Label = GetNextToken(cmd)
5: AdvanceToNextToken(cmd)
6: node.ChildrenList = emtpy
7: repeat
8: token = GetCrtToken(cmd)
9: if token == ‘(’ then

10: // child is a new node
11: child = CreateNode(cmd)
12: node.AddToChildren(child)
13: else if token == ‘)’ then
14: // the end, do nothing
15: else
16: // child is a parameter
17: child = token
18: node.AddToChildren(child)
19: end if
20: AdvanceToNextToken(cmd)
21: until token == ‘)’
22: return node

themselves (lines 8-12), or behavior parameters (lines 8, 15-18). When the token is

a closing parenthesis ‘)’, there is nothing to be done and the loop stops (lines 13-14,

21). The newly created node with the list of its children is returned (line 22).

4.2 Learning of Basic and High-Level Tasks

While single instructions can have a high-degree of complexity (as shown in Sec-

tion 4.1), they may only represent a part of a larger task to be learned. We developed

an approach to allow the robot to learn tasks composed of multiple instructions, as

60

well as to build up from those tasks in order to learn even more complex representa-

tions. In this work we differentiate between basic and high-level tasks. Basic tasks are

built entirely from combinations of low-level skills (behaviors) of the robot. High-level

tasks are built from combinations of already existing basic tasks, or other high-level

tasks previously learned.

The process for learning basic tasks consists of three main steps that run in a loop

until the teacher is done with teaching the task. In each iteration of the loop, the

robot receives a verbal instruction from the teacher, which is next processed and

converted into an executable controller, as described in Section 4.1. An instruction

can be as simple as a basic command (e.g., Place the bread), or could have a higher

degree of complexity (such as Place the cup, then the sugar and the tea). Third,

the newly learned step is executed by the robot before the teacher provides the next

instruction. When the teacher finishes the training, all the individual steps (if more

than one) are combined into a single task representation, which consists of a THEN

root node, whose children are the nodes representing each individual step of the task

in the order in which they have been presented. To facilitate a flexible and natural

interaction during learning, both the human and the robot use specific verbal cues to

indicate the following: 1) by the human: when a training task begins, the name of the

task, the end of the task, 2) by the robot: confirmation of proper instruction received,

request of names for newly trained tasks, requests for new steps, or request to repeat

the task if the command is not properly understood by the speech recognition module.

61

Examples of full dialogue sequences between the human and the robot during training

are presented in Section 4.3.

To learn high-level tasks, the teacher provides instructions that combine tasks al-

ready existing in the robot’s repertoire. The process runs in a loop in which verbal

instructions are provided, then processed and converted into an executable controller,

similar to the process for basic tasks. If the instruction includes reference to a task

previously learned, the robot does not execute the individual command after it is

received, but rather waits for the training to finish. This is an arbitrary choice we

made to distinguish the two cases, but has no influence on the learning process. At

the end of the training, to build the task representation for the entire task, all the

individual steps are combined into a single task representation as in the case for the

basic tasks.

4.3 Experimental Validation

4.3.1 Robot Experiments

We validated our approach with a PR2 humanoid robot in two scenarios: a household

environment (in which we validate the learning of basic and high-level tasks) and an

IKEA EKET base frame construction environment (in which we validate the use of

prepositions and adjectives to parameterize the robot’s behaviors).

62

Figure 4.3: Experimental setup. Left: household, Right: IKEA EKET base.

4.3.1.1 Household Environment

In the household environment, the robot was taught to perform the following tasks:

1) two basic tasks, one for making tea, and one for making a sandwich and 2) a

high-level task called tea-time that consists of the two basic tasks for making tea

and a sandwich, using toy objects that represent bread, meat, lettuce, tea, cup, and

sugar. The robot is equipped with a Place(Object) behavior, that is parameterized

for the different objects. Since the focus of this work is on the learning approach, for

these experiments the initial and final locations of the objects are pre-defined. The

experimental setup is shown in Figure 4.3 (left).

The first two training experiments were focused on teaching the two basic tasks.

Table 4.1 shows the verbal communication between the human and the robot during

the training experiment, as well as the robot’s actions during this process. At the

end of this training, the robot has a new task in its repertoire, called sandwich (left

branch of the root AND node in Figure 4.4), which can be executed at any time or

used as a part of a higher-level task. During the practice of the command “Place

63

the meat or the lettuce”, the robot chose to select the meat out of the two possible

options, due to the fact that it was closer to the robot’s gripper than the lettuce.

sandwich tea

Figure 4.4: Hierarchical representation for the household tasks. The left sub-tree
is the sandwich task. The right sub-tree is the tea task. These two tasks are

combined into a higher-level tea-time task represented by the entire tree.

Using a similar process, in the second experiment the robot is trained a task for

making tea, the representation of which is shown in Figure 4.4 (right branch). During

the practice of this task, the ordering constraints have been enforced, with the robot

placing the cup first and then proceeding to the next two objects. Since placing

the sugar and tea do not have any ordering constraints, the robot chooses a path of

execution based on the state of the environment, placing the tea first as it was closer.

The third experiment consists of teaching the robot a higher-level task, which com-

bines tasks that are already known to the robot. Table 4.2 shows the verbal commu-

nication between the human and the robot during training. The task representation

that is learned by the robot is shown in Figure 4.4. Since the teacher has provided a

64

Step Dialogue and Actions
1. H: “Make recipe.”
2. R: “Ok, make recipe. What is the name of the recipe?”
3. H: Make sandwich.
4. R: “Ok, recipe for sandwich. Please start with the instructions.”
5. H: “Place the left bread.”

6.
R: “Ok, place the left bread.”
Builds controller and executes the task: (PLACE Bread)
R: “What’s the next step?”

7. H: “Place the meat or the lettuce.”

8.

R: “Ok, place the meat or the lettuce.”
Builds controller and executes the task:
(OR (PLACE Meat) (PLACE lettuce))
R: “What’s the next step?”

9. H: “Place the right bread.”

10.
R: “Ok, place the right bread.”
Builds controller and executes the task: (PLACE Bread)
R: “What’s the next step?”

11. H: “Store recipe.”

12.
R: “Ok, recipe for sandwich is complete and stored.”
Final task representation stored (Fig. 4.4, left THEN branch).

Table 4.1: Human-robot dialogue and interaction during training of the sand-
wich task.

single instruction that combines two existing tasks by an AND conjunction, the full

task representation consists of a single AND node as the root of the task tree.

4.3.1.2 IKEA EKET Base Assembly

In the previous scenario, the robot’s Place(Object) behavior was limited to a single

parameter, which was a particular object which needed to be placed. By enabling

the parsing of prepositions and adjectives, the behaviors can be parameterized with

destination location (e.g., on the green leg) as well as specifics of the objects involved

65

Step Dialogue and Actions
1. H: “Make recipe.”
2. R: “Ok, make recipe. What is the name of the recipe?”
3. H: Tea time.
4. R: “Ok, recipe for tea time. Please start with the instructions.”
5. H: Sandwich and tea

6.
R: “Ok, sandwich and tea. What else?”
Builds controller for sandwich and tea (Figure 4.4).

7. H: “Store recipe.”

8.
R: “Ok, recipe for tea time is complete and stored.”
Executes the task.

Table 4.2: Human-robot dialogue and interaction during training of the tea-time
task.

(e.g., pink leg). The task consists of building an IKEA EKET base that has two

bars that need to be placed on two legs. One of two tops (purple and orange) can

be selected to be put on top of the built base. For easy recognition by a vision

system and to showcase the use of adjectives, the legs were painted with green and

blue, and the bars were painted with yellow and pink. Table 4.3 shows the human

instructions (without the robot’s responses, which follow the same pattern as in the

previous examples).

Step Human Instructions and Robot Actions
1. H: “Place the green leg in front of you.”
2. H: “Place the pink bar and the yellow bar on the green leg.”
3. H: “Place the blue leg onto the base.”
4. H: “Place the orange top or the purple top on the base.”

Table 4.3: Human-provided instructions during training of the EKET task.

Figure 4.5 shows the hierarchical representation of the learned task. During task

execution, the location information provided by the prepositions (e.g., FRONT-OF,

66

ON, ONTO) is mapped to specific positions of the source object with respect to the

destination object, based on a pre-determined table. Our current vision system does

not yet provide pose information for the objects and the offsets of the prepositions

give rough placement positions. Therefore, at task execution the robot asks a human

user for assistance to precisely position the objects with respect to each other before

making the final assembly. In future work this will be addressed by integrating a

vision-based system that provides pose information as well as by specifying locations

in a finer grain of detail, for example that a particular side of a bar should fit on a

particular side of the leg.

THEN

ORANDPLACE
(green_leg,
you,
FRONT-OF) PLACE

(yellow_bar,
green_leg,
ON)

PLACE
(pink_bar,
green_leg,
ON)

PLACE
(blue_leg,
base,
ONTO) PLACE

(purple_top,
base,
ON)

PLACE
(orange_top,
base,
ON)

Figure 4.5: Representation of the learned IKEA EKET assembly task. The
PLACE nodes contain the parameterizations for each object, i.e. the destination

location and specifics of other objects involved.

4.3.2 General-Purpose Task Learning Experiments

This section provides additional results that demonstrate in more detail the full capa-

bilities of the approach for parsing language instructions to controllers. These tasks

have not been validated on a robotic system, but show the representational power of

the approach.

67

4.3.2.1 Complex Task Execution Constraints

This section presents additional examples of complex task representations that can be

constructed from a single verbal instruction. Figures 4.6-4.8 show the verbal instruc-

tions and the resulting task trees generated from our system for several instructions.

THEN

place

small_blue_plate table on

OR

place

red_small_apple table on

place

yellow_big_cup table on

Figure 4.6: Instruction: “Place the blue small plate then the small red apple or
the big yellow cup on the table.”

THEN

put

book shelf on

OR

put

pencil shelf on

OR

put

pen shelf on

put

eraser shelf on

Figure 4.7: Instruction: “Put the books then the pencil or the pen or the eraser
on the shelf.”

All these examples include temporal sequencing constraints (shown by the THEN

nodes), non-ordering constraints (shown by the AND nodes), as well as alternative

paths of execution (shown by the OR nodes). In order to learn these constraints us-

ing demonstrations/instructions that solely rely on sequential commands, the system

would need to be provided with multiple demonstrations that illustrate all the alter-

native ways of execution and sequencing/non-sequencing constraints. The proposed

68

AND

put

book table on

THEN

put

pad table on

OR

put

pencil table on

put

pen table on

Figure 4.8: Instruction: “Put the book and the pad then the pencil or the pen
on the table.”

method of mapping verbal instructions into controllers that encode the constraints

provided by the THEN, AND, and OR conjunctions enables complex execution con-

straints to be conveyed to a robot in a single instruction.

4.3.2.2 Use of Adjectives

The proposed system can handle all descriptive adjectives, and multiple adjectives

can be used to refer to the same noun. Positive, comparative, and superlative are also

successfully parsed. In contrast, the following adjectives are not currently handled:

quantitative adjectives (some, few, all), demonstrative adjectives (this, that, these),

possessive adjectives (my, your, his), distribute adjectives (each, every, either). Han-

dling these types of adjectives is a topic for significant future work. Examples of

sentences that use combinations of descriptive adjectives are shown in Figure 4.9.

69

Push the large tall chair around the small pretty table
(push tall large chair pretty small table around)

Move the tool above the table
(move tool table above)

Put the small yellow book under the brown round table
(put yellow small book brown table under)

Move the sharp tool near the tiny red box
(move sharp tool red tiny box near)

Move the big purple ball from the tiny red table
(move purple big ball red tiny table from)

Chase the big man to the right door
(chase big man right door to)

Figure 4.9: Sample sentences using prepositions.

4.3.2.3 Use of Prepositions

Given the nature of verbal instructions that we are interested in providing, the focus

is on providing location information regarding placing or positioning of objects for a

task. Our system can handle prepositions related to locations, such as those in the

following list:

with, at, from, into, during, against, among, towards, upon, in,

on, by, over, through, of, throughout, to, for, about, after, under,

within, aboard, next to, in front of, along, across, behind, beyond,

but, up, out of, out, around, down, off, above, near, below, beside,

beyond, inside, onto, opposite, outside, underneath, unto, adjacent

to, ahead of, as of, other than, outside of, as far as

70

Figure 4.9 shows sentences that use such prepositions.

4.4 Conclusion & Summary

This chapter described a novel approach to transfer complex task knowledge from a

human user to a robot, with the goal of exploiting the richness of natural language

instructions in order to increase the complexity of task representations that a robot

can learn. In particular, the focus was on learning tasks which convey complex exe-

cution constraints (such as alternative paths of execution, sequential or non-ordering

constraints, as well as hierarchical representations), as well as on enabling behavior

parameterization through the instruction. Specific algorithms have been developed

for handling conjunctions, adjectives, and prepositions as well as for translating the

parsed instructions into parameterized executable task representations. The method

also enables learning increasingly complex tasks from multiple instructions. Experi-

mental validation using a PR2 humanoid robot has been performed, demonstrating

the feasibility of the proposed method to learn multiple task representations with

complex constraints. Additionally, examples of parsed trees outside of the robot do-

main are provided in order to demonstrate the versatility of the method. This verbal

instruction system allows the proposed generalized task structure to be utilized to

teach robots to perform tasks through verbal instruction, as specified in one of the

main contributions presented in Section 1.4.

71

Chapter 5

Human-Robot Collaboration and

Dialogue for Fault Recovery on

Hierarchical Tasks

Robotic systems typically follow a rigid approach to task execution in which they

perform the necessary steps in a specific order, but fail when having to cope with

issues that arise during execution. To address this issue, this chapter proposes an

approach that handles such issues through dialogue and human-robot collaboration.

The main contribution of the proposed approach is a hierarchical control architecture

built upon the work presented in Section 3.1 which 1) autonomously detects and is

cognizant of task execution failures, 2) initiates a dialogue with a human helper to

obtain assistance, and 3) enables collaborative human-robot task execution through

72

extended dialogue in order to 4) ensure robust execution of hierarchical tasks with

complex constraints, such as sequential, non-ordering, and multiple paths of execution.

The architecture ensures that the constraints are adhered to throughout the entire

task execution, including during failures. The recovery of the architecture from issues

during execution is validated by a human-robot team on a building task.

The incorporation of a fault recovery system which is able to detect and inform

users of failures and resolve them through dialogue allows for a more robust task

allocation scheme. This type of resolution is necessary to ensure that collaborative

tasks for human-robot teams are completed successfully. This contribution allows

for the proposed generalized task structure to be utilized in complex, hierarchical

tasks which are prone to failures as well as those which require collaboration between

humans and robots.

5.1 Control Architecture with Fault Recovery

In this chapter we extend the control architecture presented in Section 3.1 to incor-

porate a dialogue-based management system of task faults capable of autonomously

detecting issues and resolving them through human-robot collaboration. Section 5.1.1

describes the additions made to this architecture to incorporate the dialogue-based

fault recovery. Section 5.1.2 provides details about the dialogue module used by the

robot to initiate an extended dialogue with the human to resolve faults. Section 5.1.3

73

Figure 5.1: The task tree for the IKEA EKET building task. The dark gray
rectangles are goal nodes and the light gray ovals are behavior nodes.

details how the robot uses on-board sensors to autonomously detect unexpected sit-

uations resulting in faults. These additions result in a robust control architecture

which is capable of detecting and recovering from various faults during the execu-

tion of complex, hierarchical tasks through the use of human-robot collaboration and

dialogue.

5.1.1 Interfacing with the Control Architecture

In order to allow the architecture to handle interruptions that come from the fault

detection system, the update loop of the nodes from Section 3.1 was modified by

adding a checking mechanism that allows the loop to continue as normal unless a

failure is detected. In the case of a detected fault, a Robot Operating System (ROS)

message is published to the corresponding node’s issue topic. Once the node re-

ceives such a message, the node’s issue callback function is triggered (Figure 5.2).

74

In this function, a ROS message is published on the dialogue topic to initialize the

dialogue that corresponds to the specific failure that was detected. This initiates the

dialogue between the robot and human and allows the human to provide assistance,

as described in Section 5.1.2. After the dialogue is initialized, a while loop stops

the current behavior in the architecture, as well as the physical motion of the robot,

from finishing until a resolution has been reached through the dialogue between the

robot and human. Since the node that the robot is working on is active at the time

of the detected failure, no other nodes can be activated until that node is done or

reset, allowing the entire architecture, and therefore task progress, to be paused from

within a single node. This pause ensures that no task constraints are broken during

the handling of the fault.

Once a resolution message is received from the dialogue system, changes are made

to the node’s state based on the type of resolution. If the resolution involves either

the human, robot, or both to complete the task then the node’s state is set to done

and its activation level is set to zero. In the case that the resolution is human finish,

the human will perform the required work to complete the task. If the resolution

is robot finish, then the robot will continue on with the remaining work required to

finish the task, after being briefly assisted by the human (i.e. the human hands the

robot an object that is out of its reach). Once the human completes the action, the

robot is able to finish the task without further help. This assistance varies based

on the task at hand and the issue found. If the resolution is collab finish, then the

human must work together with the robot simultaneously to complete the task (i.e.,

75

Node
Update
Loop

Node =
done

Node issue
callback

Wait for
resolution

Deactivate
node

No issue msg

No resolution msg

Robot
finishes
action

Human
finishes
action

Collaborate
to finish
action

Issue published

Returns to
update loop

Dialogue
initialized*

msg = robot_finish

msg = robot_retry

msg = human_finishmsg = collab_finish

Figure 5.2: State machine diagram of architecture flow upon issue detection.
The Node Update Loop state is the starting state in which the state machine stays
until a issue message is published. Node=done is the final state which signals that
the node’s behavior has finished executing. The Dialogue initialized* transition
is where the dialogue flow (Figure 5.3) interfaces with this state machine. The

resolution message can trigger different actions.

the human must hold and align an object as the robot connects another object). This

type of resolution requires both agents to work together at the same time in order to

fully complete the task.

Lastly, if the robot is required to retry the execution (robot retry), the node gets

deactivated. This deactivation sets the node’s state back to what it was before the

76

node was activated, thereby ensuring that the task constraints encoded by the task

tree are still upheld after the conflict is resolved. The node’s state is set to not done

and its activation level is reset to its original level upon activation. If a node is

deactivated, it can be chosen for activation at a later time and the robot can attempt

the execution of that behavior again.

The development of the pause and deactivate functionalities ensures that our control

architecture is able to maintain the task constraints during the entire task execution.

Additionally, the various resolution messages allow the architecture to utilize multiple

ways to resolve a conflict. Furthermore, these different resolutions illustrate that the

architecture is able to handle different levels of conflict. The resolutions which result

in the node being set to done only require a temporary pause of the architecture until

the work is completed, illustrating handling of a minor fault. On the other hand, the

resolution forcing the robot to retry the task illustrates a major fault as it requires

both pausing and deactivating the node, which in turn resets part of the task tree.

Thus the addition of the dialogue-based management system increases the robustness

of the architecture and allows for fault recovery during the execution of complex,

hierarchical tasks.

5.1.2 Dialogue Module

When a ROS message is published to the dialogue topic, the dialogue is initialized, as

shown in Figure 5.2. This initiates a communication between the robot and human.

77

The high-level flow-chart for the initiated dialogue is shown in Figure 5.3. This flow-

chart illustrates the major interactions that occur between the human and robot that

encompass the extended dialogue. There are two main components to this interaction

that are specific to the failure that was detected:

• Detected issue: Name of the issue detected.

• Action: The action that needs to be performed.

Additionally, there are two internal checks in the interaction which affect the outcome

of the dialogue: 1) Human collaboration required? and 2) Should robot complete task

now? The first one checks if human-robot collaboration is required to complete the

task. This means that the human and robot must work together simultaneously to

finish the task. An example of this is the positioning issue where the human must

help to align an object while the robot connects another object. Because this type

of issue requires human assistance, the robot automatically requests help from the

human. This check will return no if the task can be completed by either the human

or robot alone or with minimal, asynchronous assistance from the other. The second

check determines whether the robot should complete the task at the current time.

And example of where this check returns yes is the unreachable issue. In this case,

the human has handed the object to the robot, so the robot should finish the task as

it is now holding the object. Examples of where this check returns no are the dropped

and missed issues. In these cases, the human has to replace the object to a location

78

graspable by the robot, so the robot must restart the task from the beginning once

the objects are reset.

If the issue does not require human collaboration to complete the task then the robot

will ask if it should complete the task. If the human replies with a yes, then the robot

will briefly provide the human with instructions on how to reset the objects to enable

the robot to complete the task on its own. Then, depending on the second check, the

robot will either finish the task at the current time or inform the human that it will

retry the task again later and the corresponding resolution message is published. If

the human replies with a no, then the robot will ask if the human will complete the

task. If the human again responds with no, the resolution message is published to

enable the robot to retry and the human is notified. If the human responds with yes,

the robot will thank the human and the resolution message for the human completing

the task is published.

Simply following the high-level dialogue flow utilizing these main components and

internal checks provides a simple way for new issues to be added into the system.

Although specific details (such as the exact dialogue exchanges) will vary based on

the issue, this flow outlines all of the necessary interactions that would occur between

the human and the robot for any simple issue that could be added. This further

emphasizes the generality of our the proposed dialogue-based management system

for fault recovery.

79

(Detected issue)
msg published

Explain the (detected issue)

Should I do (action)?

Explain what human must do to
allow robot to complete (action)

Robot will try (action) again

Will human do (action)?

Thank the human for doing
(action)

Publish
resolution msg

Yes

Yes

No

No

Human
collaboration

required?

Ask human for help,
thank humanNo

Yes

Msg = robot_retry Msg = human_finish

Should robot
complete
task now?

No

Msg = robot_finish

Yes

Msg = collab_finish

Figure 5.3: High-level flow-chart of the dialogue initiated between robot and
human when an issue is detected. Details of the dialogue are filled in depending on

which specific issue was detected.

