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Abstract 

Seasonal water supply forecasts (i.e. April-July streamflow volume predictions) 

are a key decision-support tool for water resource managers overseeing reservoir 

operations, water rights allocation, and ecosystem and wildlife protection, particularly in 

semi-arid regions such as the western U.S.  However, extremely low snowpack and non-

stationarity due to climate change challenge the empirical relationships and computer 

simulations used by operational hydrologic forecasters. In this thesis, we present findings 

from two studies that use empirical and simulated data to recreate these operational 

models across two separate study domains: 51 minimally-impacted, snow-dominated 

basins in the western U.S. and 26 headwater basins in the Sierra Nevada of California and 

Nevada. In the first study, we use a model benchmarking approach to evaluate and 

compare the retrospective performance of two of the most widely used water supply 

forecasting models in the western U.S., the USDA Natural Resource Conservation 

Service’s (NRCS) Principal Component Regression models and the NOAA National 

Weather Service’s (NWS) SNOW17/Sacramento Soil Moisture Accounting models. 

Results from this retrospective analysis across water years 1981-2014 show that 

statistical models (NRCS PCR) are generally more skillful than conceptual models (NWS 

SNOW17/SAC-SMA). However, at longer forecast lead times, are results suggest that 

statistical models are more disadvantage by low snowpack, making them comparatively 

less skillful than the conceptual models. In our second study, we extend this analysis by 

using hydrologic simulations from the Variable Infiltration Capacity model to mimic 

California Department of Water Resources water supply forecasting procedures in the 
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Sierra Nevada from 1950-2099 under low and high emissions scenarios. Results show 

widespread but uneven loss of skill by the second half of the 21st century (average loss 

10-20%). Basins at mid-elevations (mean elevation 1000-1700 meters) were simulated to 

be most vulnerable to loss of snowpack and the forecast information it provides. Within 

the model environment, we then evaluate mitigation strategies to buffer loss of forecast 

skill through the introduction of supplemental synthetic observations. These two 

simulated datasets include 1) basin-wide snowpack measurements (representing remote 

sensing products) and 2) soil moisture station observations. Our research suggests that 

remotely-sensed snowpack data may buffer loss of skill by an average of 40% in the most 

vulnerable basins before 2050. As the century passes and the role of snow in Sierra 

Nevada hydrology declines, there will eventually be dwindling returns from remotely-

sensed snowpack data, but this loss of forecast information may be somewhat 

ameliorated by the inclusion of soil moisture observations in the regression equations. 
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Chapter 1: Introduction 
 

Seasonal water supply forecasts (i.e. April-July streamflow volume predictions) 

are a key decision-support tool for water users and managers in semi-arid regions, such as 

the Western U.S. Seasonal water supply forecasts, also referred to as Water Supply 

Outlooks, are issued throughout the winter season to predict snowmelt-driven runoff from 

headwater basins. Responsibility for issuing such forecasts is shared by two federal 

agencies, the U.S. Department of Agriculture (USDA) Natural Resource Conservation 

Service (NRCS) (https://www.wcc.nrcs.usda.gov/) and the National Oceanic and 

Atmospheric Administration (NOAA) National Weather Service (NWS) River Forecast 

Centers (RFCs) (e.g. https://www.cnrfc.noaa.gov/). Similar seasonal water supply 

forecasts are independently issued by the California Department of Water Resources for 

Sierra Nevada headwater basins (https://cdec.water.ca.gov/snow/bulletin120/). For nearly 

a century, these operational hydrologic forecasts have relied on the high predictive power 

of winter snowpack to estimate spring runoff (Church, 1935). However, extremely 

below-average snowpack, or snow drought, and non-stationarity due to climate change 

challenge the empirical relationships and computer simulations used by operational 

hydrologic forecasters (Milly et al., 2008), raising questions about the skillfulness of 

these models in predicting spring streamflow volumes during low snow years.  

Mountain snowpack serves as a natural reservoir which bridges the divide 

between when the majority of precipitation falls (winter) and when water demand is 

highest (summer). In addition to providing water storage, snowpack is also critical for 

efficient streamflow generation (Mcnamara et al., 2005), groundwater recharge (Safeeq et 
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al., 2013), and maintaining summer low flows (Godsey et al., 2013). Interannual to 

interdecadal climate variability can drive natural occurrences of below-average snowpack 

from meteorological drought or above-average temperatures (Cayan, 1996), which have 

been defined as dry snow drought and warm snow drought, respectively (A. Harpold et 

al., 2017). Yet, an observed 15-30% decline in western U.S. snowpack since the mid 20th 

century (Mote et al., 2018) has been attributed to increased temperatures and changing 

precipitation patterns driven by anthropogenic climate change (Pierce et al., 2008). In the 

western U.S., these smaller snowpacks are melting earlier and slower as a consequence of 

warming temperatures (A. Harpold et al., 2012; A. A. Harpold & Kohler, 2017; 

Musselman et al., 2017), which have important implications for streamflow generation 

(Mcnamara et al., 2005) and late-season water availability (Stewart et al., 2005). 

Regardless of mechanism, below-average snowpack degrades the predictive power for 

spring snowmelt-driven runoff, making summer drought conditions more challenging to 

predict (Livneh & Badger, 2020) and threatening historically accurate spring streamflow 

forecasting methods. 

In this thesis, we evaluate the performance of two of the most commonly used 

hydrologic models used in operational water supply forecasting: regression-based 

empirical models and more physically-motivated computer simulated rainfall-runoff 

models, referred to as conceptual models. In Chapter 2, we present an historical analysis 

of these two models in which we retrospectively evaluate their relative performance 

during above and below-average snow years. Specifically, we performed a model 

benchmark analysis (Newman et al., 2017) in which we compared the performance of the 

more complex RFCs Sacramento Soil Moisture Accounting (SAC-SMA) model (Burnash 
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et al., 1973) to the a priori benchmark performance of the longer-running and better 

established NRCS Principal Component Regression (PCR) models (Garen, 1992). 

Chapter 2 leverages the recent availability of large meteorological datasets (Addor et al., 

2017) and automated U.S. Geological Survey (USGS) stream gauging and NRCS snow 

telemetry networks to retrospectively recreate and evaluate these two classes of models 

for a large subset of over fifty basins (forecast points) across the western U.S. for 

multiple forecast lead times during more than thirty years. Our research questions for 

Chapter 2 are: 1) Are seasonal water supply forecasts degraded under conditions of 

below-average snow accumulation (i.e. snow drought)? And, 2) If forecasts are less 

skillful in low snow years, what are the implications for the skill of statistical and 

conceptual forecast models faced with future snow water equivalent (SWE) decline? We 

answer these questions by considering interannual forecast performance of the two 

models during low snow years and by evaluating longer term changes in forecast skill 

across the water years 1981-2014 period of record. 

In Chapter 3, we turn our focus to the jurisdiction of the California Department of 

Water Resources (CA DWR) where we take a hybridized approach that runs regression-

based models with simulated data as a means to evaluate forecast skill through the 21st 

century. In this strictly model-based analysis, we use Variable Infiltration Capacity (VIC) 

model simulations forced by down-scaled climate projections under two emission 

scenarios to simulate and then evaluate CA DWR seasonal water supply forecasts for 

water years 1951-2099 for 26 headwater basins in the Sierra Nevada, USA. Within this 

model environment, we then evaluate two strategies for mitigating the loss of forecast 
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skill using simulated data to act as surrogates of: 1) remotely-sensed, basin-wide 

snowpack measurements and 2) soil moisture observations. We use this framework to 

quantify vulnerability of conventional water supply forecasts to loss of skill under 

declining snowpack and to evaluate operationally feasible forecast mitigation techniques. 

 Chapter 2 provides an increased understanding of relative operational hydrologic 

model capabilities during below-average snowpack during an historical period, while 

Chapter 3 contextualizes these findings within the longer term threat that declining 

snowpack presents to conventional water supply forecasting techniques. The latter half of 

Chapter 3 uses the flexibility of simulated hydrometeorology to develop surrogate 

methods for buffering loss of skill with the objective of providing recommendations to 

operational forecasting and government agencies. Finally, Chapter 4 highlights the 

broader implications of our research to the operational hydrologic modeling community 

and discusses future research directions. 
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Chapter 2: Benchmarking of Statistical and Conceptual Models for 
Seasonal Water Supply Forecasts: Implications under Declining 
Western U.S. Snowpacks 
 
Abstract 

Seasonal water supply forecasts are a key decision-support tool for semi-arid 

regions, such as the western U.S. Snow drought and declining snowpack have negative 

implications for water supplies, including earlier, slower, and smaller snowmelt that 

impacts runoff efficiency and groundwater recharge. However, the empirical 

relationships and computer simulations used by operational forecasters remain poorly 

evaluated under low snowpack conditions. We ask two questions critical to water supply 

managers: 1) Do lower snowpack years affect forecast skill? and 2) What are the 

implications for the skill of empirical and physical forecast models as snow declines in 

the future? We compare the empirical forecasting techniques of the USDA’s Natural 

Resource Conservation Service (i.e. Principal Component Regression, PCR) with 

NOAA’S National Weather Service (i.e. Sacramento Soil Moisture Accounting model, 

SAC-SMA) across 51 snow-dominated basins in the western U.S. We analyze 0- to 3-

month lead time forecasts for April-July streamflow volumes to understand how a 

warming climate may degrade forecast skill into the future. April 1st empirical (PCR) 

forecasts are only 40% as skillful during below-average snow years versus above-average 

snow years. Physically motivated models (SAC-SMA) regionally offer more skill than 

PCR forecasts in January and February (3- and 2- month lead, respectively), especially 

during dry years, but are less skillful than PCR at shorter lead times. Spring precipitation 

remains a significant source of uncertainty in both forecasts that highlights the value of 
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improved seasonal to sub-seasonal precipitation forecasts. Benchmarking two operational 

models highlight the potential to adaptively use information to best match local 

challenges that mitigate the effects of snowpack loss on forecast skill and uncertainty. 

2.1 Introduction 

Seasonal water supply forecasts are a critical decision-support tool for water 

resource managers overseeing reservoir operations, water rights allocation, and 

ecosystem and wildlife protection (Mantua et al., 2008). In semi-arid places with high 

downstream water demand, like the western U.S. (Bales et al., 2006; Barnett et al., 2005), 

operational forecasters use both hydrologic computer model simulations and statistical 

regression models based on station observations to produce water supply outlooks (i.e. 

seasonal streamflow volumes, usually for April through July) at several months lead 

times for the high demand summer months. In snow dominated basins, the robust 

relationship between peak snow water equivalent (SWE) and spring streamflow volumes 

(Church, 1935) has provided historically accurate forecasting in a water stressed region 

(Pagano et al., 2004). However, widespread declines in SWE in the western U.S. (Mote et 

al., 2018) are changing the dynamics of snowmelt (Barnhart et al., 2016; A. A. Harpold 

& Kohler, 2017; Adrian A Harpold & Brooks, 2018) with consequences for groundwater 

recharge (Berghuijs et al., 2014) and streamflow generation (Hammond et al., 2019; 

Mcnamara et al., 2005). This shift in snow dynamics challenges the stationarity 

assumptions used by operational forecasting models in which the past can predict the 

future (Milly et al., 2008, 2015). 

Seasonal water supply forecasts in the western U.S. are primarily made by two 
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agencies: U.S. Department of Agriculture Natural Resource Conservation Service 

(NRCS) and the National Oceanic and Atmospheric Administration National Weather 

Service (NWS). Although inter-agency forecast coordination used to occur, the existing 

forecasts come from independently maintained programs (Pagano et al., 2014). The 

longer-running and better established NRCS Snow Survey & Water Supply Forecasting 

Program (https://www.wcc.nrcs.usda.gov/wsf/) leverages an extensive network of snow 

telemetry (SNOTEL) stations and Principal Component Regression (PCR) techniques to 

predict April to July streamflow volumes for over 600 forecast points (Garen, 1992). In 

comparison, the NWS River Forecast Centers (RFCs) have developed and implemented a 

more complex, physically-motivated rainfall-runoff model (the Sacramento Soil Moisture 

Accounting, or SAC-SMA, model; also referred to hereafter as a “conceptual model”) 

intended for short lead (i.e. hours to days) flood forecasting but additionally used for 

seasonal water supply forecasts (e.g. https://www.cnrfc.noaa.gov/) for roughly 900 

locations in the western U.S. Previous work benchmarking conceptual (SAC-SMA) and 

physics-based (Variable Infiltration Capacity) models by Newman et al. (2017) provides 

a framework for comparing PCR and SAC-SMA water supply models. Despite some of 

the potential advantages of a more physically-based technique (e.g. explicit parameter 

representation), the NRCS forecasts have remained an important and highly valued tool 

for water supply forecasting, particularly for small, snow-dominated headwater basins 

with nearby observation stations and long periods of record. Despite advances in 

distributed, physics-based hydrologic models from the research community (Koster et al., 

2010), there is little adoption of these models into operational forecasting due largely to 

unproven potential gains in accuracy when compared to the costs of additional 
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complexity (Beven, 2002) and decreased model agility (Mendoza et al., 2015). It is 

important to compare the strengths and weaknesses of operational hydrologic models in 

light of climate changes that will reduce the forecast skill associated with snow water 

storage. 

