
University of Nevada, Reno

A Software Template

for

Multi-User Virtual Reality Applications

A thesis submitted in partial fulfillment of the
requirements for the degree of Master of Science

in Computer Science and Engineering

by

Lucas Emio Antonio Calabrese

Dr. Frederick C. Harris Jr., Advisor

August, 2020

c© by Lucas Emio Antonio Calabrese
All Rights Reserved

THE GRADUATE SCHOOL

We recommend that the thesis

prepared under our supervision by

Lucas Emio Antonio Calabrese

Entitled

A Software Template for Multi-User Virtual Reality Applications

be accepted in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

Dr. Frederick C. Harris, Jr., Advisor

Dr. Sergiu M. Dascalu, Committee Member

Dr. Yantao Shen, Graduate School Representative

David W. Zeh, Ph.D., Dean, Graduate School

August, 2020

i

Abstract

Virtual Reality (VR) is a new and exciting way to further immerse users in video

games and is being explored to find new ways it can be used. Some of its uses include

education, training, and entertainment. Virtual reality needs to be explored because

of how it affects the user, whether it is due to the positive effects like increased

immersion or if it is due to negative effects like fatigue or cybersickness. One area of

Virtual Reality that needs to be explored is the aspect of multiplayer interaction.

A template that enables research in understanding this area is needed. This

thesis aims to provide, a Virtual Reality multi-user template that other developers

can use to assist their research. This template allows users to communicate via voice

chat, provides samples of how to set up user avatars, provide samples of locomotion,

and provides scenario recording and playback. The Unity game engine along with

networking software is foundational to accomplish this. This template was successful

in being used to create two applications: a simple ping pong game and an application

for a user study in training medical doctors and nurses.

ii

Dedication

I dedicate this thesis to my parents who provided me the option to work towards

my Master’s as well as helping me throughout life.

iii

Acknowledgments

First and foremost, I would like to thank my parents for helping me through this

journey. Next I would like to thank Professor Frederick Harris. He has provided aid

and support that I did not expect, and has guided me towards completing my thesis.

He also provided me with the means to explore a topic that I was curious about:

multiplayer Virtual Reality, as well as work on a project related to my goals and

interests. I would also like to thank my committee members Professor Sergiu Dascalu

and Professor Yantao Shen for their time. I would also like to thank Justice Colby

for helping me with the project throughout the semester and for being a positive

influence. It has been an unusual last year given the pandemic. I must thank my

labmates Christopher Lewis and Yifan Zhang who aided me in finishing an application

for a user study when we gained access to the lab a short while before the application

was due. Christopher has written some scripts that we used for gathering eye tracking

data. I would also like to thank Steven Anbro for allowing me to assist him with his

user study.

This material is based in part upon work supported by the National Science

Foundation under grant number(s) IIA-1329469. Any opinions, findings, and conclu-

sions or recommendations expressed in this material are those of the author(s) and

do not necessarily reflect the views of the National Science Foundation.

iv

Contents

Abstract i

Dedication ii

Acknowledgments iii

List of Tables vii

List of Figures viii

Listings xi

1 Introduction 1

2 Background and Related Work 3

2.1 Multiplayer Interaction . 3

2.1.1 Networking Architectures . 3

2.1.2 Multiplayer . 3

2.2 Virtual Reality . 4

2.2.1 Research . 5
2.2.2 VR Research Labs . 9
2.2.3 Hardware . 11

2.3 Virtual Reality Development . 17

2.3.1 OpenGL . 17

2.3.2 Unity . 17

2.3.3 Unreal Engine 4 . 20

2.4 User Studies . 20
2.4.1 Background . 20

2.4.2 How to Perform a User Study 21

2.4.3 User Study Examples . 22

3 First Attempt: Multi-User VR Cooperative Puzzle Game 25

3.1 Introduction . 26
3.2 The Creation Process . 26

3.2.1 Blender Modeling . 26

v

3.2.2 Development in Unity . 29

3.2.3 Developing the Powers . 30

3.2.4 Level Design . 35

3.2.5 Mirror Networking . 37

3.3 Gameplay . 39

3.3.1 Locomotion . 39
3.3.2 Positive Outcomes . 39

3.4 Conclusions and Future Work . 40
3.4.1 Conclusions . 40
3.4.2 Future Work . 41

4 A Software Template 42

4.1 Introduction . 42
4.1.1 Positives with First Attempt 42

4.1.2 Issues with First Attempt . 42

4.2 Design of the Template . 43

4.3 Implementation of the Template . 45

4.3.1 PhotonServerSettings . 46

4.3.2 Scene Set-Up . 46

4.3.3 PhotonView and Synchronization 48

4.3.4 Authority . 51

4.3.5 Joining and Creating Rooms 52

4.3.6 Enabling Components . 57

4.3.7 Locomotion Samples . 59

4.4 Network Prefab . 61
4.5 Body Models . 62

4.5.1 Blender . 62
4.5.2 Animation Settings . 65

4.5.3 Scripts . 66

4.5.4 Feet Estimation Attempt . 70

4.6 Controllers and Trackers . 73
4.7 Video Recording . 74

4.7.1 Software . 74
4.7.2 NoSteamVRFallbackObjects 74

4.7.3 Recording Components . 74

4.8 A First Sample Application: Ping Pong 79

4.8.1 Physics Interaction . 79

4.8.2 Authority . 80

5 Application: Doctor Nurse Interaction 82

5.1 Introduction . 82
5.2 Application . 83

5.2.1 Models . 83

vi

5.2.2 Scene . 87
5.2.3 Customization . 89
5.2.4 Eye Tracking . 92

5.3 User Study . 98

5.3.1 Overview . 98
5.3.2 Issues and Fixes . 99

6 Conclusions and Future Work 101
6.1 Conclusions . 101
6.2 Future Work . 101

6.2.1 Avatars . 102
6.2.2 Bots . 102
6.2.3 Applications . 103

6.2.4 Medical School . 103
6.2.5 Possible Improvements of Template 104

6.2.6 New Applications . 104

Bibliography 106

vii

List of Tables

4.1 The functional requirements for the framework. The priority levels
indicate how important the functionality is 44

4.2 The Non-functional requirements for the framework. The priority lev-
els indicate how important each constraint is. 45

viii

List of Figures

2.1 There are three clients represented in this image. The rows represent
different states where the 2nd row occurs after the 1st row. Client #1
has authority over the left-most stick figure and the red sphere, Client
#2 has authority over the middle stick figure, while the Client #3 has
authority over the remaining stick figure 4

2.2 Image of 3D models and the bones that are used to animate them [13]. 8

2.3 The graph shows results of the case study for the journal article on
body tracking. [13] . 9

2.4 The HTC Vive and wands [28] . 11

2.5 Vive Trackers [27] . 12

2.6 Hi5 VR gloves[51] . 13

2.7 Menu for a game that uses the Hi-5 gloves[50] 13

2.8 Image of CAVE 2 taken from a YouTube video [40] 14

2.9 Device that is meant to give the sensation of stretching arms [84] . . 15

2.10 Omni-Directional Gait Master [32] 16

2.11 Image of A Hat In Time from the Steam Website [23] 18

2.12 Top down perspective of a VR user-study. A: User received sensory,
feedback B: User did not receive sensory feedback.The black dots are
collisions with the wall, while the paths change colors based on time
that passed. The dark gray lines are walls [10]. 23

3.1 A Screenshot in Blender which shows how to setup animations using
the human rig for the witch model. 27

3.2 Crystal Balls representing powers on their Stands 28

3.3 The Octopus model . 29

3.4 A first person view showing the object that the swap power applies to
has its material changed to red. After the swap power is applied, the
player will switch places with the cube. 30

3.5 The shrink power scales the player to a considerably smaller size. No-
tice the crystal ball stands next to the player. 31

3.6 A split screen (two images from different player’s screens). When the
ice power is selected and activated it changes the material of your
witch’s skin into a light blue color. The ice power is bringing down the
balloon seen in the right window. 32

ix

3.7 The fireball is used for the bomb explosion power. 33

3.8 A split screen (two images from different player’s screens). When the
fire power is selected by both players, it activates the fire particle sys-
tem. 34

3.9 The puzzle level with the barriers, as well as the buttons the players
use to open them. 37

4.1 Subsystem Diagram for a Multi-User VR Template 46

4.2 The Photon Server Settings. We can use this to choose to use cloud
data or to use an on premise server 47

4.3 The empty GameObject with voice related scripts attached. 49

4.4 The components we used for voice chat attached to our player Prefab 50

4.5 2-D menu for creating a room . 56

4.6 2-D Menu for joining a room, with an instance of the game showing
that room . 56

4.7 3-D menu. When the the menu and its sub menu are enabled, the grow
and translate away from the menu. Uses GameObjects for options and
when a button collides with the gray area, it temporarily turns green 57

4.8 Array of Behavior scripts to disable 58

4.9 What the Hierarchy of a prefab with a body model and 3rd person
may look like . 61

4.10 The bones allow us to move part of the mesh. If the bone is moved,
scaled, or rotated, the assigned part of the mesh will be moved, scaled
or rotated [72] . 63

4.11 With the Rigify Add-on we can easily create a humanoid skeleton . . 63

4.12 Weight painting allows us to make adjustments to how the bones will
move the mesh . 64

4.13 Animator that shows us the animation state a model is currently in as
well as the transitions and between the states 65

4.14 These are the import settings we used for the Rig, based on the in-
structions for using IK from Unity’s documentation 66

4.15 These are the import settings we used for the animation 67

4.16 Attempt at using tells from the VR camera to guess where the user’s
feet are. The cubes are IK targets for the feet. They change color
based on the state they were in for debugging purposes. 70

4.17 The root of the NoSteamVRFallbackObjects 76

4.18 Child of the NoSteamVRFallbackObjects, called FallbackObjects . . . 77

4.19 Child of the FallbackObjects, called GameObject 78

4.20 A scene that allows users to play ping pong 79

4.21 The Physic Material used for the Ping Pong paddle 80

4.22 Controllers used for the ping pong game 81

5.1 Doctor and Nurse models used in the study [72] 83

5.2 Medical room equipment [7] . 84

x

5.3 The outside of the room model provided by Luka using photogramy in
blender . 85

5.4 The inside of the room model provided by Luka using photogramy in
blender . 85

5.5 Clipboard with user’s notes and TextMeshPro settings on the right. . 86

5.6 First person view of Clipboard . 86

5.7 An overview of the scene used in the Clinical Scenario in Unity. The
top room is the customization room while the bottom is the medical
school’s room . 87

5.8 The first room users will enter. Here users make choice on customization 88
5.9 The medical school room . 88
5.10 The character select menu. Users use these buttons to choose which

model they want . 89

5.11 The hair color select menu. Users use these buttons to choose which
hair color they want . 90

5.12 The skin color select menu. Users use these buttons to choose which
skin color they want . 90

5.13 Example of user using laser point . 91

5.14 The laser turns green to show the user is pressing the controller button 91

5.15 Mesh Collider Used for Mannequin and Bed 94

5.16 One user is looking at the other’s board while the other is looking at
the other’s avatar’s face . 96

5.17 One user is looking at the clipboard notes, while another is looking at
the mannequin . 97

5.18 One user is looking at the nurse while he is describing his patient . . 97

xi

Listings

4.1 Code demonstrating swapping authority and allowing a user to take
control of an object another users is holding 52

4.2 Code essentially tells us who last held the object 53

4.3 Code For listing room names . 54

4.4 Code For Creating Rooms . 55

4.5 Code for movement based on camera direction 59
4.6 Code for Teleporting to the a position where we expect the camera to

be when the user is standing up straight 60

4.7 Code for rotating the model’s head based on the user’s head 68

4.8 Code demonstrating the calibration state 69

4.9 Code for updating values when we switch states 69

4.10 Code demonstrating state after calibration 71

5.1 Eye Capture Data . 93

5.2 Code that sends over the origin and direction that a person is looking
frame . 95

1

Chapter 1

Introduction

There are several multi-user VR frameworks in the literature, so why build another?

One multi-user VR Framework that currently exists is Let’s VR [26] which utilizes

Unity and Unity’s multiplayer system, UNet. However, UNet has been deprecated

due to the Untiy team believing that “it does not meet the needs of of many multi-

player game creators”[24]. A similar framework uses Mirror [54] as a replacement to

UNet [52], but it has some issues that we will discuss later. The VRChat SDK [77]

provides users the ability to create worlds as well as set up avatars in Unity and

upload them into VRChat, which is a online virtual reality multiplayer game that is

used for socializing.

There are many applications that can be built off of a multiplayer VR template.

Training applications can be made, which can allow users to be placed into situations

that would otherwise be too unsafe in real life (training fire fighters, miners, military

personnel, and others). VR has the advantage of providing immersive experience and

we may want to have the training be as similar to real life as possible [63]. Multi-user

VR training can be also used remotely so that users do not need to be co-located.

Multi-user VR applications can also be used for entertainment. While it is true

that there are some limitations to VR, which include the possibility of inducing mo-

tion sickness, VR still provides immersive experiences along with fun motion controls.

Multi-user VR can provide unique experiences that could not be experienced other-

wise.

The rest of this thesis is structured as follows: In Chapter 2 we discuss multi-

2

player interaction, Virtual Reality, User Studies, and VR development. Chapter 3

shares an example application of Virtual Reality with multiplayer that uses Mirror

for Networking. This chapter appeared as a conference paper in ITNG 2020 [12]. We

found some shortcomings with the template that uses FizzySteamyMirror[54] and

have developed a new template that utilizes Photon Unity Networking 2[18]. A new

template that takes these issues into consideration can be found in Chapter 4. An

example of the template’s usage is then presented in Chapter 5. A user study run

by Steven Anbro was done using this application is also discussed in this chapter.

Finally we present our Conclusions and discuss Future Work in Chapter 6.

3

Chapter 2

Background and Related Work

2.1 Multiplayer Interaction

2.1.1 Networking Architectures

There are two different networking architectures for multi-user applications. These

are peer-to-peer and client-server. Peer-to-peer is where the connection is established

directly between clients with no dependence upon a separate server. It is called peer-

to-peer because of this direct communication. Client-server, on the other hand, is

where the connection is established between each client and the server [37].

2.1.2 Multiplayer

Typically in multiplayer games, one player has a copy of the game, while another

player has another copy of the game. When we have interaction there is the concept

known as authority. Authority is where one user’s application (application1) has

control over an object, while every other users copy of the game tries to match some

or all of the objects properties with application1’s. We need at least one application

to have control over the object so that when different things are done to that object we

know who is in charge of deciding. If we had no one in charge the object would have

problems or conflicts while the other clients were trying to synchronize the properties

of that object. Synchronizing objects is important to make users feel that they are

within the same world when they interact with objects. In a client-server setup the

server typically has the authority over all objects.

4

An Example of how a multiplayer game may work is seen in Figure 2.1. There

are three clients. After some time has passed, the player from client #2 moves up,

and all the other client’s copy of that player moves up as well. The same goes for the

red sphere, client one drops the sphere (which he has authority on), and that sphere’s

position is changed on the other client’s. The blue sphere however is lowered by client

#2, but since he does not have authority over it that sphere is not synchronized

across all clients, it only drops on client #2’s copy of the game. A case where we

may not want synchronize an object’s location may be a 3D menu where it would be

unnecessary for another user to see it.

Figure 2.1: There are three clients represented in this image. The rows represent
different states where the 2nd row occurs after the 1st row. Client #1 has authority
over the left-most stick figure and the red sphere, Client #2 has authority over the
middle stick figure, while the Client #3 has authority over the remaining stick figure

2.2 Virtual Reality

Virtual Reality is a technology used for interactive applications with aim to provide

immersive experiences. There is currently a bit of research being done on the effects

and the uses of virtual reality. But one issue that is actively being researched is

5

cybersickness because it limits Virtual Reality’s growth. Cybersickness [35, 79] is an

effect of virtual reality where a certain percentage of users who will feel nauseous

after using VR. We will present some areas of research that have impacted our work

in Section 2.2.1, mention some major VR Research labs in Section 2.2.2, and then

talk about the hardware in Section 2.2.3.

2.2.1 Research

There are several areas of Virtual Reality research. The areas that have impacted our

work include locomotion, education, avatars. Research includes, but is not necessarily

limited to the following areas: locomotion, education and training, avatars.

Locomotion Locomotion is a very large topic. Locomotion methods are just meth-

ods to allow user move from point A to point B. Examples of locomotion include:

Teleportation which is instantaneously moving from one position to the next. Glide

locomotion which involves using the touchpad to slide to other locations. There is

also walking where users can walk around in real life, and walk around in VR.

An example of teleportation can include pointing to a location and selecting that

location by pointing to that location for a duration of time. [11] presented an overview

of this and conducted a user study on this technique. A similar implementation can

likely be done in Unity using Raycasting for selecting a position in space, and the

function Invoke to call a function after a duration of time. There may be many

different options for a user to confirm their selection for position. Such a technique

may need to have additional rules to ensure that users do not teleport to far. There

has been a thesis on teleportation where users do not use hands [67]. They used the

following methods for activating the teleportation: controller, dwell, stomp, voice,

and blink. There benefits to these methods as it allows those who may not be able to

properly use their arms to play VR and it may provide options for other HCI options

for others. Glide locomotion is used when you wish to move in a specific direction,

possibly without a known destination. An example of Glide locomotion can be seen

6

in a tutorial book [41]

Another locomotion technique to be used may be redirected walking [55]. This

uses a larger play area and is intended to allow the user to keep walking in the fixed

play area without stopping in the VR world.

Some locomotion research compares methods. One paper compares [83] Walking,

Walking in Place (WIP), and Arm Swinging. We have worked on user study that

compares WIP and touchpad based gliding movement [4]. One author from that

paper, compared different gait movements in his thesis [6].

There is a survey on locomotion[1] from 2018 that goes into the different forms

of locomotion that have been researched and the taxonomies associated with them.

These forms of locomotion methods were separated into four categories: walking,

which involves different walking related options, steering, which can be compared to

driving a car, selection, which includes selecting positions in space to move to, and

manipulation. Walking methods include methods such as walking in place, where

users raise and drop their feet. There are many ways for users to indicate when they

want to move in the VE like, wiping feet, and tapping feet. Even Jumping can be

used. Some other interesting options include arm swinging and finger walking.

They continued their work with Steering methods which include using the users

gaze, steering with the users hands, and leaning, Selection Based: Select a position

or object on screen, slowly drag there or teleport there. There are different ways

for activating teleportation like jumping. Teleportation is considered useful due to

lack of optical flow. If there is no optical flow, users are less likely to get sick due to

mismatches between movement in the VE and movement in real life. Manipulation

based methods include manipulating position, size or rotation. The paper goes into

more detail and explains more methods than are presented here. There are clearly

many ways to implement locomotion in VR, and each way can have many variations

in parameters. The paper is useful in allowing researches to see what has already been

researched, find more research papers, and to maybe even aid in giving researches new

ideas for new locomotion techniques. Locomotion is one of the main research areas

7

when it comes to Virtual Reality.