To illustrate how the complete dialogue flow works with concrete examples, the faults

detected for our assembly scenario (Section 5.2) are summarized below:

• Missed: The missed issue message is raised when the robot misses an object

during pick-up. The robot explains it missed the object and asks to try again.

If the human agrees, the robot will ask the human to place the object to its

80

original position on the table, and says it will try picking it again later. If

the human disagrees, the robot asks if the human will place the object. If the

human says yes, they will place it to the final location. Otherwise, the robot

says it will try again later.

• Dropped: The dropped issue message is raised when the robot drops an object

after picking it up. The dialogue flow is exactly the same as in the missed case,

except the robot explains it dropped the object (instead of missed it).

• Unreachable: The unreachable issue message is raised if a robot is unable

to reach an object. The robot will ask if the human can hand the object to

the robot. If the human complies, the robot will grab the object and finish

completing the task. If the human refuses, the robot will ask if the human will

place the object. If the human says yes, the human will place the object to its

final location. Otherwise, the robot says it will try again later.

• Positioning: The positioning issue message is raised if a robot needs assistance

with precisely positioning an object as it is placed. The robot will ask the human

for help placing the object and thank the human. The motion of the robot is

then slowed down and the human can assist with the positioning of the object.

In the dropped, missed, and unreachable cases, the human can choose to help the

robot or not and the architecture is able to adjust to both responses and handle

the failures accordingly. Additionally, the architecture is able to handle cases which

81

require human-robot collaboration to complete the task, as seen through the posi-

tioning issue. Upon completion of the dialogue, a resolution message is published to

the node’s issue callback function and the corresponding node is either reset or set

to done as discussed in Section 5.1.1.

In order to accomplish the dialogue, several components are needed. The robot

utilizes a on-board speaker and a ROS driver called sound play [97] to allow it to

communicate with the human. In turn, the human speaks into a microphone and the

verbal response is registered through a speech recognition engine called PocketSphinx

[93]. Once the robot poses a question to the human, a ROS service request is sent

to PocketSphinx to listen for the human’s response. Once a yes or no response is

recognized, the dialogue flow between the robot and the human continues accordingly.

5.1.3 Fault Detection System

In order for the architecture to detect issues, a fault-monitoring system has been

added to each node in the task tree for the base control architecture discussed in Sec-

tion 3.1. Once a node gets activated, the system begins monitoring for faults during

the execution of the node’s work. In this work, the monitoring happens during the

execution of the PickAndPlace node behavior. This behavior performs the following

steps in order: 1) move above the pick position, 2) move to the pick position, 3) close

the gripper, 4) move back above the pick position, 5) move above the place position,

6) move to the place position, 7) open the gripper, and 8) move back above the place

82

position. To ensure the arm is not colliding with objects as it moves between pick and

place locations, the arm is moved above (positive z-offset) the pick and place position

after opening/closing the gripper.

During this sequence of steps, the monitoring system checks for various fault cases

using a combination of the robot’s on-board sensors. If a fault is detected, this

system publishes a ROS message to the node’s issue topic, which in turn pauses the

architecture and triggers the dialogue with the human. Additionally, for the dropped

and missed cases, the robot’s motion along this path is interrupted and the arm is

moved to a neutral location to wait until a resolution is reached.

In order to extend this monitoring system to new issues, two main components are

required:

• Start step: the step along the PickAndPlace sequence which starts the moni-

toring of the new issue.

• Stop step: the step along the PickAndPlace sequence which stops the moni-

toring of the new issue.

Based on these components, monitoring of new issues can be performed along any two

points in the sequence. However, the sensors used to check if the issue has occurred

will vary based on the specifics of the issue. Additionally, these sensors might require

specific settings, such as locations of objects in a particular camera. Aside from the

83

issue-specific settings, only the starting step, stopping step, and issue topic must be

defined in order to interface a new issue with the architecture’s monitoring system.

For the unreachable fault, the starting and stopping steps are the first step in the

sequence (i.e. move to above pick location). Before this motion occurs, the system

checks if the object is within the robot’s graspable range using a simple distance check

from the robot to the object’s initial location as detected from the Kinect on the PR2

robot’s head. If the object is out of reach, the system registers an unreachable fault

and publishes the issue to the node’s issue topic, which triggers the dialogue between

the robot and the human. If the human chooses to hand the robot the object, the

robot will extend its arm towards the robot, grab the object, and then finish placing

the object starting the motion from the above place location step.

For our implementation, a simple color blob detector, implemented with OpenCV [98],

is used to find objects in an image. HSV-segmentation of pre-trained color histograms,

combined with morphological open/close operations, isolates large regions of color in

the image. These regions represent each object. The monitoring system uses these

trained colors to identify whether or not the object is in the gripper by running the

color blob detector on the RGB image from the PR2’s right forearm camera. During

the monitoring, the fault detection system searches the image for the color blob of

the object’s respective color. If the center of the blob is not within a predefined range

of values in the image, it registers either the missed or dropped fault, depending on

which part of the motion was being executed when the fault was detected.

84

The fault-monitoring system checks for a missed fault between the two above pick

location steps (steps 1-4). If the color blob detection does not detect the object in

the correct location in the forearm camera, it registers a missed fault and publishes

the missed issue to the node’s issue topic. The system then checks for a dropped

issue between the second above pick location step and the first above place location

step (steps 4-5). At any point between these steps in the execution, if the color-blob

detection does not detect the object in the correct location in the forearm camera, it

registers a dropped fault and publishes the dropped issue to the node’s issue topic.

The positioning issue is only checked at the first above place location step (step 5).

The system checks whether or not the carried object is in the list of predefined objects

which require assistance for placement. If the object requires help, the system registers

a positioning fault and publishes a positioning issue message. The robot then slows

down the movement from the above place location to the place location (steps 5-

6), which allows the human ample time to align the necessary object as the robot

attempts to connect the new object. The robot then moves back to the above place

location (step 8) and returns to its regular speed.

These issue resolutions illustrate that the proposed architecture is able to handle vary-

ing degrees of faults. The dropped, missed, and unreachable failures represent major

issues as they require a complete interrupt of the robot motion and the architecture.

Without assistance from the human, the robot would be unable to complete the task.

On the other hand, the positioning issue is a lesser fault. The robot requires assistance

85

to align the objects perfectly, but neither the robot motion nor the architecture need

to be interrupted in this case. Therefore, our dialogue-based management system

for fault recovery of hierarchical tasks through the use of human-robot collaboration

allows the distributed control architecture to recover from faults of varying degrees.

5.2 Experimental Validation

The proposed architecture has been validated with a robot-human team in a scenario

specifically designed to illustrate the key proposed contribution: a control architecture

that 1) autonomously detects and is cognizant of task execution failures, 2) initiates a

dialogue with a human helper to obtain assistance, and 3) enables collaborative human-

robot task execution through extended dialogue in order to 4) ensure robust execution

of hierarchical tasks with complex constraints, such as sequential, non-ordering, and

multiple paths of execution. Most of the proposed additions to the architecture are

outlined by general methods, so a concrete scenario with example cases for each

addition is utilized to validate the combined functionality of the architecture.

The task used to validate the architecture involves building a modified EKET base

from IKEA, with all parts painted in different colors for disambiguation. The task

structure is shown in Figure 5.1. Building tasks have inherent constraints due to the

way parts fit together. These constraints are reflected by our architecture. The task

is performed as follows: 1) place the green leg in front of the robot, 2) attach the pink

86

Figure 5.4: Execution of the task with issues and assistance provided by the
human. In (d) the human steals the pink bar before it is placed, resulting in a
dropped issue. The human then follows the dialogue to place it. In (g) The human
steals the yellow bar after it is picked, resulting in a dropped issue. The human
then follows the dialogue to allow the robot to pick and place it again. In (j) the
robot encounters a positioning issue and asks for help from the human. In (l) the
human steals the blue leg before it gets picked up, resulting in a missed issue. The
human then follows the dialogue to allow the robot to try again. In (q) the robot
encounters an unreachable error. The human then follows the dialogue to hand the

robot to the object so it can be placed.

87

and yellow bars in either order, 3) attach the blue leg, and 4) place either the purple or

orange top on top. The ordering of these steps reflect the sequential constraints of the

building task. Step 2 reflects the non-ordering constraints of the task since the order

of placing the pink and yellow bars does not matter. Step 4 reflects the alternate

paths of execution in the task since either one of the tops can be placed. Due to the

precise nature of building tasks, multiple steps in the task require assistance from the

human to complete, making this a perfect human-robot collaboration task.

In order to accomplish this task, the parts are placed on a table in front of the PR2

robot. The PickAndPlace behavior nodes get their respective pick locations from an

initial detection of objects using the Kinect’s RGB camera by applying the same type

of color blob detection utilized on the forearm cameras as discussed in Section 5.1.3.

The respective place locations of the PickAndPlace behavior nodes are set as pre-

specified locations in order to allow the objects to be attached together. End-effector

trajectories to the pick/place locations are generated using the MoveIt library [99].

Utilizing this setup, the proposed architecture is validated by running an experiment

in which the robot completes the building task. During the experiment, the robot

determines the order of actions to take based on the activation spreading mechanism

defined in our previously developed architecture [4]. As discussed in Section 3.1, this

mechanism creates a dynamic ordering in which to complete the sub-tasks based on

the environmental conditions and guarantees this ordering adheres to the constraints

of the task. In order to validate the fault recovery of the proposed architecture,

88

a human simulates each of the possible fault cases by interrupting the task. This

validates that the architecture can recover from various types of faults occurring

within a single task.

5.2.1 Task Execution

The execution of the experiment is shown in Figure 5.4. In order to illustrate the

recovery and collaboration capabilities of the proposed architecture, the human inter-

fered by stealing several objects during the execution of the task, causing the robot

to detect the various types of faults handled by the architecture.

The task execution begins with the robot performing the PickAndPlace(green leg)

behavior in pictures (a) and (b) in Figure 5.4. This sub-task completed correctly

without any faults, illustrating that the control architecture is able to perform as

usual under normal conditions. Next, the control architecture specifies that the robot

must place the pink and yellow bars in any order. The pink bar is closer to the

robot’s gripper so the architecture tells the robot to grab it first using the activation

mechanism in Section 3.1. Thus, in (c) the robot begins the PickAndPlace(pink bar)

behavior. However, the human steals the pink bar right before the robot places the

object (d). After the human steals the object, the fault detection system detects

a fault as described in Section 5.1.3. At this point, the vision system running on

the forearm camera no longer detects the object in the robot’s gripper. The fault

detection system then uses the point during execution at which the object was lost to

89

determine which fault occurred. Since the robot was en route to the place location,

the fault system triggers a dropped issue to be published, which then causes the robot

to begin a dialogue with the human as described in Figure 5.3. The human follows

the branch of the dialogue flow that leads to the human placing the pink bar as shown

in (e).

After the fault is resolved and the object is placed, the architecture resumes and the

robot continues the task by beginning the PickAndPlace(yellow bar) behavior in (f).

After the robot picks up the yellow bar, the human immediately steals it as shown

in (g). Again, the fault detection system loses track of the object after the robot had

successfully grasped the object so it triggers the dropped issue to be published, which

causes the robot to begin a dialogue with the human. This illustrates that the dropped

issue can get triggered in multiple parts of a sub-task’s execution. This time however,

the human follows the dialogue path that leads to the robot having to try again. In (g)

the human places the yellow bar back on the table, as prompted by the dialogue, and

the architecture resets the corresponding part of the task. Due to the task constraints,

both the pink bar and yellow bar must be placed before moving on to the next part of

the task, so the robot attempts the PickAndPlace(yellow bar) behavior again in (i).

During the placement of the yellow bar (j-k), the fault detection system determines

that the object is one which was specified to require human assistance for placement.

It then raises the positioning issue and asks the human for help in placing the object

as described in the rightmost branch in Figure 5.3. Once the object has been placed

with the human’s assistance, the robot continues to the next part of the task.

90

In (l) the human steals the blue leg right before the robot picks it up during the

PickAndPlace(blue leg) behavior. At this point during the execution, the fault de-

tection system expects the object to be detected in the gripper. However, the object

is not detected, which means that the robot did not successfully grasp the object.

Thus, the fault detection system triggers the missed issue to be published, which

causes the robot to begin a dialogue with the human. The human follows the dia-

logue flow which leads to the robot trying again. In (m) the human places the blue

leg back on the table, as prompted by the dialogue, and the architecture resets the

corresponding part of the task. Due to the sequential task constraints, the blue leg

must be placed before the next part of the task can happen, so the robot attempts the

PickAndPlace(blue leg) behavior again as shown in (n). In (o-p) the fault detection

system once again triggers the positioning issue and asks the human for help since

this object was also determined to be one which was specified to require assistance.

Based on the task constraints, the robot can then choose to place either the orange or

the purple top. Since the purple top is closer to the robot’s gripper, the architecture

chooses to place the purple top. In (q) the robot begins the PickAndPlace(purple top)

behavior. The fault detection system discovers that the purple top is out of the robot’s

reachable space since the distance check described in Section 5.1.3 fails. It then raises

an unreachable issue. This triggers the dialogue and the human follows the flow that

results in a hand-off between the human and robot (Figure 5.3, left-most path) in

(r). The robot finishes placing the purple top in (s). Finally, (t) shows the completed

task with the fully assembled IKEA EKET base.

91

5.2.2 Discussion of Experiment

The execution of the experiment (Section 5.2.1) validates that our proposed architec-

ture effectively utilizes the dialogue-based management system for fault recovery of

hierarchical tasks. The detection of faults is done entirely with sensors on-board the

robot through a combination of views from multiple cameras. The robot was able to

complete the PickAndPlace(green leg) behavior without fault. This shows that the

architecture can complete tasks without assistance when no faults occur (Section 3.1).

The execution of the PickAndPlace(pink bar) and PickAndPlace(yellow bar) behav-

iors both illustrated examples of a dropped failure. These objects were detected as

dropped at different points along the behaviors’ execution which demonstrates that

the system is able to detect and resolve faults at various points, as long as they occur

between the start and stop steps during which the issue is monitored. Furthermore,

they illustrate that failures can be resolved through either the human assisting with

the task or having the robot make another attempt to complete the task. The exe-

cution of the PickAndPlace(blue leg) behavior demonstrated that the system is able

to both detect and handle a missed failure. The execution steps for placing the blue

leg and the yellow bar demonstrated that the dialogue-based management system

is able to handle various major faults which require it to reset parts of the control

architecture. Furthermore, these steps show that the task constraints are upheld

after the architecture is reset, since the architecture completed the placements of

these objects before moving on (as defined by the task tree constraints). Lastly, the

92

PickAndPlace(purple top) behavior illustrates that the system is able to manage the

unreachable fault and negotiate a hand-off between the human and the robot.

The various behaviors demonstrate that the verbal instruction system is able to assist

with the task execution in multiple resolution cases by utilizing the extended dialogue

between the human and the robot. By showing each of these failure cases in a

single scenario, it shows that the proposed system is able to robustly handle faults

that occur during the execution of complex, hierarchical tasks. The robot is able to

autonomously detect faults occurring from execution failures, begin a dialogue with

the human to resolve these faults, and resume the normal task execution upon fault

recovery without breaking any constraints. This capability allows for a more robust

and generalizable task structure for human-robot collaboration.

5.3 Conclusion & Summary

This chapter presents an extension to our previously developed distributed control

architecture (Section 3.1), which incorporates a dialogue-based management system

for fault recovery of hierarchical tasks through the use of human-robot collaboration.

The contribution of this approach is a control architecture that 1) autonomously

detects and is cognizant of task execution failures, 2) initiates a dialogue with a human

helper to obtain assistance, and 3) enables collaborative human-robot task execution

through extended dialogue in order to 4) ensure robust execution of hierarchical tasks

93

with complex constraints. The proposed method is able to autonomously detect faults

occurring from execution failures, begin a dialogue with the human to resolve these

faults, and resume normal task execution upon fault recovery. Furthermore, the

architecture is able to adhere to all constraints defined by the task tree while the

faults are being handled. The extended dialogue with the human allows for multiple

avenues to resolve a detected fault, instead of a single request for help. The faults are

detected autonomously with on-board sensors, through the robot’s multiple cameras.

The proposed approach is validated on a building task with a human-robot team.

The proposed system is able to robustly detect and recover from faults that occur

during the execution of a complex, hierarchical task through the use of human-robot

collaboration and dialogue.

The incorporation of a fault recovery system which is able to detect and inform users

of failures and resolve them through dialogue allows for a more robust task allocation

mechanism, as specified in one of the main contributions presented in Section 1.4.

This type of resolution is necessary to ensure that human-robot teams are able to

successfully complete collaborative tasks. This contribution enables the proposed

generalized task structure to be utilized in complex, hierarchical tasks which are

prone to failures as well as those which require collaboration between humans and

robots.

94

Chapter 6

Collaborative Human-Robot

Hierarchical Task Execution

This chapter addresses the problem of human-robot collaborative task execution for

hierarchical tasks. The main contributions are the ability for dynamic allocation of

tasks in human-robot teams and opportunistic task execution given different envi-

ronmental conditions. The proposed work is an extension of the multi-robot control

architecture described in Section 3.1 to the human-robot domain. This effort is one

of the major contributions towards developing a generalized task structure that al-

lows human-robot teams to work together on joint tasks. The work provided in this

chapter was joint work performed as part of [100].

To enable human-robot collaboration, the architecture has been modified to perform

intent recognition on a human’s motions in order to allow the robot to infer which

95

part of a task a human is performing. The architecture treats the human as a second

robot and uses the human’s intent in order to set the state of the second robot

accordingly. This allows for the robot to identify which part of the task the human

has already completed as well as what the human is currently working on, so that the

robot does not repeat these parts of the task. This scheme allows the agents to work

independently on the task until a collision occurs where they both attempt to grab

the same object at the same time. This collision is then resolved through dialogue and

the agents continue working on the task alongside each other. The proposed approach

is validated on a tea-time task scenario with both overlapping and non-overlapping

sub-tasks completed by a human and a Baxter robot.

6.1 Human-Robot Collaborative Architecture

Figure 6.1: Hierarchical task representation used for the collaborative human-
robot experiment.

96

6.1.1 Human-In-The-Loop Hierarchical Architecture

In order to extend the previously developed architecture described in Section 3.1

from the multi-robot domain to the human-robot domain, several modifications must

be made. Instead of two robots each maintaining their own task representations, a

robot working alongside a human must maintain both its own task representation

and an updated, simulated version of the human’s task representation. The human’s

representation is a copy of the robot’s representation as in the multi-robot case, except

this representation is updated based on the human’s actions. Section 6.1.2 described

how this update occurs. The human completes the task with the same constraints

as the robot. Message passing between peer nodes of the human’s and robot’s task

representations occur as in the multi-robot scenario in order to ensure the robot can

monitor the human’s progress on the task throughout the task execution.

If the task that the human is attempting to work on can be inferred (as described in

Section 6.1.2), the corresponding node’s activation potential in the human’s simulated

task tree will be increased making the node active. As a result, the robot can use the

human’s task tree to identify what part of the task the human is working on. Two

cases can arise for each step during the task execution:

1. Non-overlapping tasks: This case occurs if the human and the robot decide

to work on picking and placing two different objects at the same time. For

example, looking at Figure 6.1, if the human and the robot decide to work on

97

the cup and the teapot respectively, the robot will infer that its task is safe to

continue by checking the status of the peer node of the teapot on the human’s

controller. This process is the same as the process described for the multi-robot

scenario with non-overlapping tasks (Figure 3.2).

2. Overlapping tasks: This case occurs if the human and the robot decide to

work on picking and placing the same object at the same time. For example,

looking at Figure 6.1, if the human and the robot both decide to work on the cup,

the node status will indicate to the robot that the human is also working on this

task. This is similar to the process described for the multi-robot scenario with

overlapping tasks (Figure 3.3), with one major change. In this case, instead

of the agent who started first completing the task, the robot will initiate a

dialogue with the human in order to negotiate the conflict. A dialogue topic

and issue topic to each corresponding node are added to the architecture to

allow initiation of the dialogue when needed.

6.1.2 Human Intention Recognition

In order to infer the human’s intention, we developed a system which tracks the hu-

man’s hand as it moves around. During execution of the task, the robot continuously

updates the hand position of the human as shown in Fig. 6.2. By finding the largest

skin contour in the image frame, we are able to detect the position of the human

hand because the only skin in the robot’s view is the hand.

98

Figure 6.2: A step-by-step description of the continuous hand detection system
from the Kinect image frame to infer the human intention

From the motion of the hand, we calculate similarity score (SimScore), chance score

(Chance), started value (Started), and done value (Done) for each object.

• Similarity Score: The similarity score (SimScore) for each object is calculated

for the updated hand position (hx,y,z) in the frame. The initial normalized vector

between the initial hand position (hX,Y,Z) and an object’s position (obj(i)x,y,z)

are calculated for each object i ∈ 1, ..., n. For each new hand position, the cosine

similarity between the initial normalized vector and the updated normalized

vector are calculated and stored in the SimScore list as shown in equation 6.1.

SimScorei = Cosine Similarity(ˆVXi,Yi,Zi
, ˆVxi,yi,zi) (6.1)

where ˆVXi,Yi,Zi
and ˆVxi,yi,zi are the initial normalized vector and updated nor-

malized vector for object i ∈ 1, ..., n.

• Chance: The Chance value for the object that has the highest SimScore is

incremented for every new hand position. If multiple objects have the same

maximum score, the Chance value will be incremented for all of them. In this

99

situation, the Chance value of the object which had the highest similarity score

in the previous iteration will instead be incremented twice.

• Started: A Boolean variable which is initially 0 for each object; it will be set

to 1 if it is inferred that the human is going for the object by checking the

maximum Chance value.

• Done: A Boolean variable that will be initially 0 for each object; it will be set

to 1 if the task for the object is completed by the human.