Three primary factors are hypothesized to control the future of seasonal-

streamflow forecastability in snow-fed regions like the western U.S.: 1) vulnerability to 

snow loss, 2) sufficiency of model forcing data, and 3) adequacy of model process 

representation, including parameterization (Figure 2.1). We predict that snow loss has 

been and will continue to be a primary threat to forecast skill. Since mid 20th century, 

average declines in April 1 SWE across the western U.S. have been estimated at 15-30% 

(Mote et al., 2018). This loss of snowpack storage is expected to increase the dependence 

on other observations (e.g. precipitation) and other stores and fluxes of water by 

statistical and conceptual models. Long term snowpack decline can arise from a variety 

of causes (Kapnick & Hall, 2012; Mote, 2003; Pederson et al., 2011). For example, 

increases in temperature and humidity affect snow accumulation and ablation, 

particularly in warmer regions and at lower elevations such as the Cascades or northern 

Sierra Nevada (Hamlet et al., 2005; Mote, 2006; Regonda et al., 2005). In contrast, 

snowpack in cold, dry winter climates such as the Northern Rockies have been more 

buffered from these temperature-driven losses (Mote et al., 2018), perhaps translating to a 

more robust seasonal water supply forecast during that period (Figure 2.1, solid lines). 

Interannual to interdecadal climate variability can also lead to well-below-average 

snowpack (Cayan, 1996), also referred to as snow drought (A. Harpold et al., 2017). 
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Snow drought can arise from both winter precipitation deficits (dry snow droughts) and 

from increased fraction of winter precipitation falling as rain (Knowles et al., 2006), as 

well as mid-winter ablation events (A. Harpold et al., 2012). Changes in snowpack from 

long term declines and snow drought alter the timing and magnitude of streamflow 

(Stewart et al., 2005) with significant implications for reservoir operations (A. Harpold et 

al., 2017). 

 

Figure 2.1: A framework for understanding the water supply forecast skill of statistical 
(PCR, red) and conceptual (SAC-SMA, orange) models under different snow conditions, 
including factors hypothesized to contribute to model skillfulness. The best case (solid 
lines) refers to forecast points buffered from skill degradation driven by snow losses; 
worst case or at-risk (dashed lines) refers to forecast points more sensitive to long-term 
loss of snowpack and/or snow drought. 

It is generally accepted that precipitation received after the forecast issue date, i.e. 

“climate error”, is the primary source (40-80%) of forecast uncertainty; remaining model 

“structural error” can thus be attributed to forcing data and model process representation 

(Mantua et al., 2008; Schaake & Peck, 1985). Regions with significant spring and 

summer precipitation (relative to winter snowpack), such as the American Southwest, are 
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most affected by post-forecast precipitation error and are therefore challenging for 

seasonal forecasting horizons. Seasonal to sub-seasonal precipitation forecasts offer 

promise for improved long lead streamflow volume forecasting (Mantua et al., 2008), 

with considerable research efforts recently dedicated to this topic (Clark et al., 2004; Cuo 

et al., 2011; F. Ralph et al., 2014). However, the relative importance of climate and 

structural error varies with forecast lead time and local meteorology; at shorter lead 

times, initial condition, forcing data, and model errors may be larger than errors from 

meteorological uncertainty.  

Sources of model structural error are challenging to disaggregate. For example, 

point observations from SNOTEL stations may have biases relative to mean watershed 

characteristics (Molotch & Bales, 2006). These biases may not capture declines in low 

elevation snow cover or other non-stationary changes. Further, errors in precipitation and 

temperature are accentuated in areas with low station density (Gervais et al., 2014) and at 

higher elevations (Lundquist et al., 2015). Non-stationary changes to snowmelt and 

streamflow generation will likely be captured differently by the implicit and explicit 

process representation and parameterization of the PCR and SAC-SMA model structures. 

For example, changes in streamflow generation during extremely low snowpacks are 

likely to drive a non-linear decrease in streamflow response to precipitation due to lack of 

upslope connectivity (Mcnamara et al., 2005), challenging the linear assumptions 

inherent to PCR models (Lehner, Wahl, et al., 2017). A model with explicit soil water 

storage like SAC-SMA is expected to better represent such conditions (Refsgaard & 

Knudsen, 1996). After accounting for the challenges of seasonal precipitation prediction, 
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basin-scale water supply forecast accuracy is likely to be controlled by declining 

snowpack, but also is susceptible to other effects of anthropogenic climate change such as 

forest fires, shifts in vegetation, and channel and catchment changes under enhanced 

extreme hydrologic events, as well as the degree to which catchment properties buffer 

those changes and are adequately represented by forecast model  assumptions (Figure 

2.1). 

Water supply forecasts will become increasingly important as climate change 

heightens the risk for drought (Cook et al., 2004) and ‘weather whiplash’ between dry 

and wet periods (Swain et al., 2018). Recent examples like the extreme snow drought 

along the West Coast in 2015 (A. Harpold et al., 2017) followed by extreme winter 

precipitation in the Sierra Nevada in 2017 demonstrate the need for water supply 

forecasts to support reservoir operations (Ralph et al., 2014). While distributed physics-

based models (e.g. the Variable Infiltration Capacity or National Water Model) have the 

potential for operational hydrologic forecasting, they are difficult to validate in headwater 

basins where many snow-dominated seasonal water supply forecasts are made 

(Rasmussen et al., 2011; Yang et al., 2011). Thus, seasonal water supply forecasting in 

the western U.S. will continue to rely on the legacy models employed the NRCS and 

NWS for a while. Given the need to benchmark these operational models to better 

understand skill changes from snowpack decline, we develop a comprehensive dataset for 

51 forecast points that are forecasted by both the NRCS and NWS (Figure 2.2). 

Fortunately, existing approaches can help reproduce PCR-based water supply forecasts 

and validate model runs of SNOW17/SAC-SMA, e.g. Harpold et al. (2017) and Lehner et 
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al. (2017) recreated modified NRCS PCR forecast equations and Newman et al. (2015; 

2017) modified existing SAC-SMA model source code to develop stand-alone versions 

of the conceptual models used here. This expansive model benchmarking exercise allows 

us to ask two questions about the reliability of future water supply forecasting: 

1. Are seasonal water supply forecasts degraded under conditions of below-average snow 

accumulation (i.e. snow drought)? 

2. If forecasts are less skillful in low snow years, what are the implications for the skill of 

statistical and conceptual forecast models faced with future SWE decline? 

2.2 Methods 

2.2.1 Site Selection 
 

Site selection and experimental design were guided by our desire to benchmark 

existing NRCS forecast points with ensemble streamflow predictions from stand-alone, 

recalibrated NWS RFC forecasting models.  

NRCS forecast points and official regression equations were available from the 

National Water and Climate Center Air and Water Database 

(https://wcc.sc.egov.usda.gov/awdbWebService/). All NRCS forecast points included an 

active USGS streamflow gauge and at least one SNOTEL station measuring snow water 

equivalent (SWE) and precipitation (P) in or near the basin. All sites were located west of 

the 104ºW. Basin mean forcing data used to run the NWS’s lumped conceptual model, 

SAC-SMA, were available from the Catchment Attributes and Meteorology for Large-

Sample Studies (CAMELS) dataset (Addor et al., 2017) for water years (WY) 1981 to 
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2014. CAMELS is a research-grade, hydrologic dataset for nearly 700 minimally 

impacted basins in the contiguous U.S. CAMELS synthesizes and compiles quality-

controlled streamflow data, basin forcing data (basin lumped and semi-distributed), SAC-

SMA model outputs, and mean basin attributes including topography, climatology, 

geology, and hydrology. These features make it an ideal tool for large-scale comparative 

basin studies and model evaluation. 

Site selection criteria were thus threefold: Each site 1) is an active NRCS forecast 

point, 2) is in the CAMELS database, and 3) has a period of record longer than 20 years. 

These criteria identified 51 geographically representative basins and forecast points from 

Washington, Oregon, Idaho, California, Nevada, Montana, Wyoming, Utah, and New 

Mexico (Figure 2.2). Arizona and Colorado did not have any sites that met our criteria. 

 

Figure 2.2: (Left panel) Site map with U.S. Geological Survey Regional Hydrologic Unit 
Codes (HUC; i.e. regional watershed boundaries). (Right panel) Basin mean 
hydrometeorology including: mean spring (Apr 1 to Jul 31) specific discharge (grey), 
mean winter (Oct 1 to Apr 1) precipitation (dark blue), and mean peak snow water 
equivalent (light blue) with max/min values (black bars) for the period of record, i.e. 
water years 1981 to 2014. 
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2.2.2 NRCS Principal Component Regression (PCR) Forecasting and Data 
 

NRCS Principal Component Regression (PCR) forecasts were recreated following 

the National Engineering Handbook Chapter 7, Water Supply Forecasting (U.S. 

Department of Agriculture, 2011), which standardizes the statistical water supply 

forecasting methodology originally proposed by Garen (1992). Primary predictor 

variables for our PCR forecasts are the same as the principle predictors in the official 

NRCS forecast equations and include 1) end-of-month accumulated P and 2) 

instantaneous SWE values from one to seven SNOTEL stations in or near each basin 

(Table 2.1). Supplemental predictor variables used by the NRCS (e.g. climate indices and 

antecedent streamflow, used at some but not all forecast points) were not included here to 

allow for more direct inter-basin comparisons. Forecast predictor variables were 

statistically transformed through a Principal Component Analysis. Only the first Principal 

Component (PC1) was retained in all cases (Appendix I). The resulting PC1 was linearly 

regressed against historical April-July streamflow volumes for WY1981-2014. Using this 

technique, PCR forecasts were recreated for the 51 study basins at four lead times: 

January 1st (3-month lead), February 1st (2-month), March 1st (1-month), and April 1st 

(0-month) for WY1981-2014 as data were available as described in Appendix I. Example 

PCR forecasts for Sagehen Creek in CA (ID# 27, USGS 10343500) are shown in Figure 

A2.1. 

2.2.3 NWS Sacramento Soil Moisture Accounting (SAC-SMA) Forecasting and Data 
 

We employ research-grade versions of the NWS Sacramento Soil Moisture 

Accounting (SAC-SMA) and SNOW-17 models from Newman et al. (2017) 
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(https://github.com/anewman89/SACSMA-Snow17) to similarly recreate seasonal water 

supply forecasts for 51 basins for WYs 1981 to 2014 at four lead times, mirroring the 

PCR forecast delivery structure. SAC-SMA is a time-stepped lumped conceptual model 

used for short lead flood forecasting and longer lead seasonal water supply forecasting 

(National Weather Service, 2016). In snowy areas, SAC-SMA is commonly paired with 

SNOW-17, a temperature-index based conceptual snow accumulation and ablation model 

(Anderson, 2006). In all cases, we also paired it with a Unit Hydrograph streamflow 

routing scheme. Calibrations for the paired models were performed using a Shuffle 

Complex Evolution (SCE) optimization routine (ftp://ftp.rap.ucar.edu/pub/anewman/sac/) 

and the daily lumped mean Daymet forcing data from CAMELS for WY1990-1999. The 

validation period included at least the fifteen years following the calibration period 

(WY2000-2014) and for the 89.9% of years where data were available, the nine years 

preceding (WY1981 to 1989). Following model calibration, seasonal water supply 

forecast ensemble predictions were run in two steps using an Ensemble Streamflow 

Prediction technique (Day, 1985). Model initialization was first run by applying daily 

forcing data up to the forecast issue date. The model was then run with ensemble 

historical forcing data for the period between the forecast issue date (e.g. January 1st) 

until the end of the forecast period (July 31st). This process was repeated for all four 

forecast lead times, January 1st through April 1st, as data were available as described 

within Appendix II. Example SAC-SMA ensemble mean forecasts for Sagehen Creek in 

CA (ID# 27, USGS 10343500) are shown in hydrograph format in Figure A2.2. 

2.2.4 Forecast Evaluation, Error Metrics, and Trend Detection 
 

Standard NRCS forecast evaluations usually rely on percent error, which 
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measures the magnitude of forecast residuals with respect to observed spring Q. In this 

study, we also measure prediction bias and skill using percent bias (PBIAS) and a 

bounded Nash Sutcliffe Efficiency skill score (NSE), as recommended for watershed 

simulations statistics (Moriasi et al., 2007). We use a slightly modified, bottom-end 

bounded NSE with possible values ranging from -1 to 1 (Appendix III), allowing for 

more appropriate model evaluation across a range of study basins, including 

exceptionally poor-performing sites (Mathevet et al., 2006). When presenting regional 

results, regions are defined as the Missouri (HUC 10), Upper/Lower Colorado (HUC 

14/15) and Rio Grande (HUC 13), Great Basin (HUC 16), and Pacific Northwest (HUC 

17) hydrologic units. The Colorado and Rio Grande regions were combined due to small 

sample size and hydrometeorological similarity. 