Whichever locomotion is best depends on the context of the situation it is used

in. For example, if there were a space training VR application, a locomotion system

that is based on zero gravity would probably be appropriate, even though it may not

be possible to provide users with the feeling of weightlessness. Teleportation in this

case may not be appropriate since that is not what would be used in real life.

Education and Training: There may be some benefit to VR with regards to

learning. There has been research on the effect of VR on memory [36]. This research

includes a study where its goal was to see if memory palaces, like the ones used in

classical times, could be useful for memorization using VR. The study compared using

an HMD and a Desktop display and there were 30 male and 10 female participants.

All participants used the same scenes on each display. They were given a challenge

to memorize faces located in different areas in the palaces. The faces used were

fairly recognizable. The participants’ tasks were to indicate which face was at which

location, after the faces are hidden. Based on their data the authors of the study

believe that immersion as improved recall. While this may be one specific case that

uses palaces, it is good to know that there may be some more educational benefit to

using VR.

Another study looked into the effects of VR on different two types of learners [69].

This was a study that involved 32 university participants, where half were female.

The introduction talks about the use of VR in learning, and how immersion and the

senses are important to VR education. Among one of the tests the study used was

rotation tests where users find an object that is the same as a presented object but

rotated. Low spatial ability (LSA) learners, were shown to have improved using VR

while High spatial ability (HSA) learners did not.

Steven Anbro has been working on a user study to see if virtual reality can be

used for training of Doctors and Nurses in their patient hand-offs. More on this user

study can be seen in Chapter 5. Some of his initial work can be found in [3]

8

Avatars: There is a journal article about using Vive trackers for body tracking [13].

The authors used inverse kinematics (IK) to estimate how the models should be

animated in response to the user’s movements. The article goes into the math of

how to achieve this. In order to make humanoid models they used software called

MakeHuman. The model along with the bones used to animate the model can be

seen in Figure 2.2 They developed a tool to check the latency to help them sure that

they are able to keep latency at reasonable levels. The authors used a case study,

with 1 female and 12 male participants, to test the tracking. They found that users

were interested in the body tracking, and that they would like to see it used in games

in the future. In their study they only animated the arms. This may mean that

another case study should be done to include leg tracking. They suggest that avatar

personalization should be added in their future work section. Other results of their

work can be seen in Figure 2.3

Figure 2.2: Image of 3D models and the bones that are used to animate them [13].

While it is important to know ways to implement full body tracking, it is also

important to know how body tracking might affect the user. There is a conference

paper where its main idea behind the paper is to look into whether or not using self

avatars reduces cognitive load [68]. Some benefits claimed in this paper include that

being able to see one’s own avatar is useful for finding their location. The paper

included an experiment that involved mental rotation and recollection. The paper

9

Figure 2.3: The graph shows results of the case study for the journal article on body
tracking. [13]

mentions that body tracking with avatars may be for useful for communication. It also

mentions that other studies found that full models are good for estimating distance.

According to the study, utilizing gestures seemed to have improved recall. According

to the graphs that mapped the movement of the users hands, self avatars were found

noticeably increase the amount of gestures the users used. The ability to gesticulate

appears to not only be useful for communication between one or more users, but it

may also be useful for reducing cognitive load and improving recall. This may be

useful knowledge for VR games that require communication and recollection. Maybe,

it could be useful for problem solving tasks as well.

Avatar representation is a topic to be researched due to the affect that it can

have on users. This can include social, accuracy, cognitive load, an immersion. It can

be difficult to map a human user to the body of an avatar. There are differences in

height, arm-length, and leg length. It may also be difficult to imitate the movements

of real users, especially with fewer tracking devices to determine where the users arms

are.

2.2.2 VR Research Labs

There are some notable labs and organizations researching the area of Virtual Reality.

Some of these include, Facebook [21], LAVA at the University of Hawaii at Manoa [38],

UA Little Rock George W. Donaghey Emergency Analytics Center [78], and Bowie

10

State Virtual Reality Laboratory [60]. The Facebook Lab’s research [21] includes

computer vision, among other topics such as graphics, audio, body tracking, and

vision. They are planning on making AR, Augmented Reality, glasses in the future.

Facebook’s lab believes that Virtual and Augmented Reality will be common place.

They have many publications, one paper Facebook Research has published was about

animating faces. Some of their research includes social behavior in VR.

LAVA was founded by Professor Jason Leigh LAVA stands for Laboratory for

Advanced Visualization and Applications. The lab has a CAVE known as CAVE 2.

They have several published papers, like a broom flying simulator for a hybrid reality

room [38]. One of the lab’s main goals are to research data visualization for big data.

The UA Little Rock George W. Donaghey Emergency Analytics Center has a

focus on data visualization [78]. An author of the original CAVE is from there. They

work on training meant for helping people understand data. One project from that

the lab is making a simulation for operations. This project uses data of the human

body and is meant to be used for training medical students.

One of the current projects from Bowie State is Megacity: A Collaborative Vir-

tual Reality Environment for Emergency Response, Training, and Decision Mak-

ing [45]. The project focuses on using agent-controlled avatars for evacuation scenar-

ios, as well as other disasters. This project aims to study strategies and potential

scenarios for disasters. The agents are given different types of behaviors which include

hostility, non-hostility, leader-following, goal-following, and a selfish behavior. These

different behaviors are probably useful in helping users understand how people might

act in dangerous situations.

Another project from Bowie State is Game-Theme Based Instructional Modules

for Computer Science Students in VR [59]. The purpose of this project is to help

with computer science and mathematics course. It uses gaming and virtual reality to

try to help teach students. They have 7 instructional modules. Some of the games

they have shown include, a duck game that is meant to teach programming loops, a

game that visualizes concepts like stacks or binary search, and an array game. It is

11

interesting to see how VR might aid learning.

2.2.3 Hardware

There are several commercially available HMDs and input devices available. This

thesis will use the HTC VIVE which can be seen in Figure 2.4 [29], The HMD for the

HTC Vive provides a panoramic view.

Figure 2.4: The HTC Vive and wands [28]

The HTC Vive also has trackers which can be seen in Figure 2.5. The trackers

are additional hardware that can be used to track other parts of the body, like the

ankles of a user. The HTC VIVE system utilizes lighthouses to detect the positions

of the HMD and controllers, as well as additional devices. The HTC VIVE Pro has

some improvements added to the HTC VIVE [30]. The Vive Pro Eye enhances that

with the hardware for eye tracking [31]. Eye tracking can be useful for knowing when

the user is blinking (for locomotion or for menus) and to see what users are looking

at. There are other hardware device to use virtual reality such as the Oculus Rift [22],

Google Cardboard and the Google Daydream headsets [25].

The Hi-5 gloves as seen in Figure 2.6 may be interesting for research. They can

be used for menus, interacting with objects, locomotion, and communication. An

12

Figure 2.5: Vive Trackers [27]

interesting menu used to show off the Hi-5 gloves can be seen in Figure 2.7. These

gloves require some calibration to be used properly. There may be some interesting

ways to use inputs from the user’s fingers and removing buttons may help to preserve

immersion. We have noticed in our testing that they do not seem to use rotations in

more than one axis, except for the thumb. It can tell when the user is closing their

fist, but it does not tell if the user is fanning out their fingers. This can be bad if

a developer wants to use hands to allow users to communicate with sign language.

Certain gestures are not possible without being able to rotate on more than one axis.

However, we may be able to use gestures for other purposes, such as telling an army

to regroup, opening a menu, giving commands to a virtual pet, or conjuring up a

magic spell. Perhaps the gloves may be more immersive as well.

The VRFree gloves [58] appears to be worth looking into as they say they detect

when the user is spreading their fingers.

13

Figure 2.6: Hi5 VR gloves[51]

Figure 2.7: Menu for a game that uses the Hi-5 gloves[50]

14

Virtual Reality involves more hardware than just the head sets and controllers.

For example, the CAVE and the CAVE 2 are examples of virtual reality. The CAVE2

can be seen in Figure 2.8.

Figure 2.8: Image of CAVE 2 taken from a YouTube video [40]

There have been some interesting devices made for Virtual Reality, one includes

haptic shoes [66]. These shoes use an MR fluid, a fluid that changes viscosity when

in contact with a magnetic field. It is capable of providing different sensations as the

user steps. It can simulate different feelings such as the feelings of stepping in snow

or sand.

Another interesting device, which can be seen in Figure 2.9 is a device that is

intended to allow users to feel like they are stretching their arms further than they

normally can. It does this by using a weight that moves to simulate the feeling of the

arms being farther away than the user as well as a component that stretches part of

the users arm.

One more interesting device, which can be seen in Figure 2.10, is the Gait Master

which helps a problem with VR which is simulating walking on uneven terrain as it

may be unusual for VEs to mostly be flat since real life environments are not mostly

15

Figure 2.9: Device that is meant to give the sensation of stretching arms [84]

16

Figure 2.10: Omni-Directional Gait Master [32]

flat [32].

Some hardware that can be used are treadmills. For example, the Virtuix Omni,

is used to allow users to walk in place by allowing them to walk on a slippery sur-

face [76]. It’s website provides a source development kit that can be easily added

to Unity. Some people say that using the Omni is a bit difficult to get used to and

they feel a bit odd to have to lean in order to walk, but it is something that is worth

looking into for VR. This is because it allows a form of walking in place that could

not be done otherwise and it could help with the main issues with VR which includes

preservation of immersion and reduction of cybersickness.

17

2.3 Virtual Reality Development

There are many approaches to developing Virtual Reality Applications. This section

introduces a few.

2.3.1 OpenGL

Developing a game engine from scratch can be very difficult. There are many aspects

to interactive games. One includes the graphics pipeline which can be incredibly

complicated. OpenGL can be used to handle the graphics [57]. It is possible to use

some existing libraries with OpenGL to develop a game engine. However, it may be a

difficult task to accomplish making a template with OpenGL. It is likely much easier

to use Unity or Unreal Engine 4.

When working with a CAVE development in OpenGL can be the primary tool

available. There have been libraries developed to assist in this development. One of

them is FreeVR [62]. This library handles all the frustum calculation of the multiple

walls.

2.3.2 Unity

Unity is a free to use game engine. It is capable of developing successful games

like A Hat in Time [23] (shown in Figure 2.11) and Ori and the Blind Forest [47],

among others. It can also be used for to develop case studies. Unity uses C#. Unity

has an asset store which provides software and other assets for developers to use.

One example is Photon Unity Networking 2 [18] which can be used for multiplayer

interaction.

It is important for a user to understand the basics of Unity to be able to make

projects with it. Users should understand Unity’s interface such as the hierarchy,

project settings, scene, game view, assets folder, and the Inspector. Developers should

understand what a GameObject is, what a Transform is, and what components are.

Developers must know the difference between local position and world position. They

18

Figure 2.11: Image of A Hat In Time from the Steam Website [23]

should have an understanding of C#. They should know how to create and use

scenes and prefabs. At any time if a developer is having issues understanding how

to develop in Unity, they can use the Internet to find how others have solved the

problem. Developers should also be aware of the asset store.

There are many functions that should be fully understood: Update, Awake, Start,

FixedUpdate, LateUpdate, OnDestroy, OnEnable, OnDisable, OnTriggerEnter, On-

TriggerStay, OnTriggerExit, OnCollisionEnter, OnCollisionStay, and OnCollisionExit.

These functions’ execution order should be understood as well. In addition, there

should be some understanding of Unity’s physics settings and RigidBodies. A devel-

oper should also have a basic understanding of animations, animation settings, model

importing, and Unity’s Animator. Being able to understand how to code shaders and

use particle systems may be beneficial, but is not always necessary. Users should also

have an understanding of different colliders such as the box collider or the mesh col-

lider. Developers should have some background with math that utilizes 3D vectors.

You may be able to learn from some of our mistakes mentioned in this thesis as well,

in order to make better decisions for projects in the future.

19

Unity allows users to attach scripts and other components to GameObjects to

give them functionality. Variables attached to scripts can be accessed and scripts can

depend on other scripts (making scripts depend on other scripts may add complexity

to the system, and may make the code less flexible, since errors may occur if certain

variables are not available).

There are several networking options available for Networking. As mentioned

before, Mirror is on of these. Mirror was based on the UNet system, but modified to

be able to handle Massively Multiplayer Online (MMO) games [46]. There are also

many transports available for Mirror which may include different transfer protocols.

A previously mentioned framework utilized that utilized Mirror used the Peer-to-Peer

transport, FizzySteamyMirror, which required a Steam app ID and each time a player

would like to connect they would need to enter their Steam ID’s [54]. This framework

had at least one server that was also treated as a client. Mirror provides remote

procedural calls for communicating to clients and commands for communicating to

the server [46].

There is a simple to understand API for Photon Unity Networking 2 [18]. It also

provides an easy to understand process for swapping authority. One option which

involves marking GameObjects, that have a PhotonView script attached, as to how

they should handle requests for authority and using RequestOwnership(). It also is

able to use TCP and UDP and Photon Voice 2 [19] provides remote procedural calls

to clients and provides several options for who the calls can be sent to for example if

they send to all clients or all other clients.

Photon can either use their cloud or you can self host the server. Cloud usage

is limited to 60 GB of traffic for the total amount of data that can be sent using

the service or you can pay for more data [20]. One of it’s main benefits is that it

already provides code for voice based communication across clients. Self hosting is

another option which allows the user to use up to 100 concurrent players without

a limitation on traffic. But using a server can be expensive. Photon Voice comes

with voice chat as well as sample scenes which can easily be built off of, and it is

20

client-server based [18].

Two other networking options are Dark Rift 2 and Forge Networking Remas-

tered [8, 14]. Both Forge Remastered and Dark Rift 2 do not have a limit for concur-

rent players. Forge networking Remastered can be used for MMO, real time strategy,

first person shooters and more [8]. For all of these networking tools, Dissonance voice

chat could probably be used for voice chat, but it currently costs $75 USD [64].

2.3.3 Unreal Engine 4

Unreal Engine 4 is another game engine than can be used. Unreal Engine 4 uses

C++ rather than C# [16]. Unreal Engine provides documentation for their Network-

ing [15] and according to their documentation, they use a Client-Server model. The

documentation provides a tutorial on how to get started on using multiplayer with

Unreal Engine 4 and provides tips, such as how often Remote Procedural Calls (RPC)

should be used and to use UDP if there is a (RPC) once per tick.

The networking used by Unreal Engine 4 has some similarities with Photon and

Mirror’s networking, they both use RPCs and they have similar methods for syn-

chronization. With Unreal Engine 4’s actors, which are like GameObjects, position,

rotation and scale can be replicated from the authoritative client by enabling Repli-

cate Movement [15]. Mirror and PUN2 use scripts to enable synchronization in a

similar way.

The Unreal Engine 4 documentation also includes documentation for VR devel-

opment [17]. This includes documentation for SteamVR.

2.4 User Studies

2.4.1 Background

As stated previously, there are effects that virtual reality can have on users. Since

users may experience virtual reality differently, it is important to gather data on how

users are affected by the software and or hardware. For example, if a researcher comes

21

up with a new locomotion technique, they will want to know if users feel sick after

using the method, if they feel tired, if they feel immersed, and perhaps other effects.

A user study can be done to see if a method of locomotion makes users walk more,

rather than just teleporting [53]. We want to ensure that we validate our software,

using users outside of those developing the software [61]. Findings from a user study

may help contribute to finding the best methods to use in different situations and

validate new ideas and techniques.

2.4.2 How to Perform a User Study

In order to conduct a User Study at UNR, we must get the user study approved first

and undergo Citi Training. Paperwork must be submitted for IRBNet’s approval.

For a full guide on this, see Kurt Anderson’s Thesis [6]. In his thesis he described in

detail the user study he conducted and the process and paperwork to go through in

order to obtain necessary approval for a user study.

When designing questions, those in charge of the study must consider what is

important data to record and how participants will answer them. Perhaps comfort,

feelings of motion sickness, frustration, and ease of use may be items to look for in

participants when doing a user study on locomotion. What needs to be looked for

depends on what the goal of the study is.

In order to gather that data, you can ask participants to fill out questionnaires

to see how they reacted. Participants need to be able to fully understand what the

question is asking for in order to provide accurate responses. It may be good to

consider asking each individual question verbally to the participants to ensure that

they fully understand the question and that the case study leaders gather a sufficient

amount of information from the response. Likert scales can be used to help determine

the level of a response, for example, how sick did the user feel? Labeling each value

of the Likert scale may help to alleviate issues with ambiguity.

Hard data can be collected. This data can be used as further evidence of potential

claims of methods used. For example, if a user says they were feeling fatigued, and

22

we see that their progress has slowed down during testing, we can use the hard data

to as further evidence that a method causes fatigue. The time that progress starts

to decline may also tells us that there is a limit to how often a method can be used.

That limit may be reasonable enough to use for certain types of applications. For

example, if users become fatigued due to constant walking, we can have applications

where users take breaks at times to prevent the fatigue.

Whether we need a control group depends on the type of study we are doing. If

we are comparing two locomotion methods and we want to see which method users

prefer, we may want to see how users respond to both methods. However, we may

want to have separate groups in certain cases to ensure that repeating through the

experiment does not affect our goal. For example, if we want to compare VR training

to real life training, we may not want a user to experience both, since they will have

practice from the previous method.

2.4.3 User Study Examples

Some studies use multiple methods to compare one method to another. This can help

to show what one method may excel. For example, one study [10] showed that users

are less likely to cheat when they are given feedback when they interact with walls.

In Figure 2.12 it can be clearly seen in the users paths walked, that users who

did not receive sensory feedback would walk through walls more.

It is important to have both male and female participants. Female participants

may be more prone to feelings of motion sickness than males [2]. There may also be

other differences that affect their experience during a user study. So we want to make

sure we see how it affects both males and females.

There have many user studies on locomotion which can be seen in the survey

paper by M. Al Zayer, P. MacNeilage, and E. Folmer [1]. There have also been

studies on the affects of user avatars. As we mentioned before, there was a study

that looked into the affect that models may have on the user’s cognitive load. There

was also a study where there where the art of the models were used to see how

23

Figure 2.12: Top down perspective of a VR user-study. A: User received sensory,
feedback B: User did not receive sensory feedback.The black dots are collisions with
the wall, while the paths change colors based on time that passed. The dark gray
lines are walls [10].

they affect the user’s feeling of ownership over their avatar [33]. In this study there

where 12 participants. Users had less ownership of the realistic model than the

cartoon-like version. There is another paper that discusses ownership and it relates

to anthropomorphism [43]. Another looked into the emotional affect of avatars [34].