The likelihood that the person is intending to pick up each object based on the

updated hand position for each frame is published as an object status message to each

object’s dedicated status topic using ROS [94]. The object status message contains

the Chance, Started, and Done information for each object. The messages allow the

human’s simulated task tree to be updated based on the content of the object status

message for each object. The human’s simulated task tree will activate an object’s

node when the Started value for that object is set to 1.

Fig. 6.3 shows an example of the human hand going for the cup during the task.

The system hasn’t detected the intention yet in Fig. 6.3a. However, in Fig. 6.3b the

human’s intention can now be inferred and is being shown with a large red circle on

the object. After the itention can be inferred, the Started value is set to 1.

100

(a) (b)

Figure 6.3: Human intention system with the contour of the hand detection.
(a) The system hasn’t detected the intention yet. (b) The system is detecting the

intention with a large red circle on the object.

6.1.3 Collision Detection and Handling

In most human-robot collaborative tasks, collisions can occur where both the human

and the robot attempt to grab the same object at the same time. This scenario is

briefly discussed in Section 6.1.1 in regards to overlapping tasks. Collisions must

be handled for smooth collaboration between the human and the robot. Since the

message passing between each of the agent’s task trees occurs continuously, the archi-

tecture is able to catch collisions. If both agent’s attempt the same task at the same

time, the status of the node for a specific object in both agent’s trees will be active,

which will trigger a collision.

If a collision is detected, a ROS message will be published to the corresponding node’s

issue topic which will enable the callback function to publish a ROS message to the

101

dialogue topic. This initiates the dialogue between the robot and the human which is

used to negotiate the conflict. The robot will ask, “It appears that you are going to

grab the (Object Name). Should I grab the (Object Name)?” If the human replies

“Yes” then the robot will answer “Alright I will place the (Object Name).” The

robot will then continue on its path to pick and place the object, while the human

will instead go for the next available object in the task tree. If the human replies

“No,” then the robot will answer “Okay, then please place the (Object Name). Thank

you.” It will then let the human finish the pick and place task and instead go for the

next object according to the task tree.

6.2 Experiment Design

To demonstrate the capabilities of this modification of the architecture, a collaborative

task between a human and a robot was designed. The task was performed in a lab

environment with a human and a Baxter humanoid robot standing on opposite sides

of a table containing the objects as shown in Fig. 6.4. The 3D location of each object

is provided by a vision system [101]. A Kinect v1 camera next to the Baxter was

used to observe human’s intent, and a Kinect v2 camera on top of the Baxter’s head

was used for the robot end of the architecture.

A joint tea-making task was designed based on the task tree which encodes the con-

straints of both THEN and AND nodes (Fig. 6.1). The scenario was performed in

102

such a way that it contained both overlapping and non-overlapping sub-tasks between

the human and the robot.

The experiment ran as follows: First, the robot and the human both attempted to

pick and place the cup, which resulted in a collision. This triggered the robot to began

a dialogue, during which the human told the robot to finish the current task. While

the robot was performing the task, the human moved to the next object, which was

picking and placing the teapot. Next, another collision was detected as the human

and the robot were both going for the apple. Again, this started a dialogue between

the robot and the human. The human decided to perform the current task themselves

and informed the robot. Thus, the robot stopped going for the apple, and moved to

the next task to pick and place the burger while the human completed picking and

placing the apple.

Figure 6.4: A sample view of the experimental setup used to perform a human-
robot collaborative task.

103

(a) Test Scenario: Baxter (b) Test Scenario: Human

Figure 6.5: The timing diagrams of the tea-time task scenario on the human
and the Baxter. These show the times at which the state of a node in a given task
tree changed. Each row corresponds to a behavior node named as its corresponding
object. The horizontal axis is increasing time. Brown→ inactive, Orange→ active,

Green → working, and Blue → done.

6.2.1 Results

The timing diagrams (Fig. 6.5) illustrate the state for each node during the experiment

using the task structures of the human and robot shown in Fig. 6.1. There are four

state types in the diagram: inactive, active, working, and done. Each state is shown

with different color bars in the diagram for each node.

When the task starts, both the cup and teapot are eligible for both agents to grasp

(due to the task tree constraints), thus becoming active. At first, both agents choose

to go for the cup which caused a collision and began a dialogue. As in the task design,

the human let the robot finish the task for this collision resulting in the cup status

of the robot being changed to working (Fig. 6.5a). While the robot was finishing the

task, the human moved on to pick and place the teapot, which changed the teapot

node status for the human to working in Fig. 6.5b, due to the human’s action. After

104

placing the cup and the teapot, the status of both objects became done in both

agents.

After the teapot and cup were completed, the apple and burger became eligible for

grasping by both agents (due to the task tree constraints), and so their status became

active. The second collision occurred on the apple task. After the Baxter began work-

ing on the apple task, the human started the same task, which triggered a collision

and began a dialogue. The human told the robot to stop. The robot stopped working

on the apple task (changing its state back to active) and moved on to the burger,

changing its state to working (Fig. 6.5a). Fig. 6.5b shows the human’s apple node

status changed to working (after the robot stopped working), as the human chose to

finish the apple task. Once the apple was placed, the status was changed to done for

both agents. Likewise, after the burger was finished by the robot, the status was set

to done for both agents.

Based on the experiment, we see that our architecture is able to dynamically allocate

tasks in a human-robot team. The system allows a human and robot to use dialogue

to negotiate how to resolve collisions that arise during the task execution in order

to complete the joint task. This experiment validates that our system is able to

dynamically allocate tasks between an human and a robot working together on a

joint task which contains complex, hierarchical constraints.

105

6.3 Conclusion & Summary

This chapter addresses the problem of human-robot collaborative task execution for

hierarchical tasks. The main contributions are the ability for dynamic allocation of

tasks in human-robot teams and opportunistic task execution given different envi-

ronmental conditions. The proposed work is an extension of the multi-robot control

architecture described in Section 3.1 to the human-robot domain. This effort is one of

the major contributions towards developing a generalized task structure that allows

human-robot teams to work together on joint tasks, as specified in one of the main

contributions presented in Section 1.4.

In the modified architecture, the robot maintains its own state and the state of

its collaborative human partner. A human intent system, designed as an extension

to our previous control architecture, continuously publishes a message containing

the human’s intent status information for each object. This allows for agents to

operate independently when all agents are working on non-overlapping tasks; however,

when the agents’ goals overlap, a collision occurs, and dialogue is used to resolve the

collision. This allows one agent to finish the task and the other to move on to another

available task based on the task tree constraints.

The extension to the human-robot domain was validated through a tea-time task

scenario with both overlapping and non-overlapping sub-tasks completed by a team

consisting of a human and a Baxter robot. Based on the experiment, we see that our

architecture is able to dynamically allocate tasks in a human-robot team. The system

106

allows a human and robot to use dialogue to negotiate how to resolve collisions that

arise during the task execution in order to complete the joint task. This experiment

validates that our system is able to dynamically allocate tasks between an human

and a robot working together on a joint task which contains complex, hierarchical

constraints.

107

Chapter 7

Dynamic Hierarchical Task

Allocation of Manipulation Tasks

for Heterogeneous Robot Teams

One of the major components necessary in order to create a generalized task structure

which is able to learn and transfer skills between agents is the development of a

mechanism for incorporating the varying skills between agents in a heterogeneous

robot team. This variable heterogeneity must be utilized to encourage a robust and

reliable task allocation scheme by allocating robots to tasks which best fit their specific

skills. Therefore, one of the major contributions necessary to develop a generalized

task structure which enables collaborative task allocation for complex, hierarchical

tasks for multi-robot teams is the development of a task allocation mechanism which

108

Figure 7.1: Representation of the joint task used in the experiments for the team
of heterogeneous robots. The blue nodes represent the goal nodes and the orange

nodes represent the behavior nodes.

factors in the varying capabilities of a team of heterogeneous robots. This chapter

presents a mechanism which can be used to handle variable heterogeneity.

The architecture described in Section 3.1 assumes that all the robots in the team are

capable of performing all the sub-tasks/behaviors and relies on a distance-based met-

ric to compute the activation potential of each behavior node. This chapter extends

this work to remove this assumption. This extension of the architecture introduced

a generalized and extensible approach for taking into account the fact that a robot’s

degree of ability to perform a task: 1) covers a discrete and continuous spectrum and

2) varies continuously during task execution based on different environmental condi-

tions. This modulation of the architecture is able to handle cases where robots have

different capabilities. This degree of ability can be utilized to compute the activation

potential to reflect the dynamic grasp capabilities of the different robots.

109

Figure 7.2: The setup for the multi-robot task. The PR2 (left) and the Baxter
(right) are collaborating to complete a food serving task. The fruit must be placed
in the bowl, the tea-set should be placed next to the bowl, and the sandwich and

burger should be placed on the plate.

7.1 Task Allocation for Heterogeneous Teams with

Dynamic Capabilities

7.1.1 Task Allocation using Activation Potential

To handle the variable heterogeneity between robots, several factors are incorporated

into a single metric representing a robot’s perceived level of capability for executing

a specific behavior. In addition, the metric is continuously updated this during the

task execution, enabling the team to take into account the most recent environmental

conditions for task allocation. For the team of humanoid robots used for this work,

the main type of behavior node used is a manipulation (pick and place) behavior;

110

therefore, the cues considered relevant for the metric are specific for manipulation

tasks. The components taken into account are the distance between the arm and

the objects and a grasp score that represents a robot’s perceived effectiveness of

grasping an object. Different environmental conditions are reflected in the grasp

score, provided through a novel sensory pipeline, which is able to generate grasps for

objects with unknown initial locations. To represent a strong heterogeneity between

the robots used in our task, different constraints were placed on the grippers for each

robot. For the PR2, the enforced constraints only allow the robot to get grasps in

which the gripper is sideways, For the Baxter, a similar method is used to enforce

the gripper to grasp the objects top down. These constraints enforce the maximum

distinction in grasping functionality between the robots to illustrate the extent of

heterogeneity for which the proposed method allows. These constraints force several

of the objects to become nearly un-graspable by the PR2, namely the apple, the

orange, and the sandwich. The grasp scores for these objects returned by our novel

perception-manipulation pipeline (Section 7.1.2) are close to 0 due to the fact that

the objects are too wide for the PR2’s gripper to fit around them when the gripper

is constrained in this manner. The constraints on the Baxter do not inhibit its

grasp capabilities for any of the objects, but result in different grasp scores for the

robot in different environments. These metrics are combined using a weighted linear

combination, as shown in Equation 7.1:

111

activation potential = wd · distance score + wg · grasp score (7.1)

wd and wg represent weights assigned to each metric, distance score encapsulates

how far the end effector is from the object to be grasped, and grasp score encodes

how good is the grasp returned from the grasp pipeline. Details on the grasp score

are provided in Section 7.1.2. The distance score is computed in Equation 7.2, where

~xobj and ~xarm represent the 3D positions of the object and arm, respectively.

distance score =
1

||~xobj − ~xarm||
(7.2)

The values of weights used can be selected to assign a higher or lower significance to

each metric; in this work wd = 1 and wg = 0.001, to ensure that the grasp score is

the same order of magnitude as the distance metric.

This metric is incorporated into our distributed control architecture through the acti-

vation potential (Section 3.1). The activation potential for each individual PickAnd-

Place node is computed and updated at each step using Equation 7.1, which takes

into account the different metrics described above. This value is then used by each

robot to determine what behavior node to activate. In order to ensure proper coor-

dination with the other robot teammates, such that no two robots decide to execute

the same behavior, the process described in Section 3.1 is followed.

112

7.1.2 Object Detection, Recognition and Grasping Pipeline

The metrics used in Equation 7.1 are continuously computed from sensory data,

through the pipeline shown in Figure 7.3. This pipeline is capable of generating

grasps for objects with unknown initial locations. This allows for two contributions

to the previously developed architecture described in Section 3.1: 1) the metric is able

to accurately reflect the varying capabilities of the robots in different environmental

conditions and 2) the architecture is able to automatically grasp objects. In the

previous architecture, the grasps of the objects were pre-determined based on specific

orientations. Utilizing this pipeline, grasps can be automatically generated for objects

with arbitrary positions and orientations. This enables us to extend the architecture

to allow for dynamic task allocation with different environmental conditions.

The perception-manipulation pipeline consists of multiple modules. The first module

performs object detection using a vision system developed as part of the grant that

funded this work [102]. This system uses input from a head-mounted Kinect. A

sliding window approach with quick rejection of distant areas from the robot is used;

two sets of features are extracted: 1) a Histogram of Oriented Gradients (HOG) [103];

2) a flattened 5-by-5 2D color histogram for the HSV (hue and saturation channels

only) and CIELUV (u and v channels only) color spaces separately. The two color

histograms contribute a total number of 50 features, whereas the HOG produces

180 features. In order to prevent overfitting during the training and to reduce the

computational load of the classifier during the test time, the HOG features pass

113

through a two-layered feature reduction stage to drop their number to 60. The feature

reduction is done by performing Principal Component Analysis (PCA), followed by

a Linear Discriminant Analysis (LDA). The system uses a one-versus-rest strategy

multi-class Support Vector Machine (SVM). The overlapping detections are merged

by choosing the strongest one via the non-maximum suppression strategy. In order

to keep the object detection system real-time, Median Flow [104] tracking is used

between any two detection rounds.

The object detection module returns objects and their locations in the 2D camera

view; this is combined with depth information to obtain locations of the objects in

the robot’s 3D coordinate frame. This is used to compute the end effector distance

to each of the objects in the scene, and as input to a module that computes possible

grasps for the detected objects, based on the GPD library [105]. Given a point cloud,

the GPD library is designed to return a set of grasps consisting of a 6-DOF position,

orientation, and a grasp quality score. According to [105], the grasps returned by

GPD are robust and reliable in cluttered environments (grasps were shown to have a

93% success rate).

However, GPD makes one of two assumptions: 1) any graspable object in the scene is

acceptable; or 2) only a single object is in the point cloud. These assumptions did not

hold for our use, so we made several modifications to utilize GPD. To force GPD to

return grasps on a single object, each object in the task tree utilizes its own instance

of the GPD library, which observes a subset of the point cloud from the Kinect

114

centered around the location of the object (from the object detection module). As

the object moves around, its respective location in the point cloud changes. The GPD

work space associated with that object has to be continually updated as well, which

required some modifications to GPD’s interface with the Robot Operating System

(ROS) [94]. We modified GPD further to extract, for each object, the grasp with the

highest rating score from the set of possible grasps.

These modifications to GPD resulted in a single rating score per object. We take

the continuous-valued score returned by GPD and add two additional discrete filters

to the score in order to obtain the final grasp score. The first filter checks whether

or not the grasp is withing the robot’s reachable space. If it is, the original score

is kept. Otherwise, the grasp score is set to 0. The grasp score returned by the

first filter is then fed into the second filter. The second filter checks whether the

orientation of the grasp is within a provided range of orientations which represent the

possible configurations of the robot’s gripper. For the purposes of this experiment,

this range is hard-coded to enforce different grasp patterns on the robots as specified in

Section 7.1.1 but could be automatically computed using the computed grasp position

and an inverse kinematics solver for the robot. If the grasp is within the set of feasible

configurations for the robot, the score passed from the first filter is kept, otherwise

the score is set to 0. The result of this second filter becomes the final grasp score

for the given object. This grasp score therefore provides a measure of the robot’s

perceived capability for grasping an object in varying environmental conditions with

unknown orientations.

115

3D image

Kinect on
PR2/Baxter <distancei>nObject

Detection

Compute
World

Coordinates

Compute
Distance

Compute
Grasps

Compute
Activation
Potential

robot calibration

2D
image

<graspi,
gr_scorei>n

obji
xi
yi

obji
xi
yi
zin n

Figure 7.3: Perception-manipulation pipeline.

The grasps generated by GPD along with their newly computed grasp scores are

returned by the compute grasps module. The distance and the grasp scores are

then used to compute the activation potential for each of the objects in the scene as

explained in Equation 7.1. This value is used by the update loop to determine which

node should be activated by each robot, as described in Section 3.1.

7.2 Experimental Validation

Figure 7.4: Placement of objects for the different scenarios. Left to right: place-
ments for Scenario 1, placements for Scenario 2, placements for Scenario 3.

The proposed architecture has been validated with a team of two humanoid robots

in scenarios specifically designed to illustrate the key proposed contribution: ability

116

Scenario 1 - PR2: Distance-Only Metric Scenario 1 - BAXTER: Distance-Only Metric

Scenario 1 - BAXTER: Distance-And-Grasp MetricScenario 1 - PR2: Distance-And-Grasp Metric

Cup

Sugar

Tea_Pot

Sandwich

Orange

Apple

Burger

Cup

Sugar

Tea_Pot

Sandwich

Orange

Apple

Burger

Cup

Sugar

Tea_Pot

Sandwich

Orange

Apple

Burger

Cup

Sugar

Tea_Pot

Sandwich

Orange

Apple

Burger

0 50 100 150 200
t(s)

0 50 100 150 200
t(s)

0 50 100 150
t(s)

0 50 100 150
t(s)

B
eh

av
io

rs
B

eh
av

io
rs

B
eh

av
io

rs
B

eh
av

io
rs

Figure 7.5: The timing diagrams for Scenario 1. These diagrams represent the
times at which the state of a node in a given task tree changed. Top row: Provides
the timings for the PR2 and the Baxter using the distance-only metric. Bottom
row: Provides the timings for the PR2 and the Baxter with the distance-and-grasp
metric which utilizes the heterogeneity component. Within each graph: Each
row corresponds to a behavior node named according to its corresponding object.

The horizontal axis is increasing time. Brown → inactive, Orange → active,
Green → working, and Blue → done.

to handle dynamically changing robot capabilities in the context of multi-robot teams

performing tasks with complex sequencing and temporal constraints.

The objects used in the experiments include a wooden tea-set (consisting of a cup,

a sugar container, and a teapot) in addition to several fake food objects (namely an

apple, a burger, an orange, and a sandwich). The joint task structure is shown in

Figure 7.1 and consists of two main sub-tasks that can be executed in parallel. The

first is a tea-setting task which is shown in the left sub-tree of the task structure.

This sub task consists of first placing the cup, then placing the sugar and the teapot

117

Scenario 2 - PR2: Distance-Only Metric Scenario 2 - BAXTER: Distance-Only Metric

Scenario 2 - BAXTER: Distance-And-Grasp MetricScenario 2 - PR2: Distance-And-Grasp Metric

Cup

Sugar

Tea_Pot

Sandwich

Orange

Apple

Burger

Cup

Sugar

Tea_Pot

Sandwich

Orange

Apple

Burger

Cup

Sugar

Tea_Pot

Sandwich

Orange

Apple

Burger

Cup

Sugar

Tea_Pot

Sandwich

Orange

Apple

Burger

0 50 100 150 200
t(s)

B
eh

av
io

rs
B

eh
av

io
rs

B
eh

av
io

rs
B

eh
av

io
rs

0 50 100 150 200
t(s)

0 50 100 150 200
t(s)

0 50 100 150 200
t(s)

Figure 7.6: The timing diagrams for Scenario 2. These diagrams represent the
times at which the state of a node in a given task tree changed. Top row: Provides
the timings for the PR2 and the Baxter using the distance-only metric. Bottom
row: Provides the timings for the PR2 and the Baxter with the distance-and-grasp
metric which utilizes the heterogeneity component. Within each graph: Each
row corresponds to a behavior node named according to its corresponding object.

The horizontal axis is increasing time. Brown → inactive, Orange → active,
Green → working, and Blue → done.

(in any order) to their goal locations. The second sub-task is the food-setting task

which is shown in the right sub-tree of the task structure. This sub-task consists of

first placing the sandwich, followed by placing either the orange or the apple, and

then finally placing the burger to their respective goal locations.

The PickAndPlace nodes take as input the desired grasp location of an object provided

by the perception-manipulation pipeline (Section 7.1.2) and place the object at a pre-

specified location. End-effector trajectories to the grasp location are generated using

MoveIt [99]. The right arm on each robot was used. The complete motion must be

118

completed in order for the PickAndPlace node to be marked as done. Until the place

command finishes, the robot waits before it activates another node, since only one

node per robot can be doing work at any given time.

The initial setup for the experiments is shown in Figure 7.2. For this setup, the

Baxter and PR2 robots were placed on either side of a table with the objects in

between them. Three different scenarios were performed, in which the objects were

placed in different locations to show that the architecture can dynamically determine

different task allocations based on the specifics of the environment. Figure 7.4 shows

the placement of the objects for the different scenarios. For all of the scenarios, the

goal locations were as follows: the apple and the orange are placed into the bowl on

the right side of the PR2; the cup, sugar, and teapot are placed next to the bowl; and

the burger and the sandwich are placed onto the plate on the left side of the PR2.

In order to assess the impact of the heterogeneity metric as defined in Section 7.1.1,

each scenario consisted of two separate trials. The first trial used a metric (named

distance-only) that took into consideration only the distance from the robot’s gripper

to the objects for the activation potential (first term in Equation 7.1). The second trial

used the full heterogeneity metric (named distance-and-grasp) shown in Equation 7.1

which incorporates both the distance and the grasp score into the activation potential.

119

PR2 Scenario 1 Scenario 2 Scenario 3

Cup 25 33 14
Sugar 57 17 23

Tea Pot 13 41 50
Sandwich 0 0 0
Orange 0 0 0
Apple 0 0 0
Burger 15 91 5

Table 7.1: Table of grasp scores for the PR2 for each scenario (rounded to nearest
integer). Scores in bold are the objects which the PR2 grabbed during each scenario.

7.2.1 Results and Discussion

The timing diagrams for the different scenarios are shown in Figures 7.5-7.7. In each

figure, the results of the two trials within a single scenario are shown. The top row

illustrates the results of the first trial using the distance-only metric on the PR2 and

Baxter. The bottom row illustrates the results of the second trial using the distance-

and-grasp metric. Each of the individual timing diagrams illustrate the change of state

of each node in the task tree for a given robot. The different color bars in the figure

represent the times during which a particular PickAndPlace behavior node is in one of

the following states: inactive, active, running, or done. The intervals corresponding to

the running state identify when a given node is being executed and are thus indicative

of the order in which various sub-tasks have been performed. Additionally, the grasp

scores for the different scenarios for each robot are given in Tables 7.1-7.2. These

scores differ across trials and robots due to the different environmental conditions in

each scenario as well as different grasp capabilities of each robot. The results of each

scenario are discussed below.