Lastly, long term trends in forecast skill were quantified by modifying a method 

from Pagano et al. (2004) that evaluated NSE scores for multi-year rolling windows. For 

the PCR models developed here, we focus on results from 15-year rolling window 

spanning WY1981-2014, but also evaluated 5, 10, and 20 year windows. The even 

shorter validation period of the SAC-SMA forecasts required evaluations across 3, 5, and 

10 years windows for WY2000-2014. Rolling NSE scores were evaluated by region. We 

then used a Regional Mann Kendall Trend Test (Helsel & Frans, 2006) to identify the 

statistically significant trends in NSE score trends.
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Table 2.1: Study basin ID
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 (Q
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s the 
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 duration curve (FD
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 variability 

w
here steeper slopes indicate flashier stream

flow
 (Equation 3 from
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icz et al. (2011)). M

ean values are listed in bold in the 
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 of the table.
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2.3 Results 

2.3.1 Hydrometeorological Variability 
 

Hydrometeorological characteristics vary across and within the study basins, 

which highlights the need for and challenge of seasonal water supply forecasting (Table 

2.1, Figure 2.2). Mean October-April P, for example, varies regionally from 259 mm in 

the basin of the North Fork of the Powder River WY (ID# 5, USGS 06311000) to 2,177 

mm in the Sandy River OR (ID# 50, USGS 14137000). On average, 56% of the annual P 

within the study basins falls as snow, with mean peak SWE values ranging from 167 mm 

in the Gila River NM (ID# 15, USGS 09430500) basin to 1,300 mm in the Stehekin River 

WA (ID# 38, USGS 12451000). Interannually, the coefficient of variation (CV) in winter 

P and peak SWE is 28% and 31%, respectively. Comparatively, mean April-July Q is 

more variable (CV 51%), especially for basins with very low volumetric discharge 

(<6x106 m3 i.e. <5,000 acre-feet, median CV 86%, n = 10), making them inherently 

more challenging to predict. Mean spring Q spans several orders of magnitude from 

1x106 m3 (~1 KAF, thousand acre-feet) in South Creek Monticello UT (ID# 13, USGS 

09378170) to 2x109 m3 (~1,600 KAF) on the Yellowstone River WY (ID# 2, USGS 

06191500). 

Streamflow generation is characteristically different between wet and dry years, 

hereafter defined as years with above and below mean peak SWE, respectively. For 

instance, aggregating the dry years from all study basins, median annual specific 

discharge is 294 mm. Wet year median specific discharge, in contrast, is 486 mm; wet 

year/dry year specific discharge was statistically different in 50 basins. These differences 
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are not only a result of greater P, but also of more efficient streamflow generation: the 

median runoff ratio, defined as the ratio of Q to P, increased from 0.31 during dry years 

to 0.45 during wet years (statistically significant differences in 82% of study basins). 

Streamflow timing also exhibits significant differences in the fraction of annual Q 

occurring during winter (DJFM), spring (AMJJ), and fall (ASON) between wet and dry 

years. During wet years, an average of 68% of annual Q occurred during the spring 

months, with only 17% in winter and 15% in fall. Dry years, in contrast, saw only 61% of 

annual Q during spring, with greater proportions of flow during winter (20%) and fall 

(19%). These differences suggest a shift to an earlier onset of snowmelt during low snow 

years driving greater streamflow outside of the spring forecasting season compared to 

high snow years. 

2.3.2 Evaluating PCR and SAC-SMA Forecasts 
 

A total of 204 PCR forecast models (51 basins with forecasts each for 3-, 2-, 1-, 

and 0-month lead times) were developed predicting 5,743 separate April-July Q volumes 

for WY1981-2014; data gaps, primarily from the years which preceded many SNOTEL 

station installations, precluded PCR forecasts from being issued for ~17% of the possible 

6,936 forecasts (204 PCR forecasts predicting 34 years). In all cases, we selected only the 

first principal component (PC1) for use in the forecast equations (Appendix I). Using a t-

test, 199 of 204 forecasts had statistically significant (p < 0.05) regression coefficients for 

PC1. The regression coefficients of the PC1 for the remaining five forecasts had a 

maximum p-value of 0.115 but because t > 1.2 these PC1s were retained (Appendix I). 

The 3- and 2-month lead time forecasts for Thunder Creek, WA (ID# 30, USGS 

12175500) were the only PCRs where the second PC was also significant. However, for 
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consistency across forecasts, we only included PC1 in the Thunder Creek regression 

equations, contrary to Garen (1992). Recall that due to limited training data, separate 

calibration-validation years were not used for PCR models. 

Parallel SAC-SMA model structures were developed for each lead time and 

forecast point (study basin). However, unlike a statistical model, parameterized 

conceptual or physics-based models require parameter estimation. Basin-specific 

parameter values for the SAC-SMA models were determined using a SCE model 

calibration scheme run over a subset of ten years, WY1990-1999. The calibrated SAC-

SMA models were then run with these optimized parameters and an Ensemble 

Streamflow Prediction technique for the remaining validation years only (WY1981-1989, 

2000-2014), predicting a total of 4,692 individual spring Q volumes. With fewer forcing 

data gaps, SAC-SMA forecasts were issued for ~96% of the total possible 4,896 forecasts 

during the WY1981-1989 and WY2000-2014 period. 

Comparing the aggregated forecast evaluations from the conceptual model with 

the benchmark performance of the statistical models shows that the statistical models 

(PCR) generally outperform the conceptual models (SAC-SMA) when evaluated for all 

model validation years (Figure 2.3, black horizontal bars). Across lead times, model 

differences in forecast skill (NSE, Figure 2.3a) are largest at short leads (median April 1 

NSE: PCR 0. 61, SAC-SMA 0.47) and smallest at long leads (median January 1 NSE 

PCR 0.24, SAC-SMA 0.27). These values should be considered relative to the forecast 

skill of the ‘perfect prognostic’ model runs (i.e. a ‘fully-informed’ retrospective model; 

Figure 2.3a, yellow lines), which shows median performance of models forced with data 
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through the end of July. The lower NSE of the perfect prognostic SAC-SMA models 

demonstrates a limitation of the models to perform well under optimal conditions, that is, 

with forcing data from the forecasting period. These findings suggest that the superior 

performance of PCR models at lead times shorter than 2-months (February 1) may be 

attributed to higher perfect prognostic and therefore a higher upper-envelope of best-case 

model performance. Importantly, differences in model calibration techniques and 

validation years likely introduce some uncertainty.  

Evaluating relative model performance during low snow years can be achieved by 

sub-setting wet years and dry years from one another. Mathematically, evaluating a 

model trained with 34 years against a subset of data from only 17 years yields a 

precipitously lower NSE compared to the model evaluated across all years (Appendix 

III). This mathematical behavior explains why we observe negative NSE scores during 

some forecasts; unrealistically training the model to a subset of dry years or wet years 

only and then calculating the NSE demonstrates this idiosyncrasy of the metric (but 

doesn’t simulate a retrospective water supply forecast model). Considering the 

performance of the wet years with this in mind (Figure 2.3a, blue bars), we find that PCR 

models consistently outperform the SAC-SMA model at all lead times. These model 

differences in forecast skill trend similarly across all years and wet years, where forecast 

skill differences are smaller at long leads and larger at short leads. In contrast, during the 

subset of dry years (Figure 2.3a, red bars) SAC-SMA models outperform the PCR 

models at lead times longer than 0-months (April 1). Because snowpack is well-

correlated with spring streamflow volumes (r2 = 0.6), these findings can also be 
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interpreted as PCR models are better than SAC-SMA models at predicting higher 

flowers, while SAC-SMA models are better than PCR models at predicting lower flows. 

Regional differences in relative forecast skill are significant (Figure A2.4). 

The experimental design of the calibration-validation datasets between the PCR 

and SAC-SMA models manifests in the overall bias of the model predictions (Figure 

2.3b). In the PCR model, the least-squares approximation trained on all years of available 

data produces an overall unbiased forecast (Figure 2.3b, solid black lines). Sub-setting 

wet and dry years shows that expectedly, the PCR model overpredicts streamflow during 

dry years (positive bias) and underpredicts streamflow during wet years (negative bias). 

In comparison, the SAC-SMA model, which was calibrated on WY1990-1999 and 

evaluated for the remaining years, has an overall positive bias (dashed black lines), 

largely due to high PBIAS during dry years at lead times greater than 0-months. With 

respect to the PCR models, the SAC-SMA models have a tendency to underpredict 

during wet years; in comparison, during dry years the model often over predicts, but at 

lead times shorter than 3-months, also regularly under predicts, i.e. the inter-quartile 

range often bounds zero PBIAS. 

 



 

 

22 

 

 

Figure 2.3: Forecast evaluations during above (blue) and below (red) average peak SWE 
as measured by: a) a bounded Nash Sutcliffe Efficiency (NSE) score and b) percent bias 

(PBIAS) across four lead times. Lighter colors are PCR forecasts, darker colors are SAC-
SMA forecasts. Horizontal black bars show median forecast performance when evaluated 

across all years; yellow bars are forecast performance when models are run with forcing 
data through the end of the forecasting period. Positive PBIAS is a forecast over 

prediction. 

 
2.3.3 Comparing PCR and SAC-SMA Forecast Skill 

 
Differences in validation years present some limitations to aggregated model 

comparisons of composite error metrics (Figure 2.3) which can be more evenly compared 

in a one-to-one plot (Figure 2.4). A direct evaluation between individual spring Q 

forecasts from PCR and SAC-SMA models shows that the mean difference in the 

absolute residuals of the forecast error range from 15% (January 1st) to 18% (April 1st), 

with larger model differences in forecasted values at shorter lead times. However, 

because regional median spring Q varies by several orders of magnitude (from 1.9x108 

m3 in the Pacific Northwest to 5.0x106 m3 in the Great Basin) the site-year differences in 

forecast performance are lost to the details of Figure 2.4, even on a log-log scale. 

Regional one-to-one plots of predicted spring Q (Figure A2.5) show more of these 

b) a) 
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details; median April 1st model differences are 16% in the Missouri, 24% in the 

Colorado/Rio Grande, 27% in the Great Basin, and 14% in the Pacific Northwest. 

Consistent with earlier findings, the bottom panels of Figure 2.4 demonstrate that 

site-year PCR and SAC-SMA forecast performance (percent error) is more similar at long 

leads (January 1st, r2 = 0.74), but that by April 1st, larger model differences emerge (r2 = 

0.39, Figure 2.4, bottom panels). Differences in model performance are especially evident 

in the Great Basin (green colored triangles) and Colorado (red-orange colored triangles). 

This behavior is expected: for a given residual between the actual and forecasted values, 

a lower spring Q will yield a higher percent error. We also find that SAC-SMA models 

have a tendency to predict smaller values with respect to PCR models, i.e. percent error 

values plot above the one-to-one line. Yet, these trends vary interannually (light grey 

crosshairs) as well as regionally and by forecast lead time (Figure A2.6). 
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Figure 2.4: SAC-SMA predicted spring Q (m3) as a function of PCR predicted spring Q. 
Individual site years are in light grey, basin mean values are triangles colored by regional 

hydrologic unit code, and crosshairs show the interannual variability for each site 

(minimum/maximum values). 

Normalized peak SWE and spring Q are well correlated (r2 = 0.6) across our 

snow-dominated study basins, where low snow years yield lower spring Q and vice versa. 

Predicting smaller streamflow volumes during these lower snow years requires greater 

forecast accuracy (smaller residuals) for equal percent error performance. Because of 

this, we find a strong relationship between high percent error and low flows. For 
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example, all forecasts with >60% error occurred when predicting spring Q flows < 

5.0x107 m3 (<40 KAF). As a result, comparatively small differences between PCR and 

SAC-SMA forecasts result in large absolute percent error during years with below-

average SWE (Figure 2.5). Specifically, we find that years with <75% mean peak SWE 

show large (proportional) variability and lack any clear agreement around model 

superiority, indicated by 90% confidence intervals bounding absolute differences of zero. 

Regional trends are shown in Figure A2.7. In contrast, average to above-average SWE 

conditions were modeled similarly by PCR and SAC-SMA models, trending towards 

slightly better PCR performance above 125% peak SWE, though 90% confidence 

intervals became larger with fewer data points.  

 
Figure 2.5: Differences between the absolute percent errors of the SAC-SMA and PCR 
model forecasts for January 1st (left panel) and April 1st (right panel). Median values are 

bounded by a 90% confidence interval (vertical bars) for 25% SWE bins (e.g. 0-25% 
mean historical peak SWE). SWE values are SNOTEL observations. Colored by percent 

of historical mean spring Q. 

 
2.3.4 Regional Variations in Forecast Skill 

 
The challenge of seasonal to sub-seasonal hydrologic forecasting is mostly 

attributed to the meteorological uncertainty outside of a two week weather prediction 

horizon. The importance of post-forecast precipitation on forecast skill is well-studied 

and documented (Mantua et al., 2008; Schaake & Peck, 1985). Across our study domain, 
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we confirm that forecast percent error is well-correlated with post-forecast precipitation 

anomalies (Figure 2.6). Specifically, we find that both models (PCR in blue and SAC-

SMA in orange) underpredict spring Q volumes when post-forecast precipitation 

anomalies are positive, and vice versa. A similar relationship between forecast percent 

error and percent of mean peak SWE (Figure A2.8) is also observed, which is expected in 

snow-dominated regions where snowmelt is the main driver of spring streamflow. 