A user study that looked into the accuracy of high-fiving between two users was also

done [33]. There were 14 users in total. The study involved two human participants

where they try to high five each other. It compared high-fiving when using just hands

to using models.

User studies can have limitations. There may be some missing pieces that future

work can add to see how the results change. For example, in a user study based

on a locomotion technique, if the users move at a relatively quick speed for both

techniques, how do we know if the user will feel differently about the same techniques

at a slower speed? We have come across this issue when comparing a walking in place

locomotion method with a controller based method [4].

We now move to multi-user Virtual Reality applications. Our first attempt ap-

pears in Chapter 3. The structure we used had some issues which we attempt to

24

correct with our software template in Chapter 4.

25

Chapter 3

First Attempt: Multi-User VR
Cooperative Puzzle Game

This chapter first appeared as a Conference publication in ITNG 2020:

[12] Lucas Calabrese, Andrew Flangas, Frederick C. Harris, Jr. (2020) Multi-User

VR Cooperative Puzzle Game. In: Latifi S. (eds) 17th International Conference

on Information Technology–New Generations (ITNG 2020). Advances in Intelligent

Systems and Computing, vol 1134. Chapter 39, pp 293-299. April 6-8, Las Vegas,

NV. Springer, Cham, DOI https://doi.org/10.1007/978-3-030-43020-7_39

Abstract

Multi-user virtual reality (VR) games are at the cutting edge of interpersonal

interactions, and are therefore uniquely geared towards real-time interactive games

between human players. This paper describes the process of designing a cooperative

game where the obstacles are designed to encourage collaboration between players in a

dynamic VR environment. This is done using the Unity game engine and the Blender

graphics modeling tool. We demonstrate the progress of our scheme in a multi-player

cooperative game, as well as the importance of the VR interface for encouraging

cooperation. The VR experience provides a realistic human-human interaction im-

proving on generic game-play, as our system utilizes the real-time interface to create

an entertaining VR experience.

Keywords: Multi-player, virtual reality, Real-time, interactive, Unity

https://doi.org/10.1007/978-3-030-43020-7_39

26

3.1 Introduction

The advancement of VR technology has opened the door to many different possibilities

considering the numerous applications for it, one of which being gaming. To explore

how VR technology can be used in multiplayer games involving a virtual environment

(VE), this paper will discuss the process of designing a two-player cooperative VR

game. This game was customized for the HTC Vive headset and the Steam VR

software. The game was designed for two players to work together to overcome

obstacles. Teamwork is not only encouraged, it is required if the players wish to

successfully advance through the levels.

Games such as this will encourage multi-user VR scenarios [81] and create a

more social atmosphere for players to enjoy. In this game, the players utilize different

powers that come in the form of crystal balls that can be picked up, and that are

placed strategically throughout the game world in a way that the players will have

to make use of their problem-solving abilities to reach them. Once the powers have

been obtained, the players will have to use them in a specific way to solve the current

obstacle in front of them. Multiple improvements can be made to make the game

better as a whole that is described later in Section 3.2.2, but due to time constraints,

these improvements are not present in the prototype version of the game.

The rest of this paper is structured as follows: The Creation Process is described

in Section 3.2. Gameplay is presented in Section 3.3, and Conclusions and Future

Work are covered in Section 3.4.

3.2 The Creation Process

3.2.1 Blender Modeling

The initial stages of the creative process involved developing the models for the

game using the open-sourced 3D computer graphics software toolset Blender [9]. The

witches were constructed by molding two mirrored cubes together to create the torso

and then the rest of the body. Other objects were attached to the body to create the

27

arms and shoes. Blender’s bezier curves were used to create the hair of the witches

and were set as children of one of the bones after being imported to Unity [73].

The next step was to create the animations for the witches. One of the better

animation papers was written by Narang, Best, and Manocha [49]. A basic algorithm

has been implemented into Blender using the Rigify add-on to use a human rig. Our

model, the Rigify, and animation controls can be seen in Fig. 3.1.

Figure 3.1: A Screenshot in Blender which shows how to setup animations using the
human rig for the witch model.

Automatic weights were used for the animations, but some adjustments were

made with weight painting. The animations for the witches included walking forward

and backward, sidestepping, and jumping. The arms were intentionally not animated

for walking so that they could be controlled with Inverse Kinematics. Once the two

witches were created, they could then be used for the initial stages of the development

28

of the game in Unity. A scroll to act as the selection menu for the powers was also

created by molding a single cube. The next models to be designed were the crystal

balls that the witches collect and use in the game. The crystal balls were comprised

of transparent sphere objects with an animated object in the middle that represents

the power that it grants. To go along with the crystal balls were the crystal ball

stands to keep them in place and to spawn them. The crystal balls and their stands

can be seen in Figure 3.2

Figure 3.2: Crystal Balls representing powers on their Stands

Later in the developmental stages of the game, Blender was used once again to

design an octopus-like creature with four tentacles and a water projectile for it to

shoot at the players. The octopus started as a single-cylinder that was molded into

the shape of the head, and then four mirrored cubes were used for the tentacles.

Blender’s Inverse Kinematics was used to make tentacle animations. It was given

idle, walking, and attacking animations. The head was given a bone so it could look

up and down, while the entire model rotates to face the player. The water projectile

was also given a rig to create the animation of it swelling and bubbling like a ball

of water. Later in the development process, the levels were designed in Blender and

then imported into Unity. The final model can be seen in Fig. 3.3.

29

Figure 3.3: The Octopus model

3.2.2 Development in Unity

To test the powers that the witches use, as well as other gameplay features, a sandbox

was created with a single plane as the floor of the scene with four walls surrounding

it. The first object created in the scene aside from the planes and walls was the player

prefab. The player prefab consists of a VR camera along with a right and left-hand

object.

Then it was time to attach the scroll to the transform of the right-hand controller.

The transform of the controller was used so that it can be rotated more freely than

if it was attached to the model’s hands. The purpose of the scroll is to act as a

selection menu for whichever power the player wishes to use, as well as keep track of

the number of powers the player has picked up. For buttons that activate powers,

the scroll used models of the crystal balls that were scaled to look like buttons. A

box collider was used for each of the witch’s hands to register when the hands were

touching a button. Text Mesh Pro was used to display the amount of each of the

crystal balls collected by the user. Two more buttons were added to the scroll, a stop

button to cancel any power currently being used, and a swap-hands button for the

scroll so right or left-handed people can choose the setting that is most comfortable

for them.

A script was used to fix the model’s position slightly behind the camera. The

30

character controller that is used for detecting collisions adjusts its central location to

keep all players at the same height regardless of their height, or whether or not they

are sitting down. Cloth was used for the witches’ dresses, in which capsule colliders

attached to the model’s bones were selected to allow them to collide with the dress.

Because the cloth would get stuck on the colliders, a script was added to reset the

cloth under certain circumstances such as when the model jumps.

3.2.3 Developing the Powers

After the Inverse Kinematics and scroll were set up, it was then time to focus on the

coding of the powers. It was decided that there would be five powers: swap, shrink,

freeze, bomb, and a fire power for this prototype. In order to obtain a power, the

user must find and have their player touch a crystal ball representing that power.

All five powers and their associated effects are illustrated in Fig. 3.4-3.8.

Swap Power: The swap power (Fig. 3.4) is used to instantaneously switch the

position of the players with other GameObjects in the scene.

Figure 3.4: A first person view showing the object that the swap power applies to has
its material changed to red. After the swap power is applied, the player will switch
places with the cube.

31

Shrink Power: The shrink power (Fig. 3.5) is designed for the players to fit

through small tunnels or other similar obstacles by making the player significantly

smaller.

Figure 3.5: The shrink power scales the player to a considerably smaller size. Notice
the crystal ball stands next to the player.

Freeze Power: The freeze power (Fig. 3.6) is used to turn the water projectile

the octopus shoots at the player into a cube of ice, and then to use the cubes of ice

as a jumping platform. This was meant to encourage teamwork as the octopus would

follow one player around and shoot a bubble of water at that player and when it is

turned to ice the other player who can use it as a platform. An additional purpose that

32

was added to the ice power was causing a balloon object to descend when activated

due to the change in the balloon’s volume due to its cold temperature.

Figure 3.6: A split screen (two images from different player’s screens). When the ice
power is selected and activated it changes the material of your witch’s skin into a
light blue color. The ice power is bringing down the balloon seen in the right window.

Bomb Power: The bomb power (seen in Fig. 3.7) appears in the hand of the

player when selected. The player can then grab and throw the power at something

else in the game. This bomb power then explodes on contact.

Fire Power: Lastly, the fire power (Fig. 3.8) is designed to melt the already

frozen cubes that are created using the ice power and cause balloons to ascend. Some

functionality could still be added to the ice and fire power to give them more use.

To make these powers accessible to the players via the scroll, a powers script was

created and attached to the witch GameObject, which was a child of the player object.

In this script, each of the powers are stored in a queue, and only accessed when the

player presses one of the buttons. The queue stores crystal balls. These objects are

returned to their stands either 7 seconds after use, or if they are away from their

stands for 7 seconds. GameObjects were stored to make the transforms of the crystal

balls and the setActive function easily accessible. It was essential to create a UI in a

33

Figure 3.7: The fireball is used for the bomb explosion power.

34

Figure 3.8: A split screen (two images from different player’s screens). When the fire
power is selected by both players, it activates the fire particle system.

meaningful and useful way [39] for the user. When the swap power button is pressed,

a function gets called within the powers script which then accesses a function that is

located in a separate swap script. A similar method is used when selecting the bomb

power, in which there is a separate script for the bomb power that is attached to

the explosion prefab that is accessed in the powers script. The remaining powers are

accessed and implemented in the powers script while having other scripts attached to

the parent GameObject for networking purposes.

To get the fire and ice powers to work properly, the OverlapSphere physics func-

tion is used to detect when the hands of the witch are touching the ice cube or the

water projectile. While a player has the ice power activated, they can freeze the

water projectile. When the player has the fire power activated, they can melt ice

cubes and cause them to disappear. For the fire power, it was also necessary to add

an OverlapBox to melt the ice cubes when a collision is detected between the ice

and the rest of the body. When the fire power is selected, a fire particle system is

activated that engulfs the witch object in flames. When the ice power is selected,

it changes the materials used for the witch’s skin color into a transparent light blue

35

material. The shrink power changes the local scale transform of the player prefab

to a smaller size. The swap power moves the player prefab in a way that allows the

witch model and camera to move to the position of the GameObject it is switching

with. That GameObject then moves to the position of the witch model. The bomb

power creates a custom prefab fireball object and when the fireball object detects a

collision, it instantiates an explosion prefab.

Sounds had to be added to each of the powers. Royalty-free sounds or sounds

we recorded were used for the powers. They are essentially open-source and can be

used by anyone. The sound used for the swap power sounds like a slab of concrete

being shifted across another hard surface. The sound for the shrink power sounds

like rubber being stretched. The bomb power makes a loud bang when the fire ball

collides with another object, using a royalty-free sound. The ice power is a custom

sound made by crumpling a piece of paper and then editing the effects in an online

music tool called Audacity [44]. The fire power uses a built-in sound in Unity that

comes attached to the fire particle system. To attach each of the sound effects to the

powers, a sound source component was attached to the witch and then specified in

the powers script when the sound was supposed to be heard. The only sound that

had to be specified differently was the bomb power, in which the fire ball spawns an

explosion and the sound source is attached to the explosion.

3.2.4 Level Design

Demo Level: The first level was initially modeled in Blender, additions and edits

were added afterward. The levels had to be designed according to the powers that

would be used in that scene. There would have to be small constrained passages for

the shrink power, platforms placed at higher locations that can only be reached by

creating ice platforms from the octopus’s bubbles, and empty spaces to place objects

to either swap or blow out of the way with the explosion power. All these factors

had to be taken into consideration when designing levels that would complement the

usage of the powers.

36

The demo level features a puzzle that involves using the ice and fire powers to

manipulate the position of a balloon. The objective is to use the ice power to make

the balloon drop in height and the fire power to make it rise. The players repeat these

actions until the balloon makes it out of a winding tunnel. Once that happens, the

balloon rises above a platform. This is so a player can then use the swap power on

the balloon to get to a higher location. The ice power was used to create a platform

out of a water projectile to reach a swap power. After using the swap power to swap

positions with the balloon to reach a high platform, a bomb power is then collected.

The player on the high platform uses the bomb power to knock over crystal balls that

contain the shrink power so that the other player can grab them. One of those balls

is then passed to the other player so that both players can shrink and to reach the

end of the level. The level can only be concluded once both players touch the square

block at the end of the level. Upon doing so, a congratulatory message appears.

New Puzzle Level: As the demo level was made to illustrate how the powers

could currently be used, another level was made to test the puzzle aspects of the game.

The designing of this level involved the creation of several new models in Blender,

which are purple barriers and buttons that are used to open them. The objective of

this level is to figure out how to knock down crystal balls with the shrink power that

are guarded by three barriers. A picture of the level can be seen in Fig. 3.9.

There are three buttons that correspond to the three barriers that are placed in

separate ends of the map, while a lone cube sits in the middle of the level. While the

buttons are pressed, their corresponding barriers are disabled. Two of the platforms

require one player to use the other as a platform so that they can reach it. One player

provides a hand for the other player to jump on to allow that player to reach these

high platforms. There are also three swap powers and one bomb power available. The

solution involves some set up. One player will need to bring the cube up to one of the

platforms, while the other player will need to collect all swap powers that are within

the level. One player will be called Player1 and the other Player2. Player2 will use

Player1’s help to reach a platform that is in front of a long highway filled with three

37

Figure 3.9: The puzzle level with the barriers, as well as the buttons the players use
to open them.

barriers that ends with crystal balls that each contain shrink power. Player1 will go

to the platform that does not have a cube. Player2 will slowly release a bomb spell

towards the shrink powers. Since the bomb power is still active, Player2 cannot use

other powers. Player1 will swap with Player2 so that Player2 can press the button

located at the position Player1 is at. This opens up the first barrier. Player1 then

swaps with the cube to press the button that is at that location. As the button is

pressed, the next barrier is released. Once the bomb spell has passed that barrier,

Player1 will swap with the cube again and then reach the final button as Player2 goes

to collect the shrink powers as they fall down. The level is then completed.

3.2.5 Mirror Networking

Unfortunately, during the time this game was being developed the unity networking

feature known as UNET was deprecated. The alternative used was the Mirror net-

working API found on the asset store or the Mirror public GitHub repository. There

is a sub-branch of the Mirror API known as FizzySteamyMirror that allows the users

38

to link a host and client-server using their steam IDs [52]. Once FizzySteamyMirror

was downloaded and installed successfully into Unity, the next hurdle to overcome

was to sync up the player’s movements between the server and client. To accomplish

this, a networking transform child was added to the appropriate GameObjects of the

player prefab, along with a script to disable any action that does not belong to the

player on their side. After these tasks were accomplished, the player’s arm movements

and walking animations were visible on each others’ screen.

After both of the character’s movements were visible on both the server and

client, it was time to make sure that the powers worked online. To achieve this, a

networking script had to be added to the root GameObject of the player prefab for

each of the five powers. These scripts are there to ensure that the game is synced

over the network. After completing all five scripts, the powers used from either player

could be seen by both users. Then Mirror’s scripts were added to the appropriate

power orbs so that the displacement of the power orbs, whether they are picked up or

knocked out of place, as well as the position of the octopus, can be seen objectively

on the same server.

To allow the players to see each others’ arms move, the inverse kinematics scripts

were kept enabled. They used the information about location of the hands and HMD

sent from the other player to use for the inverse kinematics scripts to approximate the

arm placement. For the bomb power, the local player had control over the spawned

spell prefab. For the ice, the local player’s materials are swapped and information is

sent to the other player to change the materials of the non-local player. Something

similar is done for the fire and shrink powers. When the client spawns a player pre-

fab, the witch’s materials for the clothes, hair, lips, and eyes, are changed so that

the characters are distinguishable from the player spawned by the server. Networking

eventually turned out to be a success, Fig. 3.6 and Fig. 3.2 show the two players inter-

acting in different environments. There was other networking related work involving

correctly spawning objects like the octopus, the balloon, and the spells and these are

covered in detail in [52].

39

3.3 Gameplay

3.3.1 Locomotion

The locomotion method used included both room-scale and the controller to move.

It was similar to glide locomotion [42]. Using the trigger by itself moves the player

in the direction the player is looking in. Touching left or right on the touchpad, and

then pressing the trigger would allow a side step. Touching back on the touchpad

and then pressing the trigger would allow the player to move in the opposite direction

that the player was looking in. The trigger was used since the touchpads seemed to

jam easily. This locomotion method was chosen as it seemed simple to implement.

A method such as teleportation was not used as it could look unusual to see a model

repeatedly and instantaneously moving to different positions. Jumping and gliding

were also added. When a player falls, they will fall at a constant, slow rate and can

use the touchpad to move forward, left, right, or backward while gliding.

3.3.2 Positive Outcomes

The goals for the gameplay of this project included the possibility for depth in game-

play, the feeling of being on a team, variety in puzzles, and to make use of the motion

controls that VR provides. One way that the game tries to encourage the feeling of

being on a team is that players in the game can stand on each other. One player

can hold out their hand to provide a platform for another player. This can be used

as a method to separate players, or to make areas inaccessible without having to use

powers. Another way the game tries to encourage a feeling of teamwork is the ability

to pass collected powers to teammates. This is done by holding the model’s hands to

the button on the script and pressing the side buttons on the Vive controllers.

As mentioned before, the ice power was meant to encourage teamwork by allowing

one player to freeze bubbles shot by the octopus while the other player tricks the

octopus into sending them over. The fire and ice powers are not necessarily complete,

as the original idea involved players not being able to enter certain areas unless those

40

powers were activated. For example, not allow a player not using the fire power to

reach hot surfaces.

The balloons are meant to encourage teamwork by using the ice and fire power

to cause the balloon to rise and fall. This step is repeated until it is in a position

where a player can use the swap power on it. This idea was not explored greatly,

but we believe it is usable for interesting puzzles. The bomb power takes advantage

of the motion controls as it allows an explosion spell to be thrown. The swap power

utilizes VR controls by using the HMD to aim. This power can use other players as

objects to swap with, which encourages teamwork as it may be necessary to move

a player to another location. Also, when a player is using a power, another power

cannot be used. The other player would have to be in charge of using other powers

which encourages players to choose roles.