120

Baxter Scenario 1 Scenario 2 Scenario 3

Cup 10 8 2
Sugar 14 2 2

Tea Pot 2 17 13
Sandwich 44 26 27
Orange 12 14 8
Apple 13 9 7
Burger 16 13 11

Table 7.2: Table of grasp scores for the Baxter for each scenario (rounded to
nearest integer). Scores in bold are the objects which the Baxter grabbed during

each scenario.

In Scenario 1 there were several differences in the allocation of objects between the

trials for the distance-only and the distance-and-grasp metrics. For the distance-only

trial, first the PR2 picked up the sandwich while the Baxter grabbed the cup, then

the PR2 grabbed the orange while the Baxter grabbed the teapot, and lastly the PR2

picked up the sugar and the Baxter grabbed the burger. Since the metric used in this

trial only utilizes distance to the objects, this allocation grasps the closest objects

first, while adhering to the constraints defined in the task structure. However, because

the PR2 cannot accurately grasp the sandwich or the orange due to the constraints of

the gripper, these objects get knocked over during the execution of this task. During

these experiments, the robots do not have the capability to detect that the object

was dropped (as they did in Chapter 5), so they assume that the place behavior was

successful and the task will continue on. In the trial utilizing the grasp score, the cup,

sugar, and tea were all allocated to the PR2, and the other objects were allocated

to the Baxter. This illustrates that by utilizing the grasp score in the metric for the

activation potential, the architecture is able to allocate objects which are graspable

by the robot, while still adhering to the various types of constraints provided in the

121

task structure.

Scenario 3 - PR2: Distance-Only Metric Scenario 3 - BAXTER: Distance-Only Metric

Scenario 3 - BAXTER: Distance-And-Grasp MetricScenario 3 - PR2: Distance-And-Grasp Metric

Cup

Sugar

Tea_Pot

Sandwich

Orange

Apple

Burger

Cup

Sugar

Tea_Pot

Sandwich

Orange

Apple

Burger

Cup

Sugar

Tea_Pot

Sandwich

Orange

Apple

Burger

Cup

Sugar

Tea_Pot

Sandwich

Orange

Apple

Burger

0 50 100 150 200
t(s)

0 50 100 150 200
t(s)

0 20 40 60 80 100 120 140 160
t(s)

B
eh

av
io

rs
B

eh
av

io
rs

B
eh

av
io

rs
B

eh
av

io
rs

0 20 40 60 80 100 120 140 160
t(s)

Figure 7.7: The timing diagrams for Scenario 3. These diagrams represent the
times at which the state of a node in a given task tree changed. Top row: Provides
the timings for the PR2 and the Baxter using the distance-only metric. Bottom
row: Provides the timings for the PR2 and the Baxter with the distance-and-grasp
metric which utilizes the heterogeneity component. Within each graph: Each
row corresponds to a behavior node named according to its corresponding object.

The horizontal axis is increasing time. Brown → inactive, Orange → active,
Green → working, and Blue → done.

Scenario 2 illustrates the continuous-valued element of the proposed heterogeneity

metric. At the time when the allocation of the burger was determined, the Baxter’s

gripper was at the goal location for the orange and the PR2’s gripper was at the

goal location for the sugar. Due to the fact that the pick location of the burger

is slightly closer to the orange’s goal location than to the sugar’s goal location, in

the distance-only trial the Baxter picked up the burger since only the distance from

gripper to object was used. However, in the distance-and-grasp trial, the burger’s

122

grasp score for the PR2 is higher than that of the Baxter (91 vs 13). Thus, in this

trial the burger is allocated to the PR2 instead of the Baxter. This illustrates that

the proposed distance-and-grasp metric is able to properly allocate objects based on

a skill which can be performed to various degrees (continuous-valued score) rather

than a simple binary (yes/no) skill.

Scenario 3 illustrates a combination of the findings from the previous two scenarios.

Utilizing the proposed distance-and-grasp metric which accounts for the variable het-

erogeneity: 1) allows the objects to be allocated such that the robots can grasp all of

the objects allocated to them and 2) is able to allocate objects with a higher chance at

being grasped according to a continuous-valued metric. Using the distance-only met-

ric, the apple is allocated to the PR2. However, the apple cannot be reliably grasped

by the PR2 due to the gripper constraints. Thus, in the trial with the distance-

and-grasp metric, the apple is instead allocated to the Baxter. This is similar to

the finding in Scenario 1. Using the distance-and-grasp metric, at the time which

the burger is allocated, the PR2 is at the sugar goal location and the Baxter is at

the orange goal location. The PR2 has a higher grasp score on the teapot than the

burger (50 vs 5); while the Baxter’s scores are very similar (11 vs 13). Thus, the PR2

grabs the teapot while the Baxter grabs the burger. This illustrates that, similar to

Scenario 2, the distance-and-grasp metric which accounts for the heterogeneity is able

to allocate the objects to the robots which have a higher chance of grasping them

reliably.

123

These scenarios illustrate that the inclusion of the heterogeneity component in the

scoring metric of the architecture results in allocations of the objects to the robots

which are best suited to grasp them. The proposed architecture is able to handle

variable heterogeneity during the task allocation which takes into account the most

recent environmental conditions as the task progresses.

7.3 Conclusion & Summary

One of the major components needed to create a generalized task structure which

is able to learn and transfer skills between agents is a mechanism for incorporating

the varying skills between agents in a multi-robot team of heterogeneous robots.

This variable heterogeneity must be utilized to encourage a robust and reliable task

allocation scheme by allocating robots to tasks which best fit their specific skills.

Therefore, the work presented in this chapter is one of the major contributions, as

described in Section 1.4, which is necessary towards developing a generalized task

structure which enables collaborative task allocation for complex, hierarchical tasks

for multi-robot teams.

This chapter presents a real-time distributed control architecture for collaborative

task execution by heterogeneous robot teams. Three main contributions of the ap-

proach are the ability to handle variable robot heterogeneity, ability to handle auto-

matic grasping of objects with unknown initial locations, and collaborative execution

124

of tasks with hierarchical representations and multiple types of constraints. This is

achieved through the use of a continuous-valued metric that encodes a robot’s ability

to perform a particular task component; the metric is updated continuously during

task execution, allowing for dynamic task allocation that takes into account the most

recent environmental conditions.

Additionally, the architecture provides a novel perception-manipulation pipeline which

is able to automatically generate grasps on objects with arbitrary positions and orien-

tations. This pipeline is utilized by the updated metric which allows it to accurately

reflect the varying capabilities of the robots in different environmental conditions. Ex-

perimental validation is performed with a team of two humanoid robots performing

household manipulation tasks. The outcomes of the experiments support the pro-

posed contributions: different environmental conditions result in different and con-

tinuously changing values for the robot’s task execution ability, resulting in dynamic

task allocation among the heterogeneous robot team performing complex hierarchical

tasks. Therefore, this work is a major contribution towards developing a generalized

task structure which is able to transfer learned skills between heterogeneous robots

while accounting for their varying capabilities.

125

Chapter 8

Interdependence Constraint for

Collaborative Multi-Robot Task

Allocation Using a Distributed

Control Architecture

For robot teams to complete tasks in real world situations, they must be able to

understand task constraints and operate cooperatively and efficiently. Multi-robot

task allocation attempts to allocate tasks to the robots in order for the robot team to

complete its overall goal, while still following any constraints that were imposed. To

allow for explicit cooperation between multiple robots, an interdependence constraint

must be used which requires several parts of a task to be completed together. One

126

type of task which requires explicit cooperation is building tasks. These tasks require

one agent to hold a part in place while another agent connects another piece. Our

proposed work is focused on these types of manipulation tasks which require a holding

behavior while another task component is completed.

In this chapter, an interdependence task constraint was implemented, tested, and

added to the distributed multi robot task allocation architecture described in Sec-

tion 3.1 in order to increase the generalizability of the proposed task structure. This

constraint was also integrated into the verbal instruction system developed in Chap-

ter 4 to further emphasize the generalizability in the learning capabilities of the task

structure.

8.1 Integration of WHILE into Architecture

8.1.1 Addition of interdependence Constraint

In order to extend the existing architecture (Section 3.1) to add an interdependence

constraint, the following was implemented:

• WHILE constraint: The WHILE behavior is a new goal node which enforces

an interdependence constraint on its children, meaning the completion of one

sub task is dependent on the completion of the other sub task.

127

• HOLD behavior: A new behavior node, HOLD, was implemented to allow

one robot to hold an object, while the other robot completes another portion

of the task requiring explicit coordination between the agents. The task that

must be completed will be referred to as the action task. HOLD is intended to

be a child of the WHILE node only.

To implement the WHILE constraint and HOLD behavior, the following was added

to the architecture:

• SET flag: A flag was created in order to signal to the architecture that the

action task was completed, and the item that is being held can now be placed.

• Update and Spread Activation Algorithms: Each previous goal node used

Update Activation and Spread Activation algorithms to propagate activation

potential and activation levels throughout the tree. The implementation of the

WHILE constraint required its own version of these algorithms as well.

The integration of the WHILE constraint and HOLD behavior into the control ar-

chitecture is illustrated in a sample task tree representation shown in Figure 8.1. In

this figure, the left child of the WHILE node is the HOLD behavior and the right

child of the WHILE node is the action task that must be completed for the WHILE

constraint to be completed.

The Update Activation algorithm, Algorithm 6, first checks to see if the peer robot

has completed the action task. If this task is completed, the flag is set. If the HOLD

128

Figure 8.1: Task tree illustrating WHILE functioning as a root node, with THEN,
AND, and OR constraints nested underneath WHILE. The left child of the WHILE
node (hold green block) is the HOLD behavior and the right child of the WHILE
node (THEN) is the action task that must be completed. In this case, the action
task is a compound node and consists of the THEN node along with its entire

sub-tree.

Algorithm 6 Update Activation

1: if action.peer done == TRUE then
2: setflag
3: end if
4: if hold.active == FALSE then
5: activation potential = hold.activation potential
6: end if
7: if hold.active == TRUE then
8: activation potential = action.activation potential
9: end if

child is activated, then the activation potential of the WHILE constraint is set to the

action child’s activation potential. This is because an item is currently being held, so

the next task to be completed will be the action task. If the HOLD child isn’t active,

then the activation potential of the WHILE constraint is set to the activation potential

of the HOLD child. This is because the first child of the WHILE behavior that is

activated is the HOLD child, as seen in the Spread Activation algorithm, Algorithm 7.

129

Algorithm 7 Spread Activation

1: msg ← {activationlevel = 1.0}
2: SendToChild(hold,msg)
3: for child ∈ children do
4: if previous child active then
5: SendToChild(action,msg)
6: end if
7: end for

The Spread Activation algorithm, Algorithm 7, first spreads its activation to the

HOLD child. Once the HOLD child is active, then the following children of the

WHILE constraint receive the activation level. This is to ensure that the architecture

first instructs one agent to hold the object, then activates the action task on the

second agent to enable the explicit coordinate on the task. The action task can be

either a singular behavior node or a compound node consisting of both goal nodes

and behavior nodes. Once the action task is completed, the state flag is set, and the

object that was being held by the first agent can now be placed.

8.2 Integration of WHILE into Verbal Instructions

In addition to integrating the interdependence constraint into the control architecture,

the WHILE capability was also added into the verbal instruction system outlined in

Chapter 4. This allows the WHILE constraint to be utilized in the generation of task

trees through verbal instruction which can be directly executed by a team of robots

to complete tasks which require explicit cooperation between the agents.

130

8.2.1 Command Parsing

For the purposes of this work, the interdependence constraint focuses on tasks ma-

nipulation tasks which require holding an object while another task component is

completed. Therefore, in order to formulate a verbal instruction which conveys a

task using the interdependence constraint, the sentence must contain at least two

verbs and one conjunction. The first verb is the HOLD behavior and the second is

the verb associated with the other task component which needs to be completed. For

example, the sentence “place the pink bar on the green leg while holding the yellow

bar” has two verbs and one conjunction. This type of sentence structure is necessary

to allow the interdependence constraint to represent meaningful actions. However,

the work presented in Chapter 4 was not able to correctly parse these types of sen-

tences. Therefore, the parsing of the verbal instruction system defined in Chapter 4

was modified to allow for these types of sentences. In order to solve this problem,

the system was modified to include a preposition argument check within the Answer

Constraint Engine (ACE) tool [70]). This check allows ACE to select the minimal

recursion semantics (MRS) list [106] with the correct arguments attached to each

preposition. The modified parsing method is described below.

Algorithm 8, searchForCorrectPrepArgs takes in a dictionary of strings (MRS) and

determines if each preposition within the MRS has the desired arguments. If the

passed MRS has a preposition with the desired arguments or has no preposition at

all, it will return True. However, if the passed MRS has a preposition with incorrect

131

Algorithm 8 searchForCorrectPrepArgs(MRS)

1: args = ∅
2: prepCount = gatherArgs(args,MRS)
3: if prepCount == 0 then
4: return True
5: else
6: return checkArgs(prepCount, args)
7: end if

arguments, the algorithm will return False. The argument args (line 2) is a list of

strings, starting off as an empty set, that will contain the arguments for each preposi-

tion. The variable prepCount is an integer tracking the number of prepositions used

in the MRS. The gatherArgs function is presented in Algorithm 9 and the checkArgs

function is presented in Algorithm 10.

The gatherArgs function, Algorithm 9, finds the two relevant arguments attached to

a preposition and appends them to a list. This is done for each preposition that is

found in the MRS. The final argument list is eventually copied into the argument list,

args, upon the return of the call to this function from the searchForCorrectPrepArgs

function described in Algorithm 8. Additionally, the algorithm returns the total

number of preposition in the MRS as an integer.

The checkArgs function, Algorithm 10, checks the two arguments passed in to de-

termine if they are the desired arguments for each of the prepositions found in Al-

gorithm 9. The first argument can either be a noun or a conjunction. The second

argument must be a noun. If these conditions hold for all propositions found, the

algorithm passes and returns True.

132

Algorithm 9 gatherArgs(args,MRS)

1: prepCount = 0
2: for line in MRS do
3: if Prepositionfound then
4: prepCount+ = 1
5: for i from 0 to 2 do
6: args.append(findPrepArgs(line,MRS)[i]
7: end for
8: end if
9: end for

10: return prepCount

Algorithm 10 checkArgs(prepCount, args)

1: for i from 0 to prepCount do
2: // get first argument preposition i
3: ARG1 = argL2∗i
4: // get second argument preposition i
5: ARG2 = argL2∗i+1

6: if (ARG1 != noun or ARG1 != conj) or (ARG2 != noun) then
7: return False
8: end if
9: end for

10: return True

The findPrepArgs function, Algorithm 11, takes a list of strings as input and returns

a list consisting of two strings. It must first find the labels in the MRS corresponding

to the arguments, then convert them to strings referring to the words in the original

command. These two words correspond to the arguments of a preposition present in

the MRS. The list lbls (line 9) is a list of labels for each prepositional argument. In

line 8, nextWord is a string that appears after ”ARG1 ” or ”ARG2 ” in the passed in

line.

The searchForLabel function, Algorithm 12, searches a dictionary, MRS, for a key. If

133

Algorithm 11 findPrepArgs(line,MRS)

1: counter = 0; argCounter = 0
2: for word in line do
3: counter+ = 1
4: if argCounter == 2 then
5: break
6: else if word == ”ARG1” or word == ”ARG2” then
7: argCounter+ = 1
8: nextWord = line[counter]
9: lbls.append(nextWord)

10: end if
11: for i from 0 to argCounter do
12: args.append(searchForLabel(lbls[i], MRS))
13: end for
14: end for
15: return args

Algorithm 12 searchForLabel(lbl,MRS)

1: for line in MRS do
2: if len(line) > 10 and line[0] == ”[” then
3: if line[5] == lbl then
4: return line[1]
5: end if
6: end if
7: end for
8: return False

the label is found, the corresponding string will be returned. The lbl passed in is the

key that is being searched for within the MRS. The line[5] refers to a string keeping

track of the key in that line, and line[1] is a string corresponding that key.

This modified parsing implementation utilizing Algorithms 8-12 is able to accept a

string command with up to two verbs and one conjunction as an input, select the

correct MRS from a list, and return that MRS with the correct preposition arguments.

With this modification, the verbal instruction system is able to correctly parse the

134

types of sentences necessary to formulate a verbal instruction which conveys a task

using the interdependence constraint. For example, it can now parse sentence such

as “place the pink bar on the green leg while holding the yellow bar” and ensure that

the correct object information is linked to the correct verbs within the parse tree.

8.2.2 Command Converting

In addition to modifying the parsing implementation as described in Section 8.2.1 to

incorporate the WHILE constraint, the system used to convert from parsed sentences

into task trees as described in Chapter 4 also had to be modified to include this

constraint. The previous version of the system was only able to convert sentences

with one verb. However, as discussed in Section 8.2.1, commands incorporating the

WHILE constraint must contain at least two verbs and one conjunction. Therefore,

the conversion system was modified to incorporate sentences with multiple verbs using

the following steps. First, calculate the number of verbs in the sentence. If there are

two verbs present, split the sentence into two sentences, process each separately, and

stitch them together by placing the conjunction in the correct location at the end.

These steps are outlined from Algorithm 13 which is discussed in more detail below.

With these modifications, the architecture can accept an input sentence that contains

up to two verbs and one conjunction, and convert it into a parenthesized command,

which allows the verbal instruction system to work with commands containing the

WHILE constraint.

135

Algorithm 13 multi verb parsing(relLines)

1: verbL = returnVerbs(relsLines)
2: verbCount = len(verbList)
3: if verbCount >= 2 then
4: relsLinesL = splitSentenceIntoTwo(relsLines)
5: conj = returnConj(relsLinesL[2])
6: commandL = MRS Crawling(verbCount, verbL, relsLinesL)
7: finalCommand = addConjToEnd(commandL, conj)
8: else
9: relsLinesL = [relsLines]

10: commandL = MRS Crawling(verbCount, verbL, relsLinesL)
11: finalCommand = commandL[0]
12: end if
13: return finalCommand

The multi verb parsing function, Algorithm 13, takes a list of parsed strings from

an MRS, known as the relsLines, and processes it into a final, parenthesized com-

mand. This algorithm is able to process basic sentence structures with up to two

verbs separated by a conjunction. If there is one verb present, the sentence will be

converted into a parenthesized command by Algorithm 14, MRS Crawling. If there

are two verbs separated by a conjunction, the sentence will be split at the conjunction

using Algorithm 15, and each section will be processed separately by Algorithm 14.

Algorithm 14 is a modified version of Algorithm 1 described in Chapter 4.

In Algorithm 13, verbL is a list of the verbs present in the sentence, verbCount is an

integer tracking the number of verbs in the sentence, relsLinesL is a list of relsLines

for each sentence structure that has been separated based on verbs, conj is a string

tracking the conjunction separating the two sentence structures, and finalCommand

is a string that contains the final parenthesized command. The returnVerbs function

136

Algorithm 14 MRS Crawling(verbCount, verbL, relsLinesL)

1: for i from 0 to count do
2: rels = simplify(relsLinesL[i])
3: ConnectAdjectives(rels)
4: HandlePrepositions(rels)
5: // add to list of parenthesized commands
6: commandL.append(BuildCommand(rels, verbL[i])
7: end for
8: return commandL

is described in Algorithm 16, the returnConj function is described in Algorithm 17,

and the addConjToEnd function is described in Algorithm 18.

Algorithm 14, MRS Crawling, is a modified version of Algorithm 1 described in Chap-

ter 4. In the original version, only a sentence containing a single verb would be parsed

correctly into a parenthesized string. This modified version is able to correctly parse

sentences with up to 2 verbs, such as sentences containing a WHILE constraint, into

parenthesized strings. The algorithm parses a passed relsLinesList into a parenthe-

sized string command for each verb found in the passed sentence (up to 2 verbs).

The splitSentenceIntoTwo function, Algorithm 15, takes a passed list of strings, splits

them into two separate lists of strings, appends each new list into a larger list, and

returns that final list. The sentence is split once a conjunction is found in the sentence.

The conjunction is added to the end of the final list. In the algorithm, conjFound

is a boolean value referring to if the conjunction was found or not, conj is a string

corresponding to the conjunction in the sentence, sent1 is a list of strings before the

conjunction is present in the sentence, sent2 is a list of strings after the conjunction

137

Algorithm 15 splitSentenceIntoTwo(sentence)

1: conjFound = False
2: for word in sentence do
3: if word is conjunction then
4: conj = word
5: conjFound = True
6: else if conjFound == False then
7: sent1.append(word)
8: else if conjFound == True then
9: sent2.append(word)

10: end if
11: end for
12: sentL = [sent1, sent2, conj]
13: return sentL

is present in the sentence, and sentL is a list with elements consisting of sent1, sent2,

and conj.

The returnVerbs function, Algorithm 16, searches a passed list of strings and returns

any verbs within that passed sentence. The returnConj function, Algorithm 17, takes

in a passed string and attempts to match it to a conjunction. It then returns a com-

mand string corresponding to that conjunction. The addConjToEnd function, Algo-

rithm 18, takes in a list of parenthesized commands and a conjunction, and stitches

them together to make one, final parenthesized command string. In the algorithm,

commandString is a string corresponding to the final parenthesized command, conj is

a command string corresponding to the conjunction in a sentence, and pCommand[i]

is a list of strings, at element i, that corresponds to a single parenthesized command

for one part of the sentence.