Regional sensitivity of forecast skill to spring P can be estimated by the slope and 

standard error (SE) of the regression in Figure 2.6. For example, we find that forecast 

errors in the Colorado/Rio Grande region were most sensitive to spring P (model mean 

slope = 269.4), but these relationships were weak and highly variable (model mean 

standard error = 139.3) and dependent on the model and forcing data. 
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Figure 2.6: Forecast percent error as a function of the April  – July fraction of mean 

annual P. Increases in post-forecast issue date P are positively correlated with larger 
under predictions of streamflow volume (i.e. positive percent error) across all HUC 

groups for both the SAC-SMA model (orange) and the PCR model (blue). Mean Spring 

Q units are in thousands of acre-feet. 

We have attempted to identify important differences in regional water supply 

forecast model performance through the analysis of hydrologic units, while also 

evaluating site-year forecast performance across snowpacks and spring precipitation 

regimes. In Figure 2.7, we use a basin-scale approach to benchmark January 1st (top 

panels) and April 1st (bottom panels) model performance of SAC-SMA to PCR using the 

NSE. These comparisons highlight the regional differences in forecast skill where, 

generally, we find better PCR performance, e.g., in the Pacific Northwest and better 
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SAC-SMA performance in, e.g., the Great Basin and parts of the Upper Colorado. These 

trends are less distinct, however, during below-average snowpack (dry years). In 

particular, dry year January 1st forecasts are more skillfully predicted (higher NSE) by 

SAC-SMA models almost universally: only 12% of basins have higher PCR NSE scores 

during this time. 

There are many basins where model differences are small (i.e. small orange or 

white inner circles, bottom panels) and/or where model superiority is inconsistent or 

dependent on wet versus dry years (Figure A2.9). For example, the regional watershed 

boundary between the Great Basin and Upper Colorado includes several basins with 

small differences in model performance and no consistent model performance. Similar 

trends are also observed in other parts of the Colorado/Rio Grande, Pacific Northwest, 

and Missouri hydrologic units. But, in general, we see a north-south divide where more 

skillful PCR forecasts are located in northern regions with wetter conditions and higher 

mean spring Q (Pacific Northwest and Missouri) and more skillful SAC-SMA forecasts 

are located in southern, more arid regions with lower mean spring Q (Great Basin, 

Colorado, and Rio Grande).  
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Figure 2.7: Benchmark evaluation of SAC-SMA model NSE to PCR model NSE on 

January 1st (top panels) and April 1st (bottom panels) across above-average (left column) 
and below-average (right column) snowpack. Dark grey circles represent a difference in 

NSE of +/- 1. Orange circles are basins where PCR is more skillful (higher NSE); white 
circles are basins where SAC-SMA is more skillful. Regional watersheds (hydrologic 

units) are outlined in blue. 

Pagano et al. (2004) demonstrated that official NRCS water supply forecast skill, 

subject to interannual to interdecadal climate variability, changed through time, but 

surprisingly, was generally steady (and not increasing), despite a growing period of 
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record. Extending this analysis, we evaluate basin-scale changes in PCR forecast skill 

(NSE) within 15-year rolling windows from WY 1981-2014 (Figure 2.8). Mean values 

for all lead times in each regional hydrologic unit were then evaluated using a Regional 

Mann Kendall Trend Test, which measures Sen's Slope values and their statistical 

significance (Helsel & Frans, 2006). This trend test finds statistically significant 

decreases in forecast skill for 9 of 16 regional-lead time ensembles (Figure 2.8, thick 

solid lines); the April 1st Colorado/Rio Grande hydrologic unit is the only ensemble 

mean which is increasing significantly. To evaluate the sensitivity of trend detection to 

the rolling window size, we evaluated forecasts across 5, 10, 15, and 20-year windows for 

each lead time and hydrologic unit for the PCR forecasts; the small range of statistically 

significant (p< 0.05) Sen’s Slope values across the four rolling windows suggests that 

PCR forecast-skill trends in the Missouri (HUC 10), Colorado/Rio Grande (HUCS 13-

15), and Pacific Northwest (HUC 17) are mostly insensitive to rolling window size, with 

the largest decreases in skill in the Pacific Northwest and at longer lead times (Figure 

2.9a). 

A shorter (WY1981-1989, WY 2000-2014) and more recent continuous period of 

record complicates a similar analysis for the SAC-SMA model results. If we only 

evaluate SAC-SMA performance using a 3, 5, and 10-year rolling from WY2000-2014, 

we do see similar patterns in forecast skill trends between the two models, though SAC-

SMA trends are more pronounced in both the positive and negative directions (Figure 

2.9b). Direct attribution of changes in forecast skill through time are outside of the scope 

of this study, though a complimentary trend analysis of SNOTEL-measured SWE and 

accumulated P was conducted (Figure A2.10). In this analysis, we find statistically 
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significant declines in SWE and accumulated P in the Pacific Northwest, Colorado/Rio 

Grande, and Great Basin, with increases in SWE and P in the Missouri and Great Basin, 

though further research is needed to directly attribute factors affecting temporal trends in 

water supply forecast skill. 

 

Figure 2.8: 15-year rolling NSE scores across four regional hydrologic units. Thin light 
grey lines are the individual PCR forecasts for each basin in that region. Heavier weight 

greyscale lines are the mean of the 15-year rolling NSE for the four lead times; solid 
thick lines indicate statistical significance (p<0.05) and dashed lines indicate statistical 

insignificance (p>0.05) 
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Figure 2.9: Statistically significant Sen’s Slope values from a Regional Mann Kendall 
Trend Test for all forecast lead times in each regional hydrologic unit for a) 5, 10, 15, and 

20 year rolling NSE evaluations of PCR forecasts from WY1981-2014 and b) 3, 5, and 

10 year rolling NSE evaluations of SAC-SMA forecasts during WY2000-2014. 

Our results suggest that statistical water supply forecasts (PCR) generally 

outperform conceptual models (SAC-SMA) for seasonal streamflow predictions in snow-

dominated basins. Yet, these advantages in PCR model performance are most evident 

during average and above-average snowpack and at shorter lead times (Figure 2.3, 7). In 

contrast, SAC-SMA model performance is superior at longer lead times regionally, and at 

longer lead times during below-average snow years almost universally. A caveat to these 

findings is that model differences are smallest at the longest lead times (Figure 2.3, 4), 

suggesting that any advantages to using the SAC-SMA model at long lead times is may 

not be significant. This is complicated by the fact that seasonal to sub-seasonal 

precipitation forecasting is currently unreliable, making it impossible to confidently 

determine which model to consider based on snowpack forecasts on January 1st (Figure 

2.7). Regionally, there are large spatiotemporal differences in model performance 

summarized in three broad patterns. First, in the Pacific Northwest and Missouri, PCR 

b) a) 
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forecasts are reliably favored, particularly during wet years. Second, in the Colorado/Rio 

Grande and Great Basin, SAC-SMA outperforms PCR at longer lead times. Lastly, SAC-

SMA is better during low snow years for all lead times in the Colorado/Rio Grande and 

Great Basin and at long lead times in the Pacific Northwest and Missouri. 

Our results also suggest that forecast skill is generally degrading through time, 

particularly in regions known to have vulnerable snowpacks such as the Pacific 

Northwest, though also in colder, interior regions such as the Missouri and Colorado at 

longer lead times (Figure 2.8, 9). These changes were observed across both models, 

though limited by different model validation years. A regional analysis of trends in 

SNOTEL-measured SWE and P showed significant changes (in both directions) for SWE 

and P. A more robust analysis would be beneficial for attributing forecast skill changes 

from snow droughts (interannual) versus long term declines in snow or precipitation due 

to anthropogenic climate change.  

 
2.4 Discussion 

 
The benchmark analysis of two common seasonal water supply forecast models 

described above shows that increased occurrence of low snow years in the future may 

threaten the skillfulness of empirical (PCR) models during average to above-average 

snowpack, whereas conceptual models (SAC-SMA) which are more skillful during lower 

snowpacks may experience some buffering of skill loss at lead times of 1-month or 

longer. To be clear, our results show that the forecast skill of historical April to July 

streamflow volumes is degraded in dry years versus wet years for both SAC-SMA and 

PCR forecasts, but that PCR models are more sensitive to below-average snow 
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accumulation. These general patterns highlight how long lead PCR forecasts are more 

disadvantaged by post-forecast precipitation (Figure 2.3a) and how SAC-SMA under 

predicts in wetter climates and at higher flows, even at short leads, but is better at lower 

flows (Figure 2.4). Vulnerability to SAC-SMA model structural error, as estimated by 

poorer model performance under a prognostic model run (Figure 2.3a, yellow lines), may 

represent significant potential for model improvement via calibration or otherwise (Gong 

et al., 2013). In contrast, vulnerability to climate error may disproportionately 

disadvantage PCR forecasts if there are significant future changes in precipitation timing 

or amount. However, long term trends in forecast skill show degradation of skill across 

both models (Figure 2.8), though regional trends are consistent with our hypothesis 

(Figure 2.1) that forecast skill for some basins will degrade more than others. A longer 

period of record would enable independent PCR calibration/validation periods and a 

more complete SAC-SMA forecast skill trend analysis to better understand how relative 

model forecast skill has changed.  

Post-forecast spring P anomalies are a significant control on forecast skill (Day, 

1985; Garen, 1992; Schaake & Peck, 1985), however differences in relative forecast 

performance reflect limitations of model structures, parameterizations, and data quality in 

streamflow models and forecasts. Disentangling other controls on forecast skill between 

the two very different model types was challenging in the western U.S. where climate and 

basin properties vary widely. Returning to Figure 2.1, our results supports our hypotheses 

about the role of snow vulnerability in forecast skill. Conceptually, with smaller 

snowpacks, the contribution of snowmelt for springtime streamflow clearly diminishes. 

In addition to smaller snowmelt contributions elevating the relative importance of 
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individual spring P events, loss of snow and earlier snowmelt also dilute the importance 

of PCR model initial conditions (i.e. forecast-issue date SWE and P) and amplify SAC-

SMA initial conditions, like soil moisture. Explicit soil water storage in the SAC-SMA 

model may explain some of the model divergence during low snow years. For example, 

Franz et al. (2003) showed that forecasts for Lower Colorado basins were less skillful at 

shorter lead times due to early loss of snow and the forecast information it provided. 

Relative importance of primary and secondary controls on forecast skill is evident in the 

example from the Rio Nutria NM (ID# 14, USGS 09386900), a low-skill (model average 

April 1st NSE 0.32) forecast point with large spring water inputs (spring P:peak SWE = 

0.84). In comparison to the high skill (model average April 1st NSE 0.74), snow-

dominated, Mediterranean climate (spring P:peak SWE = 0.22) of Sagehen Creek CA 

(ID# 27, USGS 10343500), the Rio Nutria forecast is expected to have higher climate 

error, since the spring P (unknown to the model) is a larger fraction of the SWE (known 

to the model, at least through April 1). At any given forecast point,  combinations of 

sparse observations; poor forcing data; small, at-risk, and changing snowpack; highly 

variable and non-stationary streamflow; and increasing atmospheric water demand 

(Lehner, Wahl, et al., 2017) can drive large (and potentially growing) forecast errors. 

Reproducing the actual operational forecasts (in any but limited retrospective 

ways) remains elusive and limits benchmarking studies. This study was fortunate to have 

descriptions of operational procedures to follow where possible (U.S. Department of 

Agriculture, 2011), however the forecasts benchmarked are not identical to those from 

full-blown operations. A major difference comes from undocumented but routine forecast 

adjustments in operations. Conversations with forecasters at the Portland, Oregon NRCS 
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and the NWS California-Nevada River Forecast Center all confirm that tuning of initial 

conditions and observed driving variables is not only commonplace, but is a critical 

element of operational hydrologic forecasting. The purely automated, objective models 

used here do not include these adjustments. Notwithstanding bit-reproducibility and 

forecast verification (Melsen et al., 2017), we re-created conclusion-reproducible (i.e. the 

ability to reproduce other’s scientific findings) versions of the forecasts that allows 

objective comparisons of sites and years. While precise model reproducibility in 

computational hydrology has been criticized (Hutton et al., 2016), Melsen et al. (2017) 

argue reproducibility should more broadly be defined as an ability to verify (or falsify) 

model conclusions themselves. 

Collaborations between the NRCS and NWS forecasters to leverage and build on 

their respective (and different) forecasts strategies may allow forecasters to build upon 

the strengths of each (Pagano et al. (2014). Wood and Lettenmaier (2006) note that 

operational weather predictions have long relied on a suite of models blended to produce 

a final weather forecast. Another strategy would be to develop an “ensemble of 

ensembles” approach wherein different forecast models are deployed and blended 

depending on basins climate conditions and lead times (see Figure 2.7). Among the 

basins studied here, a quarter (n=14) of the study basins might benefit from this approach 

because one model clearly performed best on January 1st while the other model was 

better for April 1st. More than 40% of study basins could improve skill by using 

alternative models in dry versus wet years, for their April 1st forecasts (Figure A2.9). For 

January 1st forecasts, this number could grow to 65% of basins by explicitly drawing on 

SAC-SMA skill in dry years.  
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Another benefit of multi-model forecasting is improved uncertainty 

quantifications under different conditions. For example, models that have more climate 

error may be used to provide an estimate of longer lead time post-forecast precipitation 

uncertainty, whereas shorter lead time forecast uncertainty may be better described by 

models with greater structural uncertainty. Benchmarking studies of operational and 

research-grade models help identify these important model synergies and will be 

necessary to test new modeling approaches to mitigate skill loss in a future with less 

snow. 