Another important component added later in the game’s development was the

voice chat feature. Voice chat allowed the players to communicate with one another

in the game while pressing and holding one of the touchpad buttons on the HTC

Vive controller. This was done using mirror to send data over a network and using

audio sources to play them [52]. The feature is a necessity since players will need to

communicate their ideas to solve puzzles.

3.4 Conclusions and Future Work

3.4.1 Conclusions

This project demonstrates only a few of the countless exciting and innovative features

programs like the Unity video game engine and Blender have to offer. However, the

game was a successful project in the sense that it meets all the criteria initially set for

it. It is a co-op game that not only reinforces teamwork but also requires it to make

it through the demo. The five powers all have interesting visual effects and sounds

attached to them, as well as situations where the players need to implement them.

There is room for improvement in many areas of the game, but overall it is sufficient

41

for what it is intended. That being a great VR learning experience.

3.4.2 Future Work

While there are many items which could be added here, we will point out a few that we

feel are important. Comfort mode [42], a method in which the user can turn their head

without changing direction in the game could have been added for users who prefer

it. Jumping, even with its potential to cause VR sickness [82], and the possibility

of affecting immersion were kept in the game as it was deemed useful for gameplay

purposes. A user study should be done to see how users feel about jumping and to

gather feedback on the prototype. Since this game is still a prototype, the powers

could be adjusted and more interact-able assets could be added. Other multiplayer

services or libraries could be added such as Photon Unity Networking 2 [18], Dark

Rift 2 [14], and Forge Networking Remastered [8]. All of which are available on the

Unity Asset Store [74].

More levels could be added to test ways that the powers can be used and how

they need to be adjusted. There also should be more GameObjects to interact with

to help make puzzles more difficult and interesting. The original design of the scroll

was intended to be dynamic and have buttons that represent powers placed on it in

the order it was collected. This way, more than just five types of powers could be

represented on the scroll, and the maximum amount of powers allowed to collected

by an individual player could be how many buttons could fit on the scroll. But to

save time the scroll had all powers displayed next to a number.

42

Chapter 4

A Software Template

4.1 Introduction

4.1.1 Positives with First Attempt

Our first attempt at multi-user Virtual Reality applications allowed several groups to

make multi-user VR applications. Our Puzzle Game was one of those applications and

it was covered in Chapter 3. There were other applications built with this structure

such as a tower defense game [48] and an underground mine evacuation simulator [5].

It was relatively simple to figure out how to synchronize the positions and rotations of

GameObjects with this structure, and the framework that these projects all used [52]

also provided voice chat.

4.1.2 Issues with First Attempt

The framework that we all used [52] was built around Mirror and FizzySteam [54]

because UNet was deprecated. There were some issues with this framework that we

would like to address. These issues included:

• We did not want the Networking and the voice chat to be tied to Steam. We

do not want players to be required to have Steam accounts to play the game.

• The framework only provided a simple head and hands avatar with spheres

to represent the heads and hands. We feel that this is an issue since some

developers may want to use full-body models and they may need a sample to

43

figure out how to achieve that.

• The framework also only used glide locomotion with room-scale, and it did not

include a sample for teleportation.

• The framework also did not provide a 3rd person view or a video recording

option. A video recording option would be useful so that builds of games can use

recording without worrying about external software. Video recording is useful

for research as we can observe user’s behaviours and actions. We can also use

the recordings to share research in conferences. Recordings may have some use

for teaching as well, as teacher’s may be able to give advice or commentary at

certain points of a recording during training or teaching.

• Another issue was that students who have used the framework had trouble

finding an easy to understand API for Mirror. This adds unnecessary difficulty

to create a project.

4.2 Design of the Template

With the first attemprt in mind (both the positives and issues), we set out to design

a template for multi-user VR applications. In following the standard software engi-

neering practice we set out to put together a list of Functional and Non-Functional

requirements. These types of requirements are described in detail in Sommerville [65]

For this template we need voice chat. This is because other forms of communi-

cation may be too difficult when a user has a headset on and two controllers in their

hands. Using text may be too cumbersome since the user will have to accurately

choose letters from a menu in VR. We also need object synchronization/ownership

so that objects are properly synchronized on all clients. A sample for joining games

is necessary to allow developers to easily begin developing a game, and to code con-

necting players. We also want to provide samples for avatar representation including

just the the head and hands and using a body model. And finally we need to include

44

recording (audio and video). This collection of Functional Requirements can be seen

in Table 4.1.

Functional Requirements
Req ID Priority

FR1 1 The Template shall allow users to connect to each other
with at least two computers

FR2 1 The Template shall allow users to see each other’s
avatars when their games are connected

FR3 1 The Template shall allow users to send information
about one or more objects’ position, rotation,
and scale

FR4 1 The Template shall provide user representation
as head and hands

FR5 1 The Template shall allow users to use and
learn from an example game

FR6 1 The Template shall provide voice chat
FR7 1 The Template shall provide a 3rd person mode with

video and audio capture
FR8 2 The Template shall allow users to build functioning

executables
FR9 2 The Template shall provide a sample user Interface

for joining games
FR10 2 The Template shall provide a 3d model with arm

IK scripts
FR13 3 The Template shall provide a user interface for

joining games that can be accessed with either
the HMD and or the Desktop Display.

FR14 3 The Template shall include two samples of locomotion
FR15 3 The Template shall include a Ping Pong Sample Game
FR16 3 The Template shall provide scaling of full body models for

different sized people

Table 4.1: The functional requirements for the framework. The priority levels indicate
how important the functionality is

For the Non-functional requirements, as seen in Table 4.2, we have that users

should be able to use networking software and a game engine that has easy to read

documentation to ensure that there is not any added difficulty for understanding how

to implement their project ideas. We wish to allow users to maximize the amount of

traffic they can use, because we do not wan to limit their testing and require them

to keep track of the amount of traffic they are using. We want the template to be

reasonably simple to understand as we do not want to add any extra inconvenience to

45

Non-Functional Requirements
Req ID Priority

NFR1 1 The template will use networking software and a
game engine that has easy to understand documentation

NFR2 1 The networking subsystem shall not be tied to Steam
NFR3 1 The Template shall make sure that the software

works with a reasonably new version of Unity
NFR4 1 The Template shall maximize the amount of

traffic users can use
NFR5 1 The Template shall be designed in a way

that assumes that users have never used Unity
or VR

NFR6 2 The Template shall ensure that the interface
is simple to use

NFR7 2 The Template shall ensure that games made using
the framework can connect to different
locations on campus

NFR8 3 The Template shall reduce the monetary costs of
the framework as much as possible.
With the exception that the expensive software is
already available.

Table 4.2: The Non-functional requirements for the framework. The priority levels
indicate how important each constraint is.

the developer using the template. We wish to ensure that applications using our on

premise server are able to at least be able to be used campus-wide because we want

students to be able to perform user studies in any building around campus.

In order to create this template, we need subsystems for the following: Network-

ing, a game engine, and Virtual Reality. These are illustrated in Figure 4.1. For

the game engine, we will use Unity, for Networking we will use Photon and Photon

Voice2 with an on premise server, and for Virtual Reality we will use an HTC Vive

and the SteamVR Plugin [75]. In order to record videos we used Video Capture by

RockVR [56].

4.3 Implementation of the Template

As previously mentioned in Chapter 2, two of the networking options available with

Photon Unity Networking are: using an on premise server or using cloud data. In-

46

Figure 4.1: Subsystem Diagram for a Multi-User VR Template

structions for how to set up the on premise server or for using cloud data can be

found on the Photon website. On this website, more products can be found.

4.3.1 PhotonServerSettings

Figure 4.2 shows the server settings that determines how the application will connect.

For our purposes we will enter the IP address as the Server value, and the Port will

be 5055. More information can be found online in Photon’s documentation.

4.3.2 Scene Set-Up

In the case that we want players to join a room immediately, we use scripts in the

scene to automatically spawn players. We would attach ConnectAndJoinRandom

and CharacterInsantiation from Photon Voice’s sample scene for using voice chat

called DemoVoicePun to an empty GameObject. ConnectAndJoinRandom connects us

to a room, while CharacterInsantiation spawns the character. The Character

Insantiation script can be modified to handle a different number of players. It

initially chooses an array of four prefabs, but we can change this by changing the

size of the array, and the values in the Inspector. We would also need to make sure

47

Figure 4.2: The Photon Server Settings. We can use this to choose to use cloud data
or to use an on premise server

that the code will not attempt to use an index outside of the range of indices when

accessing the array. The SoundsForJoinAndLeave script can be used to notify users

when a user joins or leaves the room. In order to easily set-up a room, we can use

the initial parameters used within the DemoVoicePunScene. We would just need to

drag the empty GameObject, named PUN, into our asset folder to create a Prefab,

and move that Prefab into a new scene.

For voice chat, we can use an empty GameObject with the following of Photon

Voice’s components: Recorder and PhotonVoiceNetwork. Our player prefabs should

have their Photon Voice component’s attached as well. The recorder has some pub-

lic variables like TransmitEnabled where we transmit the voice if it is set to true,

otherwise we do not transmit the voice. It also has parameters for sampling rate,

bitrate, and more. For our template we prefer to have voice detection enabled so that

users do not need to press a button in order to communicate with another person.

The parameters we are currently using for the voice components that start within the

48

scene can be seen in Figure 4.3. In order to have voice chat, we will also need to add

Voice Chat components to the player Prefabs we will be spawning. We explain how

to do this next in Subsection 4.3.3.

4.3.3 PhotonView and Synchronization

In order to synchronize the positions, rotations, and/or scale of GameObjects, we

can use attach a GameObeject with a PhotonView component as well as a Photon

TransformView component. It is important to make sure that the TransformView is

set as one of the observed components in the PhotonView component. If we want to

synchronize the position of a game object with a Rigidbody component, we should

use a PhotonRigidBodyView. This is because the velocity on one client may not

necessarily be the same as on another. For example if a player picks up an object and

sets the velocity of the object to zero, we want the other client to also see it as zero.

Otherwise the object may act like it has velocity and not stay in the position. Both

the transform view and the RigidbodyView can be attached to the same GameObject.

Photon’s older transform view component gives options for interpolation which can

smooth out the path of the GameObject if it appears to jittery on clients other than

the client that has authority.

PhotonVoiceView can be used to allow users to use voice chat. In order to

properly set this up we must have the proper components attached. See Figure 4.4

to see our components and parameters. FollowActive is one of our own scripts that

makes the GameObject it is attached to to follow the camera that the user is currently

using. We do this along with synchronizing the position to make sure that the sound

is correctly based on the position of the GameObject. Unity’s sound system allows it

to simulate 3D sound, so a far away sound will sound farther away. We can choose

to modify the Audio Source’s parameter to fit our needs for the voice chat.

Remote procedural calls (RPC) can be used to synchronize things such as ma-

terials. If one user changes the color or material they are using on a model, we may

want to tell all the other clients to change that color as well. An RPC essentially is

49

Figure 4.3: The empty GameObject with voice related scripts attached.

50

Figure 4.4: The components we used for voice chat attached to our player Prefab

51

telling other clients to execute a function. When an RPC is called, the function will

be called on the copies of the GameObject that called it.

There are several targets we can send RPCs to. We can send them to every

client, which includes ourself, all other clients, and we can buffer RPCs [18]. We

want to buffer RPCs just in case a new client joins the game, so they can have all

the changes that the other players have made on their end. For example if a player

changes their models color to red and sends an RPC to all other clients that they

changed their model to red, a client that joins after that RPC was sent will see the

player as their default color rather than red. So we can choose to buffer RPCs to

ensure that the correct changes are made when the new player joins. Parameters can

be passed through RPCs, however there are some limitations. For example it is not

possible to send a GameObject as a parameter, but it is possible to send a float as a

parameter.

4.3.4 Authority

Photon uses a concept known as authority. We need to base our synchronization

on at least one user, in other networking models it may be the server. So when a

user has authority over an object, all other clients try to copy the properties have

that users copy of the object. Photon provides the ability to swap authority of a

GameObject using the RequestOwnership() from the PhotonView that is attached

the GameObject. Though we must set the PhotonView as “Takeover” so that users

can take over the authority of the GameObject.

As seen in Listing 4.1, we access the the PhotonView of the GameObject we wish

to take control over. Then we request for ownership and use an RPC to ensure that

it is detached from a user that may be holding it. We have not yet tested if it is

necessary to use the RPC to detach the object. But based on testing it appears to

have worked.

The HeldBy function, as seen in 4.2, is called when a new object is attached to

the user’s hand. This function tells the local copy of the held object the person who

52

Listing 4.1: Code demonstrating swapping authority and allowing a user to take
control of an object another users is holding

void Update() {

GameObject current = hand.currentAttachedObject;

if (current != null && prevAttached != current) {

HeldBy hB = current.GetComponent<HeldBy>();

hB.authority = this;

PhotonView tempView = current.GetComponent<PhotonView>();

if (!tempView.IsMine) {

tempView.RequestOwnership();

hB.photonView.RPC("ChangeHolder", RpcTarget.Others);

prevAttached = current;

}

}

if(hand.currentAttachedObject == null) {

prevAttached = null;

}

}

public void release(GameObject obj) {

hand.DetachObject(obj);

}

is currently holding it. The idea behind this code is that we want to tell the user who

previously held the object to let it go. So we call a function on the held object that

tells all copies of the object on all clients to see who was holding the ball last, and

tell them to let the ball go.

4.3.5 Joining and Creating Rooms

Joining and creating rooms is actually a simple task. We can choose to have users

connect to rooms immediately or to allow them to choose to connect to a room. It

depends on the scripts, and what is contained in them.

If we want an application to immediately have users connect to a room and join

a server, we can base our scene set up based on Photon Voice 2’s sample scene for

voice chat. This includes an empty GameObject called PUN. PUN has two important

scripts attached: ConnectAndJoinRandom and CharacterInstantiation.

For joining and creating rooms we used Photon’s ConnectAndJoinRandom in or-

53

Listing 4.2: Code essentially tells us who last held the object

public class HeldBy : MonoBehaviourPun

{

public Valve.VR.AuthoritySwap authority;

[PunRPC]

public void ChangeHolder() {

if(authority != null) {

authority.release(gameObject);

authority = null;

}

}

}

der to understand how to code it. So there may be some similarities between the two.

To join a room, we first connect using: PhotonNetwork.ConnectUsingSettings(),

and then we join the lobby using: PhotonNetwork.JoinLobby() within the

OnConnectedToMaster() call back function. The OnConnectedToMaster() function

is called when we have connected to the master using PhotonNetwork.ConnectUsing

Settings() We can use the OnRoomListUpdate() call back function to update a list

of rooms. Listing 4.3 shows how we have done this. We receive the roomInfo list.

It gives us some information on each available room which includes the max players

allowed, the amount of players that are in the room, and the room name. We can

use these strings and display them to a user that wishes to join a room. In this case

they are being added into a drop-down menu. If a room is full the user will probably

not join it. The room name should identify the room so that if another user wishes

to join, they can. Once we join a game and the scene is loaded, we can use scripts

within that scene to spawn the player.

To create a room, we may want to fill in a couple of parameters. One is the

max players allowed, another is the scene. We could allow players to name the rooms

they create on their own, but we decided to just name them based on the scene name

chosen, and add a number at the end of the scene name to make sure that the scene

name is unique.

54

Listing 4.3: Code For listing room names

public override void OnRoomListUpdate(List<RoomInfo> roomList) {

.

.

.

System.Collections.Generic.List<Dropdown.OptionData> optionData =

new System.Collections.Generic.List<Dropdown.OptionData>();

int i = 0;

roomInfo = new RoomInfo[roomList.Count];

foreach (RoomInfo room in roomList)

roomInfo[i] = room;

i++;

optionData.Add(new Dropdown.OptionData(room.Name +

" " + room.PlayerCount + "/" + room.MaxPlayers));

}

dropdown.options = optionData;

}

.

.

.

}

In our implementation we create the room in the roomListUpdate function. We

chose to do this so we could receive a list of the current rooms so that we can use a

unique room name. First we set some room options including the max players allowed

and the scene choice. Then we create the room with PhotonNetwork.CreateRoom.

If the application is meant to be used by both VR and non-VR users an appli-

cation using this template may wish to have both 2-D and 3-D interfaces. Figure 4.5

shows a 2-D menu for creating a room which allows the user to chose a scene and the

max amount of players allowed.

Figure 4.6 shows a 2-D menu for joining a room. This menu contains a dropdown

of available rooms. The components used to accomplish this were from Unity’s UI

assets.

Figure 4.7 shows a 3-D menu. It uses parenting to move the buttons, and it’s

position is made to only be able to be moved toward or away from the menu. The

menu is a set as a child of one of the user’s arms. This is to allow the user to This

55

Listing 4.4: Code For Creating Rooms

public override void OnRoomListUpdate(List<RoomInfo> roomList) {

public void CreateRoomButton()

{

maxPlayers = int.Parse(maxPlayerAmt.text);

sceneChoice1 = sceneChoice.text;

PhotonNetwork.ConnectUsingSettings();

blnCreatingRoom = true;

}

public override void OnRoomListUpdate(List<RoomInfo> roomList)

{

...

if (blnCreatingRoom)

{

int i = 1;

foreach (RoomInfo room in roomList)

{

if (room.Name.Substring(0, sceneChoice1.Length) ==

sceneChoice1)

{

i++;

}

}

blnCreatingRoom = false; blnCreatingRoom = false;

RoomOptions options = new RoomOptions { MaxPlayers = (byte)

maxPlayers };

PhotonNetwork.CreateRoom(sceneChoice1 + i, options, null);

SceneManager.LoadScene(sceneChoice1);

Destroy(transform.root.gameObject); //destroy the player object

that uses this

}

...

}

56

Figure 4.5: 2-D menu for creating a room

Figure 4.6: 2-D Menu for joining a room, with an instance of the game showing that
room

57

Figure 4.7: 3-D menu. When the the menu and its sub menu are enabled, the grow
and translate away from the menu. Uses GameObjects for options and when a button
collides with the gray area, it temporarily turns green

menu allows users to change rooms without having to take off their headset. We had

a limited amount of room so the menu only currently showed five rooms to join when

selecting a room.

4.3.6 Enabling Components

Because we are spawning copies of a player to multiple users, we will want to have

certain components enabled on copies of avatars from other clients and certain com-

ponents disabled on them. For example, there can be only one Audio Listener in the

scene at once. So if a copy of a client’s avatar has an Audio Listener, and the local

user has an Audio Listener, we would have to disable the Audio Listener from the

other client. Following an idea from [52], we have a script attached to the root of our

avatars that allows us to disable certain components.