With the modified conversion method, the architecture can accept an input sentence

138

Algorithm 16 returnV erbs(sentence)

1: for word in sentence do
2: if word == verb then
3: verbL.append(word)
4: end if
5: end for
6: return verbL

Algorithm 17 returnConj(conj)

1: if conj == ’and’ then
2: return ’AND’
3: else if conj == ’or’ then
4: return ’OR’
5: else if conj == ’then’ then
6: return ’THEN’
7: else if conj == ’while’ then
8: return ’WHILE’
9: end if

Algorithm 18 addConjToEnd(pCommandL, conj)

1: commandString = ’(’ + conj + ’ ’
2: for i from 0 to len(pCommandL) do
3: commandString + = pCommandL[i] + ’ ’
4: end for
5: commandString + = ’)’
6: return commandString

that contains up to two verbs and one conjunction, and convert it into a parenthesized

command. Using the last step of the verbal instruction system outlined in Chapter 4,

this parenthesized command can then be converted into a task tree which can be

directly executed by a team of robots. Therefore, these modifications allow for the

WHILE constraint to be incorporated into verbal instructions which can be converted

to task trees and executed by a team of robots to complete tasks which require explicit

139

cooperation between the agents.

8.3 Experimental Setup

To illustrate the incorporation of the interdependence constraint (WHILE) into the

generalized task structure, several experiments were completed. These experiments

are broken down into two sets. The first set of experiments is used to verify that the

WHILE constraint was correctly incorporated as a new type of constraint into the pre-

viously developed control architecture (Section 3.1). These experiments demonstrate

that the WHILE constraint can be utilized correctly by a team of agents to complete

tasks which require explicit cooperation. This verification is performed in a simulated

environment as described in Section 8.3.1. The second set of experiments is used to

verify the that WHILE constraint can be correctly utilized in the verbal instruction

system (Chapter 4) to generate a task tree from a verbal instruction, which can then

be directly executed by the robot. This verification is described in Section 8.3.2.

8.3.1 Architecture Integration Experiments

8.3.1.1 Validation Plan

In order to validate the addition of the interdependence constraint (WHILE) to the

previously developed control architecture (Section 3.1), different types of task trees

140

were used to evaluate different situations for the WHILE node. The task trees used

for validation determined if WHILE could function as a root node, if WHILE could

be nested under other constraints, and if other constraints could be nested under

WHILE. These combinations of nodes illustrate that the WHILE constraint can be

used correctly in conjunction with the existing capabilities of the control architecture.

Figure 8.1 shows a task tree which combines various elements that were tested to

ensure the WHILE worked properly within the architecture. The tree shows WHILE

acting as a root node, as well as demonstrating that the action task of the WHILE

node functions properly as a compound node. Additionally, this tree contains all four

constraints types that the architecture can handle, demonstrating that the WHILE

constraint does not disrupt the behavior of the other goal nodes.

Figure 8.2: Task tree illustrating all four constraints (THEN, AND, OR,
WHILE), as well as the nesting capability of the WHILE, since it is nested un-
derneath another THEN constraint. The left child of the WHILE node (hold green
block) is the HOLD behavior and the right child of the WHILE node (place yellow
block) is the action task that must be completed. In this case the action task is a

singular behvaior node.

141

Figure 8.2 also encompasses all four constraints of the architecture in the same task

tree. In this task, the WHILE constraint is shown nested underneath another con-

straint, and the action task of WHILE is shown to be a singular behavior node.

The following section will discuss the results of validating the architecture with the

trees shown in Figures 8.1 and 8.2. By validating the architecture using these task

trees, we can see that the WHILE behavior is able to work properly with any type

of task tree that may be created. The trees demonstrate that the WHILE constraint

will work properly in conjunction with the other constraints, both nested underneath

other constraints as well as a root node, and with both singular behavior nodes and

compound nodes (combinations of behavior and goal nodes) as the WHILE’s action

task.

8.3.1.2 Experimental Validation

The modified architecture incorporating the interdependence constraint as specified

in Section 8.1 was tested in simulation using the task trees provided in Figures 8.1 and

8.2. Presently, the architecture has yet to be validated through robot experiments in

the real world.

Figure 8.3 shows the simulation that was used to validate the additions to the archi-

tecture. The circles represent the two robots which are collaborating to complete a

joint task using the modified architecture. For this experiment, the blue circle rep-

resents the robot that will correspond to the PR2 in future real-world experiments

142

Figure 8.3: The simulation used to validate the architecture. Blocks are objects
grabbed by the robots and circles are the robots themselves.

and the green circle represents the robot that will correspond to the Baxter in fu-

ture real-world experiments. The objects are represented by blocks of various colors.

Picking and placing an object is simulated by the “robots” moving over to a block,

and then moving the block to a different location. HOLD is simulated by a robot

moving over to a block, and “holding” the object, or hovering over the object, until

the action task is completed. The block that was held is then placed by the robot.

For simplicity, all of the blocks are placed in the same location for this simulation.

For the simulation, the task completed by the robots corresponds to a particular task

tree (either the tree shown in Figure 8.1 or the tree shown in Figure 8.2).

Figure 8.4 shows a heat map that corresponds to the results from validating the ar-

chitecture with the task tree shown in Figure 8.1 by simulating the robots completing

this task a total of 30 times. The objects which need to be grabbed during the task

are shown on the left axis. The bottom axis represents the order in which they were

grabbed by the robots, with the 1 being the object grabbed first and 4 being the

143

last object grabbed. The frequency in which the objects were grabbed in a partic-

ular order is shown on the right axis. The task tree in Figure 8.1 was tested in the

simulation for a total of 30 trials. The heat map shows that the green block, which

is the object that must be held by the WHILE node, was grabbed first by the robots

in the simulation for every trial. This behavior is correct, since the HOLD child is

the child that is activated first. Underneath the WHILE node is a THEN node, with

AND and OR as its children. As shown in the heat map, the children of the AND

node are grabbed second and third, alternating between the yellow and purple block.

This behavior is expected, since AND is a non-ordering constraint. Finally, one of

the children of the OR node is grabbed by the robot. In this case, the blue block was

chosen 10 times, and the pink block was chosen 20 times. Given the OR constraint,

a particular block was chosen depending on which one was closest to the robots at

the time when the OR node was activated which differed across trials.

Figure 8.5 shows the heat map depicting the validation results from the task tree

depicted in Figure 8.2 by simulating the robots completing this task a total of 30

times. The root of the tree is a THEN node, with WHILE and AND nodes as children.

Because THEN is a sequential ordering constraint, WHILE is always activated first.

The green object is again grabbed by the robots first, because it is the object that must

be held. The pink block is always grabbed second, because placing the pink block is

the action task of the WHILE node, and the WHILE behavior must be completed

before moving on to AND, since they are both children of a THEN constraint. The

children of the AND behavior can be completed in any order, shown in the heat map

144

Figure 8.4: Heat map depicting the results from simulating the robots completing
the task corresponding in the task tree depicted in Figure 8.1 a total of 30 times.
The objects are shown on the left axis, the order in which they were grabbed by
the robots are on the bottom axis, and the frequency in which they were grabbed
in that order is shown on the right axis. We see that the green block, which is
the object that must be held, was grabbed first each time, which is the correct

behavior.

by the variation of objects that are grabbed third and fourth. The behavior of the

OR node is shown as well, since the pink block was grabbed for 20 out of the 30 trials

and the blue block was grabbed for 10 out of the 30 trials. Given the OR constraint,

a particular block was chosen depending on which one was closest to the robots at

the time when the OR node was activated which differed across trials.

8.3.2 Verbal Instruction Integration Experiments

To illustrate the incorporation of the interdependence constraint (WHILE) into the

verbal system defined in Chapter 4, several experiments were completed.

145

Figure 8.5: Heat map depicting the results from simulating the robots completing
the task corresponding in the task tree depicted in Figure 8.2 a total of 30 times.
The objects are shown on the left axis, the order in which they were grabbed by
the robots are on the bottom axis, and the frequency in which they were grabbed
in that order is shown on the right axis. Because THEN is a sequential ordering

constraint, WHILE is always activated first, which is the correct behavior.

The experiments consist of verbal commands consisting of various combinations of

verbs, prepositions, and conjunctions. These experiments show that the verbal in-

struction system is able to convert many different commands into the format of the

task trees required by the control architecture as described in Section 3.1. It is

also able to recognize and correctly parse multiple conjunctions (AND, OR, THEN,

WHILE), two verbs (PLACE, HOLD), and multiple prepositions. The experiments

are provided in Table 8.1.

These experiments verify the that WHILE constraint can be correctly utilized by the

modified verbal instruction system described in Section 8.2 to generate the paren-

thesize command corresponding to a given verbal instruction. These parenthesized

commands can then be converted into a task tree which can then be directly exe-

cuted by the robot using the last step of the verbal instruction system outlined in

146

Num
Verbs

Num
Preps

Num
Conjs

Verbal and Parenthesized Commands

1 0 0
Input: “hold the pink bar”
Output: (HOLD pink bar)

1 1 0
Input: “place the green leg in front of you”
Output: (PLACE green leg robot in+front+of)

1 1 1

Input: “place the pink bar and the yellow bar on the
green leg”
Output: (AND (PLACE pink bar green leg on l) (
PLACE yellow bar green leg on r))

2 0 1
Input: “place the yellow bar then hold the magenta bar”
Output: (THEN (PLACE yellow bar) (HOLD ma-
genta bar))

2 1 1

Input: “place the pink bar on the green leg while holding
the yellow bar”
Output: (WHILE (PLACE pink bar green leg on l)
(HOLD yellow bar))

2 1 1

Input: “place the pink bar on the green leg or hold the
blue leg”
Output: (OR (PLACE pink bar green leg on l) (
HOLD blue leg))

2 2 1

Input: “place the pink bar on the blue leg while placing
the yellow bar on the green leg”
Output: (WHILE (PLACE pink bar blue leg on l) (
PLACE yellow bar green leg on r))

Table 8.1: Verbal instruction experiments with varying numbers of verbs (Num
Verbs), prepositions (Num Preps), and conjunctions (Num Conjs). The input to the
system is a verbal instruction and the output is the parenthesized command. The
experiments illustrate the system can correctly parse multiple conjunctions (AND,

OR, THEN, WHILE), two verbs (PLACE, HOLD), and multiple prepositions

Chapter 4. Therefore, these experiments show that verbal instructions containing

the WHILE constraint can be used to teach robots to complete tasks which require

explicit cooperation between the agents.

147

8.4 Conclusion & Summary

The WHILE constraint presented in this chapter adds an interdependence task con-

straint to the previously developed control architecture (Section 3.1). In order to

implement the WHILE constraint, a new behavior node was added to the architec-

ture; HOLD. Previously, the robots picked up and immediately placed objects. With

HOLD implemented, an object was picked up and held by one of the robots until a task

was completed by the other robot, encoding the interdependence behavior of WHILE.

The task trees used to validate the architecture were tested in simulation, showing a

combination of situations that behaved correctly. While robot trials were not used

to test the grasping and hold ability of the robots, the simulation validation is able

to show that the fundamental behavior of the WHILE constraint is compatible and

functional with the rest of the constraints in the architecture. Further experiments

were completed to illustrate the integration of the WHILE constraint into the verbal

instruction system presented in Chapter 4. These experiments modified the verbal

instruction system to recognize and correctly parse multiple conjunctions (AND, OR,

THEN, WHILE), two verbs (PLACE, HOLD), and multiple prepositions. Together,

these experiments illustrate the integration of the interdependence task constraint

into the proposed generalized task structure. Therefore, the generalized task struc-

ture is able to handle tasks which require explicit coordination between agents, which

is one of the main contributions specified in Section 1.4.

148

Chapter 9

Generalized Task Structure

Learning

This chapter focuses on generalized task structure learning for tasks with complex,

hierarchical constraints. For the purposes of this work we assume the task structure

follows the hierarchical architecture defined in our previous work 3.1. The methods

in this chapter describe a learning framework (based on a genetic algorithm) which is

able to learn the structure of a complex, hierarchical task through the use of human

demonstrations. This learning framework can be used to teach a robot how to perform

a task through human demonstration which further extends the capabilities of the

proposed generalized task structure presented in this work.

149

9.1 Problem Representation

Learning from human demonstration consists of several major components. In order

to learn a particular task, a human may provide a robot with several demonstrations of

the task. Given these demonstrations, the first step is segmenting out the individual

tasks from the demonstration. In our case, the individual tasks are the pick and

place movements of a particular object. The second step is using these segmented

demonstrations to learn how to perform the task. In our case, this entails learning

the sequence in which the objects were placed. The last step is transferring these

learned tasks to the robot to ensure the robot can completely complete the learned

tasks.

For the purposes of the work presented in this chapter, we are focusing on the second

step as the learning is the most important component for developing a generalized

task structure as proposed in this work. In future work, the first step can be done

in several ways, such as parsing video sequences or kinesthetic teaching, depending

on the capabilities of the robot. However, this step is outside the scope of this work.

The third step focuses on transferring the tasks to the robot. The success of this

transfer depends on the capabilities of the robot and the scope of the task. This

step is already addressed by several other chapters in this work, namely Chapter 5

to ensure correct execution through fault monitoring and Chapter 7 to incorporate

the varying capabilities of the robot into the task allocation to ensure the robots

are performing tasks which they are best suited for. Therefore, this chapter only

150

performs validation of the learning method on generated task trees rather than robot

demonstrations. Experiments combining each of the main steps to ensure the learning

performs correctly from start to finish will be explored in the future.

As mentioned above, the learning task in this work entails learning the ordering

in which objects can be placed. A single demonstration in our case is represented

by a particular ordering in which objects are placed. For example, in the tea task

(Figure 4.4) one demonstration might be placing the cup first, then placing the tea,

and finally placing the sugar. However, due to the constraints of a task, there may

be multiple ways to perform a given task. Therefore, the learning scheme must be

able to encompass the set of possible orderings within a single task structure. Be-

cause of this reason, we assume that the possible set of orderings are represented

by a hierarchical task representation with a set of constraints (THEN, AND, OR)

as discussed in Section 3.1. We also make a few assumptions regarding the demon-

strations provided. The demonstrations provided must represent a fully completed

task. In order to learn the ordering (THEN) constraint, we also incorporate a set of

bad demonstrations which represent incorrect ways to perform the task. These bad

demonstrations can be either completed tasks or partial tasks. Therefore, this chap-

ter aims are solving the following problem: Given a set of demonstrations, generate

a hierarchical representation which accurately represents the constraints inherent in

the demonstrations.

151

9.2 Generalized Task Learning Framework

The goal of the generalized task learning framework is to learn a hierarchical repre-

sentation which accurately represents the constraints inherent in a task. The learning

is performed using a set of demonstrations. These demonstrations represent various

orderings in which the objects can be placed for a particular task. For example,

in the tea task (Figure 4.4) one demonstration might be placing the cup first, then

placing the tea, and finally placing the sugar. To simplify the terminology used in

this framework, each object is mapped to a unique number. Therefore, instead of

a demonstration consisting of (cup, tea, sugar), a demonstration is represented by

a numerical sequence where each number corresponds to a particular object such

as (1,2,3) where cup=1, tea =2, and sugar=3. This numerical representation for a

demonstration is used throughout the remainder of this chapter.

The learning framework proposed in this chapter is built around a Genetic Algorithm

(GA). The method uses a novel compression-like encoding scheme to represent the

chromosomes for the GA. The encoding scheme is discussed in Section 9.2.1. The

provided demonstrations are used in the fitness function of the GA to determine how

well the generated chromosomes fit the constraints inherent in the task, as discussed

in Section 9.2.2. The modified GA algorithm is presented in Section 9.2.3.

152

9.2.1 Compression-based Encoding Scheme

The purpose of the GA is to generate chromosomes which represent a hierarchical

representation for a given task. This work assumes that the representations are

binary trees. The goal is to generate simple, human-interpretable trees in which each

object for a given task appears only once. Given these two restrictions, a generated

task tree can have at most (n-1) constraints (internal nodes) where n is the number

of objects in the task. Because of this, for large tasks, the chromosomes can get very

large. Therefore, we have designed a compression-based encoding scheme to maintain

a consistent size of chromosomes for simplicity in the GA.

The basis of the compression-based encoding is a dictionary which stores the com-

pressed chromosomes. Initially, the dictionary only contains the set of objects in a

given task stored by their numerical representation used to convert the demonstration

from object names to numbers as discussed in the beginning of Section 9.2. There-

fore, for a task with n objects, the dictionary would contain the numbers 0-n which

represent the numerical representation of the objects. For example, given the tea task

(Figure 4.4), the dictionary would initially consist of {1: cup; 2: tea; 3: sugar }.

The GA generates chromosomes of the form (number left, constraint, number right)

where number left and number right are two different numbers in the dictionary and

constraint is one of the constraints handled by the hierarchical representation (THEN,

AND, OR). Therefore, in the initial population of the GA, the chromosomes are

simple as they are built entirely from objects with a single constraint between them.

153

Looking back at the tea example, some examples of initial chromosomes would be

1T2, 2A3, 1O3. The chromosome 1T2 would represent placing the cup THEN tea;

the chromosome 2A3 would represent placing the tea THEN sugar ; the chromosome

1O3 would represent placing the cup OR sugar.

For later generations of the GA, the chromosomes get more complex. At each genera-

tion, new rules may be added to the dictionary based on their fitness (Section 9.2.2).

Therefore, for later generations, the number left and number right will no longer be

numbers representing objects, but instead will be numbers in the dictionary repre-

senting other chromosomes. Looking back at the tea task, assuming the chromosomes

1T2 and 2A3 were stored in the dictionary as rules 4 and 5 respectively, the next

generation could include a complex rule such as 1T5. This rule is complex since 5

already represents another chromosome saved in the dictionary.

In this manner, the dictionary maintains the compressed chromosomes to allow com-

plex chromosomes to be generated. Using this compression-based encoding, the chro-

mosomes generated by the GA will always be of the form (number left, constraint,

number right). After the GA finishes, the dictionary can be used to decode the com-

pression in order to get the complete chromosome as represented solely by the base

numbers (0-n, corresponding to the objects) along with the constraints generated be-

tween them. Looking back at the tea task, assuming the ending chromosome was 1T5,

this tree can be decoded as (1T(2A3)). Applying the reverse mapping from numbers

154

to objects, this tree becomes (Cup THEN (Tea And Sugar)). The tree from the com-

plete chromosome represents the entire hierarchical task structure in the form of the

parenthesized notation mentioned in Chapter 4. Therefore, the ending chromosome

can be directly executed by a robot to perform the learned task.

9.2.2 Fitness Function

In order to score the generated hierarchies, we must define a fitness function which

takes into account the desired structure of our learned hierarchical task representa-

tion. This fitness function allows us to quantitatively evaluate how well a generated

hierarchy represents the constraints inherent in the demonstrations. By using a quan-

titative measure, we are able to compare different hierarchies and determine which

one best represents our desired output. In our context, a good fit will be a simple task

tree which is interpretable by a human yet accurately represents all of the sequences

provided as demonstrations. A bad fit would be things such as a tree which is overly

complex and incomprehensible to a human or a tree whose constraints do not fit the

majority of sequences provided. In other words, the aim is to generate trees which are

compact yet are able to represent the complete set of constraints inherent to a task.

The correctness of the trees is considered by taking into account how well the tree

reflects the provided demonstrations. Further details on these measures are provided

below.

155

Our system must be able to learn tasks which contain three types of constraints:

THEN, AND, OR. There are several measures we must take to ensure that each of

these types of constraints can be learned. The THEN and AND constraint have

similar behaviors in terms of the sequence of demonstrations. A sequence which

contains (A,B) can be represented as either A THEN B or A AND B, unless there is

some notion of ordering illustrated within the demonstrations. By looking solely at

good demonstrations, it is very difficult to enforce this ordering constraint. Therefore,

we also include a set of bad demonstrations, demonstrations which provide incorrect

orderings of the task, to incorporate some form of ordering constraint to allow the GA

to learn the THEN constraint easier. If a good demonstration has (A,B) and a bad

demonstration has (B,A), then we know the constraint in the task must be a THEN

instead of an AND since the AND constraint holds for this bad demonstration when

it should result in a failure, just like the THEN does.

The fitness function used in the GA is defined in Equation 9.1.

score = countgood ∗multiplier − countbad ∗multiplier (9.1)

multiplier = (multiplierleft + multiplierright) ∗ wconstraint (9.2)

156

where wconstraint =

4 THEN

1 AND

1 OR

(9.3)

The fitness function uses a multiplier style score which weights the rules based on the

combinations of constraints within the rule. Since higher-level THEN constraints,

those which appear closer to the root of the tree, are the hardest to illustrate through

demonstrations alone, this scoring metric was designed to prioritize trees which have

higher-level THEN constraints. The multiplier grows with the depth of the tree. The

multiplier component has a maximum value of multiplier(n−1) where n is the number

of objects in the task. This comes from the fact that the trees represented are binary

trees and thus the max depth of the tree is at most n-1. At each depth in the tree

the multiplier is calculated as in Equation 9.2. Each type of constraint has a different

multiplier value associated with it. The multiplierleft is the multiplier for the left

sub-tree at a given level and multiplierright is for the right sub-tree. Therefore, the

multiplier component factors in the number of each type of constraint that exists

in the overall tree, which has at most n-1 constraints. The THEN constraint has a

higher multiplier than the AND and OR nodes. Therefore, trees with n-1 which have

THEN constraints closest to the root will have the highest score. This allows the GA

to learn the higher-level THEN constraints which are difficult to illustrate through

demonstration alone. In order to ensure the GA is learning the true constraints,

157

and not just a tree with all THEN constraints, the human demonstrations are also

factored into the fitness function.

In addition to the multiplier components in the fitness function, the function takes

into account the number of demonstrations which accurately reflect the constraints

represented in a particular chromosome. The countgood represents the number of good

demonstrations which fit the chromosome’s constraints. The countbad represents the

number of bad demonstrations that fit the chromosome’s constraints. Again, the

bad demonstrations are examples of orderings which break the real constraints of

a task and therefore, if a chromosome fits these demonstrations, then they are not

learning the correct constraints. Therefore, the fitness function (Equation 9.1 uses

the weighted difference between these two values to ensure that the chromosome

fits the good demonstrations but not the bad ones. Determining whether or not a

chromosome fits a particular rule is discussed in Section 9.2.2.1 below.