2.5 Conclusion 

Improved water supply forecasting could be worth billions of dollars in economic 

productivity in the United States (Hamlet et al., 2002). Substantial resource allocations 

will likely be needed to mitigate water supply forecast skill degradations, like those 

shown in the Pacific Northwest (Figure 2.8), because mitigation will require expanded 

monitoring networks, improved process understanding and representation, and better 

model calibration (F. M. Ralph et al., 2014; Wood & Lettenmaier, 2006). Expanded 

monitoring networks will be needed to improve tracking of shifting rain-snow elevation 

lines and replace loss of information from snow storage with soil moisture or other 

observations (Adrian A. Harpold et al., 2017; Koster et al., 2010; Rosenberg et al., 2013). 

Advancements in distributed, physics-based models (i.e. National Water Model, 

https://water.noaa.gov/about/nwm) and machine learning through improved automation 

and computing could improve seasonal water supply forecasting but will be subject to 

similar benchmarking challenges. This study points to several opportunities to improve 

water supply forecasts and their impacts on decisions making: 
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Model reproducibility and benchmarking: 

Because of the reliance on professional forecaster judgement, operational 

streamflow volume forecasts are not reproducible. Without reproducibility, it is difficult 

to evaluate the potential of new scientific modeling approaches through benchmarking 

studies. Additionally, moving towards a more automated operational approach will be 

essential to scaling-up streamflow predictions into a nowcasted domain across a greater 

number of forecast points. Yet, tradeoffs exist in a strictly-automated forecasting 

environment. Determining these tradeoffs between a more automated forecasting world 

and the status quo will be essential to advancing seasonal streamflow forecasting. 

 

Forecast synergy and discussion: 

Epistemic uncertainty, or uncertainties that could theoretically be resolved by an 

adequate model, can be estimated, and theoretically, resolved through a multi-model 

approach. In addition to multi-model ensembles making the specifics of any one model 

less important, they also leverage known and unknown model strengths to produce the 

best forecast. Further, multi-modeling assists in quantifying forecast uncertainty, which is 

critical in predicting extreme hydrologic events outside of the historical period of record, 

whether in an automated or forecaster-informed operational hydrologic modeling world. 
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Appendix 2.1: NRCS Principal Component Regression Forecast Development 
 

Today, the NRCS issues over 600 spring water supply forecasts for the western 

U.S. and Alaska on a monthly to bi-weekly basis using the PCR technique. These 

deterministic forecasts begin on January 1st, are updated through the end of the snowmelt 

season, and are communicated through a variety of products available at: 

https://www.wcc.nrcs.usda.gov/wsf/. Previous water supply forecast assessment studies 

(e.g. Pagano et al. (2004)) make direct use of NRCS forecast results for their error 

assessments. Yet, it is well known that these forecasts are subject to the independent, 

professional judgement of the forecaster. For example, forecasted streamflow volumes 

may be adjusted to produce more consistent month-to-month values across a forecast 

season or to eliminate statistical noise (Garen, 1992). Though admittedly small, such 

adjustments confound forecast accuracy assessment and are not possible to control for. 

Accordingly, we follow the approaches of Harpold et al. (2017) and Lehner et al. (2017) 

to reproduce PCR-based water supply forecasts. 

The PCR is the pillar on which modern NRCS water supply forecasting rests. The 

PCR is a regression technique based on a multivariate statistical process called Principal 

Component Analysis (PCA). PCA restructures intercorrelated variables into an 

eigenvalue-eigenvector matrix which provides a new set of uncorrelated variables, or 

principal components (PCs). The PCA aims to explain the most variance with the fewest 

PCs, thereby compressing the dimensionality of the original predictor variables. A subset 

of the PCs can then be used as independent variables in a regression equation (Jolliffe, 

2002). 
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The NRCS water supply forecast prediction variables of P, SWE, antecedent Q- 

and to a lesser extent, climate indices- exhibit strong multicollinearity. For this reason, 

the PCR is a statistically more robust streamflow forecasting technique than other 

regression techniques. In a methods study, Garen (1992) argued that maximum forecast 

accuracy could be obtained by using monthly basin-specific forecasts which: 1) use PCR 

instead of multiple linear regression, 2) are informed only by data available at the time of 

prediction and not the long-term mean values, 3) are backed up through rigorous cross 

validation, and 4) whose predictor variables are systematically identified by selection 

algorithms. Chapter 7 of the National Engineering Handbook, Water Supply Forecasting, 

formalizes this procedure as the standard regression-based water supply forecasting 

methodology (U.S. Department of Agriculture, 2011). 

To reduce the confounding effects of NRCS forecast development and forecaster 

adjustment, we employ a modified approach to the NRCS PCR method (U.S. Department 

of Agriculture, 2011) to recreate forecasts for all 51 study basins. The process of 

developing PCR forecasts begins with the standardization of n predictors, where n = 2 

(SWE and P) x the number of SNOTEL stations in the forecast equation (Table 2.1). 

These predictors, or training data, are selected by the NRCS using an automated search 

algorithm developed by Garen (1992). We do not replicate this process and instead utilize 

the primary NRCS-selected predictor variables (SNOTEL-measured P and SWE), 

forgoing all other NRCS-selected predictors (e.g. antecedent Q) for consistency. Using P 

and SWE variables only had the added benefit of explicitly considering the sole effects of 

winter precipitation and snow on forecast performance. The standardized training dataset 
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comprised of n predictors are then statistically transformed by a PCA, producing n 

principal components (PCs). To develop a parsimonious model, we aim to select a subset 

of m<<n PCs to be used as the independent variable(s) in our forecast regression 

equations, where m represents the number of PCs used in the regression (here, m = 1). 

The selection process sequentially adds PCs to the regression equation, using a standard 

t-test to evaluate the statistical significance of the regression coefficient (slope) for each 

PC. The U.S. Department of Agriculture (2011) specifies a forecaster-selected t-statistic 

of 1.2 to 2.5, with a reasonable default defined as 1.6. 

SNOTEL-measured daily P and SWE data were downloaded from the National 

Weather and Climate Center’s Report Generator 

(https://wcc.sc.egov.usda.gov/reportGenerator/) for the period October 1st, 1980 to 

September 30th, 2014, i.e. water years (WYs) 1981 to 2014. SNOTEL stations were 

identified from the official NRCS-published forecast equations. Daily accumulated P was 

aggregated to end-of-month totals and daily end-of-month SWE values were extracted. 

Gap-filling of accumulated P and SWE data was minimal as most data gaps were 

generally found at the beginning of the period of record and thus inferred to be prior to 

SNOTEL station installation. Quality-controlled mean daily streamflow (Q) data were 

downloaded from the CAMELS dataset for all 51 basins for the same period, water years 

1981 to 2014. Most (75%) of the study sites had serially complete spring Q records; those 

missing more than 10% of daily values for a given spring were omitted. In total, 96% 

(1,670 out of 1,734) of records were retained. As the predictand, no gap filling was 

performed on the streamflow data. An example PCR forecast for Sagehen Creek CA (ID# 
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27, USGS 10343500) in shown in Figure A2.1, with principal component loadings (i.e. 

eigenvectors) of SWE and P for each forecast issue date. 

 

Figure A 2.1: Example PCR forecast for Sagehen Creek CA for four lead time forecasts 
(first four panels) with PC loadings of SWE and P variables (last panel). Below (above) 

average peak SWE years are shown in red (blue); forecast regression equations are the 
black lines. Note that forecasts were corrected to be non-negative (e.g. low flows in 

March and April forecasts). 
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Appendix 2.2: NWS Sacramento Soil Moisture Accounting Model Forecast 
Development 
 

The NWS River Forecast System (NWS RFS) is implemented by 13 regional 

River Forecast Centers (RFCs) to issue streamflow predictions for short lead time flood 

forecasts and select longer lead time water supply forecasts for thousands of locations in 

the United States. Ensemble Streamflow Prediction (ESP) techniques were developed in 

the 1970s by the NWS and collaborates for use in long-term hydrologic predictions. At 

the core of the NWS RFS and ESP is the Sacramento Soil Moisture Accounting (SAC-

SMA) model, a spatially lumped conceptual rainfall-runoff model (Burnash et al., 1973) 

coupled to the SNOW17 temperature index snow model (Anderson, 1973). 

SAC-SMA is a continuous soil moisture accounting model that uses soil water 

reservoirs with spatially lumped parameters to simulate runoff, which can be routed to 

produce streamflow predictions. The reservoir zones represent the upper and lower part 

of the soil column and simulate processes such as groundwater storage, baseflow, 

interflow, and surface runoff. The ESP approach uses a deterministic simulation of the 

initial hydrologic conditions during a model initialization period. Model spin-up then 

provides hydrologic conditions (i.e. initiate state variables) on the forecast start date. An 

ensemble of historical meteorology (e.g. precipitation and temperature) is then used to 

force the model over the forecast period. 

We calibrated the SAC-SMA/SNOW17 models using a Shuffle Complex 

Evolution (SCE) to optimize model performance as forced by lumped basin mean daily 

Daymet data for the period October 1 1989 to September 31 1999 (Addor et al., 2017). 
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Calibrated models were then used to make NWS RFS seasonal water supply forecasts for 

April 1 – July 31 for WYs 1981-1989 and 2000-2014 following ESP techniques. This 

process was repeated for each of the four NRCS lead times, including January, February, 

March, and April 1st. SAC-SMA forecasts were reported as probabilistic values for the 

mean model runs from the ESP approach. An example April 1st (dark grey) SAC-SMA 

WY 1900 forecast for Sagehen Creek CA (ID# 27, USGS 10343500) in shown in Figure 

A2.2, with a ‘perfect prognostic’ (Figure 2.3a) model run forced with daily data in black. 

Individual model runs are in lighter grey traces. 

 

Figure A2.2: Example April 1st SAC-SMA ensemble mean forecast for WY1990 in 

Sagehen Creek CA (USGS 10343500). Ensemble forcing data were provided to the 
model from forecast issue date until the end of the forecast period using an ensemble 

technique. 
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Appendix 2.3: Statistical Forecast Assessment Metrics 
 
PBIAS measures the average tendency of the forecasted data to be larger or smaller than 

their observed counterparts; an optimal value is 0 and low magnitude values indicate 

accurate, non-biased forecast performance (Gupta et al., 1999). Negative values indicate 

systematic forecast overprediction and positive values indicate systematic forecast 

underestimation: 

!"#$% = ∑ ()!"#,% − )#%&,%+ ∗ 100'
%()

∑ ()!"#,%)'
%()

 

The original Nash Sutcliffe Efficiency (Nash & Sutcliffe, 1970), a widely-used goodness 

of fit measure: 

1%2	45677	489:; = 1 −	∑ ()!"#,% − )#%&,%+
*'

%()
∑ ()!"#,% − 	)!"#<<<<<<<+*'
%()

 

The Nash Sutcliffe Efficiency (NSE) skill score measures the ratio of the sum of squares 

of the observed streamflow ()!"#,%) and the forecasted streamflow ()#%&,%) and the initial 

variance, a sum of squares between the observed streamflow ()!"#,%) and the mean of the 

observed streamflow (	)!"#<<<<<<<). The NSE score is a normalized indicator of model 

performance in relation to a benchmark, in our case, mean observed streamflow (Gupta et 

al., 1999). Values vary between the perfect score of 1 and -∞; values less than 0 are less 

skillful than the mean of the benchmark. 

Mathevet et al. (2006) argue that across large sample studies, model assessment will 
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inevitably be challenged by a wide range of model performances, particularly model 

failures. When quantifying the average model performance, a metric such as the 

traditional NSE score with no lower bound may therefore give strong negative values. 

Hence, Mathevet et al. (2006) propose a bottom-end bounded version of the NSE score 

(C2M) designed specifically for the assessment of hydrologic models across large sample 

studies: 

=*> =	 1%2
2 − 1%2 

The C2M criterion varies between 1 and -1, producing less optimistic values than the 

traditional metric for positive values and offering overall more meaningful statistics for 

summarizing forecast performance across our study basins. The C2M was our primary 

metric of consideration for forecast assessment and improvement. For clarity, we refer to 

it as the NS score, or simply, NSE. In comparison to metrics such as the relative root 

mean square error (rRMSE), NSE is normalized by the variance of the observed values 

(Figure A2.3). 
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Figure A2.3: Relative RMSE and Nash Sutcliffe Efficiency error metrics as a function of 

the coefficient of variation of the runoff ratio for April 1st PCR forecasts (left column) 
and SAC-SMA forecasts (right column). As a metric, NSE scores are normalized by 

variance. Colored by regional hydrologic unit: Missouri (10), Upper/Lower Colorado 

(13-14), Rio Grande (15), Great Basin (16), and Pacific Northwest (17).
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Appendix 2.4: Supporting Figures 
 

 
 
Figure A2.4: Forecast evaluations during above (blue) and below (red) average peak 
SWE for a bounded Nash Sutcliffe Efficiency (NSE) score across four lead times for each 

regional HUC group. Lighter colors are PCR forecasts, darker colors are SAC-SMA 
forecasts. Black bars show median forecast performance when evaluated across all years; 

yellow bars are forecast performance when models are provided data through the end of 

the forecasting period. 
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Figure A2.5: January 1st and April 1st volumetric streamflow forecasts from SAC-SMA 
(y-axis) and PCR (x-axis) for each regional hydrologic unit. Basin mean values are 

colored by USGS gauge ID. Units are in cubic meters. 