Figure 4.8 shows an example of script components to disable. We want to disable

other cameras, since we want the local player to use their own camera. In order to

ensure that the local player does not control the clients, we should also disable the

hand related scripts from the SteamVR Plugin. Within our script, we check who

has authority over the avatar with PhotonView.isMine and disable it by setting its

58

Figure 4.8: Array of Behavior scripts to disable

59

enabled value to false, if PhotonView.isMine is false. It’s also possible to disable a

script if it is not owned by the local player within the Start() function within that

Script so long as the script has access to the a PhotonView script that is attached to

the local player. We have this component attached to the root of our object.

In this iteration we disable components, but we plan on changing this to only

enable components instead, so other developers have an easier time developing with

the software.

4.3.7 Locomotion Samples

There are arguably an infinite number of implementations of locomotion possible for

users. But we will just go over two. One is teleportation, while the other is touchpad

movement.

A simple locomotion method to use is locomotion based on the touchpad. It is

arguably unnatural as users press a button to move rather than move their body.

There are many ways to implement this. One example is that the position of a user’s

thumb on the touchpad can be used to determine which direction users want to move

in. The direction of the headset can be used as well. Another option may be to use

controllers to point into the direction the user wishes to move.

Listing 4.5 is an example of how to use the camera direction to use make the

character move. The script is attached to the root of the avatar. Collisions can

be used to prevent the user from moving through obstacles. The root collider can

have it’s center be set at the center of the avatar in the update function so that

it is at the correct location for collisions, otherwise the collider may be separated

Listing 4.5: Code for movement based on camera direction

transform.Translate(Vector3.Normalize(new

Vector3(cam.forward.x,0,cam.forward.z))* Time.deltaTime*3);

//move in direction of camera

//use time.deltatime to ensure the distance moved

//does not depend on the speed of the computer

60

from the camera since the camera’s local position can change and not be at the same

position as the root object. Since users will move with the controller rather than in

real life, they may feel sick due to the mismatch in perception. One positive of this

method of locomotion is that it looks more natural to other players in multiplayer

than teleportation.

Because of the way our player prefab is set up, the camera can have a different

position than its root position. We found that we were unable to move the camera

position when a VR headset was in use. So in order to teleport the user we used

the root transform. Since the root transform and the camera, which is lower in the

hierarchy than the root, can be in different positions, teleportation where we just move

the root transform’s position into a new position may cause undesired outcomes. This

is because the user will not teleport to the exact location that they intend to teleport

to (the root object will). In order to deal with this, we can move the root object in

way that the camera is placed in the position we want it to be placed. An example

of this is in the Listing 4.6.

Listing 4.6: Code for Teleporting to the a position where we expect the camera to be
when the user is standing up straight

playerTransform.position = new Vector3(teleportLocation.position.x,

teleportLocation.position.y - deltaY, teleportLocation.position.z);

playerTransform.position = 2 * playerTransform.position - cam.position;

There may be other ways to do this but, this is how we are currently handling

teleportation. In the code in Listing 4.6 we move the root to a position. Then we

move the root Transform to a position that moves the child Transform to the desired

location. We will also want to take the VR camera’s local position into consideration

since if the user bending when they teleport, their camera position when the teleport

may not be in the position we expect. We can’t expect the user to be standing up

when teleporting.

61

4.4 Network Prefab

In Figure 4.9 we see an example of how a player Prefab may look. SteamVRObjects

contain GameObjects that represents the user’s hands and head. When VR is not

in use, the NoSteamVRFallbackObjects become enabled as the SteamVRObjects be-

come disabled. FemaleDoc1 is just the model of the avatar that we are using to

represent the user. Depending on the settings we provide for it, it will contain the

bones for the avatar. This can be useful as we may sometimes wish to add scripts

and/or colliders to the bones. foot1 and foot2 are targets for IK for the model’s

feet. It will help us find the rotations for the thigh and the lower leg. In our case, we

are just using them to allow the user’s knees to bend.

Figure 4.9: What the Hierarchy of a prefab with a body model and 3rd person may
look like

62

4.5 Body Models

There may be discrepancies between the avatar and the human. Arm length, leg

length, height, etc might not match the model. We only have 3 tracked points for

matching the model’s movements with the user’s. IK is an option to estimate the

rotations of the arms. Unity thankfully, provides easy to use functions for this. Trying

to match the model with the user may require manual avatar customization or extra

hardware and software that utilizes computer vision techniques. It may be possible

to use images of a person to attempt to make an accurate 3-D model representation

of the person. We also do not know if it users will wish to be another person and

“escape” or to be themselves. The effect of Avatars on immersion is also a concern.

Research may still need to be done to understand the psychological influences of user

avatars on the user.

4.5.1 Blender

In Figures 4.10 and 4.11 we see a way to easily use a what we will call a skeleton,

but it is also possible to make a skeleton from scratch or edit one of the samples.

Skeletons can be modified in editor mode. We can assign the skeleton model, while

using the option to assign automatic weights, to assign the skeleton to the model.

In Figure 4.12 We can make modifications to how much a bone affects the mesh

when it is translated, rotated, or it changes scale. We are uncertain how much these

weights are affected Unity’s import options, but at the moment we believe it plays

some role in it.

63

Figure 4.10: The bones allow us to move part of the mesh. If the bone is moved,
scaled, or rotated, the assigned part of the mesh will be moved, scaled or rotated [72]

Figure 4.11: With the Rigify Add-on we can easily create a humanoid skeleton

64

Figure 4.12: Weight painting allows us to make adjustments to how the bones will
move the mesh

65

4.5.2 Animation Settings

For our implementation, we used a looping animation where the character model is

essentially in the same pose. We have the IK pass option checked as true in the

Animator. The Animator can be seen in Figure 4.13. The Animator allows us to

control the animation states a model is in and how it transitions into other animation

states. For example, if we want to show that a model is falling, we can check use

a Boolean to tell the animator that we want the model to play its falling animation

clip. But when we are not falling, we would want to transition back into walking

or an idle animation. Since we want to give users control over there arms in VR we

probably will not want to use animation states to change the pose of the arms. If we

give the user control over the legs, we would want to match the user’s feet positions

to the model’s feet positions. In that case we would not want to change the pose of

the feet or legs either. We would want those animations to be live.

Figure 4.13: Animator that shows us the animation state a model is currently in as
well as the transitions and between the states

The settings in Figures 4.14 and 4.15 were what we used. We were able to have

Unity’s IK working with these settings. For our animation clip, we have a looping

pose where the model essential remains in the same pose without moving.

66

Figure 4.14: These are the import settings we used for the Rig, based on the instruc-
tions for using IK from Unity’s documentation

4.5.3 Scripts

In order to have the head rotate the same as the user’s head rotate, we match the

rotation of the head using the Euler angles of the HMD. We attached the script show

in the Listing 4.7 to one of the model’s spine bones.

In Listing 4.8 we what happens during calibration when the user first joins a

room. This is in the LateUpdate() function so we are updating values every frame.

We decided to place the user’s head at the head of the model. We did this rather

than attempting to change the scale of the models. The way we did this is we have a

charactercontroller and we that try to push down the entire player prefab down-

wards when the user starts playing. The charactercontroller will not move the

player downwards if it is colliding with a floor. We have the center of the charac-

ter controller follow the model. The model’s position is always made to match the

position of the camera. So if the user happens to be crouching and then stands up

straight, the model and camera will move up, but the root GameObject will be pushed

down. When the player stands up straight and then drop’s their head’s position, the

camera will remain at the position of the model’s head. This way the user’s head

will be at the model’s head. Also, the We will call this process calibration. We also

position the model slightly behind the camera, so the user does not see inside the

model.

In the start function we have we call Invoke() which will call nowAdjusted()

67

Figure 4.15: These are the import settings we used for the animation

68

Listing 4.7: Code for rotating the model’s head based on the user’s head

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

/**

* HeadRotate is used specifically for full body models. Attach it to the

prefab of the model.

* It uses camera rotation for the rotation of whatever bone controls the

head’s animation

* It rotates the players head, and makes the models less static looking

* This is meant for head and hands only, not using any extra trackers.

* Attach this to the the correct bone to rotate

*/

public class HeadRotate : MonoBehaviour

{

/*The transform of the camera it contains position, rotation, and

scale, Transforms are from Unity*/

public Transform cam;

// LateUpdate is called once per frame after update

void LateUpdate()

{

transform.eulerAngles = new Vector3(cam.eulerAngles.x,

cam.eulerAngles.y, cam.eulerAngles.z);//make the rotation the

same as the camera rotation

}

}

69

Listing 4.8: Code demonstrating the calibration state

void LateUpdate()

{

transform.position.y + fixedPos, controller.center.z);

if (!adjusted)

{

gameObject.transform.position = new Vector3(camera.position.x,

camera.position.y + cameraYOffset, camera.position.z) +

transform.forward * ahead;

gameObject.transform.eulerAngles = new

Vector3(transform.eulerAngles.x, camera.eulerAngles.y - 90 +

angleAddition, transform.eulerAngles.z);//this makes the

model rotate to face the direction of

}

}

(Listing 4.9) after a number of seconds. We do this so we know where the cam-

era location was when the user was standing up straight. We also disable the

charactercontroller at this point. We set the adjusted Boolean variable to True

so that we know that we are no longer calibrating.

We may not want the model’s head to always be at the same position. This is

because we may want the model to crouch when the user crouches. To do this, we can

disable the charactercontroller and have the model continue to follow the location

of the camera, but not move higher than its height after calibration. But this comes

with a problem, the model’s feet will sink into the ground. The solution for this would

Listing 4.9: Code for updating values when we switch states

public void nowAdjusted() {

adjusted = true;

if (m_PhotonView.IsMine)

{

adjustedY = camera.localPosition.y;

adjustedY2 = camera.position.y;

controller.enabled = false;

adjusted = true;

}

70

Figure 4.16: Attempt at using tells from the VR camera to guess where the user’s
feet are. The cubes are IK targets for the feet. They change color based on the state
they were in for debugging purposes.

be to either use IK for the feet, or to rotate the legs in the LateUpdate() function.

We chose to use IK for the feet and set the targets at the height of the ground level,

but they are still in a position where they would be expected. This way when the

user crouches, their feet will try to move to their IK targets. We do have another

problem however. If the user rotates their neck to look down, will the model begin

to bend it’s knees as the user is lowering their heads position. For now we just use

a threshold to determine how far the user needs to bend in real life until the model

bends down as well. In Listing 4.10 we see the code that allows our model to move

up and down in the Y-axis. We use a findThreshold() function to determine when

the model should be allowed to descend.

4.5.4 Feet Estimation Attempt

We attempt to guess where the user’s feet are using only sensors from the headset

and the wands. We made the assumption that user’s feet will always be the same

distance from their headset. We also assumed the headset was always be between

both feet. When the user started to move in a direction we choose where the foot

target should go based on that position. If the user moved in some direction that is

to the right and not to the left, their right foot would be chosen, otherwise their left

foot was chosen.

There are subtle movements of the head when a user walks. This is likely because

when a human moves their foot out to take a step, their head must move down as

71

Listing 4.10: Code demonstrating state after calibration

private void Update()

{

controller.center = new Vector3(transform.localPosition.x,

(transform.localPosition.y + fixedPos),

transform.localPosition.z);

if(adjusted)

{

if(camera.position.y >= adjustedY2)

{

determinedY = adjustedY2 + cameraYOffset;

}

else

{

float threshold = findThreshold();

if(adjustedY2 - camera.position.y > threshold)

{

determinedY = camera.position.y + cameraYOffset +

threshold;

}

}

gameObject.transform.position = new Vector3(camera.position.x,

determinedY, camera.position.z) + transform.forward * ahead;

gameObject.transform.eulerAngles = new

Vector3(transform.eulerAngles.x, camera.eulerAngles.y - 90 +

angleAddition, transform.eulerAngles.z);

}

}

72

the human moves their body down to put their foot on the ground. They may move

upwards as they bring their other foot towards the foot they just used to take a step.

We tried to use this to tell when the user is switching feet. However, we have had

trouble on finding thresholds for when to consider if the user was moving down or

up as they switch their feet, or if they were moving for other reasons. For moving

the feet we would recommend animating them before hand, and making adjustments

to them. It’s also possible that our method for choosing which foot to move is too

unreliable since if the user moves forward but moves their head to the left while using

their right foot, the wrong foot would have been chosen. Though if we did just use

pre-made animations the chosen foot would probably not be correct anyways.

One point to note is that we did not use thresholds to wait before guessing where

the foot is moving. Since the update function is called in a relatively short amount

of time, we may be picking the foot too soon. It may be worth looking into different

points saved at runtime before choosing a foot to move. This may cause a brief snap

in the animation as the chosen foot will have to change position after the threshold

was chosen, but choosing the right foot to move is very important. Cases where the

foot is too far away from the user should probably also be considered and it can look

very odd for leg to try to be facing towards an IK target that is too far away. The

model would essentially look like it’s levitating. Another idea is that perhaps a user

can train the model to move it’s feet as they do.

There are many ways a person can walk and move their feet. The estimation

idea would not have been able to replicate every possible case. A user could have

moved one of their feet up without walking in a direction, and that would not have

been replicated by our attempt at a foot estimation algorithm.

73

4.6 Controllers and Trackers

Using the standard wands is very simple, one just needs to use a sample prefab that

SteamVR provides.

Using the Vive trackers is also easy. One just needs to attach it to the appropriate

location in a prefabs hierarchy and then add SteamVR’s SteamVR TrackedObject

script[75] to it. This script needs to have it’s index public variable set to the index

of the Vive Tracker.

One issue our current method for using body models is that the back of the model

is always straight up. This can look unnatural. Perhaps it may be possible to add

a Vive Tracker to the user’s torso, by one of their spine bones, so that we can use

the positions and the forward directions of the Vive tracker and the Headset to help

determine the rotations for the spine bones. We would probably use this Vive tracker

for where to place the user avatar in the Virtual Environment. This is because the

other parts of the body would be able to move away from the spine. We may guess

the rotations of some of the spine bones if Unity does not provide IK for this. But

there are IK libraires in the asset store.

If we were to use more trackers for the user, we would have to expect that if

we were expecting to make a multiplayer game, we would want other users to have

trackers as well, or we would want them to be able to choose how many points of

tracking they would need. In a competitive game, we would want to make sure that

any additional trackers do not give a player an unfair advantage. It should also be

considered that requiring extra trackers may be a disadvantage because it makes the

overall product more expensive, it may require more calibration, and it may take more

time for users to set up to play a game. However, we do believe it is still worthwhile

to look into these options as it will still further our understanding of how we can

animate these models and how users react to them.

74

4.7 Video Recording

4.7.1 Software

While other recording software does exist, we wanted to use software that was present

within Unity as opposed to a stand alone recorder. The reason for this is so that we

can use one program. We chose to use Video Capture [56] from RockVR, because it

was free and it provided video and audio recording.

4.7.2 NoSteamVRFallbackObjects

Using one of SteamVR Plugin’s example prefabs, we can use the NoSteamVRFall-

backObjects GameObject. When an HTC Vive is not presently being used. This

Gameobject allows the user to move in 2D. We can also use these GameObjects to

know if we want to display the user avatar or not. We can use Unity’s OnEnable

function to know if the NoSteamVRFallbackObjects GameObject has been enabled.

Under FallbackObjects, a child of NoSteamVRFallbackObjects, we have one of the

SteamVR Plugin’s scripts attached to allow the user to move around the camera. This

movement uses the WASD keys and it allows the user to right click rotate the mouse

to rotate the camera. The NoSteamVRFallbackObjects child, called FallbackHand

allows users to interact with interactable objects.

4.7.3 Recording Components

Through our testing we found that having multiple active copies of certain compo-

nents from RockVR will destroy the root GameObject that those objects are attached

to. To get around this, we only add the components when we confirm that a player

prefab that was spawned was controlled by the user. This way we could guarantee

that there was only one copy of each component present. Another option may have

been to have those components disabled and enable them when we confirm that the

prefab is controlled by the user. This would have may have better option.

As seen in Figure 4.17 we have the root component of the NoSteamVRFallback

75

Objects. Here we add components: VideoCaptureUI, the UI menu for the video cap-

turing, VideoPlayer, which is different than Unity’s VideoPlayer, and VideoCapture

Ctrl. Unity’s VideoPlayer allows the playing of videos.

Figure 4.18 shows the first child object of the NoSteamVRFallBackObjects. For

this GameObject, we add the following components: AddAudioCapture adds the

AudioCapture script component from RockVR. The Camera component attached

to this GameObject is used for the user to see what is in the scene. addRecording

Components is the script that adds these components, and adds any values that need

to be added to the GameObject’s components. For example, VideoCaptureCtrl uses

the VideoCapture Component in an array and an Audio Capture component that

are attached to different GameObjects in the Hierarchy.

Finally we have the GameObject named GameObject that we added as a child

to the FallbackObjects. The AddVideoCapture script adds RockVR’s VideoCapture

Script to the GameObject Component. The Camera component attached to this

GameObject is used for video capture.

76

Figure 4.17: The root of the NoSteamVRFallbackObjects

77

Figure 4.18: Child of the NoSteamVRFallbackObjects, called FallbackObjects

78

Figure 4.19: Child of the FallbackObjects, called GameObject

79

4.8 A First Sample Application: Ping Pong

We made a simple application to test the beginning of our template and to test how

to swap authority. Currently the game just allows players to hit the ball back and

forth and rules for points have not been added yet. A simple box collider is would be

for the net, we would have used Unity’s cloth simulation, but it appeared to not be

functioning properly from our testing, using one of the more recent versions of Unity.

Currently there is no avatar representation present within the application, but users

can still see each other’s paddle. Users are able to communicate with each other via

Photon Voice’s voice chat system.

Figure 4.20: A scene that allows users to play ping pong

4.8.1 Physics Interaction

With VR we have continuous input from the hands, so depending on the application

we need a method to allow the user to interact with the physics engine. One may

think that it may be as simple as attaching a GameObject as a child to one of the

80

hand GameObjects. However, this will not necessarily make the GameObject interact

with other objects like expected. An option to have hand held objects like bats,

paddles, etc., interact like we think they should, we may want to have the object

follow the users hand through using the difference vector between the positions of

the hand and the object to set the velocity of the handheld object. The larger the

difference, the larger the velocity. We do this instead of having the paddle as a child

of the hand. This is what we did when attempting to create a ping pong game. The

idea for the physics interaction came from a tutorial on how to make a bat in VR

from 2016 [80]. In this game, we added high friction, using a physic materials, for

more spin and increased the project’s max angular velocity setting to help simulate

ping pong. Through trial and error, we found parameters for the physic materials of

the ball, the table, and the paddle. A parameters for the physic Material can be seen

in Figure 4.21.

Figure 4.21: The Physic Material used for the Ping Pong paddle

The controllers used for the ping pong game were the Vive trackers attached to

a paddle, which can be seen in Figure 4.22. They were a little top heavy, but they

help to make the user feel like they are using an actual paddle in the game.