If the score is above a certain threshold (in our case we used the number of good

demonstrations), the chromosome gets saved as a new rule in the dictionary. This

rule is then able to be used to generate new chromosomes in future iterations. Other-

wise, the chromosome is saved into another dictionary which stored the bad functions.

In order to save time, the scores for a particular chromosome are saved inside of the

corresponding entry in the dictionary. This way, the scores do not have to be recom-

puted each time this chromosome gets generated, but instead the scoring becomes a

158

look-up process using the dictionary. The same look-up process happens for chromo-

somes which were found to be bad and were stored in the bad function dictionary.

9.2.2.1 Evaluation Method

A chromosome fits a certain demonstration if the ordering and constraints between

the objects are all reflected in the demonstration. Assist functions were designed for

each of the possible constraints (THEN, AND, OR) and were used to determine if a

particular chromosome fits a demonstration.

The assist function for THEN takes a chromosome of the form (number left, THEN,

number right) where number left and number right are two different numbers in the

dictionary of rules. The assist function checks whether number left and number right

occur in the correct order in a given demonstration. Additionally, it checks whether

or not a certain object appears more than once in a given chromosome. To keep track

of duplicates, the dictionary entry for a given rule also contains a list of objects which

appear in the rule. Therefore, the assist function can search the rule entry for the

number left and number right entries to search for duplicate objects. If number left

occurs before number right in the demonstration and no objects appear more than

once in the chromosome, then the assist function for THEN returns a pass, meaning

that the chromosome fits the constraints of the demonstration. Otherwise, it returns

a fail, meaning it does not fit the demonstration’s constraints.

159

The assist function for AND behaves in a similar manner to that of the assist function

for THEN. It takes a chromosome of the form (number left, AND, number right)

where number left and number right are two different numbers in the dictionary of

rules. The assist function checks if both number left and number right appear in

the demonstration. In this case, it does not matter which one appears first in the

demonstration, since the AND is a non-ordering constraint. Additionally, it checks for

duplicate objects in the same way as the THEN assist function. If both number left

and number right appear in the demonstration, in any order, and no objects appear

more than once in the chromosome, then the assist function for AND returns a pass,

meaning that the chromosome fits the constraints of the demonstration. Otherwise,

it returns a fail, meaning it does not fit the demonstration’s constraints.

The assist function for OR also behaves in a similar manner. It takes a chromosome

of the form (number left, OR, number right) where number left and number right are

two different numbers in the dictionary of rules. The assist function checks if either

number left or number right appear in the demonstration, but not both. Addition-

ally, it checks for duplicate objects in the same way as the THEN assist function. If

either number left or number right but not both appear in the demonstration, and no

objects appear more than once in the chromosome, then the assist function for OR re-

turns a pass, meaning that the chromosome fits the constraints of the demonstration.

Otherwise, it returns a fail, meaning it does not fit the demonstration’s constraints.

These assist functions can be stacked in order to recursively evaluate a complex

160

chromosome with multiple constraints. In this case, the number left and number right

would be complex chromosomes stored in the dictionary which are encoded using the

scheme described in Section 9.2.1. Therefore, to evaluate if the complex chromosome

fits the constraints, both chromosomes encoded by number left and number right

need to be evaluated for correctness. In this way, the complex chromosomes can be

recursively evaluated using the appropriate assist functions at each step to determine

whether or not all constraint that exist in the complex chromosome hold. If all

constraints within the chromosome hold, meaning all recursive assist function calls

return pass, then the entire complex chromosome fits a given demonstration. If at

any point, a constraint is not held, the entire chromosome fails and is determined to

not fit a given demonstration.

Another benefit of these assist functions is that they help to limit the complexity

of the rules which are generated. If there are duplicates of the objects, the rule

fails. This implies that no objects can be repeated in the sequence. Therefore, this

formulation only allows trees to be generated which have at most a depth of n-1. This

stops the trees generated by the GA from becoming too complex for a given task,

which upholds the aim of generating simple, human-interpretable task trees.

9.2.3 Modified Genetic Algorithm

The framework uses a modified version of the standard GA method. The modified

algorithm consists of two major changes to a standard GA: 1) each generation, the

161

chromosomes which have a fitness above a certain threshold are added to the dictio-

nary which contains the compressed chromosomes (Sections 9.2.1 and 9.2.2) and 2)

the best resulting chromosome at the end of the GA must be decoded using the dictio-

nary to get the complete hierarchical plan ((Sections 9.2.1). The modified algorithm

is presented in Algorithm 19.

Algorithm 19 Modified genetic algorithm for learning a hierarchical task represen-
tation

1: Generate initial population of k individuals.
2: for each individual in the population do
3: Evaluate the fitness
4: if fitness > THRESH then
5: Add individual to dictionary
6: else
7: Add individual to bad dictionary
8: end if
9: end for

10: while i < MAX ITERS do
11: Select top 70% of previous population as offspring
12: Generate other 30% of offspring through the following:
13: Generate 15% new individuals with any numbers in the dictionary as num-

ber left and number right
14: Generate 15% new individuals with simple numbers corresponding only to the

objects as number left and number right
15: Cross over offspring to form new offspring with probability pc
16: Mutate new offspring with probability pm
17: Place new offspring in a new population
18: for each individual in the population do
19: Evaluate the fitness
20: if fitness > THRESH then
21: Add individual to dictionary
22: else
23: Add individual to bad dictionary
24: end if
25: end for
26: end while
27: Find the individual with highest fitness in dictionary
28: Decode the individual to get the complete hierarchical plan

162

The main implementation for the GA was done using the DEAP framework [107].

Although DEAP was able to provide the standard GA methods, several major com-

ponents of the GA had to be manually adapted to fit the problem specified in this

work for learning hierarchical task structures. The individuals were generated using

the form (number left, constraint, number right) as described in Section 9.2.1. Evalu-

ation of the fitness was done as described in Section 9.2.2. The selection in line 11 was

performed through the roulette selection method specified by DEAP. The crossover

in line 15 was performed with the one point crossover method specified by DEAP.

The mutation in line 16 was performed using a manually defined method as described

in Algorithm 20. The algorithm mutates one of the components of an individual:

number left, number right, or constraint. When a mutation occurs, the algorithm will

choose to mutate number left and number right 25% of the time each. The other

50% of the time, the algorithm will choose to mutate constraint. For mutation of

number left, the algorithm will generate a number of a chromosome that exists in the

dictionary. If this number is the same as the number right in the given individual,

meaning a duplicate object would be found, or the number is the original number left

in the given individual (no mutation actually occurred), the algorithm generates a

new number. The opposite logic occurs for the mutation of number right. For a

mutation of the constraint, a THEN constraint will be generated 66% of the time,

and AND and OR constraints will be generated 33% of the time.

163

Algorithm 20 Mutate(individual)

1: mutated = individual
2: Generate random position pos for mutation from 1 to 4
3: if pos == 0 then
4: generate random number mut from 0 to length of dictionary
5: while mut == individual.number left or mut == individual.number right do
6: generate a new random number mut from 0 to length of dictionary
7: end while
8: mutated.number left == mut
9: else if pos == 2 then

10: generate random number mut from 0 to length of dictionary
11: while mut == individual.number left or mut == individual.number right do
12: generate a new random number mut from 0 to length of dictionary
13: end while
14: mutated.number right == mut
15: else if pos == 1 or pos == 3 then
16: generate constraint type const out of {THEN, AND, OR} with probabilities

(66%, 33% ,33%) respectively
17: mutated.constraint == const
18: end ifRETURN mutated

9.3 Experimental Validation

The GA method (Algorithm 19) is validated on three different experiments. In order

to evaluate whether or not the GA produced valid representations of a set of demon-

strations, each experiment is designed from a human-generated task tree to act as

ground truth. Each of these task trees contain one of the constraints (THEN, AND,

OR) as a root node of the tree and various combinations of constraints underneath

the root. These task trees are used to generate both a set of good demonstrations

which represent valid orderings for each tree and a set of bad demonstrations which

represent invalid orderings, or orderings which break the constraints of the tree. These

bad demonstrations can be either full sequences (containing a full ordering of objects)

164

or partial sequences (containing a partial ordering of a few objects). These demon-

strations are passed as input to the GA in order to learn a hierarchical representation

which reflects the inherent task constraints. The human-generated task trees are not

given to the GA as input. Instead, these trees are used to verify whether or not the

task trees generated by the GA reflect the same constraints as those provided by the

human. This verification is done by hand. The experiments used for validation along

with discussion of each are described below. Together, these experiments illustrate

that the GA is able to learn hierarchical tasks with complex constraints through the

use of human demonstration, as specified in one of the main contributions given in

Section 1.4.

For our experiments, the following values were used for the variables in Algorithm 19:

k was set to 1000, THRESH was set to the number of good demonstrations provided,

MAX ITERS was set to 20, pc was set to 80%, and pm was set to 40%.

9.3.1 Experiment for THEN constraint as root

The first experiment tests whether or not the GA is able to learn a task tree with a

THEN constraint as the root node and combinations of other constraints underneath.

The human-generated task tree, input demonstrations, and task tree generated by the

GA are provided in Figure 9.1. We see that the demonstrations accurately reflect the

constraints given in the human-generated tree. For instance, the first four objects are

always ordered within the first part of the sequence and the other three objects are

165

ordered in the last part of the sequence, which represents the high-level THEN node

at the root of the tree. In the bad demonstrations, we see that several constraints

are broken, such as the THEN constraint at the root. This is evident through the

swapping of the first and second group of objects mentioned above. Another example

of a broken constraint is the OR constraint since both 2 and 3 appear in the same

demonstration.

If the GA is working correctly, the constraints in the task tree generated should be

similar to those in the human-generated tree. In Figure 9.1 (c) we see that this is

indeed the case. The trees generated by the GA reflect the same task constraints that

were given in the ground truth tree provided by a human. In this experiment, we see

that multiple representations can reflect the same constraints since the trees are not

unique. Since THEN is an ordering constraint, the left child of a THEN must be

completed first. Thus in all three trees we see that 0, (2 OR 3), 1, and 4 all happen

in the same ordering as that shown in the human’s task tree. We also see that the

5 and 6 can happen in either order since they are related by an AND constraint, as

illustrated in the ground truth. The fitness of each sub-tree is given for each tree an

the final fitness is given in bold font. We see that different structure in the third tree

results in a slightly lower fitness even though it produces a correct output since our

fitness function encourages higher-level THEN nodes. From this experiment we see

that the GA is able to correctly learn a task tree with the THEN constraint as a root

and combinations of other constraints underneath.

166

THEN

OR

3

0

2

1THEN

(a) Human-generated task tree for ground truth:

(b) Input demonstrations:

Good: { (0, 3, 1, 4, 5, 6), (0, 2, 1, 4, 5, 6), (0, 3, 1, 4, 6, 5), (0, 2, 1, 4, 6, 5) }

Bad: { (6, 5, 4, 3, 2, 1, 0), (5, 4, 6, 2, 3, 1, 0) }

(c) Task trees generated by the GA:

THEN

THEN

AND

65

4

THEN0

THEN

AND

56

OR

32

THEN

THEN

1

4

THEN0

THEN

AND

56

OR

32 THEN

THEN

1

4

THEN

0

THEN AND

56

OR

32

THEN

THEN

1

4

Fitness: 4

Fitness: 24

Fitness: 8Fitness: 104

Fitness: 432

Fitness: 1736

Fitness: 4

Fitness: 24

Fitness: 104

Fitness: 8

Fitness: 4

Fitness: 8

Fitness: 24

Fitness: 104

Fitness: 432

Fitness: 1736

Fitness: 424

Fitness: 1712

Figure 9.1: Experiment for the task tree with the THEN constraint at the root
and combinations of other constraints below. (a) The human-generated task tree
used for ground truth for the experiment. (b) The demonstrations (both good
demonstrations and bad demonstration) used as input to teach the GA. (c) Three
sample task trees generated by the GA with the fitness of each sub-tree provided
next. The total fitness for the tree is given at the root in bold font. We see that
the trees in (c) resemble the tree in (a) so the GA is able to learn correct trees in

this case.

167

9.3.2 Experiment for AND constraint as root

The second experiment tests whether or not the GA is able to learn a task tree with a

AND constraint as the root node and combinations of other constraints underneath.

The human-generated task tree, input demonstrations, and task tree generated by

the GA are provided in Figure 9.2. We see that the demonstrations accurately reflect

the constraints given in the human-generated tree. For instance, the first four objects

are always grouped together and the last three objects are always grouped together

in the orderings (due to the THEN constraints for these sets of objects), but these

groups can occur either at the beginning or the end of the task, which reflects the

AND node at the root of the tree. As mentioned above, the bad demonstrations

can be full orderings, such as those in the first experiment, or partial orderings of a

subset of objects, such as those in this experiment. We see that the partial orderings

represent infractions of the constraints in the left and right sub-trees of the root node.

If the GA is working correctly, the constraints in the task tree generated should be

similar to those in the human-generated tree. In Figure 9.2 (c) we see that this is

indeed the case. The trees generated by the GA reflect the same task constraints

that were given in the ground truth tree provided by a human. We see that given

the root AND constraint, the left and right subtrees in the ground truth appear on

either side of the AND in the trees generated by the GA. This illustrates that the GA

is able to correctly learn the non-ordering constraint of the AND. We also see as in

the THEN experiment above, since the trees are not unique, the THEN constraints

168

appear in a different structure, but still reflect the same constraints as the ground

truth. Lastly, we see that the OR constraint can have either the 2 or the 3 appear

first, which illustrates that the ordering of the OR’s children doesn’t matter, since

we only care about at most one of the children appearing in the overall task. We see

that different structure in the first tree results in a slightly lower fitness even though

it produces a correct output since our fitness function encourages deeper branches off

of THEN nodes due to the multiplier component. From this experiment we see that

the GA is able to correctly learn a task tree with the AND constraint as a root and

combinations of other constraints underneath.

9.3.3 Experiment for OR constraint as root

The third experiment tests whether or not the GA is able to learn a task tree with

a OR constraint as the root node and combinations of other constraints underneath.

The human-generated task tree, input demonstrations, and task tree generated by

the GA are provided in Figure 9.3. We see that the demonstrations accurately reflect

the constraints given in the human-generated tree. For instance, either the first two

objects appear in the demonstration or the second two objects appear, but not both,

which reflects the OR node at the root of the tree. In the bad demonstrations, we see

that this OR constraint at the root is broken since all of the objects are represented

in the task.

169

THEN

OR

30 21

THEN

(a) Human-generated task tree for ground truth:

(b) Input demonstrations:

Good: { (0, 1, 3, 4, 5, 6), (0, 1, 2, 4, 5, 6), (0, 1, 3, 4, 6, 5), (0, 1, 2, 4, 6, 5), (4, 5, 6, 0, 1, 3), (4, 5, 6, 0, 1, 2), (4, 6, 5, 0, 1, 3), (4, 6, 5, 0, 1, 2) }

Bad: { (1, 0), (5, 4, 6), (6, 4, 5), (3, 2, 1, 0), (2, 3, 1, 0) }

(c) Task trees generated by the GA:

AND

THEN

AND

65

4

THEN

OR

30 21

THEN

AND

THEN

AND

56

4
THEN

OR

3

0

2

1

THEN

AND

THEN

AND

65

4

THEN

OR

2

0

3

1

THEN

AND

THEN

AND

65

4

Fitness: 24 Fitness: 6 Fitness: 10

Fitness: 120 Fitness: 36

Fitness: 156

Fitness: 10

Fitness: 36

Fitness: 6

Fitness: 36

Fitness: 156

Fitness: 192

Fitness: 10

Fitness: 6

Fitness: 36

Fitness: 156 Fitness: 36

Fitness: 192

Figure 9.2: Experiment for the task tree with the AND constraint at the root
and combinations of other constraints below. (a) The human-generated task tree
used for ground truth for the experiment. (b) The demonstrations (both good
demonstrations and bad demonstration) used as input to teach the GA. (c) Three
sample task trees generated by the GA with the fitness of each sub-tree provided
next. The total fitness for the tree is given at the root in bold font. We see that
the trees in (c) resemble the tree in (a) so the GA is able to learn correct trees in

this case.

If the GA is working correctly, the constraints in the task tree generated should be

similar to those in the human-generated tree. In Figure 9.3 (c) we see that this is

indeed the case. The trees generated by the GA reflect the same task constraints that

were given in the ground truth tree provided by a human. We see that the task trees

generated by the GA contain the same sub-trees of the OR as in the ground truth.

The ordering of these sub-trees in the generated tasks can be in either branch, since

170

the OR constraint doesn’t care about the ordering of the child, but only that at most

one of the children appears in the task. We also see in the AND sub-tree, the 0 and 1

can appear in either order, since the AND is a non-ordering constraint. We see that

each of the three trees have the same structure so they all have an equivalent fitness.

From this experiment we see that the GA is able to correctly learn a task tree with

the OR constraint as a root and combinations of other constraints underneath.

9.4 Conclusion & Summary

This chapter focuses on generalized task structure learning for tasks with complex,

hierarchical constraints. For the purposes of this work we assume the task structure

follows the hierarchical architecture defined in our previous work (see Section 3.1).

The methods in this chapter describe a learning framework (based on a genetic al-

gorithm) which is able to learn the structure of a complex, hierarchical task through

the use of human demonstrations. This learning framework can be used to teach a

robot how to perform a task through human demonstration which further extends

the capabilities of the proposed generalized task structure presented in this work.

Learning from human demonstration consists of several major components. In order

to learn a particular task, a human may provide a robot with several demonstrations of

the task. Given these demonstrations, the first step is segmenting out the individual

tasks from the demonstration. In our case, the individual tasks are the pick and

171

OR

THEN

30 21

AND

(a) Human-generated task tree for ground truth:

(b) Input demonstrations:

Good: { (0, 1), (2, 3), (1, 0) }

Bad: { (2, 1, 0, 3) }

(c) Task trees generated by the GA:

OR

AND

12 03

THEN

OR

AND

02 13

THEN

OR

THEN

30 21

AND

Fitness: 4 Fitness: 8

Fitness: 20

Fitness: 4 Fitness: 8

Fitness: 20

Fitness: 4 Fitness: 8

Fitness: 20

Figure 9.3: Experiment for the task tree with the OR constraint at the root
and combinations of other constraints below. (a) The human-generated task tree
used for ground truth for the experiment. (b) The demonstrations (both good
demonstrations and bad demonstration) used as input to teach the GA. (c) Three
sample task trees generated by the GA with the fitness of each sub-tree provided
next. The total fitness for the tree is given at the root in bold font. We see that
the trees in (c) resemble the tree in (a) so the GA is able to learn correct trees in

this case.

172

place movements of a particular object. The second step is using these segmented

demonstrations to learn how to perform the task. In our case, this entails learning

the sequence in which the objects were placed. The last step is transferring these

learned tasks to the robot to ensure the robot can completely complete the learned

tasks. For the purposes of the work presented in this chapter, we are focusing on

the second step as the learning is the most important component for developing a

generalized task structure as proposed in this work.

The learning task in this work entails learning the ordering in which objects can be

placed. A single demonstration in our case is represented by a particular ordering

in which objects are placed. However, due to the constraints of a task, there may

be multiple ways to perform a given task. Therefore, the learning scheme must

be able to encompass the set of possible orderings within a single task structure.

Because of this reason, we assume that the possible set of orderings are represented

by a hierarchical task representation with a set of constraints (THEN, AND, OR)

as discussed in Section 3.1. Therefore, this chapter aims are solving the following

problem: Given a set of demonstrations, generate a hierarchical representation which

accurately represents the constraints inherent in the demonstrations.

The learning framework proposed in this chapter is built around a Genetic Algorithm

(GA). The method uses a novel compression-like encoding scheme to represent the

chromosomes for the GA. The encoding scheme is discussed in Section 9.2.1. The

provided demonstrations are used in the fitness function of the GA to determine how

173

well the generated chromosomes fit the constraints inherent in the task, as discussed

in Section 9.2.2. The modified GA algorithm is presented in Section 9.2.3.

The GA method (Algorithm 19) is validated on three different experiments. In order

to evaluate whether or not the GA produced valid representations of a set of demon-

strations, each experiment is designed from a human-generated task tree to act as

ground truth. Each of these task trees contain one of the constraints (THEN, AND,

OR) as a root node of the tree and various combinations of constraints underneath the

root. These task trees are used to generate both a set of good demonstrations which

represent valid orderings for each tree and a set of bad demonstrations which represent

invalid orderings, or orderings which break the constraints of the tree. These demon-

strations are passed as input to the GA in order to learn a hierarchical representation

which reflects the inherent task constraints. The human-generated task trees are used

to verify whether or not the task trees generated by the GA reflect the same con-

straints as those provided by the human. Together, the three experiments illustrate

that the GA is able to learn hierarchical tasks with complex constraints through the

use of human demonstration, as specified in one of the main contributions given in

Section 1.4.

174

Chapter 10

Conclusion & Future Work

10.1 Conclusion

The goal of the proposed work is to develop a generalized task structure which enables

collaborative task allocation for complex, hierarchical tasks for both multi-robot and

human-robot teams. The basis of this work is a previously developed collaborative

multi-robot control architecture described in Chapter 3. This architecture focuses

on the problem of task allocation under hierarchical constraints imposed on a joint

task. Real-world tasks are not only a series of sequential steps, but typically exhibit

a combination of multiple types of constraints, where some parts of the task are

sequential, some have no ordering constraints, and others allow for alternative paths of

execution. Therefore, to enable multi-robot and human-robot teams to complete joint

tasks in the real world, the design of a generalized hierarchical control architecture

175

which is able to encompass all of these types of constraints is necessary. One primary

example which illustrates this concept is a building task. In order to correctly build

a piece of furniture, certain parts have to be connected first whereas others can be

attached at various points in the process.