 

 
Figure A2.6: January 1st and April 1st volumetric streamflow forecasts evaluations 
(percent error) from SAC-SMA (y-axis) and PCR (x-axis) for each regional hydrologic 

unit. Basin mean values are colored by USGS gauge ID. Units are in cubic meters. 

 



 

 

54 

 

 
 
Figure A2.7: Differences between the absolute percent errors of the SAC-SMA and PCR 
model forecasts from January 1st (left four panels) and April 1st (right four panels) for 

each regional HUC group. Median values are bounded by a 90% confidence interval 
(vertical bars) for 25% SWE bins (e.g. 0-25% mean historical peak SWE). SWE values 

are SNOTEL observations. Colored by percent of historical mean spring Q. 
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Figure A2.8: Percent error of January 1st forecasts (left column) and April 1st forecasts 
(right columns) for the PCR (top row) and SAC-SMA (middle row) models as a function 

of percent of historical peak SWE. Median values are bounded by a 90% confidence 
interval (vertical bars) for 25% SWE bins (e.g. 0-25% mean historical peak SWE). 

Colored by percent of mean spring Q. 
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Figure A2.9: Percentage of years PCR forecasts are better than SAC-SMA forecasts for 

wet and dry years for January 1st and April 1st forecasts. Negative (orange) values are 
the percentage of years SAC-SMA is better than PCR. Inset histograms show the 

distribution across all sites; the solid black vertical bar denotes the median. 

 
 
 

 
 
 
 
 
 
 
 

 



 

 

57 

 

 
Figure A2.10: Statistically significant (p-value < 0.05) Sen’s Slope values from a 
Regional Mann Kendall Trend Test for SNOTEL measured beginning of the month SWE 

values (left) and SNOTEL measured beginning of the month water year accumulated 
precipitation (right) for January 1st (purple), February 1st (teal), March 1st (light green), 

and April 1st (red) across the four HUC groups. 
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Chapter 3: Potential to Mitigate Skill of Seasonal Water Supply 
Forecasts From Snowpack Loss in the Sierra Nevada, USA 
 
Abstract 

Seasonal water supply outlooks use statistical techniques to relate winter 

precipitation stored as snowpack with spring (April-July) streamflow volumes. Low 

snowpack alters streamflow generation which challenges regression-based forecasts like 

those used in the Sierra Nevada, USA. In this study, we use data from the Variable 

Infiltration Capacity hydrologic model to simulate seasonal water supply forecasts in the 

Sierra Nevada from 1950-2099 under low and high emissions scenarios. Our simulations 

project that forecast skill will decline steadily through the 21st century, with median loss 

of skill of 12-22% by the second half of the century, most pronounced in mid-elevation 

basins (1000-1700 m mean elevation). We demonstrated that simulations of remotely-

sensed snowpack can replace an average of 40% of lost forecast skill in the most 

vulnerable basins through midcentury. As snowpack declines, simulations show that the 

loss of forecast information once provided by snowpack can be partially replaced by soil 

moisture observations. 
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3.1 Introduction 

In the Sierra Nevada of California and Nevada, winter precipitation stored as 

snowpack at higher elevations has historically provided reliable streamflow and 

consistent late season runoff from the headwater basins. Summertime water availability 

from Sierra Nevada is critical for California’s urban centers and $2.7 trillion state GDP, 

particularly the $50 billion agricultural industry (California Department of Food and 

Agriculture, 2018). Snowmelt is also essential for in-stream environmental stream flows 

and temperatures. Appropriation of water resources by the California State Water 

Resources Control Board to water rights holders, including critical water allocations 

during drought years, relies on seasonal water supply outlooks issued by the California 

Department of Water Resources (CA DWR). These streamflow volume forecasts apply 

regression relations to winter snowpack and precipitation measured in the mountains to 

predict streamflow discharge volume in the summer, usually for reservoir inflows. 

Formal forecast guidance from these regression-based models is issued by CA DWR for 

the state’s major watersheds four times a year in their Bulletin-120 

(http://cdec.water.ca.gov/snow/bulletin120/), which is similar to other regression-based 

forecasts issued throughout the western U.S. by the Natural Resource Conservation 

Service (NRCS) National Water and Climate Center. Unfortunately, declining snowpack 

(Mote et al., 2018) drives earlier, more intermittent, and slower snowmelt (A. Harpold et 

al., 2012; A. A. Harpold & Brooks, 2018; Musselman et al., 2017), and loss of snow 

storage fundamentally alters streamflow generation and groundwater recharge (Berghuijs 

et al., 2014; Earman & Dettinger, 2011; Hammond et al., 2019; Mcnamara et al., 2005). 

The consequences of loss of information from snow storage (Livneh & Badger, 2020) 
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combined with nonstationary changes in hydrologic processes (Hammond et al., 2019) 

threatens the reliability of regression-based water supply forecasts (Sturtevant et al., 

2020). 

Increasing temperatures from climate change has caused earlier streamflow in the 

Sierra Nevada (Stewart et al., 2005) that will continue to shift earlier (Bureau of 

Reclamation, 2016), while long-term water yields are typically not projected to change 

significantly (Dettinger et al., 2004). New hydrologic measurements, modeling systems, 

and analytical techniques (Kirchner, 2006) offer promise for predicting how declining 

snowpack alters streamflow generation. Despite providing valuable forecast skill with 

gridded, physically based models (Koster et al., 2010; Wood & Lettenmaier, 2006), these 

more sophisticated tools are typically too complex (Beven, 2002) or do not show 

sufficient skill benefits compared to simpler, statistical models (Sturtevant et al., 2020) to 

have motivated their widespread adoption in operations yet. These changes (and 

competition from the newer models) are motivating new improvements to the regression-

based streamflow volume forecasts that are widely relied on by water managers. For 

example, incorporating climate information (e.g. El Nino-Southern Oscillation climate 

indices) is now standard practice for the Natural Resource Conservation Service (NRCS) 

following successful research efforts by Yao and Georgakakos (2001) and Hamlet et al. 

(2002). Additional water supply forecast predictor variables that have received 

consideration to improve regression-based forecasts include soil moisture (A. A. Harpold 

et al., 2017; Rosenberg et al., 2013) and satellite-based snow product (Rango, 1980). 

Projected declines in snowpack storage (Fyfe et al., 2017) and more frequent snow 

drought, or the combination of meteorological drought and reduced snow storage (A. 
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Harpold et al., 2017), and more intense winter rainfall are expected to stress existing 

water supply forecasting techniques like those used in California (Sturtevant et al., 2020). 

In this study, we project future resilience of statistical seasonal water supply 

forecasts in the Sierra Nevada. Because testing future skill of the regression forecasts is 

inherently limited by the lack of future observations and since historical conditions may 

provide a weak analog for the future (Cooper et al., 2016), we use output from process-

based hydrology model (Variable Infiltration Capacity, VIC; Liang et al., 1994) to 

generate forecasts for the same basins as California DWR’s B120 forecast. Long-model 

records allow us to create forecasts on February 1st and April 1st for water years (WY) 

1951-2099 using statistically downscaled projections from 10 global circulation models 

(GCMs) under RCP 4.5 and 8.5 future climate pathways (Pierce et al., 2018). We then 

assess the capacity of relevant supplemental observations to improve simulated forecasts: 

1) a basin-wide SWE snapshot representing a virtual Airborne Space Observatory (ASO) 

lidar flight (Painter et al., 2016) and 2) soil moisture measurements co-located with 

existing CA DWR observation stations. These standard (conventional) and enhanced 

forecasts are evaluated are compared between historical, mid-21st century, and late 21st 

century to answer two questions:  

1) Do seasonal water supply forecast skills, based on snowpack and precipitation, degrade in 

the 21st century as snowpacks decline? 

2) To what extent can enhanced forecasts using supplemental observations mitigate declines 

in skill among basins with different characteristics? 
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3.2 Data and Methods  

CA DWR issues April 1 – July 31 streamflow volume forecasts four times 

annually on February 1st, March 1st, April 1st, and May 1st for twenty headwater basins 

in the Sierra Nevada and northern California 

(http://cdec.water.ca.gov/snow/bulletin120/). For the purposes of this study, we represent 

the Bulletin-120, or B-120, forecast points by simulated flows from twenty-six 

corresponding Hydrologic Unit Code 8 sub-basins1 (Table 1), as mapped by the U.S. 

Geological Survey’s Watershed Boundary Dataset. The B-120 forecast use a Multiple 

Linear Regression forecast, but we choose to use a Principal Component Regression 

(PCR) method that mimics the Natural Resource Conservation Service’s own PCR 

method (Garen, 1992) because it is more repeatable and comparable to other studies 

(Rosenberg et al., 2011). We develop simulated February 1st (2-month lead time) and 

April 1st (0-month lead time) forecasts using an adapted version of the NRCS PCR 

model trained with outputs from the Variable Infiltration Capacity (VIC) model, a large-

scale, semi-distributed gridded hydrologic model (Liang et al., 1994) similar to methods 

by Rosenberg et al. (2011). Forecasts are evaluated using a Nash Sutcliffe Efficiency 

(NSE) skill score, where values of 1 represent a perfect forecast (Nash & Sutcliffe, 1970). 

Simulated hydrologic data from the Localized Constructed Analogue (LOCA)-

forced (Pierce et al., 2014) VIC model were downloaded from the Cal-Adapt data 

repository (https://cal-adapt.org/data/download/) for a subset of 10 GCMs that were 

previously identified as well-suited for important aspects of California’s climate (Pierce 

 
1 As jurisdiction of the City of Los Angeles’s Department of Water and Power, the Owens River and Mono 
Lake basins in the east-draining part of the southern Sierra are not included in our study basins. 
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et al., 2018). The Cal-Adapt data repository covers California and Nevada at 1/16 °spatial 

resolution (~6 km). Model simulations are available for historical, RCP 4.5, and RCP 8.5 

climate change scenarios for years 1950-2099.  

To satisfy objective inter-basin comparisons while balancing representation of B-

120 forecast equations, we modify CA DWR forecast predictor variables to include 

beginning-of-month SWE and beginning-of-month accumulated P for the water year. 

Antecedent runoff was not considered since it is not included by CA DWR as a predictor 

variable in many settings. We simulate the observations of predictor variables on the 

forecast issue date by only extracting VIC data from grid cells with active, corresponding 

(i.e. SWE or P) observation stations recorded in the California Data Exchange Center 

(http://cdec.water.ca.gov/cdecstation2/). PCA-transformed February 1st or April 1st SWE 

and P values were then regressed against VIC-simulated April 1 – July 31 total runoff. 

No streamflow routing was performed. Five separate PCR forecasts were developed for 

each of the twenty-six study basins under each GCM to produce ensemble mean 

predictions: late 20th century (water years 1951-2005) under an historical emission 

scenario and the early 21st century (WY2006-2052) and late 21st century (WY2053-

2099) with climate forcings for low and high emissions scenarios: relative concentration 

pathways (RCP) 4.5 and 8.5, respectively. 

We also hypothesized and evaluated two enhanced forecasts that included 

synthetic supplemental “observations”. The first enhanced forecast system used VIC-

simulated soil moisture data to supplement the standard predictor variables. Similar to 

accumulated P, we extracted simulated top-layer soil moisture values on the forecast-

issue dates from grid cells at the CDEC-reported precipitation observation stations, 
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representing an expansion of California’s soil moisture monitoring network (White et al., 

2013). The other enhanced forecast system substituted beginning of month SWE at the 

CDEC stations with basin-wide SWE measurements. This method was modeled after the 

Airborne Snow Observatory (ASO) objective to remotely estimate SWE through a 

combination of high resolution lidar snow depth measurements and snow density 

modeling (Painter et al., 2016). The virtual ASO method is equivalent to having CDEC 

SWE observation stations in every VIC grid cell for the forecast-issue dates.  
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3.3 Results 

Simulations of historical (WY1951-2005) forecast performance are closely 

validated by an analysis of official CA DWR B-120 forecasts for thirteen western Sierra 

basins (Harrison & Bales, 2016) from ~1930 to 2012 (Figure A3.1). These model 

comparisons provide confidence that our simulations reasonably represent CA DWR B-

120 forecasts; our simulated February 1st forecasts are, however, somewhat more skillful 

than the reported results from Harrison & Bales (2016). Projections of seasonal water 

supply forecast skill into the 21st century (WY 2006-2099) show substantial but uneven 

loss of skill relative to late 20th century historic (1950-2005) baseline conditions (Figures 

1, A3.2). By the last half of the 21st century (2053-2099), median April 1st forecast skill 

is projected to decline by 12% with lower emissions (delta NSE = -0.1, RCP 4.5), 

upwards of 22% with higher emissions (dNSE = -0.16; RCP 8.5). However, these losses 

in forecast skill are uneven, ranging from a worse-case loss of 49% (dNSE -0.39, #14, 

East Branch North Fork of the Feather, RCP 8.5) to marginal increases of 3% (dNSE 

+0.03, #4, East Walker, RCP 4.5). On average, February 1st forecasts are projected to see 

even greater relative skill degradation by the last half of the 21st century (median skill 

declines of 30%, dNSE = -0.16, RCP 8.5). Smaller declines in skill are projected for the 

early 21st century (2006-2052), ranging from median April 1st losses of 6% (dNSE = -

0.05, RCP 4.5) to 8% (dNSE = -0.07, RCP 8.5). We estimate that from the late 20th 

century to the late 21st century, a loss of 0.1 NSE under high emission scenarios 

increases forecast errors by a Mean Absolute Percent Error (MAPE) of 2.4 (Figure A3.4). 