4.8.2 Authority

In the current version, we swap authority when the ball is on the local player’s side

of the net. We currently have the collision of the paddles on the non-local players

disabled. If we did not we may have been able to take authority based on when the

ball exited a collision with the non local player’s paddle or if it entered a collision

with the local player’s paddle.

81

Figure 4.22: Controllers used for the ping pong game

82

Chapter 5

Application: Doctor Nurse
Interaction

5.1 Introduction

Now that we have a template defined we set out to test it in the real world. We

were approached by Steven Anbro who is a PhD student in Psychology. He wanted

to conduct a user study to compare retention of training methodologies. Doctors

and Nurses have to do patient handoffs in a variety of situations. They typically

go through some training and are then evaluated on their performance in certain

scenarios. Steven set up a user study where there were two rounds of the patient

handoffs. In between some of the students were given a specific training and the

others were not. The data was collected and is currently being evaluated.

We were requested to construct a Doctor-Nurse patient handoff application in

Virtual Reality. This would be the ultimate stress-test of our template. We would

need the multi-player capability with audio chat, but we would also need to mimic

what the instructors were already used to, and that was a third person camera view

of the room that the handoff would take place in. And this third person “teacher

view” would have to have the ability to listen the student scenario as well as record it.

The extra part was that they wanted information on where the Doctors and Nurses

were looking. So we had to use the HTC Vive Pro Eye [31] and have a beam coming

from the doctor and nurse avatars that was only visible in the teacher view.

83

5.2 Application

5.2.1 Models

Avatars: The first thing to do was to select avatars. We went to turbosquid.com.

We prepared a list of models and model sets for Steven Anbro to look through. He

selected a set and we purchased the license to use and modify them. The models were

available in the following formats according to the website: 3ds Max 2015 (Native),

Unity 2018 (converted), FBX 2014 (exchange).

In Figure 5.1 we have the models to represent the Doctors and Nurses. We liked

that the models did not have too many defining features and figured they could be

used for customization. We started by importing the FBX files into Blender, which

included adding a new armature (skeletons) for them, and setting Materials to certain

faces. By faces we mean parts of the mesh, not the human’s face. We did this, because

the original models seemed to use a single texture for color. This also made it easier

to do color modifications later.

Figure 5.1: Doctor and Nurse models used in the study [72]

84

Equipment: In Figure 5.2 we have some other models (also from turbosquid.com)

that we used in order to add standard equipment into the room. This also gave users

objects to look at while in the room, which would provide more eye tracking data.

According to the turbosquid page for these models, the model’s available formats are:

3ds Max 2013 (native), FBX (Exchange), OBJ (Exchange).

Figure 5.2: Medical room equipment [7]

85

Exam Room: The next step was to model the room. Luka Starmer from @one-

Reality in the Knowledge Center took care of this part. He used Photgrametry to

automatically take pictures of and construct a 3D model of the room. We received

the model as a .obj file. Luka sent us the texture to be applied to the model in Unity.

In Figure 5.3 you can see the model of the room from the outside. Figure 5.4 shows

the model of the room with no colors or textures (so it looks just gray) The full model

can be seen later in Figure 5.9

Figure 5.3: The outside of the room model provided by Luka using photogramy in
blender

Figure 5.4: The inside of the room model provided by Luka using photogramy in
blender

86

Clipboard: Once the room and avatars were operational, the next item requested

was a clipboard. Doctors and nurses usually have notes on their patients that they

refer to when discussing specifics. So we were asked if there was a way to add some

note capability, and we all agreed upon a clipboard. Figure 5.5 shows the clipboard

used. It uses Text Mesh Pro to display the text. We used a file on the computer to

read in these notes. In Figure 5.6 we have a fist person view of the clipboard. One

of the participants asked if they could just read the notes of the other person in the

study, and the answer is no. The clipboards do not show the non-local player’s notes.

Figure 5.5: Clipboard with user’s notes and TextMeshPro settings on the right.

Figure 5.6: First person view of Clipboard

87

5.2.2 Scene

In Figure 5.7 we see the two rooms the users will use. Users will start in the cus-

tomization room, select the model they want to represent them, as well as hair color,

and skin color. They will then teleport into the lower room and begin the user study.

Figure 5.7: An overview of the scene used in the Clinical Scenario in Unity. The top
room is the customization room while the bottom is the medical school’s room

In Figure 5.8 we see the customization room which was used for avatar cus-

tomization. The mirror was made by using a Camera and a render texture. The

mirror is there to allow users to see themselves before they leave the customization

room. There are 3 menus present. Each have five choices. The menu on the left is

for skin color, the menu on the right is for hair color, and the menu in the middle is

for choosing models. There is also a button on the opposite side of the room that is

used for teleporting to the medical school room.

88

Figure 5.8: The first room users will enter. Here users make choice on customization

Figure 5.9 shows the inside of the medical school patient room. It has been

filled with props that have colliders that are used for eyetracking. Users teleport to

opposite sides of the room near two doors. The teacher starts out in the upper corner

shown in the figure.

Figure 5.9: The medical school room

89

5.2.3 Customization

Avatar Menu: A close up of the character select menu can be seen in Figure 5.10.

Users can either touch the buttons or use a laser pointer to select which model they

will use. When selected, the user is not allowed to move for about one second, which

is meant to give the user time to stand if straight so that they their head position will

be at the same position as the model. After this happens the model will be able to

move and the model will also start to bend their knees if the user lowers their head.

When selected an Buffered RPC is sent to all other clients to ensure their avatar

appears the same to the other clients.

Figure 5.10: The character select menu. Users use these buttons to choose which
model they want

90

Hair and Skin Color Menus: These buttons shown in Figure 5.11 will change

the user’s hair color. They function in a similar way to how the character select menu

functions.

Figure 5.11: The hair color select menu. Users use these buttons to choose which
hair color they want

These buttons shown in Figure 5.12 will change the user’s hair color. They

function in a similar way to the skin color menu.

Figure 5.12: The skin color select menu. Users use these buttons to choose which
skin color they want

91

Menu Selection in Action: A user is deciding which model to use in Figure 5.13.

The blue laser collides with objects. This is used to tell what object the user is

selecting.

Figure 5.13: Example of user using laser point

A user chooses to have a red hair color in Figure 5.14. When a user wants to

make a selection, their pointer will turn green. In this state, if the laser collides with

an object that can be selected, a selection will be made.

Figure 5.14: The laser turns green to show the user is pressing the controller button

92

5.2.4 Eye Tracking

We used the tobii eyetracking SDK [71] along with the hTC Vive Pro Eye for eye

tracking. We attached scripts to every single object we wanted to record data from.

A Boolean value was used to tell the script to write the recorded data. The Boolean

value is only set to true if both users pressed the begin button in the customization

room. This is to help ensure that we do not store unnecessary data and so that we do

not start recording data before the training begins. Both users set a timestamp when

they press the button. This was added since the clocks on the computers may have

different times. We need to do this to accurately compare data. When a user enters

the medical school patient examination room, they record their current time, then a

BufferedRPC is used to save a new timestamp created base on the other computer.

We needed both participants in the customization room before one of them entered

the medical school patient examination room. Otherwise the timestamp recorded on

the client of a user that joined late of the other client who joined earlier would be

incorrect. Each object will create a file and store it in a folder with a timestamp

for a name. The files were named after the GameObjects that were being looked

at. That timestamp is used for a folder containing each file created, as well as the

choices users made for customization. In Listing 5.1 we can see a sample of the output

provided by the eye data code. The data is ordered in the following order starting

TimeToFirstFixation, Fixation Count, Fixation Total Seconds, Fixation duration list,

where TimeTofFirstFixation is the the first value, and the duration list is the last

value. TimeToFirstFixation is when the user first looks at the object. Fixation count

is the number of times the user looked at the object Fixation Total Seconds is how

much the user looked at the object. Fixation duration list is when the seconds of

looking at the object starts, and the amount of time the object was being looked at

after the user started looking at it.

Mesh Colliders: In order to track when users looked at the mannequin and bed,

we create a mesh in blender, then used Unity to add a Mesh Collider so that we could

93

Listing 5.1: Eye Capture Data

6/12/2020 11:33:36 AM

6/12/2020 11:47:27 AM

TimeToFirstFixation, Fixation Count, Fixation Total Seconds, Fixation

duration list

136.3807, 143, 72.80031,

{136.3807, 0.2106476}, {136.9691, 1.321564}, {139.0789, 0.2225037},

{140.9894, 0.3887482}, {155.05, 1.566101}, {159.5927, 1.021332},

{162.991, 0.01104736}, {163.013, 0.8887787}, {164.5683, 0.5438843},

{166.4895, 0.6554565}, {172.6536, 0.2218628}, {173.8313, 0.0438385},

{174.0631, 0.7337799}, {178.2179, 0.5441132}, {195.6432, 0.5999451},

{196.3098, 0.2110291}, {196.6765, 3.031891}, {201.8194, 0.3991547},

{204.2396, 0.9328613}, {206.9946, 0.04396057}, {210.0371, 1.754822},

{215.3127, 0.1998138}, {215.657, 0.5666046}, {217.0789, 0.01121521},

{217.7342, 0.010849}, {218.989, 0.06596375}, {219.4332, 0.6330414},

{222.7427, 0.03347778}, {232.4608, 0.03338623}, {238.6136,

0.02270508}, {243.1561, 0.01144409}, {243.5005, 0.4331055}, {245.0665,

0.3883514}, {245.5775, 0.02203369}, {245.6217, 0.5330048}, {255.7507,

1.477737}, {259.027, 0.04370117}, {268.2119, 0.0112915}, {268.2342,

0.4107361}, {271.2328, 0.8111572}, {272.6544, 0.4665833}, {276.1864,

0.04452515}, {279.8627, 0.1885681}, {280.1956, 0.3222961}, {284.0384,

0.03250122

94

detect eye tracking on a more unusual shape. We tried to minimize the amount of

vertices used, and at least on our computers, we did not notice any notable toll on

the performance of the program. The mesh collider and mannequin can be seen in

Figure 5.15.

Figure 5.15: Mesh Collider Used for Mannequin and Bed

Eye Direction Lasers: Once the eye tracking was set up we needed to show where

the participants were looking when we had the teacher view on. We did this with

laser lines coming from the participants head. But we did not want those lasers in

the participant’s view.

The code in Listing 5.2 shows how we chose to use eye data in order to draw

lines based on where the user is looking. We used some code from tobii’s online

95

Listing 5.2: Code that sends over the origin and direction that a person is looking
frame

void Update()

{

if (photonView.IsMine)

{

var eyeTrackingData =

TobiiXR.GetEyeTrackingData(TobiiXR_TrackingSpace.World);

if (eyeTrackingData.GazeRay.IsValid)

{

// The origin of the gaze ray is a 3D point

var rayOrigin = eyeTrackingData.GazeRay.Origin;

// The direction of the gaze ray is a normalized

direction vector

var rayDirection = eyeTrackingData.GazeRay.Direction;

lineRenderer.SetPosition(0, (rayOrigin));

lineRenderer.SetPosition(1, (rayOrigin + 10 *

rayDirection));

this.photonView.RPC("drawRay", RpcTarget.Others,

rayOrigin.x, rayOrigin.y, rayOrigin.z,

rayDirection.x, rayDirection.y,

rayDirection.z);//the RPC that sends the data

}//turning off line renderers in local copy of game

if (turnOffRenderers || steamVRObjects.activeSelf)

{

characterInstantiation.activateOtherRenderers =

false;

}

else

{

characterInstantiation.activateOtherRenderers = true;

}

}

}

[PunRPC]

public void drawRay(float x, float y, float z, float a, float b,

float c)

{

lineRenderer.SetPosition(0, (new Vector3(x,y,z)));

lineRenderer.SetPosition(1, (new Vector3(x, y, z) + 10 * (new

Vector3(a, b, c))));

}

96

documentation namely the usage example for GetEyeTrackingData [70]. When the

line data is received, we use setPosition() to set the position of two points on the

line. Position 0 is set to the origin point of where a user is looking, while position 1

is set to the origin plus 10 * the directional vector. We probably could have also used

a mesh to represent where the user was looking, this could have been more visually

appealing. We also could have tired to make the ending point of the LineRender at

the point that the user is looking at. Right now the laser goes for a fixed length

(sometimes through what the participant is looking at).

Several examples of the eye direction laser lines taken from the instructor’s view

are shown in Figures 5.16 5.17, and 5.18.

Figure 5.16: One user is looking at the other’s board while the other is looking at the
other’s avatar’s face

97

Figure 5.17: One user is looking at the clipboard notes, while another is looking at
the mannequin

Figure 5.18: One user is looking at the nurse while he is describing his patient

98

5.3 User Study

5.3.1 Overview

Covid-19 has caused many issues world-wide. In our case it impacted how we ran the

user study. We had to take measures to protect users in the study. We made sure to

disinfect the controllers and headset between each use, and provided disposable mask

shields to protect the user’s face.

The users were split into pairs and then the pairs were split into two groups,

the group using VR, and a group that did not use VR. those two groups were then

broken in half based upon the type of patient hand-off training they received. Every

pair went through the the study twice (with the training in between the phases). The

second time was about a week after the first time. The idea was to compare the

control group with the experimental group to see if the experimental group would

perform better, just as well, or worse than the control group. The second item looked

at was how did VR impact the performance.

Before the hand-off of the patient the participants were allowed to write notes

about their patient. If they were in the VR groups they typed out their notes into a

text file. This was transferred on a USB drive to be used in the application. In the

study there were several patient examination rooms used. Two were for the groups

that did not use VR, and two were for the VR groups. For the VR groups we had

each room set up with an hTC Vive Pro Eye [31]. The two non-VR rooms were

monitored and recorded by an assistant in the control room. This is where the the

third computer was set up with the instructor’s software running. It was able to

view the participants and hear voice chat audio and recorded all of this as well as

the participants as they were in the VR patient examination room. For each VR

room we had at least one person helping the participants begin the study. They gave

instructions, watched to make sure the users did not hurt themselves, disinfected

controllers, made sure that the software was used properly, and helped participants

with the calibration process for eye tracking. Each round of two participants were

99

about 20 minutes apart. Each set of rounds took about an entire day. After the

interaction/hand-off was complete, users went to another room to debrief and fill out

a survey.

5.3.2 Issues and Fixes

One major issue with the first part of the user study was that we made too many

assumptions on what the users were comfortable with. A locomotion technique where

the user slides across the ground may be simple for us to understand, but not nec-

essarily for people who may have never used VR before and who will probably only

use the application once or twice. We noticed that users would have some trouble

understanding the locomotion technique since we did not have much time to explain

it and since is was not really the main focus of the application.

Originally the customization selection had users walk up to a wall and press

buttons. This meant that users would need to use the locomotion method. In order

to touch the buttons they would use the model’s hands that represents them to collide

with the buttons. On the entrance of the collision, the user’s color or model choice

would have been made. But because of this, users would touch multiple buttons on

accident while backing away from the button. Some have kept one of their hands

outwards and would forget about it and accidentally press a button. Some would

use the touch pad locomotion and not back up far away enough and would touch a

button on accident. This issue may have been fixed if there was a way to ensure the

user selected an option by pressing a button as their hand is colliding to ensure that

they do not accidentally run their hands through the button. Treating the buttons

like actually buttons one would use at an elevator could also have helped to ensure

the user had made the choice they intended. Another option could have been to just

select customization before entering the virtual environment.

Our solution to alleviate the issues with customization was to use a laser pointer

for selection. Laser pointers are more convenient since we can allow users to choose

options at a distance. It can be argued that it is can allow the use of smaller buttons

100

since laser points can be small. That’s not to say that we cannot animate a models

hand to point it’s index finger, attach a capsule collider for collision on the finger and

use that for selection. The laser pointer was made to turn green when the trigger

button on the controller was pressed. It would turn back to blue when a menu option

was selected. This was done to prevent accidental selection, and the user would need

to press the trigger button down again to turn the laser green. If there were any

negatives to using the laser pointer, it may be that they may be less immersive since

they require the press of a button on the controller and since there was not a reason

for a laser to exist in the type of setting for a clinical training scenario. It should also

be noted that the farther away an object is, the more effort needs to be made to have

the laser collide with the object since the object appears smaller from a distance.

Some smaller issues just involved making the minimum text on the user’s clip-

boards smaller so that more text could fit on them and moving the buttons away

from the mirror so that users could see them better. Another issue was that since the

model needed users to place their hands lower than the could to have them straight

and to their sides, their avatars would look like they had their arms bent and they

were touching their hips. In order to fix this, the GameObjects that represent the

users hands would need to have been lower compared to the model. We have not

finished fixing this.

All of these issues could have been dealt with if we had been able to do a pilot

study (as you normally would). However, due to covid-19 and the lockdown and

shelter-in-place order by the Governor, this was not possible. Coding for this user

study basically had to be finished in a 2 week windo and it was much more difficult to

perform testing, since we need multiple people for this. We should have done testing

with users outside the lab to help confirm what worked in the application and what

would not.

101

Chapter 6

Conclusions and Future Work

6.1 Conclusions

We developed a template for developing multi-user VR applications. We found issues

with the first attempt at a framework that used FizzySteamyMirror[54] and decided to

use Photon[18] instead. It uses an on premise server to allow us to connect and share

data between at least two computers. Photon Voice 2’s code allows us to synchronize

GameObjects and utilize voice chat. The template allows users to record video and

audio which is a useful feature for those intending to do training and research. The

template will undergo some changes to improve it, and then we plan to make it

available in the future.

We have shown the practicality of the template through two applications. The

first was a simple ping pong game. This was attempted to evaluate the networking,

voice chat, and authority of objects. The second was the Doctor Nurse patient hand-

off application. This tested avatars, menus, and scenario recording.

6.2 Future Work

There are many things that we would like to work on to improve this template and

make it better to use.

102

6.2.1 Avatars

Some improvements to the full-body model avatar representation could be made.

For example, experimentation with the HTC Vive Trackers [27] could be used to

synchronize the feet, and to tell which direction the user’s torso is facing. Another

improvement would be code for facial animations, even if it is simple, it could make

the avatars appear less static. Such a method is even possible for the head and

hands only representation of a user. Models with facial animations would need to be

modeled with a mouth. Experimentation with users of different arm lengths, heights,

etc. may be useful to ensure that the method is comfortable for people of different

body types. It is possible to display the user avatar on the other clients’ ends and

not display it on the owner of the avatar’s end as well, which may be an option for

future work.