In order to realize the development of a generalized task structure for task alloca-

tion for both multi-robot and human-robot teams, several major extensions to our

previously developed control architecture are proposed in Chapters 4-9. Each of the

extensions proposed in these chapters correspond to a major contribution towards

the development of such a generalized task structure. The proposed extensions of

this work fall into two categories: multi-robot capabilities and human-robot capabili-

ties. These contributions are described below along with the major conclusions drawn

from their corresponding chapters as well as their connection to the development of

a generalized task structure.

Human-robot capabilities:

• A novel approach to robot task learning from verbal instruction.

– Chapter 4 describes a novel approach to transfer complex task knowledge

from a human user to a robot, with the goal of exploiting the richness of

natural language instructions in order to increase the complexity of task

representations that a robot can learn. In particular, the focus was on

learning tasks which convey complex execution constraints (such as alter-

native paths of execution, sequential or non-ordering constraints, as well

176

as hierarchical representations), as well as on enabling behavior parameter-

ization through the instruction.

– This verbal instruction system allows the proposed generalized task struc-

ture to be utilized to teach robots to perform tasks through verbal instruc-

tion.

• A fault recovery system able to detect and inform users of failures and resolve

them through dialogue.

– Chapter 5 described development of a hierarchical control architecture that

1) autonomously detects and is cognizant of task execution failures, 2) ini-

tiates a dialogue with a human helper to obtain assistance, and 3) enables

collaborative human-robot task execution through extended dialogue in order

to 4) ensure robust execution of hierarchical tasks with complex constraints,

such as sequential, non-ordering, and multiple paths of execution.

– The incorporation of a fault recovery system which is able to detect and

inform users of failures and resolve them through dialogue allows for a more

robust task allocation mechanism. Additionally, it enables the proposed

generalized task structure to be utilized in complex, hierarchical tasks

which are prone to failures as well as those which require collaboration

between humans and robots.

• An extension of our previously developed control architecture to facilitate col-

laboration by human-robot teams.

177

– Chapter 6 describes the extension of the multi-robot control architecture

to the human-robot domain through the development of a human intent

recognition system which enables to robot to identify which part of the task

the human has already completed as well as what the human is currently

working on so that the agents can work independently on the joint task

with minimal interruption.

– This contribution allows the generalized task structure to be utilized for

human-robot teams performing collaborative tasks as well as for tasks in

which the agents can work independently.

Multi-robot capabilities:

• An extension of our previously developed control architecture for incorporating

the varying capabilities of a team of heterogeneous robots.

– Chapter 7 describes the development of an architecture that enables col-

laborative execution of tasks with hierarchical representations and multiple

types of execution constraints by teams of robots with variable heterogene-

ity through the utilization of a continuous-valued metric representing the

agents’ ability to perform a given task.

– The variable heterogeneity capabilities can be utilized by the generalized

task structure to encourage a robust and reliable task allocation scheme

by allocating robots to tasks which best fit their specific skills.

178

• An extension of our previously developed control architecture for an interde-

pendence constraint which requires explicit coordination between agents.

– Chapter 8 describes the addition of a WHILE constraint and a HOLD be-

havior to the control architecture in order to enable explicit coordination

between agents on a particular part of a given task through the interdepen-

dence constraint. This additional constraint was also incorporated into the

verbal instruction system described in Chapter 4 to allow a human to train

a robot for tasks which utilize this constraint through verbal instruction.

– This addition allows the generalized task structure to represent tasks which

require explicit coordination between agents on various parts of a given

task.

• A novel method based on a genetic algorithm which is able to take sequences

of demonstrations and learn a hierarchical task representation.

– Chapter 9 describes a learning method based on a genetic algorithm which

which is able to learn the structure of a complex, hierarchical task through

the use of human demonstrations. This structure can then be used directly

by the robot to execute the trained task.

– This contribution defines a scheme which allows the generalized task struc-

ture to learn tasks from human demonstration.

179

10.2 Future Work

10.2.1 Multi-Robot Task Allocation

One future area for exploration in the multi-robot domain is using both arms of each

robot. This would lead to increased team efficiency as well as allow for completion of

more complex tasks. To accomplish this, specific modules for obstacle avoidance will

need to be developed in order to avoid collisions during the task execution.

Several extensions can be made to further account for the varying skills in a team

of heterogeneous robots. One extension is to include additional features in the com-

putation of the robot’s performance metric, such as a feature that provides insight

into the efficiency of the trajectories computed to reach the objects and the destina-

tion. Another extension would be to add to the repertoire of types of tasks that the

generalized task structure can handle. The easiest addition would be to develop a

new behavior node which utilizes the navigation skills of certain robots. This would

emphasize the varying capabilities between stationary and non-stationary robots and

would allow for a wider range of tasks to be utilized by the proposed generalized task

structure.

180

10.2.2 Human-Robot Task Allocation

An immediate extension of the proposed work to allow for both human-robot and

multi-robot teams is to incorporate both the proposed fault recovery system (Chap-

ter 5) and verbal instruction system (Chapter 4) into teams consisting of both humans

and multiple robots. This extension would allow the dialogue systems developed in

both chapters to be utilized for communication not only between human and robot

teammates, but also between multiple robot teammates. This would allow for robots

to ask for assistance both from the human as well as the other robot teammates dur-

ing execution failures. This would also allow for humans to use verbal instructions

to teach teams of robots to learn new tasks simultaneously. Both of these extensions

would help to increase the human-robot collaboration capabilities of the proposed

generalized task structure. They would also allow for a wider range of applications

which require more than two agents to complete.

10.2.3 Generalized Task Learning

In order to further the proposed research there are two main outlets which can be

pursued for generalized task learning. The first one is to further extend the proposed

generalized task learning method to allow it to learn the primitives used to generate

the sequences through visual representation. As it stands, the proposed work assumes

that the set of primitives used to generate the demonstration sequences are predefined.

However, this requires the encoding of these primitives to physical actions on the robot

181

to be defined by hand. This extension would avoid this by allowing the system to

first learn these primitives through raw visual data. This extension would begin to

combine a type of generalized policy learning method with the proposed generalized

task learning method to create a complete end-to-end system capable of learning

complex task representations and transfer them to teams of heterogeneous robots

through only the use of raw visual data.

The second is to develop a system which enables joint learning from multiple robots

on-line. In this extension there would be two added benefits: i) allowing the system

to learn on-line through rehearsing the task multiple times in order to learn how to

best complete it and ii) allowing the generated task representation to fuse the on-line

observations of multiple robots at a time to create a single task representation that

works for both robots. In this case, the tasks would be split between two robots and

each robot would perform certain tasks which they find they are more suited for.

Therefore some parts of the task may only be seen by a single robot, which means

that the robots would need to communicate and collaborate in order to generate a

complete task representation which encompasses the correct hierarchy of sub-tasks.

182

Bibliography

[1] Luke Fraser, Banafsheh Rekabdar, Monica Nicolescu, Mircea Nicolescu, David

Feil-Seifer, and George Bebis. A compact task representation for hierarchical

robot control. In International Conference on Humanoid Robots, pages 697–

704, Cancun, Mexico, November 2016. IEEE. ISBN 978-1-5090-4717-8. doi:

10.1109/HUMANOIDS.2016.7803350.

[2] Luke Fraser, Banafsheh Rekabdar, Monica Nicolescu, Mircea Nicolescu, and

David Feil-Seifer. A hierarchical control architecture for robust and adaptive

collaborative robot task execution. In Robotics: Science & Systems: Workshop

on Planning for Human-Robot Interaction: Shared Autonomy and Collaborative

Robotics, Cambridge, MA, June 2016.

[3] Brian P. Gerkey and Maja J. Matarić. A formal analysis and taxonomy of

task allocation in multi-robot systems. The International Journal of Robotics

Research, 23(9):939–954, 2004. doi: 10.1177/0278364904045564. URL https:

//doi.org/10.1177/0278364904045564.

https://doi.org/10.1177/0278364904045564
https://doi.org/10.1177/0278364904045564

Bibliography 183

[4] Janelle Blankenburg, Santosh Balajee Banisetty, Seyed Pourya Hoseini Alin-

odehi, Luke Fraser, David Feil-Seifer, Monica N. Nicolescu, and Mircea Nico-

lescu. A distributed control architecture for collaborative multi-robot task al-

location. In 17th IEEE-RAS International Conference on Humanoid Robotics,

Humanoids 2017, Birmingham, United Kingdom, November 15-17, 2017, pages

585–592, 2017. doi: 10.1109/HUMANOIDS.2017.8246931. URL https://doi.

org/10.1109/HUMANOIDS.2017.8246931.

[5] Brenna D Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A

survey of robot learning from demonstration. Robotics and autonomous systems,

57(5):469–483, 2009.

[6] Sergey Levine, Nolan Wagener, and Pieter Abbeel. Learning contact-rich ma-

nipulation skills with guided policy search. In Robotics and Automation (ICRA),

2015 IEEE International Conference on, pages 156–163. IEEE, 2015.

[7] Martin Riedmiller, Roland Hafner, Thomas Lampe, Michael Neunert, Jonas

Degrave, Tom Van de Wiele, Volodymyr Mnih, Nicolas Heess, and Jost Tobias

Springenberg. Learning by playing-solving sparse reward tasks from scratch.

arXiv preprint arXiv:1802.10567, 2018.

[8] Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning in

robotics: A survey. The International Journal of Robotics Research, 32(11):

1238–1274, 2013.

https://doi.org/10.1109/HUMANOIDS.2017.8246931
https://doi.org/10.1109/HUMANOIDS.2017.8246931

Bibliography 184

[9] Sergey Levine and Vladlen Koltun. Guided policy search. In International

Conference on Machine Learning, pages 1–9, 2013.

[10] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end

training of deep visuomotor policies. The Journal of Machine Learning Re-

search, 17(1):1334–1373, 2016.

[11] William H Montgomery and Sergey Levine. Guided policy search via approx-

imate mirror descent. In Advances in Neural Information Processing Systems,

pages 4008–4016, 2016.

[12] Ashvin Nair, Vitchyr Pong, Murtaza Dalal, Shikhar Bahl, Steven Lin, and

Sergey Levine. Visual reinforcement learning with imagined goals. arXiv

preprint arXiv:1807.04742, 2018.

[13] Marvin Zhang, Sharad Vikram, Laura Smith, Pieter Abbeel, Matthew J John-

son, and Sergey Levine. Solar: Deep structured latent representations for model-

based reinforcement learning. arXiv preprint arXiv:1808.09105, 2018.

[14] Maja J Matarić. Reinforcement learning in the multi-robot domain. In Robot

colonies, pages 73–83. Springer, 1997.

[15] Jakob Foerster, Ioannis Alexandros Assael, Nando de Freitas, and Shimon

Whiteson. Learning to communicate with deep multi-agent reinforcement learn-

ing. In Advances in Neural Information Processing Systems, pages 2137–2145,

2016.

Bibliography 185

[16] Landon Kraemer and Bikramjit Banerjee. Multi-agent reinforcement learning

as a rehearsal for decentralized planning. Neurocomputing, 190:82–94, 2016.

[17] Chongjie Zhang and Victor Lesser. Coordinating multi-agent reinforcement

learning with limited communication. In Proceedings of the 2013 international

conference on Autonomous agents and multi-agent systems, pages 1101–1108.

International Foundation for Autonomous Agents and Multiagent Systems,

2013.

[18] Daniel Garant, Bruno Castro da Silva, Victor Lesser, and Chongjie Zhang. Ac-

celerating multi-agent reinforcement learning with dynamic co-learning. Tech-

nical report, Technical report, 2015.

[19] Yan Duan, Marcin Andrychowicz, Bradly Stadie, OpenAI Jonathan Ho, Jonas

Schneider, Ilya Sutskever, Pieter Abbeel, and Wojciech Zaremba. One-shot

imitation learning. In Advances in neural information processing systems, pages

1087–1098, 2017.

[20] Yan Wu and Yiannis Demiris. Hierarchical learning approach for one-shot ac-

tion imitation in humanoid robots. In Control Automation Robotics & Vision

(ICARCV), 2010 11th International Conference on, pages 453–458. IEEE, 2010.

[21] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation

learning and structured prediction to no-regret online learning. In Proceedings

of the fourteenth international conference on artificial intelligence and statistics,

pages 627–635, 2011.

Bibliography 186

[22] Sonia Chernova and Manuela Veloso. Interactive policy learning through

confidence-based autonomy. Journal of Artificial Intelligence Research, 34:1–25,

2009.

[23] David Freelan, Drew Wicke, Keith Sullivan, and Sean Luke. Towards rapid

multi-robot learning from demonstration at the robocup competition. In Robot

Soccer World Cup, pages 369–382. Springer, 2014.

[24] Christopher Amato, George Konidaris, Ariel Anders, Gabriel Cruz, Jonathan P

How, and Leslie P Kaelbling. Policy search for multi-robot coordination under

uncertainty. The International Journal of Robotics Research, 35(14):1760–1778,

2016.

[25] Felix Duvallet and Anthony Stentz. Imitation learning for task allocation. In

Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Confer-

ence on, pages 3568–3573. IEEE, 2010.

[26] Bradford A Towle and Monica Nicolescu. An auction behavior-based robotic ar-

chitecture for service robotics. Intelligent Service Robotics, 7(3):157–174, 2014.

[27] Nathan Michael, Michael M Zavlanos, Vijay Kumar, and George J Pappas.

Distributed multi-robot task assignment and formation control. In Robotics

and Automation, 2008. ICRA 2008. IEEE International Conference on, pages

128–133. IEEE, 2008.

Bibliography 187

[28] M Bernardine Dias, Robert Zlot, Nidhi Kalra, and Anthony Stentz. Market-

based multirobot coordination: A survey and analysis. Proceedings of the IEEE,

94(7):1257–1270, 2006.

[29] Anahita Mohseni-Kabir, Sonia Chernova, and Charles Rich. Collaborative

learning of hierarchical task networks from demonstration and instruction. In

RSS Workshop on Human-Robot Collaboration for Industrial Manufacturing,

Berkeley, CA, 2014.

[30] Bradley Hayes and Brian Scassellati. Autonomously constructing hierarchical

task networks for planning and human-robot collaboration. In Robotics and

Automation (ICRA), 2016 IEEE International Conference on, pages 5469–5476.

IEEE, 2016.

[31] Monica N Nicolescu and Maja J Mataric. Experience-based representation

construction: learning from human and robot teachers. In Intelligent Robots

and Systems, 2001. Proceedings. 2001 IEEE/RSJ International Conference on,

volume 2, pages 740–745. IEEE, 2001.

[32] Monica N Nicolescu and Maja J Mataric. Natural methods for robot task learn-

ing: Instructive demonstrations, generalization and practice. In Proceedings of

the second international joint conference on Autonomous agents and multiagent

systems, pages 241–248. ACM, 2003.

[33] Katie Browne and Monica Nicolescu. Learning to generalize from demonstra-

tions. Cybernetics and Information Technologies, 12(3):27–38, 2012.

Bibliography 188

[34] Hajime Asama, Akihiro Matsumoto, and Yoshiki Ishida. Design of an au-

tonomous and distributed robot system: Actress. In IROS, volume 89, pages

283–290, 1989.

[35] Lynne E Parker. Alliance: An architecture for fault tolerant, cooperative

control of heterogeneous mobile robots. In Intelligent Robots and Systems’

94.’Advanced Robotic Systems and the Real World’, IROS’94. Proceedings of the

IEEE/RSJ/GI International Conference on, volume 2, pages 776–783. IEEE,

1994.

[36] Brian P Gerkey and Maja J Matarić. Murdoch: Publish/subscribe task alloca-

tion for heterogeneous agents. In Proceedings of the International Conference

on Autonomous Agents, pages 203–204. ACM, 2000.

[37] Ronald C. Arkin. An Behavior-based Robotics. MIT Press, Cambridge, MA,

USA, 1st edition, 1998. ISBN 0262011654.

[38] Maja J Matarić. Behavior-based control: Main properties and implications.

In Proceedings, IEEE International Conference on Robotics and Automation,

Workshop on Architectures for Intelligent Control Systems, pages 46–54, 1992.

[39] Lynne E Parker. L-alliance: Task-oriented multi-robot learning in behavior-

based systems. Advanced Robotics, 11(4):305–322, 1996.

[40] Barry Brian Werger and Maja J. Matarić. Broadcast of local eligibility:

Behavior-based control for strongly cooperative robot teams. In Proceedings

Bibliography 189

of the Fourth International Conference on Autonomous Agents, AGENTS ’00,

pages 21–22, New York, NY, USA, 2000. ACM. ISBN 1-58113-230-1. doi:

10.1145/336595.336621. URL http://doi.acm.org/10.1145/336595.336621.

[41] M. B. Dias, R. Zlot, N. Kalra, and A. Stentz. Market-based multirobot coordi-

nation: A survey and analysis. Proceedings of the IEEE, 94(7):1257–1270, July

2006. ISSN 0018-9219. doi: 10.1109/JPROC.2006.876939.

[42] Lynne E. Parker. Multiple mobile robot systems. In Bruno Siciliano and Ous-

sama Khatib, editors, Springer Handbook of Robotics, pages 921–941. Springer

Berlin Heidelberg, Berlin, Heidelberg, 2008.

[43] Zhongya Wang, Min Li, Jie Li, Jinge Cao, and Hanqing Wang. A task allocation

algorithm based on market mechanism for multiple robot systems. In Real-time

Computing and Robotics (RCAR), IEEE International Conference on, pages

150–155. IEEE, 2016.

[44] G. P. Das, T. M. McGinnity, and S. A. Coleman. Simultaneous allocations of

multiple tightly-coupled multi-robot tasks to coalitions of heterogeneous robots.

In 2014 IEEE International Conference on Robotics and Biomimetics (ROBIO

2014), pages 1198–1204, Dec 2014. doi: 10.1109/ROBIO.2014.7090496.

[45] Sahar Trigui, Anis Koubaa, Omar Cheikhrouhou, Habib Youssef, Hachemi Ben-

naceur, Mohamed-Foued Sriti, and Yasir Javed. A distributed market-based

algorithm for the multi-robot assignment problem. Procedia Computer Science,

32:1108–1114, 2014.

http://doi.acm.org/10.1145/336595.336621

Bibliography 190

[46] José Guerrero and Gabriel Oliver. Multi-robot coalition formation in real-time

scenarios. Robotics and Autonomous Systems, 60(10):1295 – 1307, 2012. ISSN

0921-8890. doi: https://doi.org/10.1016/j.robot.2012.06.004. URL http://

www.sciencedirect.com/science/article/pii/S0921889012000942.

[47] Y. Zhang and L. E. Parker. Iq-asymtre: Synthesizing coalition formation and

execution for tightly-coupled multirobot tasks. In 2010 IEEE/RSJ International

Conference on Intelligent Robots and Systems, pages 5595–5602, Oct 2010. doi:

10.1109/IROS.2010.5651186.

[48] Y. Zhang, L. E. Parker, and S. Kambhampati. Coalition coordination for tightly

coupled multirobot tasks with sensor constraints. In 2014 IEEE International

Conference on Robotics and Automation (ICRA), pages 1090–1097, May 2014.

doi: 10.1109/ICRA.2014.6906990.

[49] L. Chaimowicz, T. Sugar, V. Kumar, and M. F. M. Campos. An architecture

for tightly coupled multi-robot cooperation. In Proceedings 2001 ICRA. IEEE

International Conference on Robotics and Automation (Cat. No.01CH37164),

volume 3, pages 2992–2997 vol.3, 2001. doi: 10.1109/ROBOT.2001.933076.

[50] T. Huntsberger, P. Pirjanian, A. Trebi-Ollennu, H. Das Nayar, H. Aghazarian,

A. J. Ganino, M. Garrett, S. S. Joshi, and P. S. Schenker. Campout: a control

architecture for tightly coupled coordination of multirobot systems for planetary

surface exploration. IEEE Transactions on Systems, Man, and Cybernetics -

http://www.sciencedirect.com/science/article/pii/S0921889012000942
http://www.sciencedirect.com/science/article/pii/S0921889012000942

Bibliography 191

Part A: Systems and Humans, 33(5):550–559, Sept 2003. ISSN 1083-4427. doi:

10.1109/TSMCA.2003.817398.

[51] Terry L. Huntsberger, Ashitey Trebi-Ollennu, Hrand Aghazarian, Paul S.

Schenker, Paolo Pirjanian, and Hari Das Nayar. Distributed control of multi-

robot systems engaged in tightly coupled tasks. Autonomous Robots, 17(1):

79–92, Jul 2004. ISSN 1573-7527. doi: 10.1023/B:AURO.0000032939.08597.62.

URL https://doi.org/10.1023/B:AURO.0000032939.08597.62.

[52] Mary Koes, Illah Nourbakhsh, and Katia Sycara. Heterogeneous multirobot

coordination with spatial and temporal constraints. In Proceedings of the Na-

tional Conference on Artificial Intelligence, AAAI’05, pages 1292–1297. AAAI

Press, 2005. ISBN 1-57735-236-x.

[53] V. A. Ziparo, L. Iocchi, P. U. Lima, D. Nardi, and P. F. Palamara. Petri net

plans - A framework for collaboration and coordination in multi-robot systems.

Autonomous Agents and Multi-Agent Systems, 23(3):344–383, 2011. doi: 10.

1007/s10458-010-9146-1.

[54] Saeed Saeedvand, Hadi S Aghdasi, and Jacky Baltes. Robust multi-objective

multi-humanoid robots task allocation based on novel hybrid metaheuristic al-

gorithm. Applied Intelligence, 49(12):4097–4127, 2019.

[55] Vieri Giuliano Santucci, Emilio Cartoni, Bruno Castro da Silva, and Gianluca

Baldassarre. Autonomous open-ended learning of interdependent tasks. arXiv

preprint arXiv:1905.02690, 2019.

https://doi.org/10.1023/B:AURO.0000032939.08597.62

Bibliography 192

[56] Matthew Johnson, Jeffrey M Bradshaw, Paul J Feltovich, Catholijn M Jonker,

M Birna Van Riemsdijk, and Maarten Sierhuis. Coactive design: Designing sup-

port for interdependence in joint activity. Journal of Human-Robot Interaction,

3(1):43–69, 2014.