The average RCP 8.5 late 21st century April to July streamflow of 315 thousand acre feet 
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(KAF); thus, an incremental loss of 0.1 NSE approximates an increase in forecast error of 

7.5 KAF, or approximately enough water for 80,000 people for a year2. 

Mid- to lower-elevations (1000-1700 m mean elevation) show particular forecast 

vulnerability by late 21st century (Figure A3.4). Below 1,800 m, median skill loss ranges 

from 19% (dNSE = -0.13, RCP 4.5) to 33% (dNSE = -0.23, RCP 8.5), while in basins 

with mean elevations above 2,000 m we simulate virtually no loss of skill. This elevation-

mediation of skill degradation is well illustrated by the difference between skill losses in 

the relatively lower-elevation northern Sierra Nevada and high-elevation southern Sierra 

Nevada (Figure 3.1). An exception in the well-performing high-elevation band (>2,000m) 

is the Lake Tahoe basin (#1, mean elevation 2,128m), which has late century skill losses 

of 8% (dNSE -0.11, RCP 4.5) to 17% (dNSE = -0.23, RCP 8.5). With a high elevation 

basin outlet (1900m), Tahoe has a basin mean elevation similar to southern Sierra Nevada 

basins, yet peak elevations that are more than 1000m lower. This suggests that high 

elevation (>3000m) portions of a catchment are important in buffering loss of snowpack 

retention. In contrast, differences in forecast skill between east (e.g. #3, Carson) and 

west-draining (e.g. #25, Upper Mokelumne) basins which share a ridgeline (i.e. the Sierra 

Nevada crest) may illustrate the vulnerability of lower portions of a basins in future 

forecast skill, though differences in precipitation on the windward and leeward sides of 

the mountain range greatly complicate such an west-east comparison.  

 
2 Based on an assumed per capita residential usage of 85 gallons per day (California Legislative Analyst’s 
Office, 2016) 
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Figure 3.1: April 1st seasonal water supply forecast skill for 26 headwater basins in the 
Sierra Nevada and Northern California from the late 20th Century (WY1951 to 2005) to 
the late 21st Century (WY2053 to 2099) for RCP 4.5 (low emissions, left panel) and RCP 
8.5 (high emissions, right panel) climate change scenarios from an ensemble mean of 10 
global circulation models. Basin ID numbers correspond with Table 3.1. Accompanying 
February 1st forecast skill maps shown in Figure A3.2. 

 
Loss of forecast skill is positively and well-correlated with the loss of February 

1st and April 1st SWE from the historical period to early and late 21st century periods for 

both forecast lead times (Figure 3.2). This relationship is particularly well-defined for 

February 1st forecasts (RCP 4.5: r2 = 0.6; RCP 8.5: r2 = 0.51; p-values < 0.001); April 

1st change in SWE explains less variance in April 1st forecast skill (RCP 4.5: r2 = 0.28; 

RCP 8.5: r2 = 0.33; p-values < 0.001). Decreases in the baseflow index (BFI), or the ratio 

of simulated baseflow to total simulated runoff, appear to be associated with larger losses 
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in forecast skill, particularly for April 1st forecasts (Figure 3.2, bottom panels). For 

example, from the historic to the late 21st century under RCP 8.5, basins in the top 50th 

percentile of historical (late 20th C.) BFI have larger projected changes in the BFI 

(median loss 8.4%, ΔBFI = -0.06) and a greater loss of April 1st forecast skill (median 

loss 33.6%, dNSE = -0.25), while basins below the 50th percentile had smaller changes 

in BFI (median loss 3.8%, ΔBFI = -0.02) and smaller losses of forecast skill (median loss 

7.3%, dNSE = -0.06). While declining SWE appears be a significant (primary) driver of 

water supply forecast skill loss into the future, basins with historically larger baseflow 

(groundwater) contributions, which are more sensitive to decreases in baseflow index 

(groundwater), accentuate loss of forecast skill. 
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Figure 3.2: Change in forecast skill (Nash Sutcliffe Efficiency, NSE) as a function of 
change in snow water equivalent from the late 20th century historical baseline to the early 
21st century (smaller dots) to the late 21st century (larger dots) for RCP 4.5 (low 
emissions, left) and RCP 8.5 (high emissions, right) scenarios. Colored by change in the 
baseflow index, or the ratio of baseflow to total runoff, with respect to the historic  
baseline. 

Introducing VIC-simulated basin-wide SWE (i.e. our simulated version of 

Airborne Space Observatory SWE estimates) and soil moisture “observations” into the 

regression models to create ‘enhanced’ forecasts designed to buffer loss of skill yield 

modest overall improvements for April 1st forecasts, with better results in isolated 

instances (Figure 3.3) February 1st forecasts are more challenging to improve upon 

(Figure A3.5). Similarly, historically very accurate (> ~0.8 April 1st NSE) standard 
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forecasts often have marginal improvement or actual loss of skill from enhanced 

forecasting techniques, yet these basins are also simulated to be less susceptible to future 

forecast skill degradation in most cases. Instead, the greatest improvements in forecast 

skill are generally simulated in basins with low historical NSE scores and larger loss of 

future skill, most notably for April 1st forecasts. 

ASO enhanced forecasts show some complementary patterns in forecast skill 

improvement across basins, emissions scenarios, and time (Figures 3, A6). In the early 

21st century, basin-wide SWE measurements from the simulated ASO flight could, on 

average, replace more than 40% of lost forecast skill for basins with dNSE < -0.05, with 

maximum replacement rates of over 100% (e.g. #18 Upper Tule and #26 Upper 

Cosumnes). For unclear reasons, some basins, particularly in the east-draining Sierra and 

in Northern California, have less skillful ASO enhanced forecasts, suggesting that 

forecast improvements techniques will require a basin-scale approach. However, the 

simulated widespread skillfulness of ASO-enhanced forecasts does point towards 

significant operational utility at least through mid-century. With the near eradication of 

April 1 SWE by the late 21st century under RCP 8.5 projections, the ability of ASO to 

buffer skill loss for those same mid-elevation basins is diminished (Figure A3.6, A3.7), 

with isolated success only in the Upper Stanislaus (#24), Upper Tuolumne (#23), Upper 

Merced (#22), and Upper Tule (#18) basins.  

As snowpack declines, our simulations suggest that soil moisture may replace 

some of the forecast information SWE historically provided (Figure 3.3, A3.8). However, 

unlike ASO, soil moisture rarely replaces more than 25% of lost forecast skill, with the 

exception of the Upper Cosumnes (#26, basin mean elevation 540m) and under a late-
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century RCP 4.5 scenario. Specifically, our findings suggest that as SWE declines further 

into the late 21st century, soil moisture observations become increasingly beneficial for 

April 1st forecasts in most basins below 2,000m, but especially for basins below 1,600m 

under RCP 8.5. Similar soil moisture forecast improvements are not realized for February 

1st forecasts (Figures A3.6, A3.8). 

 

Figure 3.3: Forecast improvement (NSE) from soil moisture (SM, top row) and Airborne 
Snow Observatory (ASO, bottom row) enhanced forecasts as a function of the loss in 
forecast skill (NSE) from the late 20th century baseline to the early 21st century 
(triangles; left panels) and to the late 21st century (circles; right panels) for April 1st 
forecasts under RCP 4.5 (pink) and RCP 8.5 (red) scenarios. The 25%, 50%, and 100% 
lines shows the percent of lost forecast skill that is replaced by the enhanced forecast 
system. Blue regions highlight forecast improvements from the enhanced forecast 
systems, with greater improvements in darker blue. See Figure A3.6 for accompanying 
February 1st forecasts figures. 

 
3.4 Discussion 

Understanding the mechanisms causing loss of water supply forecast skill is 

critical. In an operational context, water stored in the mountains as winter snowpack 
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provides a strong determinant of spring/summer streamflow volumes, along with future 

precipitation (Church, 1935). However, as snowfall changes to rainfall (Knowles et al., 

2006) and mid-winter ablation events become more frequent (A. A. Harpold & Brooks, 

2018), these relationships decline for a variety of reasons, e.g. making drought less 

predictable (Livneh & Badger, 2020). As a first order control, basins with little change in 

snowpack have little change in forecast skill unless future post-forecast precipitation 

regimes change (Sturtevant et al., 2020). In basins where snow change is substantial, 

regression-based forecasts have an implicit assumption that precipitation runoff 

efficiency (i.e. streamflow to precipitation) is constant. Changes in runoff efficiency (or 

any part of a flow regime), especially outside of the historically observed record, a 

statistical method will struggle to capture that non-stationary response. Some of that loss 

of skill from snowpack storage loss might be reintroduced using observations of other 

storage terms, such as soil moisture (A. A. Harpold et al., 2017; Rosenberg et al., 2013) 

or groundwater. Catchment properties, such as baseflow index, appear to be secondary 

controls that ameliorate the skill loss due to snowpack loss (Barnhart et al., 2016), at least 

in a VIC-model reconstruction of reality. Basins with lower historical baseflow index, 

that have slower streamflow responses consistent with significant groundwater inputs, 

were more resistant to degradation of forecast skill (Figure 3.2). This is consistent with 

the empirical results of Safeeq et al. (2013) who showed that catchments with less storage 

are more resistant to changes in late summer flows. However, these inferences rely 

strongly on the VIC simulations, and process and parameter assumptions therein (Bennett 

et al., 2017), as well as model resolution in space and time. Despite these limitations, our 

novel experimental framework allows us to explore future skill degradation and 
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determine the value of supplemental observations in ways that benefit long-term water 

supply planning. 

Buffering the loss of skill from standard SWE and P-only forecasts was most 

successful in basins most vulnerable to future skill loss (>dNSE = -0.1). During the early 

21st century, mid-elevation basins (1000-1700m) benefitted most from ASO-type 

supplemental information, with widespread improvements in April 1st forecasts, and to a 

lesser extent, February 1st forecasts (Figure 3.3). This was not as evident during the late 

21st century, when soil moisture observations appear to replace the late-season (April 

1st) forecast information once offered by SWE. These findings result in basin-specific 

management recommendations dependent on the degree to which snowpack has declined, 

and thus, to the vulnerability of the basin to loss of skill (Figure 3.2). The utility of soil 

moisture information in seasonal water supply forecasting, beyond precipitation and 

SWE, is consistent with empirical (Harpold et al., 2017) and modeled (Koster et al., 

2010; Rosenberg et al., 2013) research. With an intrinsic memory spanning weeks to 

months (Entin et al., 2000), soil moisture provides terrestrial water storage information 

outside of snow-covered regions, especially in mid-elevations (Rosenberg et al., 2013). 

Consider two examples of basin specific management decisions that arise from 

our enhance forecast results. The Upper Stanislaus (#24), which flows into California’s 

fourth largest reservoir, New Melones Lake (2.4 million acre-feet of storage), and is a 

key part of the Central Valley Project (Congressional Research Service, 2020). With 

projected late century RCP 8.5 skill loss of nearly 25% but higher upper elevations which 

will retain snowpack, the Upper Stanislaus is a good candidate for ASO mitigation 

techniques. Our simulations show that remotely measured SWE observations for this time 
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period would improve skill by 0.11 NSE, buffering half of the RCP8.5 skill loss expected 

otherwise. In regions with vulnerable snowpacks, soil moisture measurements offer 

promise for representing soil water storage in once snow-covered areas. The Mokelumne 

(#25), the primary source of water for the East Bay Municipal Utility District in the San 

Francisco Bay area, is a good example. Under RCP 8.5, we project late-century skill loss 

in the Upper Mokelumne of over 30% (dNSE = -0.24), with most (dNSE = -0.14) of the 

skill loss occurring during the early 21st century. In this case, a targeted installation of a 

soil moisture sensing network in the Upper Mokelumne could prove helpful; including 

soil moisture measurements in the regression model buffers loss of skill in the late 

century, RCP 8.5 Mokelumne by 18%, which may be beneficial for managing small 

headwater reservoirs, such as Pardee. The examples bound the range of possible 

management scenarios found in this study (Table 1 and Figure 3.3) that suggest basin-

specific management efforts will be critical to buffering water supply forecast skill loss in 

the 21st century. 

3.5 Conclusion 

Our research shows that California’s statistical water supply forecasts face a 

considerable threat to skill degradation from a loss of snowpack. It is therefore plausible 

that seasonal water supply forecast skill has already begun to degrade relative to the 20th 

century, though this may not yet be discernable within normal interannual climate 

variability. Buffering of water supply forecast skill degradation should be an important 

goal for water management agencies tasked with reservoir operations, such as CA DWR. 