Whichever method, head and hands or full-body model, should be used may

depend on the context it is being used in. Some people may prefer the head and

hands, while some may prefer to be a human. The audience that the application is

being made for may have an affect on this as well. People in VRChat[77] may choose

to represent themselves as very short characters, but perhaps some may find that

such an avatar would break immersion, or perhaps they will feel the avatar does not

represent them properly. Leg tracking may not even be necessary in many cases, since

people probably do not look at their feet very much and since they may only care

about other people seeing their feet if perhaps they are dancing or playing a game

like soccer. Another use may perhaps be for training, like making sure people don’t

step on land-mines, or other dangerous situations. So functionality of the avatar and

the audience should probably be taken into consideration when deciding on how to

represent the player.

6.2.2 Bots

AI Bots may be of use in a Multi-VR application. They can replace other players

who left if necessary, and they can be used if other users are not available. Bots

103

may also be usable for representing a person that would normally be present during

training, like a human. Animation states can be easily applied to models, but they

may need some custom animations. Custom animations are not necessarily difficult

to make as it just involves rotating bones to a pose. Models will move from one pose

to the next. If we want the bot to point out certain objects, we can always use Inverse

Kinematics and use the object of interest as a target for the IK. Having a bot respond

to user’s speech may be a difficult task, as it may require text to speech. There may

be methods of machine learning that can be applied.

6.2.3 Applications

We hope that any mistakes noted within these thesis help us to improve our research

and help others to consider work around for any issues we may have found. For

example, in the puzzle game mentioned in Chapter 3 we mentioned that we were

unsure if users would be comfortable with jumping. A work around may be to just

have players control other objects or creatures in order to jump for them. We also

noted some mistakes when it came to UI. We should make sure to think about how

the audience we will be testing with will react to the UI and whether or not the UI

will be easy to navigate.

There are many possibilities for new multi-vr applications. Perhaps they could

be for training, social purposes, exercise, entertainment, and more. For example, we

may want to use the template to develop a training application that requires the

teamwork of multiple users. Perhaps a fire fighting application would fill this role.

Another possibility could be a game where users construct something, which could

possibly allow them to learn teamwork.

6.2.4 Medical School

There can be many improvements made to the current application for training medical

students. Two of course, are bots and improvements to the models as previously

mentioned. Another may include object interaction. Perhaps the UI for choosing

104

options can be improved. Pressing a button to teleport into a room is not really

realistic, perhaps it would be better to start users in a room that connects to a

hallway. The hallway could connect to other rooms. This may even be usable for

creating and joining rooms based on which door in the hallway is opened.

6.2.5 Possible Improvements of Template

There may be some flaws in the template that are noticed over time. Any adjust-

ments to it will help other developers in the future. Also, more locomotion samples

would be beneficial, this way other developers will have more options to choose from.

User studies on portions of the template, for example, for the body models may be

beneficial. A menu system that is easily editable may beneficial for developers. This

may help to reduce the amount of time that may be needed to develop UI for other

students. Perhaps it may be beneficial to include Prefabs that use different hard-

ware like VR gloves. New hardware can open up even more possibilities for VR and

Multi-User VR applications.

6.2.6 New Applications

There are many applications that can be produced using this template. Given enough

hardware we could test applications with many people. The ability to provide im-

mersion and motion controls allows us to build unique experiences. One idea for an

application is one for academic purposes, a classroom. Users may be able to be in

a classroom remotely. VR provides another advantage which is that users will be

able to do things that they would not normally be able to do in real life. We do

not have to be limited to the setting of a classroom. Instead of having to go on a

field trip, people using an application could just teleport there or just load a new

scene. Quizzing system could also be implemented into VR. The gameification of the

classroom setting may also make learning more enjoyable. In some cases like during

a pandemic, or if most users are remote at a certain time like the summer. Given

that labs, for Physics or Chemistry for example, may be difficult to perform when

105

everyone is remote, perhaps VR could help simulate real life lab scenarios as well.

Some other applications include cooperative training. One could be firefighting,

another could be police training, we could also potentially see a construction appli-

cation where users work together to build something. Entertainment can also be

looked into. How would a first person shooter function in VR? Would players use

body-models or just head and hands? Would it be unfair to allow players to make

themselves smaller targets by lowing their camera? How do we make sure locomotion

is comfortable and fair at the same time in a competitive scenario? We could also

see some cooperative games as well. There are also other hardware that can be used.

As we have seen treadmills, gloves, and more. But we could also take advantage

of sense that normally are not used in video games like taste and smell. Hardware

that makes interesting use of touch may be of benefit as well. The possibilities for

Multi-VR games are endless. The template is intended to make building Multi-VR

games easier, but developers are still given a blank canvas.

106

Bibliography

[1] M. Al Zayer, P. MacNeilage, and E. Folmer. Virtual locomotion: a survey. IEEE
Transactions on Visualization and Computer Graphics, 26(6):2315–2334, 2020.
doi: 10.1109/TVCG.2018.2887379.

[2] Majed Al Zayer, Isayas B. Adhanom, Paul MacNeilage, and Eelke Folmer. The
effect of field-of-view restriction on sex bias in vr sickness and spatial navigation
performance. In Proceedings of the 2019 CHI Conference on Human Factors
in Computing Systems, CHI ’19, 354:1–354:12, Glasgow, Scotland UK. ACM,
2019. isbn: 978-1-4503-5970-2. doi: 10.1145/3290605.3300584. url: http:
//doi.acm.org/10.1145/3290605.3300584.

[3] Steven J. Anbro, Alison J. Szarko, Ramona A. Houmanfar, Amber M. Marac-
cini, Laura H. Crosswell, Frederick C. Harris, Michelle Rebaleati, and Luka
Starmer. Using virtual simulations to assess situational awareness and commu-
nication in medical and nursing education: a technical feasibility study. Journal
of Organizational Behavior Management, 40(1-2):129–139, 2020. doi: 10.1080/
01608061.2020.1746474. eprint: https://doi.org/10.1080/01608061.
2020.1746474. url: https://doi.org/10.1080/01608061.2020.1746474.

[4] Kurt Andersen, Lucas Calabrese, Andrew Flangas, Sergiu Dascalu, and Fred-
erick C. Harris. A comparison between a natural and an inorganic locomo-
tion technique. In Shahram Latifi, editor, 17th International Conference on In-
formation Technology–New Generations (ITNG 2020), pages 317–323, Cham.
Springer International Publishing, 2020. isbn: 978-3-030-43020-7.

[5] Kurt Andersen, Simone José Gaab, Javad Sattarvand, and Frederick C. Harris,
Jr. METS VR: mining evacuation training simulator in virtual reality for un-
derground mines. In Shahram Latifi, editor, 17th International Conference on
Information Technology–New Generations (ITNG 2020), pages 325–332, Cham.
Springer International Publishing, 2020. isbn: 978-3-030-43020-7.

[6] Kurt T Anderson. A Comparison of Effectiveness and Immersion of Different
Gait Techniques in Virtual Reality. Master’s thesis, University of Nevada, Reno,
Department of Computer Science and Engineering, December 2019. Advisor:
Frederick C Harris, Jr.

[7] AT studio Pro Models 3D. 3d four medicals equipment (2) model. url: https:
//www.turbosquid.com/3d-models/3d-real-medical-equipment-model-

1432398 (visited on 07/14/2020).

https://doi.org/10.1109/TVCG.2018.2887379
https://doi.org/10.1145/3290605.3300584
http://doi.acm.org/10.1145/3290605.3300584
http://doi.acm.org/10.1145/3290605.3300584
https://doi.org/10.1080/01608061.2020.1746474
https://doi.org/10.1080/01608061.2020.1746474
https://doi.org/10.1080/01608061.2020.1746474
https://doi.org/10.1080/01608061.2020.1746474
https://doi.org/10.1080/01608061.2020.1746474
https://www.turbosquid.com/3d-models/3d-real-medical-equipment-model-1432398
https://www.turbosquid.com/3d-models/3d-real-medical-equipment-model-1432398
https://www.turbosquid.com/3d-models/3d-real-medical-equipment-model-1432398

107

[8] Bearded Man Studios, Inc. Forge networking remastered, March 20, 2019. (Vis-
ited on 07/14/2020). https://assetstore.unity.com/packages/tools/
network/forge-networking-remastered-38344.

[9] Blender Foundation. Blender - a 3d modelling and rendering package, Buik-
slotermeerplein 161, 1025 ET Amsterdam, the Netherlands, 2020. url: http:
//www.blender.org (visited on 07/14/2020).

[10] M. Boldt, M. Bonfert, I. Lehne, M. Cahnbley, K. Korschinq, L. Bikas, S. Finke,
M. Hanci, V. Kraft, B. Liu, T. Nguyen, A. Panova, R. Singh, A. Steenbergen,
R. Malaka, and J. Jan Smeddinck. You shall not pass: non-intrusive feedback
for virtual walls in vr environments with room-scale mapping. In 2018 IEEE
Conference on Virtual Reality and 3D User Interfaces (VR), pages 143–150,
Los Alamitos, CA, USA. IEEE Computer Society, March 2018. doi: 10.1109/
VR.2018.8446177. url: https://doi.ieeecomputersociety.org/10.1109/
VR.2018.8446177.

[11] Evren Bozgeyikli, Andrew Raij, Srinivas Katkoori, and Rajiv Dubey. Point &
teleport locomotion technique for virtual reality. In Proceedings of the 2016
Annual Symposium on Computer-Human Interaction in Play, CHI PLAY ’16,
205–216, Austin, Texas, USA. Association for Computing Machinery, 2016.
isbn: 9781450344562. doi: 10.1145/2967934.2968105. url: https://doi.
org/10.1145/2967934.2968105.

[12] Lucas Calabrese, Andrew Flangas, and Frederick C. Harris, Jr. Multi-User VR
cooperative puzzle game. In Proceedings of the 17th International Conference
on Information Technology : New Generations (ITNG 2020). Shahram Latifi,
editor. Volume 1134. Advances in Intelligent Systems and Computing. DOI:
https://doi.org/10.1007/978-3-03-43020-7_39. Springer International
Publishing, Las Vegas, NV, April 2020. Chapter 39, pages 293–299. isbn: 978-
3-030-43020-7.

[13] Polona Caserman, Augusto Garcia-Agundez, Robert Konrad, Stefan Göbel, and
Ralf Steinmetz. Real-time body tracking in virtual reality using a vive tracker.
Virtual Reality, 23(2):155–168, June 2019. issn: 1434-9957. doi: 10 . 1007 /

s10055-018-0374-z. url: https://doi.org/10.1007/s10055-018-0374-z.

[14] DarkRift Networking. Darkrift networking 2. url: https : / / assetstore .

unity . com / packages / tools / network / darkrift - networking - 2 - 95309

(visited on 07/15/2020).

[15] Epic Games. Networking and multiplayer. url: https://docs.unrealengine.
com/en- US/Gameplay/Networking/index.html (visited on 07/15/2020).
Unreal Engine 4 Documentation.

[16] Epic Games. Unreal engine 4. url: https://www.unrealengine.com/en-US/
(visited on 07/15/2020).

https://assetstore.unity.com/packages/tools/network/forge- networking-remastered-38344
https://assetstore.unity.com/packages/tools/network/forge- networking-remastered-38344
http://www.blender.org
http://www.blender.org
https://doi.org/10.1109/VR.2018.8446177
https://doi.org/10.1109/VR.2018.8446177
https://doi.ieeecomputersociety.org/10.1109/VR.2018.8446177
https://doi.ieeecomputersociety.org/10.1109/VR.2018.8446177
https://doi.org/10.1145/2967934.2968105
https://doi.org/10.1145/2967934.2968105
https://doi.org/10.1145/2967934.2968105
https://doi.org/10.1007/978-3-03-43020-7_39
https://doi.org/10.1007/s10055-018-0374-z
https://doi.org/10.1007/s10055-018-0374-z
https://doi.org/10.1007/s10055-018-0374-z
https://assetstore.unity.com/packages/tools/network/darkrift-networking-2-95309
https://assetstore.unity.com/packages/tools/network/darkrift-networking-2-95309
https://docs.unrealengine.com/en-US/Gameplay/Networking/index.html
https://docs.unrealengine.com/en-US/Gameplay/Networking/index.html
https://www.unrealengine.com/en-US/

108

[17] Epic Games. Virtual reality development. url: https://docs.unrealengine.
com/en-US/Platforms/VR/index.html (visited on 07/15/2020). Unreal En-
gine 4 Documentation.

[18] Exit Games. Photon unity networking 2. url: https://doc-api.photonengine.
com/en/pun/v2/index.html (visited on 07/14/2020).

[19] Exit Games. Photon voice 2, July 9, 2020. url: https://assetstore.unity.
com/packages/tools/audio/photon-voice-2-130518 (visited on 07/15/2020).

[20] Exit Games. We have the fitting plan! url: https://www.photonengine.com/
en-US/Voice/pricing (visited on 07/14/2020).

[21] Facebook Research. AR/VR creating the future of personal and shared reality,
Facebook. url: https://research.fb.com/category/augmented-reality-
virtual-reality/ (visited on 10/24/2019).

[22] Facebook Technologies. Oculus. url: https://www.oculus.com/ (visited on
07/15/2020).

[23] Gears For Breakfast. A hat in time, October 5, 2017. url: https://store.
steampowered.com/app/253230/A_Hat_in_Time/ (visited on 07/14/2020).

[24] Don Glover. Unet deprecation faq, June 3, 2020. url: https://support.

unity3d.com/hc/en-us/articles/360001252086-UNet-Deprecation-FAQ

(visited on 07/14/2020).

[25] Google. Google AR & VR. url: https : / / vr . google . com/ (visited on
07/14/2020).

[26] Alex Hansen, Kurt Andersen, Brittany Sievert, Jalal Kiswani, Sergiu M. Das-
calu, and Frederick C. Harris, Jr. Let’s vr: a multiplayer framework for virtual
reality. In Proceedings of the ISCA 27th International Conference on Software
Engineering and Data Engineering (SEDE 2018), October 2018.

[27] hTC. Htc vive tracker (2018) - european version. url: https://www.amazon.
com/HTC- Vive- Tracker- European- Version/dp/B07BYVB3RW/ref=olp_

product_details?_encoding=UTF8&me=&qid=1570916982&sr=8-6 (visited
on 07/14/2020).

[28] hTC. Htc vive virtual reality system. url: https://www.amazon.com/HTC-
Vive - Virtual - Reality - System - PC / dp / B00VF5NT4I ? SubscriptionId =

AKIAILSHYYTFIVPWUY6Q&tag=duckduckgo-d-20&linkCode=xm2&camp=2025&

creative=165953&creativeASIN=B00VF5NT4I&th=1 (visited on 07/14/2020).

[29] hTC. Vive. url: https://www.vive.com/us/ (visited on 07/14/2020).

[30] hTC. Vive pro. url: https://www.vive.com/us/vive-pro-vr/ (visited on
07/15/2020).

[31] hTC. Vive pro eye. url: https://www.vive.com/eu/product/vive-pro-eye
(visited on 07/15/2020).

https://docs.unrealengine.com/en-US/Platforms/VR/index.html
https://docs.unrealengine.com/en-US/Platforms/VR/index.html
https://doc-api.photonengine.com/en/pun/v2/index.html
https://doc-api.photonengine.com/en/pun/v2/index.html
https://assetstore.unity.com/packages/tools/audio/photon-voice-2-130518
https://assetstore.unity.com/packages/tools/audio/photon-voice-2-130518
https://www.photonengine.com/en-US/Voice/pricing
https://www.photonengine.com/en-US/Voice/pricing
https://research.fb.com/category/augmented-reality-virtual-reality/
https://research.fb.com/category/augmented-reality-virtual-reality/
https://www.oculus.com/
https://store.steampowered.com/app/253230/A_Hat_in_Time/
https://store.steampowered.com/app/253230/A_Hat_in_Time/
https://support.unity3d.com/hc/en-us/articles/360001252086-UNet-Deprecation-FAQ
https://support.unity3d.com/hc/en-us/articles/360001252086-UNet-Deprecation-FAQ
https://vr.google.com/
https://www.amazon.com/HTC-Vive-Tracker-European-Version/dp/B07BYVB3RW/ref=olp_product_details?_encoding=UTF8&me=&qid=1570916982&sr=8-6
https://www.amazon.com/HTC-Vive-Tracker-European-Version/dp/B07BYVB3RW/ref=olp_product_details?_encoding=UTF8&me=&qid=1570916982&sr=8-6
https://www.amazon.com/HTC-Vive-Tracker-European-Version/dp/B07BYVB3RW/ref=olp_product_details?_encoding=UTF8&me=&qid=1570916982&sr=8-6
https://www.amazon.com/HTC-Vive-Virtual-Reality-System-PC/dp/B00VF5NT4I?SubscriptionId=AKIAILSHYYTFIVPWUY6Q&tag=duckduckgo-d-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=B00VF5NT4I&th=1
https://www.amazon.com/HTC-Vive-Virtual-Reality-System-PC/dp/B00VF5NT4I?SubscriptionId=AKIAILSHYYTFIVPWUY6Q&tag=duckduckgo-d-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=B00VF5NT4I&th=1
https://www.amazon.com/HTC-Vive-Virtual-Reality-System-PC/dp/B00VF5NT4I?SubscriptionId=AKIAILSHYYTFIVPWUY6Q&tag=duckduckgo-d-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=B00VF5NT4I&th=1
https://www.amazon.com/HTC-Vive-Virtual-Reality-System-PC/dp/B00VF5NT4I?SubscriptionId=AKIAILSHYYTFIVPWUY6Q&tag=duckduckgo-d-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=B00VF5NT4I&th=1
https://www.vive.com/us/
https://www.vive.com/us/vive-pro-vr/
https://www.vive.com/eu/product/vive-pro-eye

109

[32] H. Iwata, H. Yano, and F. Nakaizumi. Gait master: a versatile locomotion in-
terface for uneven virtual terrain. In Proceedings IEEE Virtual Reality 2001,
pages 131–137, March 2001. doi: 10.1109/VR.2001.913779.

[33] Dongsik Jo, Kangsoo Kim, Gregory F. Welch, Woojin Jeon, Yongwan Kim,
Ki-Hong Kim, and Gerard Jounghyun Kim. The impact of avatar-owner visual
similarity on body ownership in immersive virtual reality. In Proceedings of
the 23rd ACM Symposium on Virtual Reality Software and Technology, VRST
’17, Gothenburg, Sweden. Association for Computing Machinery, 2017. isbn:
9781450355483. doi: 10.1145/3139131.3141214. url: https://doi.org/10.
1145/3139131.3141214.

[34] Joohee Jun, Myeongul Jung, So-Yeon Kim, and Kwanguk (Kenny) Kim. Full-
body ownership illusion can change our emotion. In Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems, CHI ’18, Montreal QC,
Canada. Association for Computing Machinery, 2018. isbn: 9781450356206.
doi: 10.1145/3173574.3174175. url: https://doi.org/10.1145/3173574.
3174175.