[57] Stanislao Lauria, Guido Bugmann, Theocharis Kyriacou, and Ewan Klein. Mo-

bile robot programming using natural language. Robotics and Autonomous

Systems, 38(3):171 – 181, 2002. ISSN 0921-8890. doi: https://doi.

org/10.1016/S0921-8890(02)00166-5. URL http://www.sciencedirect.com/

science/article/pii/S0921889002001665. Advances in Robot Skill Learn-

ing.

[58] Cynthia Matuszek, Evan Herbst, Luke Zettlemoyer, and Dieter Fox. Learning to

Parse Natural Language Commands to a Robot Control System, pages 403–415.

Springer International Publishing, Heidelberg, 2013. ISBN 978-3-319-00065-7.

doi: 10.1007/978-3-319-00065-7 28.

[59] Felix Duvalet. Natural Language Direction Following for Robots in Unstructured

Unknown Environments. PhD thesis, Carnegie Mellon University, 2012.

[60] T. C. Lueth, T. Laengle, G. Herzog, E. Stopp, and U. Rembold. Kantra-

human-machine interaction for intelligent robots using natural language. In

Proceedings of 1994 3rd IEEE International Workshop on Robot and Human

Communication, pages 106–111, Jul 1994. doi: 10.1109/ROMAN.1994.365947.

http://www.sciencedirect.com/science/article/pii/S0921889002001665
http://www.sciencedirect.com/science/article/pii/S0921889002001665

Bibliography 193

[61] M. Ralph and M. A. Moussa. Toward a natural language interface for transfer-

ring grasping skills to robots. IEEE Transactions on Robotics, 24(2):468–475,

April 2008. ISSN 1552-3098. doi: 10.1109/TRO.2008.915445.

[62] Yonatan Bisk, Deniz Yuret, and Daniel Marcu. Natural language communica-

tion with robots. In Proceedings North American Chapter of the Association

for Computational Linguistics, 2016.

[63] Guang-Hong Wang, Ping Jiang, and Zu-Ren Feng. Extraction of robot prim-

itive control rules from natural language instructions. International Jour-

nal of Automation and Computing, 3(3):282–290, Jul 2006. ISSN 1751-

8520. doi: 10.1007/s11633-006-0282-7. URL https://doi.org/10.1007/

s11633-006-0282-7.

[64] Jesse Thomason, Shiqi Zhang, Raymond Mooney, and Peter Stone. Learn-

ing to interpret natural language commands through human-robot dialog. In

Proceedings of the 24th International Conference on Artificial Intelligence, IJ-

CAI’15, pages 1923–1929. AAAI Press, 2015. ISBN 978-1-57735-738-4. URL

http://dl.acm.org/citation.cfm?id=2832415.2832516.

[65] Ana Ramirez Chang. User-Extensible Natural Language Spoken Interfaces for

Environment and Device Control. PhD thesis, EECS Department, University of

California, Berkeley, Dec 2008. URL http://www2.eecs.berkeley.edu/Pubs/

TechRpts/2008/EECS-2008-162.html.

https://doi.org/10.1007/s11633-006-0282-7
https://doi.org/10.1007/s11633-006-0282-7
http://dl.acm.org/citation.cfm?id=2832415.2832516
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-162.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-162.html

Bibliography 194

[66] Dilip Arumugam, Siddharth Karamcheti, Nakul Gopalan, Lawson L. S. Wong,

and Stefanie Tellex. Accurately and efficiently interpreting human-robot in-

structions of varying granularities. CoRR, abs/1704.06616, 2017. URL http:

//arxiv.org/abs/1704.06616.

[67] Matthias Scheutz, Evan Krause, Brad Oosterveld, Tyler Frasca, and Robert

Platt. Spoken instruction-based one-shot object and action learning in a cogni-

tive robotic architecture. In Proceedings of the 16th Conference on Autonomous

Agents and MultiAgent Systems, AAMAS ’17, pages 1378–1386, Richland, SC,

2017. International Foundation for Autonomous Agents and Multiagent Sys-

tems. URL http://dl.acm.org/citation.cfm?id=3091282.3091315.

[68] Dipendra K. Misra, Jaeyong Sung, Kevin Lee, and Ashutosh Saxena. Tell

me dave: Context-sensitive grounding of natural language to manipulation

instructions. The International Journal of Robotics Research, 35(1-3):281–

300, 2016. doi: 10.1177/0278364915602060. URL https://doi.org/10.1177/

0278364915602060.

[69] Stefanie Tellex, Thomas Kollar, Steven Dickerson, Matthew R. Walter,

Ashish G. Banerjee, Seth Teller, and Nicholas Roy. Understanding natural

language commands for robotic navigation and mobile manipulation. In Pro-

ceedings of the National Conference on Artificial Intelligence (AAAI), pages

1507–1514, San Francisco, CA, August 2011.

http://arxiv.org/abs/1704.06616
http://arxiv.org/abs/1704.06616
http://dl.acm.org/citation.cfm?id=3091282.3091315
https://doi.org/10.1177/0278364915602060
https://doi.org/10.1177/0278364915602060

Bibliography 195

[70] Woodley Packard. Answer constraint engine, 2015. URL http://sweaglesw.

org/linguistics/ace/.

[71] Cynthia Breazeal, Guy Hoffman, and Andrea Lockerd. Teaching and working

with robots as a collaboration. In Proceedings of the Third International Joint

Conference on Autonomous Agents and Multiagent Systems-Volume 3, pages

1030–1037. IEEE Computer Society, 2004.

[72] Paul E Rybski, Kevin Yoon, Jeremy Stolarz, and Manuela M Veloso. Interactive

robot task training through dialog and demonstration. In Proceedings of the

ACM/IEEE international conference on Human-robot interaction, pages 49–56.

ACM, 2007.

[73] Anahita Mohseni-Kabir, Charles Rich, Sonia Chernova, Candace L Sidner, and

Daniel Miller. Interactive hierarchical task learning from a single demonstration.

In Proceedings of the Tenth Annual ACM/IEEE International Conference on

Human-Robot Interaction, pages 205–212. ACM, 2015.

[74] Alessandro Roncone, Olivier Mangin, and Brian Scassellati. Transparent role

assignment and task allocation in human robot collaboration. In 2017 IEEE

International Conference on Robotics and Automation (ICRA), pages 1014–

1021. IEEE, 2017.

[75] Terrence Fong, Charles Thorpe, and Charles Baur. Robot, asker of ques-

tions. Robotics and Autonomous Systems, 42(3):235 – 243, 2003. ISSN

http://sweaglesw.org/linguistics/ace/
http://sweaglesw.org/linguistics/ace/

Bibliography 196

0921-8890. doi: https://doi.org/10.1016/S0921-8890(02)00378-0. URL http:

//www.sciencedirect.com/science/article/pii/S0921889002003780. So-

cially Interactive Robots.

[76] T. Fong, C. Thorpe, and C. Baur. Multi-robot remote driving with collaborative

control. IEEE Transactions on Industrial Electronics, 50(4):699–704, Aug 2003.

ISSN 0278-0046. doi: 10.1109/TIE.2003.814768.

[77] Ross A. Knepper, Stefanie Tellex, Adrian Li, Nicholas Roy, and Daniela Rus.

Recovering from failure by asking for help. Autonomous Robots, 39(3):347–362,

Oct 2015. ISSN 1573-7527. doi: 10.1007/s10514-015-9460-1. URL https:

//doi.org/10.1007/s10514-015-9460-1.

[78] Ronald C. Arkin, Masahiro Fujita, Tsuyoshi Takagi, and Rika Hasegawa. An

ethological and emotional basis for human–robot interaction. Robotics and Au-

tonomous Systems, 42(3-4):191–201, Mar 2003. doi: 10.1016/s0921-8890(02)

00375-5. URL https://doi.org/10.1016/s0921-8890(02)00375-5.

[79] S. Thrun, M. Beetz, M. Bennewitz, W. Burgard, A. B. Cremers, F. Dellaert,

D. Fox, D. Hähnel, C. Rosenberg, N. Roy, J. Schulte, and D. Schulz. Prob-

abilistic Algorithms and the Interactive Museum Tour-Guide Robot Minerva.

International Journal of Robotics Research, 19(11):972–999, 2000. doi: 10.1177/

02783640022067922. URL https://doi.org/10.1177/02783640022067922.

[80] Kerstin Severinson-Eklundh, Anders Green, and Helge Hüttenrauch. Social

and collaborative aspects of interaction with a service robot. Robotics and

http://www.sciencedirect.com/science/article/pii/S0921889002003780
http://www.sciencedirect.com/science/article/pii/S0921889002003780
https://doi.org/10.1007/s10514-015-9460-1
https://doi.org/10.1007/s10514-015-9460-1
https://doi.org/10.1016/s0921-8890(02)00375-5
https://doi.org/10.1177/02783640022067922

Bibliography 197

Autonomous Systems, 42(3-4):223–234, mar 2003. doi: 10.1016/s0921-8890(02)

00377-9. URL https://doi.org/10.1016/s0921-8890(02)00377-9.

[81] M. Hans, B. Graf, and R.D. Schraft. Robotic home assistant care-o-bot: past-

present-future. In Proceedings of Robot and Human Interactive Communication.

IEEE. doi: 10.1109/roman.2002.1045652. URL https://doi.org/10.1109/

roman.2002.1045652.

[82] R.O. Ambrose, H. Aldridge, R.S. Askew, R.R. Burridge, W. Bluethmann,

M. Diftler, C. Lovchik, D. Magruder, and F. Rehnmark. Robonaut: NASA’s

space humanoid. IEEE Intelligent Systems, 15(4):57–63, jul 2000. doi:

10.1109/5254.867913. URL https://doi.org/10.1109/5254.867913.

[83] J. Khurshid and Hong Bing-rong. Military robots - a glimpse from today and

tomorrow. In ICARCV Control, Automation, Robotics and Vision Conference,

2004. doi: 10.1109/icarcv.2004.1468925. URL https://doi.org/10.1109/

icarcv.2004.1468925.

[84] J. Casper and R.R. Murphy. Human-robot interactions during the robot-

assisted urban search and rescue response at the world trade center. IEEE

Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 33(3):

367–385, jun 2003. doi: 10.1109/tsmcb.2003.811794. URL https://doi.org/

10.1109/tsmcb.2003.811794.

[85] Muhammad Awais and Dominik Henrich. Human-robot collaboration by in-

tention recognition using probabilistic state machines. In 19th International

https://doi.org/10.1016/s0921-8890(02)00377-9
https://doi.org/10.1109/roman.2002.1045652
https://doi.org/10.1109/roman.2002.1045652
https://doi.org/10.1109/5254.867913
https://doi.org/10.1109/icarcv.2004.1468925
https://doi.org/10.1109/icarcv.2004.1468925
https://doi.org/10.1109/tsmcb.2003.811794
https://doi.org/10.1109/tsmcb.2003.811794

Bibliography 198

Workshop on Robotics in Alpe-Adria-Danube Region (RAAD 2010). IEEE,

jun 2010. doi: 10.1109/raad.2010.5524605. URL https://doi.org/10.1109/

raad.2010.5524605.

[86] Zhichao Wang, Bin Wang, Hong Liu, and Zhaodan Kong. Recurrent convo-

lutional networks based intention recognition for human-robot collaboration

tasks. In International Conference on Systems, Man, and Cybernetics (SMC),

2017. doi: 10.1109/smc.2017.8122856. URL https://doi.org/10.1109/smc.

2017.8122856.

[87] Przemyslaw A. Lasota and Julie A. Shah. Analyzing the effects of human-

aware motion planning on close-proximity human–robot collaboration. Human

Factors: The Journal of the Human Factors and Ergonomics Society, 57(1):

21–33, jan 2015. doi: 10.1177/0018720814565188. URL https://doi.org/10.

1177/0018720814565188.

[88] Ren C. Luo and Charly Huang. Human-aware motion planning based on search

and sampling approach. In Workshop on Advanced Robotics and its Social

Impacts (ARSO), 2016. doi: 10.1109/arso.2016.7736286. URL https://doi.

org/10.1109/arso.2016.7736286.

[89] Stefan Escaida Navarro, Maximiliano Marufo, Yitao Ding, Stephan Puls,

Dirk Goger, Bjorn Hein, and Heinz Worn. Methods for safe human-robot-

interaction using capacitive tactile proximity sensors. In 2013 IEEE/RSJ In-

ternational Conference on Intelligent Robots and Systems. IEEE, November

https://doi.org/10.1109/raad.2010.5524605
https://doi.org/10.1109/raad.2010.5524605
https://doi.org/10.1109/smc.2017.8122856
https://doi.org/10.1109/smc.2017.8122856
https://doi.org/10.1177/0018720814565188
https://doi.org/10.1177/0018720814565188
https://doi.org/10.1109/arso.2016.7736286
https://doi.org/10.1109/arso.2016.7736286

Bibliography 199

2013. doi: 10.1109/iros.2013.6696495. URL https://doi.org/10.1109/iros.

2013.6696495.

[90] David Feil-Seifer and Maja Matarić. People-aware navigation for goal-oriented

behavior involving a human partner. In Proceedings of the International Con-

ference on Development and Learning (ICDL), Frankfurt am Main, Germany,

August 2011. doi: 10.1109/DEVLRN.2011.6037331.

[91] K. P. Hawkins, Nam Vo, S. Bansal, and A. F. Bobick. Probabilistic human

action prediction and wait-sensitive planning for responsive human-robot col-

laboration. In 2013 13th IEEE-RAS International Conference on Humanoid

Robots (Humanoids), pages 499–506, Oct 2013. doi: 10.1109/HUMANOIDS.

2013.7030020.

[92] K. P. Hawkins, S. Bansal, N. N. Vo, and A. F. Bobick. Anticipating human

actions for collaboration in the presence of task and sensor uncertainty. In 2014

IEEE International Conference on Robotics and Automation (ICRA), pages

2215–2222, May 2014. doi: 10.1109/ICRA.2014.6907165.

[93] David Huggins-Daines, Mohit Kumar, Arthur Chan, Alan W Black, Mosur Rav-

ishankar, and Alexander I Rudnicky. Pocketsphinx: A free, real-time continuous

speech recognition system for hand-held devices. In 2006 IEEE International

Conference on Acoustics Speech and Signal Processing Proceedings, volume 1,

pages I–I. IEEE, 2006. doi: 10.1109/ICASSP.2006.1659988.

https://doi.org/10.1109/iros.2013.6696495
https://doi.org/10.1109/iros.2013.6696495

Bibliography 200

[94] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy

Leibs, Rob Wheeler, and Andrew Y Ng. ROS: an open-source Robot Operating

System. In ICRA workshop on open source software, volume 3, 2009.

[95] D. Flickinger. English resource grammar, 2013. URL http://www.delph-in.

net/erg/.

[96] Ann Copestake, Dan Flickinger, Carl Pollard, and Ivan A Sag. Minimal re-

cursion semantics: An introduction. Research on language and computation, 3

(2-3):281–332, 2005.

[97] Blaise Gassend. sound play ros package. URL http://wiki.ros.org/sound_

play.

[98] Gary Bradski and Adrian Kaehler. Learning OpenCV: Computer vision with

the OpenCV library. ” O’Reilly Media, Inc.”, 2008.

[99] Ioan A Sucan and Sachin Chitta. Moveit! Online at http://moveit.ros.org,

2013.

[100] Bashira Akter Anima, Janelle Blankenburg, Mariya Zagainova,

Muhammed Tawfiq Chowdhury, David Feil-Seifer, Monica Nicolescu, Mircea

Nicolescu, et al. Collaborative human-robot hierarchical task execution with

an activation spreading architecture. In International Conference on Social

Robotics, pages 301–310. Springer, 2019.

http://www.delph-in.net/erg/
http://www.delph-in.net/erg/
http://wiki.ros.org/sound_play
http://wiki.ros.org/sound_play

Bibliography 201

[101] S. Pourya Hoseini A., M. Nicolescu, and M. Nicolescu. Handling ambiguous

object recognition situations in a robotic environment via dynamic information

fusion. In Conference on Cognitive and Computational Aspects of Situation

Management (CogSIMA), June 2018. doi: 10.1109/COGSIMA.2018.8423982.

[102] Seyed (Pourya) Hoseini, Janelle Blankenburg, Mircea Nicolescu, Monica Nico-

lescu, and David Feil-Seifer. A dual-camera robotic vision system based on the

concept of active perception. In Proceedings of the International Symposium on

Visual Computing (ISVC), Lake Tahoe, NV, October 2019.

[103] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human

detection. In Computer Vision and Pattern Recognition, 2005. CVPR 2005.

IEEE Computer Society Conference on, volume 1, pages 886–893. IEEE, 2005.

[104] Zdenek Kalal, Krystian Mikolajczyk, and Jiri Matas. Forward-backward error:

Automatic detection of tracking failures. In Pattern recognition (ICPR), 2010

20th international conference on, pages 2756–2759. IEEE, 2010.

[105] M. Gualtieri, A. ten Pas, K. Saenko, and R. Platt. High precision grasp pose

detection in dense clutter. In 2016 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), pages 598–605, Oct 2016. doi: 10.

1109/IROS.2016.7759114.

[106] Ann Copestake, Dan Flickinger, Carl Pollard, and Ivan A. Sag. Minimal recur-

sion semantics: An introduction. Research on Language and Computation, 3

Bibliography 202

(2):281–332, Jul 2005. ISSN 1572-8706. doi: 10.1007/s11168-006-6327-9. URL

https://doi.org/10.1007/s11168-006-6327-9.

[107] Félix-Antoine Fortin, François-Michel De Rainville, Marc-André Gardner, Marc

Parizeau, and Christian Gagné. DEAP: Evolutionary algorithms made easy.

Journal of Machine Learning Research, 13:2171–2175, jul 2012.

https://doi.org/10.1007/s11168-006-6327-9

	Abstract
	Acknowledgements
	List of Figures
	1 Introduction
	1.1 Multi-Robot Task Allocation
	1.2 Human-Robot Task Allocation
	1.3 Generalized Task Structure Learning
	1.4 Contributions of Proposed Approach
	1.5 Summary

	2 Background
	2.1 Generalized Policy Learning
	2.1.1 Reinforcement learning for generalized policies
	2.1.2 Imitation learning for generalized policies

	2.2 Generalized Task Structure Learning
	2.3 Multi-Robot Task Allocation
	2.3.1 Heterogeneous Robot Teams
	2.3.2 Interdependence Constraints

	2.4 Collaboration and Dialogue for Human-Robot Teams
	2.4.1 Verbal Instruction
	2.4.2 Task Verification
	2.4.3 Task Allocation for Human-Robot Teams

	2.5 Summary

	3 Prior Work
	3.1 Distributed Collaborative Task Allocation Architecture
	3.2 Summary

	4 Learning of Complex-Structured Tasks from Language Instruction
	4.1 Learning of Task Controllers from Verbal Instruction
	4.2 Learning of Basic and High-Level Tasks
	4.3 Experimental Validation
	4.3.1 Robot Experiments
	4.3.1.1 Household Environment
	4.3.1.2 IKEA EKET Base Assembly

	4.3.2 General-Purpose Task Learning Experiments
	4.3.2.1 Complex Task Execution Constraints
	4.3.2.2 Use of Adjectives
	4.3.2.3 Use of Prepositions

	4.4 Conclusion & Summary

	5 Human-Robot Collaboration and Dialogue for Fault Recovery on Hierarchical Tasks
	5.1 Control Architecture with Fault Recovery
	5.1.1 Interfacing with the Control Architecture
	5.1.2 Dialogue Module
	5.1.3 Fault Detection System

	5.2 Experimental Validation
	5.2.1 Task Execution
	5.2.2 Discussion of Experiment

	5.3 Conclusion & Summary

	6 Collaborative Human-Robot Hierarchical Task Execution
	6.1 Human-Robot Collaborative Architecture
	6.1.1 Human-In-The-Loop Hierarchical Architecture
	6.1.2 Human Intention Recognition
	6.1.3 Collision Detection and Handling

	6.2 Experiment Design
	6.2.1 Results

	6.3 Conclusion & Summary

	7 Dynamic Hierarchical Task Allocation of Manipulation Tasks for Heterogeneous Robot Teams
	7.1 Task Allocation for Heterogeneous Teams with Dynamic Capabilities
	7.1.1 Task Allocation using Activation Potential
	7.1.2 Object Detection, Recognition and Grasping Pipeline

	7.2 Experimental Validation
	7.2.1 Results and Discussion

	7.3 Conclusion & Summary

	8 Interdependence Constraint for Collaborative Multi-Robot Task Allocation Using a Distributed Control Architecture
	8.1 Integration of WHILE into Architecture
	8.1.1 Addition of interdependence Constraint

	8.2 Integration of WHILE into Verbal Instructions
	8.2.1 Command Parsing
	8.2.2 Command Converting

	8.3 Experimental Setup
	8.3.1 Architecture Integration Experiments
	8.3.1.1 Validation Plan
	8.3.1.2 Experimental Validation

	8.3.2 Verbal Instruction Integration Experiments

	8.4 Conclusion & Summary

	9 Generalized Task Structure Learning
	9.1 Problem Representation
	9.2 Generalized Task Learning Framework
	9.2.1 Compression-based Encoding Scheme
	9.2.2 Fitness Function
	9.2.2.1 Evaluation Method

	9.2.3 Modified Genetic Algorithm

	9.3 Experimental Validation
	9.3.1 Experiment for THEN constraint as root
	9.3.2 Experiment for AND constraint as root
	9.3.3 Experiment for OR constraint as root

	9.4 Conclusion & Summary

	10 Conclusion & Future Work
	10.1 Conclusion
	10.2 Future Work
	10.2.1 Multi-Robot Task Allocation
	10.2.2 Human-Robot Task Allocation
	10.2.3 Generalized Task Learning

	Bibliography