Our model based study showed which basins would be sensitive to forecast skill loss and 

when, but more work is needed to verify these results and translate them into the 
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operational models of CA DWR. Further, it is only by assuming the VIC model as truth 

that we are able to gain these insights into the nature of future water supply forecast skill. 

Despite being well-validated by empirical research (Figure A3.1), the ensembles of 

simulated results presented above may or may not come to represent future hydrologic 

conditions in the Sierra Nevada. 

Numerous paths exist to improve water supply forecast modeling, including 

bolstering existing forecast techniques with improved observations. Our research 

suggests that remotely-sensed SWE data can play an important role for increasing 

forecast skill as snow in Sierra Nevada declines. This result supports building a historical 

library of lidar-derived SWE maps that can be used to help train empirical models. 

Targeted installation of high-altitude soil moisture sensors (or groundwater wells) 

provide another source of data that will prove useful as snowpack decline markedly in the 

late 21st century. Soil moisture networks present their own challenges for developing 

representative measurements and ensuring data quality (A. A. Harpold, 2016; A. A. 

Harpold & Molotch, 2015) Implementing a physically-based, long-range hydrologic 

forecast model has been an ultimate goal of the scientific researchers (Vaze et al., 2010), 

it has proven challenging to convince operational forecasters that improvements in skill 

outweigh costs of model complexity and implementation of new systems into operations 

(Clark et al., 2015). The current state of operational and research-grade hydrologic 

models suggests that the continued investment in the existing water supply forecasting 

infrastructure is a good alternative to adoption of new models at the present time. The 

State of California is particularly well positioned to retool their water supply forecasting 

program to adapt to declining snowpack through an expanded observational network of 
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soil moisture and the remote sensing of snow, which could make it a model for other 

mountain-based water supply forecasting systems throughout the western U.S. and 

globally. 
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Appendix 3.1: Supporting Figures 
 

 

Figure A3.1: Validation of simulated historical February 1st and April 1st validation 
forecasts using VIC data from 1950-2006 for twenty-six HUC8 basins (left box, dark 
grey) representing twenty CA DWR B-120 forecast points against an elevation of thirteen 
official CA DWR B-120 forecasts for the western Sierra from ~1930s to 2012 (right box, 
light grey) from Harrison & Bales (2016) using a Nash Sutcliffe Efficiency (NSE). 
Boxplots from Harrison & Bales (2016) are overlays of portions of the original figure 
(Figure 10) from their manuscript. 
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Figure A3.2: February 1st seasonal water supply forecast skill for 26 headwater basins in 
the Sierra Nevada and Northern California from the late 20th Century (WYs 1951 to 
2005) to the late 21st Century (WYs 2053 to 2099) for RCP 4.5 and RCP 8.5 climate 
change scenarios using an ensemble mean of 10 Global Circulation Models. Basin ID 
numbers correspond with Table 3.1.  
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Figure A3.3: Elevation profile (mean elevation, meters) of standard forecast skill score 
(Nash Sutcliffe Efficiency, NSE) from the late 20th century to the early and late 21st 
century for RCP 4.5 (left panel) and RCP 8.5 (right panel) climate change scenarios. 
Vertical bars are median values for 500m elevation bins. 

 

 

Figure A3.4: Elevation profile (mean elevation, meters) of standard forecast skill score 
(Nash Sutcliffe Efficiency, NSE) from the late 20th century to the early and late 21st 
century for RCP 4.5 (left panel) and RCP 8.5 (right panel) climate change scenarios. 
Vertical bars are median values for 500m elevation bins. 
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Figure A3.5: Seasonal water supply forecast skill for 26 headwater basins in the Sierra 
Nevada and Northern California using the CA DWR precipitation and snow water 
equivalent stations (‘Standard’, solid colors) and three different scenarios using 
additional simulated predictor variables including: virtual Airborne Snow Observatory 
(ASO) flights simulating basin-wide SWE measurements (‘ASO’, tight backslash), soil 
moisture measurements (‘Soil Moist.’, forward slash), and a combination of ASO-
measured SWE and soil moisture (‘ASO + SM’, dots) under historical (grey), RCP 4.5 
(pink), and RCP 8.5 (red) emission scenarios. 
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Figure A3.6: Forecast improvement (NSE) from soil moisture (SM, top row) and 
Airborne Snow Observatory (ASO, bottom row) enhanced forecasts as a function of the 
loss in forecast skill (NSE) from the late 20th century historical baseline to the early 21st 
century (triangles; left panels) and late 21st century (circles; right panels) for April 1st 
forecasts under RCP 4.5 (pink) and RCP 8.5 (red) scenarios. The 25%, 50%, and 100% 
Replacement lines shows the percent of lost forecast skill that is replaced by the enhanced 
forecast system. Blue regions highlight forecast improvements from the enhanced 
forecast systems, with greater improvements in darker blue. 
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Figure A3.7: Improvement in water supply forecast skill over the April 1st standard 
forecasts for RCP 4.5 (left panels) and RCP 8.5 (right panels) climate change scenarios 
using additional predictor variables from a simulated Airborne Space Observatory (ASO) 
flight representing a remote measurement of SWE across the basin during the early (top 
panels) and late 21st century (bottom panels). Change in forecast skill measured by Nash 
Sutcliffe Efficiency (NSE). 
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Figure A3.8: Improvement in water supply forecast skill over the April 1st standard 
forecasts for RCP 4.5 (left panels) and RCP 8.5 (right panels) climate change scenarios 
using additional predictor variables from VIC-simulated soil moisture observations at 
existing precipitation stations during the early (top panels) and late 21st century (bottom 
panels). Change in forecast skill measured by Nash Sutcliffe Efficiency (NSE). 
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Chapter 4: Conclusions and Recommendations 
 

Seasonal water supply forecasts will become increasingly important as climate 

change heightens the risk for drought (Cook et al., 2004) and ‘weather whiplash’ between 

dry and wet periods (Swain et al., 2018). Yet, recent research demonstrates the reduced 

predictability of seasonal drought under declining snowpack (Livneh & Badger, 2020) 

which this thesis argues similarly threatens the skill of conventional water supply 

forecasts. We presented research from two studies that directly evaluated the effect of 

below-average snowpack from interannual snow drought and climate non-stationarity on 

the historical (Chapter 2) and future (Chapter 3) predictability of seasonal streamflow 

volumes in historically snow-dominated basins. In this final chapter, we present our final 

conclusions as well as recommendations for future research into seasonal water supply 

forecast improvement. 

The results of our benchmark analysis in Chapter 2 suggest that water supply 

forecasts are less skillful during below-average snowpacks and that long term skill 

decline is evident in several regions across the period of study. Our first key insight into 

these findings is that the conceptual hydrologic model evaluated in this study (the 

Sacramento Soil Moisture Accounting model) was generally less skillful than the a priori 

model benchmark, i.e. the regression-based models used by the U.S. Department of 

Agriculture’s (USDA) Natural Resource Conservation Service (NRCS). Lower ‘perfect 

prognostication’ performance of the SAC-SMA model run with data through the forecast 

period suggests that there remains significant room for improvement of both model 

structure (e.g. calibration and physical process representation) and forcing data, though 

disaggregating these sources of error was outside the scope of this research. Specifically, 
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improvements to SNOW17, the simple temperature-index model used to partition 

precipitation, may be one fruitful area of future research to improve quantitative 

streamflow predictions in snow-dominated headwater basins. 

Our second key insight is that there were several notable (and consequential) 

instances during which the conceptual model outperformed the regression-based model. 

We found that the conceptual model was more skillful at longer lead times, particularly 

during below-average snowpack. These findings suggest that in a future with less snow, a 

conceptual or more physically-motivated model may be a better alternative for long-lead 

seasonal water supply forecasting. Extrapolating this finding into the future may be 

precarious since previous research has shown that historical snow droughts are not a good 

analogue for future snowpack decline, at least in the Cascades (Cooper et al., 2016). 

Regardless, our research does suggest that NRCS and RFC water supply forecast 

coordination, whether through inter-agency forecast consultation or more formal model 

ensembling, may produce the best seasonal water supply forecast across snow regimes 

and lead times. However, regional variability of relative model performance was 

significant and subject to changes (notably, skill decreases) across the period of record, 

highlighting the need for additional model benchmarking studies of operational models. 

In Chapter 3, we extend our seasonal water supply forecast evaluations from the 

late 20th century to the end of the 21st century using macro-scale land surface and 

hydrologic models to more directly quantify long term forecast skill trends. The results of 

this analysis confirm that future water supply forecast skill in the Sierra Nevada, U.S. is 

projected to degrade under declining snowpack conditions. These findings were 

consistent with the Chapter 2 finding forecast performance suffered during below-
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average snowpack. Using Variable Infiltration Capacity (VIC) model simulations, we 

demonstrated that loss of forecast skill is strongly correlated with loss of snow water 

equivalent (SWE), which is mediated by basin elevation. Because of the importance of 

elevation, we simulated that northern Sierra Nevada headwater basins in the 1000-1700m 

mean elevation band were particularly vulnerable, with maximum forecast skill loss of 

over 40% by the late 21st century. Conversely, high-elevation basins in the southern 

Sierra Nevada and historically less snow-dominated basins had more resilient forecast 

performance even under high emission scenarios (i.e. RCP 8.5). 

Leveraging the simulated model environment of Chapter 3, we were also able to 

provide insight into two operationally feasible techniques for mitigating loss of forecast 

skill. The first technique simulated a remotely-sensed basin-wide SWE measurement 

modeled after the Airborne Snow Observatory (ASO). We were able to demonstrate that 

during the first-half of the 21st century, a virtual ASO flight replaced an average of 40% 

of lost forecast skill in the most at-risk basins. In several instances, enhanced forecast 

techniques replaced more than 100% of lost skill. However, the ability of enhanced SWE 

measurements to buffer skill loss dwindled as snow declined over the long term. The 

second technique simulated the installation of a soil moisture observation network. We 

were able to show that by the late 21st century, soil moisture observations could replace 

approximately 10-25% of lost forecast skill, providing a safety net for lost forecast 

information associated with the loss of snowpack. These two analyses offer further 

scientific evidence in line with findings from previous empirical (Harpold et al., 2017) 

and modeled (Koster et al., 2010; Rosenberg et al., 2013) research showing the value of 
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including supplemental observations in streamflow volume forecasting in snow-

dominated basins. 

The one-two combination of decreased snow water storage and degrading 

predictive power of snowpack during low snow years is already or will soon become a 

significant challenge for reservoir operators and water managers. Improving operational 

water supply forecasts, however, is a long-term game requiring incremental scientific 

progress. Use-inspired and actionable scientific research in concert with those who have 

the authority to implement improvement techniques will accelerate this progress. 

Promising areas of research for seasonal water supply forecast improvement include the 

development of advanced statistical and modeling techniques, next-generation distributed 

hydrologic models, expanded observational networks (including remotely-sensed data 

assimilation), and model benchmarking studies, each of which may incrementally 

contribute to the next generation of long-range quantitative streamflow forecasting 

models ready for predicting the hydrologic response to a non-stationary climate. 

 

 

 

 

 

 

 

 



 

 

93 

 

References 

Cook, E., Woodhouse, C., Eakin, C. M., Meko, D., & Stahle, D. (2004). Long-Term Aridity Changes in the 
Western United States. Science, 306, 1015–1018. https://doi.org/10.1126/science.1101982 

Cooper, M., Nolin, A., & Safeeq, M. (2016). Testing the recent snow drought as an analog for climate 
warming sensitivity of Cascades snowpacks - IOPscience. Environmental Research Letters, 11. 
Retrieved from https://iopscience.iop.org/article/10.1088/1748-9326/11/8/084009 

Harpold, A. A., Sutcliffe, K., Clayton, J., Goodbody, A., & Vazquez, S. (2017). Does Including Soil 
Moisture Observations Improve Operational Streamflow Forecasts in Snow-Dominated Watersheds? 
Journal of the American Water Resources Association, 53(1), 179–196. https://doi.org/10.1111/1752-
1688.12490 

Koster, R. D., Mahanama, S. P. P., Livneh, B., Lettenmaier, D. P., & Reichle, R. H. (2010). Skill in 
streamflow forecasts derived from large-scale estimates of soil moisture and snow. Nature 
Geoscience, 3(9), 613–616. https://doi.org/10.1038/ngeo944 

Livneh, B., & Badger, A. M. (2020). Drought less predictable under declining future snowpack. Nature 
Climate Change, 1–7. https://doi.org/10.1038/s41558-020-0754-8 

Rosenberg, E. A., Wood, A. W., & Steinemann, A. C. (2013). Informing Hydrometric Network Design for 
Statistical Seasonal Streamflow Forecasts. Journal of Hydrometeorology, 14(5), 1587–1604. 
https://doi.org/10.1175/JHM-D-12-0136.1 

Swain, D. L., Langenbrunner, B., Neelin, J. D., & Hall, A. (2018). Increasing precipitation volatility in 
twenty-first-century California. Nature Climate Change, 8(5), 427–433. 
https://doi.org/10.1038/s41558-018-0140-y 

 