[35] Meeri Kim. Cybersickness: why people experience motion sickness during vir-
tual reality, August 14, 2019. url: https : / / www . insidescience . org /

news/cybersickness-why-people-experience-motion-sickness-during-

virtual-reality (visited on 07/14/2020).

[36] Eric Krokos, Catherine Plaisant, and Amitabh Varshney. Virtual memory palaces:
immersion aids recall. Virtual Reality, 23(1):1–15, March 2019. issn: 1434-9957.
doi: 10.1007/s10055- 018- 0346- 3. url: https://doi.org/10.1007/

s10055-018-0346-3.

[37] James F. Kurose and Keith W. Ross. Computer networking: A Top-Down Ap-
proach. Pearson India Education Services Pvt., 2017.

[38] Lava. Lava, Laboratory for Advanced Visualization and Applications, Univer-
sity of Hawai‘i at Mānoa. url: https://www.lavaflow.info/ (visited on
07/14/2020).

[39] Joeseph J LaViola, Ernst Kruijff, Ryan P McMahan, Doug A Bowman, and Ivan
Poupyrev. 3D User Interfaces: Theory and Practice. Addison-Wesley, 2nd edi-
tion, 2017. isbn: 978-0134034324.

[40] Brian Lindenhof. Hi5 gloves in climbey - update 12/15/2017. url: https :

//www.youtube.com/watch?v=cPvgTIh_I7s&t=193s (visited on 07/14/2020).

[41] Jonathan Linowes. Unity Virtual Reality Projects: Learn Virtual Reality by De-
veloping More than 10 Engaging Projects with Unity 2018. Packt Publishing,
Birmingham, UK, 2018.

[42] Jonathan Linowes. Unity virtual reality projects: learn virtual reality by devel-
oping more than 10 engaging projects with unity 2018. In Packt Publishing,
Birmingham, UK, 2018. Chapter 7: Locomotion and Comfort, pages 201–235.

https://doi.org/10.1109/VR.2001.913779
https://doi.org/10.1145/3139131.3141214
https://doi.org/10.1145/3139131.3141214
https://doi.org/10.1145/3139131.3141214
https://doi.org/10.1145/3173574.3174175
https://doi.org/10.1145/3173574.3174175
https://doi.org/10.1145/3173574.3174175
https://www.insidescience.org/news/cybersickness-why-people-experience-motion-sickness-during-virtual-reality
https://www.insidescience.org/news/cybersickness-why-people-experience-motion-sickness-during-virtual-reality
https://www.insidescience.org/news/cybersickness-why-people-experience-motion-sickness-during-virtual-reality
https://doi.org/10.1007/s10055-018-0346-3
https://doi.org/10.1007/s10055-018-0346-3
https://doi.org/10.1007/s10055-018-0346-3
https://www.lavaflow.info/
https://www.youtube.com/watch?v=cPvgTIh_I7s&t=193s
https://www.youtube.com/watch?v=cPvgTIh_I7s&t=193s

110

[43] J. Lugrin, J. Latt, and M. E. Latoschik. Avatar anthropomorphism and illusion
of body ownership in vr. In 2015 IEEE Virtual Reality (VR), pages 229–230,
March 2015. doi: 10.1109/VR.2015.7223379.

[44] D. Mazzoni. Audacity(r): free audio editor and recorder, Audacity. url: http:
//audacity.sourceforge.net/ (visited on 07/15/2020). Project has moved
to https://www.audacityteam.org/ (Last visited 07/15/2020).

[45] Megacity: a collaborative virtual reality environment for emergency response,
training, and decision making. url: http://www.cs.bowiestate.edu/sharad/
vrlab/MegaCity.html (visited on 10/28/2019).

[46] Mirror Networking. Mirror networking, 2020. url: https://mirror-networking.
com/ (visited on 07/14/2020).

[47] Moon Studios. Ori and the blind forest, March 11, 2015. url: https://store.
steampowered.com/app/261570/Ori_and_the_Blind_Forest/ (visited on
07/15/2020).

[48] Andrew E. Munoz, Zach Young, Sergiu Dascalu, and Frederick C. Harris, Jr.
Tdvr: tower defense in virtual reality: a multiplayer strategy simulation. In
Shahram Latifi, editor, 17th International Conference on Information Technology–
New Generations (ITNG 2020), pages 301–307, Cham. Springer International
Publishing, 2020. isbn: 978-3-030-43020-7.

[49] S. Narang, A. Best, and D. Manocha. Simulating movement interactions be-
tween avatars agents in virtual worlds using human motion constraints. In 2018
IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pages 9–16,
March 2018. doi: 10.1109/VR.2018.8446152.

[50] Nitom. Steamvr game-climbey. url: https://hi5vrglove.com/showcase/
steamvr-game-climbey (visited on 07/14/2020).

[51] Noitom. Hi5 vr glove, 2020. url: https : / / hi5vrglove . com/ (visited on
07/14/2020).

[52] Alexander Novotny, Rowan Gudmundsson, and Frederick Harris. A unity frame-
work for multi-user VR experiences. EPiC Series in Computing, 69:13–21, 2020.
Gordon Lee and Ying Jin, editors. issn: 2398-7340. doi: 10.29007/r1q2. url:
https://easychair.org/publications/paper/59bX.

[53] Hirav Parekh. Optimizing Natural Walking Usage in VR using Redirected Tele-
portation. Master’s thesis, University of Nevada Reno, 2017.

[54] Raystorms. Fizzysteamymirror. (Visited on 07/14/2020). https://github.

com/Raystorms/FizzySteamyMirror Current version now on https://github.

com/Chykary/FizzySteamworks.

[55] Sharif Razzaque, Zachariah Kohn, and Mary C. Whitton. Redirected Walk-
ing. In Eurographics 2001 - Short Presentations, volume 9, pages 105–106.
Eurographics Association, 2001. doi: 10.2312/egs.20011036. url: http:

//www.cs.unc.edu/techreports/01-007.pdf (visited on 07/15/2020).

https://doi.org/10.1109/VR.2015.7223379
http://audacity.sourceforge.net/
http://audacity.sourceforge.net/
https://www.audacityteam.org/
http://www.cs.bowiestate.edu/sharad/vrlab/MegaCity.html
http://www.cs.bowiestate.edu/sharad/vrlab/MegaCity.html
https://mirror-networking.com/
https://mirror-networking.com/
https://store.steampowered.com/app/261570/Ori_and_the_Blind_Forest/
https://store.steampowered.com/app/261570/Ori_and_the_Blind_Forest/
https://doi.org/10.1109/VR.2018.8446152
https://hi5vrglove.com/showcase/steamvr-game-climbey
https://hi5vrglove.com/showcase/steamvr-game-climbey
https://hi5vrglove.com/
https://doi.org/10.29007/r1q2
https://easychair.org/publications/paper/59bX
https://github.com/Raystorms/FizzySteamyMirror
https://github.com/Raystorms/FizzySteamyMirror
https://github.com/Chykary/FizzySteamworks
https://github.com/Chykary/FizzySteamworks
https://doi.org/10.2312/egs.20011036
http://www.cs.unc.edu/techreports/01-007.pdf
http://www.cs.unc.edu/techreports/01-007.pdf

111

[56] RockVR. Video capture, November 28, 2017. url: https : / / assetstore .

unity . com / packages / tools / video / video - capture - 75653 (visited on
07/14/2020).

[57] Graham Sellers, Richard S. Wright, Jr., and Nicholas Haemel. OpenGL Su-
perBible Comprehensive Tutorial and Reference. Pearson Education, Inc., sec-
ond edition, 2016.

[58] Sensoryx. Sensoryx - vrfree R© glove - intuitive vr interaction, August 3, 2017.
url: https://www.sensoryx.com/ (visited on 07/18/2020).

[59] Sharad Sharma. Game-theme based instructional (gti) or virtual reality instruc-
tional (vri) modules, Virtual Reality Laboratory, Bowie State University. url:
http://www.cs.bowiestate.edu/sharad/vrlab/course.html (visited on
07/14/2020).

[60] Sharad Sharma. Virtual reality laboratory. url: http://www.cs.bowiestate.
edu/sharad/vrlab/index.html (visited on 07/14/2020).

[61] Mary Shaw. Writing good software engineering research papers: minitutorial.
In Proceedings of the 25th International Conference on Software Engineering,
ICSE ’03, 726–736, Portland, Oregon. IEEE Computer Society, 2003. isbn:
076951877X.

[62] Bill Sherman. Freevr: virtual reality integration library. url: http://www.
freevr.org/ (visited on 07/14/2020).

[63] Mel Slater and Sylvia Wilbur. A framework for immersive virtual environments
(five): speculations on the role of presence in virtual environments. Presence:
Teleoperators & Virtual Environments, 6(6):603–616. issn: 1054-7460. doi: 10.
1162/pres.1997.6.6.603. url: https://doi.org/10.1162/pres.1997.6.
6.603.

[64] Placeholder Software. Dissonance voice chat, June 4, 2020. url: https://

assetstore.unity.com/packages/tools/audio/dissonance-voice-chat-

70078 (visited on 07/15/2020).

[65] Ian Sommerville. Software Engineering. Pearson, 2016.

[66] Hyungki Son, Hyunjae Gil, Sangkyu Byeon, Sang-Youn Kim, and Jin Ryong
Kim. Realwalk: feeling ground surfaces while walking in virtual reality. In Ex-
tended Abstracts of the 2018 CHI Conference on Human Factors in Computing
Systems, CHI EA ’18, D400:1–D400:4, Montreal QC, Canada. ACM, 2018. isbn:
978-1-4503-5621-3. doi: 10.1145/3170427.3186474. url: http://doi.acm.
org/10.1145/3170427.3186474.

[67] Walker Spurgeon. Exploring Hands-Free Alternatives for Teleportation in VR.
Master’s thesis, University of Nevada Reno, 2018.

[68] A. Steed, Y. Pan, F. Zisch, and W. Steptoe. The impact of a self-avatar on
cognitive load in immersive virtual reality. In 2016 IEEE Virtual Reality (VR),
pages 67–76, March 2016. doi: 10.1109/VR.2016.7504689.

https://assetstore.unity.com/packages/tools/video/video-capture-75653
https://assetstore.unity.com/packages/tools/video/video-capture-75653
https://www.sensoryx.com/
http://www.cs.bowiestate.edu/sharad/vrlab/course.html
http://www.cs.bowiestate.edu/sharad/vrlab/index.html
http://www.cs.bowiestate.edu/sharad/vrlab/index.html
http://www.freevr.org/
http://www.freevr.org/
https://doi.org/10.1162/pres.1997.6.6.603
https://doi.org/10.1162/pres.1997.6.6.603
https://doi.org/10.1162/pres.1997.6.6.603
https://doi.org/10.1162/pres.1997.6.6.603
https://assetstore.unity.com/packages/tools/audio/dissonance-voice-chat-70078
https://assetstore.unity.com/packages/tools/audio/dissonance-voice-chat-70078
https://assetstore.unity.com/packages/tools/audio/dissonance-voice-chat-70078
https://doi.org/10.1145/3170427.3186474
http://doi.acm.org/10.1145/3170427.3186474
http://doi.acm.org/10.1145/3170427.3186474
https://doi.org/10.1109/VR.2016.7504689

112

[69] Rui Sun, Yenchun Jim Wu, and Qian Cai. The effect of a virtual reality learning
environment on learners’ spatial ability. Virtual Reality, 23(4):385–398, Decem-
ber 2019. issn: 1434-9957. doi: 10.1007/s10055-018-0355-2. url: https:
//doi.org/10.1007/s10055-018-0355-2.

[70] Tobii. Photon unity networking 2. url: https://vr.tobii.com/sdk/develop/
unity/documentation/usage-examples/ (visited on 07/15/2020).

[71] Tobii. Tobii xr sdk, 2020. url: https : / / vr . tobii . com / sdk (visited on
07/14/2020).

[72] Turbosquid. 3d models for professionals, 2020. url: https://www.turbosquid.
com/ (visited on 07/14/2020).

[73] Unity Technologies. Unity - video game engine, 2020. url: http : / / www .

unity3d.com (visited on 07/14/2020).

[74] Unity Technologies. Unity asset store - the best assets for game making. url:
https://assetstore.unity.com/ (visited on 07/15/2020).

[75] Valve Corporation. SteamVR plugin, November 6, 2019. (Visited on 07/14/2020).
URL: https://assetstore.unity.com/packages/tools/integration/

steamvr-plugin-32647.

[76] Virtuix. Omni by virtuix - the leading and most popular vr motion platform.
url: https://www.virtuix.com/ (visited on 07/15/2020).

[77] VRChat Inc. Vrchat. url: https://www.vrchat.com/ (visited on 07/14/2020).

[78] Ansley Watson. Experience virtual reality at UA little rock, September 30, 2019.
url: https://katv.com/community/good-afternoon-ark/whats-on-good-
afternoon-arkansas/experience-virtual-reality-at-ua-little-rock

(visited on 07/15/2020). KATV, ABC 7, Little Rock.

[79] Séamas Weech, Sophie Kenny, and Michael Barnett-Cowan. Presence and cy-
bersickness in virtual reality are negatively related: a review. Frontiers in Psy-
chology, 10:158, 2019. issn: 1664-1078. doi: 10.3389/fpsyg.2019.00158. url:
https://www.frontiersin.org/article/10.3389/fpsyg.2019.00158.

[80] Jason Weimann. Unity baseball bat physics, April 11, 2016. url: https://
unity3d.college/2016/04/11/baseball-bat-physics-unity/ (visited on
07/15/2020).

[81] T. Weißker, A. Kunert, B. Fröhlich, and A. Kulik. Spatial updating and simu-
lator sickness during steering and jumping in immersive virtual environments.
In 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR),
pages 97–104, March 18, 2018. doi: 10.1109/VR.2018.8446620.

[82] C. Wienrich, K. Schindler, N. Döllinqer, S. Kock, and O. Traupe. Social presence
and cooperation in large-scale multi-user virtual reality - the relevance of social
interdependence for location-based environments. In 2018 IEEE Conference on
Virtual Reality and 3D User Interfaces (VR), pages 207–214, Reutlingen, Ger-
many, March 18, 2018. doi: 10.1109/VR.2018.8446575.

https://doi.org/10.1007/s10055-018-0355-2
https://doi.org/10.1007/s10055-018-0355-2
https://doi.org/10.1007/s10055-018-0355-2
https://vr.tobii.com/sdk/develop/unity/documentation/usage-examples/
https://vr.tobii.com/sdk/develop/unity/documentation/usage-examples/
https://vr.tobii.com/sdk
https://www.turbosquid.com/
https://www.turbosquid.com/
http://www.unity3d.com
http://www.unity3d.com
https://assetstore.unity.com/
https://assetstore.unity.com/packages/tools/integration/steamvr-plugin-32647
https://assetstore.unity.com/packages/tools/integration/steamvr-plugin-32647
https://www.virtuix.com/
https://www.vrchat.com/
https://katv.com/community/good-afternoon-ark/whats-on-good-afternoon-arkansas/experience-virtual-reality-at-ua-little-rock
https://katv.com/community/good-afternoon-ark/whats-on-good-afternoon-arkansas/experience-virtual-reality-at-ua-little-rock
https://doi.org/10.3389/fpsyg.2019.00158
https://www.frontiersin.org/article/10.3389/fpsyg.2019.00158
https://unity3d.college/2016/04/11/baseball-bat-physics-unity/
https://unity3d.college/2016/04/11/baseball-bat-physics-unity/
https://doi.org/10.1109/VR.2018.8446620
https://doi.org/10.1109/VR.2018.8446575

113

[83] Preston Tunnell Wilson, William Kalescky, Ansel MacLaughlin, and Betsy
Williams. Vr locomotion: walking > walking in place > arm swinging. In Pro-
ceedings of the 15th ACM SIGGRAPH Conference on Virtual-Reality Contin-
uum and Its Applications in Industry - Volume 1, VRCAI ’16, 243–249, Zhuhai,
China. Association for Computing Machinery, 2016. isbn: 9781450346924. doi:
10.1145/3013971.3014010. url: https://doi.org/10.1145/3013971.

3014010.

[84] Shunki Yamashita, Ryota Ishida, Arihide Takahashi, Hsueh-Han Wu, Hironori
Mitake, and Shoichi Hasegawa. Gum-gum shooting: inducing a sense of arm
elongation via forearm skin-stretch and the change in the center of gravity.
In ACM SIGGRAPH 2018 Emerging Technologies, SIGGRAPH ’18, 8:1–8:2,
Vancouver, British Columbia, Canada. ACM, 2018. isbn: 978-1-4503-5810-1.
doi: 10.1145/3214907.3214909. url: http://doi.acm.org/10.1145/

3214907.3214909.

https://doi.org/10.1145/3013971.3014010
https://doi.org/10.1145/3013971.3014010
https://doi.org/10.1145/3013971.3014010
https://doi.org/10.1145/3214907.3214909
http://doi.acm.org/10.1145/3214907.3214909
http://doi.acm.org/10.1145/3214907.3214909

	Abstract
	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	Listings
	Introduction
	Background and Related Work
	Multiplayer Interaction
	Networking Architectures
	Multiplayer

	Virtual Reality
	Research
	VR Research Labs
	Hardware

	Virtual Reality Development
	OpenGL
	Unity
	Unreal Engine 4

	User Studies
	Background
	How to Perform a User Study
	User Study Examples

	First Attempt: Multi-User VR Cooperative Puzzle Game
	Introduction
	The Creation Process
	Blender Modeling
	Development in Unity
	Developing the Powers
	Level Design
	Mirror Networking

	Gameplay
	Locomotion
	Positive Outcomes

	Conclusions and Future Work
	Conclusions
	Future Work

	A Software Template
	Introduction
	Positives with First Attempt
	Issues with First Attempt

	Design of the Template
	Implementation of the Template
	PhotonServerSettings
	Scene Set-Up
	PhotonView and Synchronization
	Authority
	Joining and Creating Rooms
	Enabling Components
	Locomotion Samples

	Network Prefab
	Body Models
	Blender
	Animation Settings
	Scripts
	Feet Estimation Attempt

	Controllers and Trackers
	Video Recording
	Software
	NoSteamVRFallbackObjects
	Recording Components

	A First Sample Application: Ping Pong
	Physics Interaction
	Authority

	Application: Doctor Nurse Interaction
	Introduction
	Application
	Models
	Scene
	Customization
	Eye Tracking

	User Study
	Overview
	Issues and Fixes

	Conclusions and Future Work
	Conclusions
	Future Work
	Avatars
	Bots
	Applications
	Medical School
	Possible Improvements of Template
	New Applications

	Bibliography

