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Abstract

A common neuroscience topic is to determine the temporal order of two stimuli,
and is often studied via a logistic model called a psychometric function. The data
arises from repeated sampling of subjects across a variety of tasks (stimuli), blocks,
and time separations. These studies are often interested in making inferences at
the group level (age, gender, etc.) and at an individual level. This hierarchical
nesting makes multilevel modeling a natural choice for these data. We describe a
principled workflow for model development using domain expertise, regularizing
priors, and posterior predictive performance to compare models. We then apply
the workflow to produce a novel statistical model for temporal order judgment
data by fitting a series of Bayesian models efficiently using Hamiltonian Monte
Carlo (HMC) in the R programming language with Stan.
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1. Introduction

With the advances in computational power and the wide palette of statistical tools,

statistical methods have evolved to be more flexible and expressive. Conventional

modeling tools, such as p-values from classical regression coefficient testings for

step-wise variable selection, are being replaced by recently available modeling

strategies founded on principles, and informed decisions allow for creating bespoke

models and domain-driven analyses.

Advances in computational power have lead to a resurrection in statistics where

Bayesian modeling has gained an incredible following due, in part, to fully

Bayesian statistical inference modeling tools like Stan. The steady adoption of

computer aided statistical workflows also brings the need for multidisciplinary

techniques from numerical analysis, probability theory, statistics, computer sci-

ence, and visualizations. There has also been a recent push towards reproducible

research which ties in concepts of modular design, principled workflows, version

control, and literate programming.

A common neuroscience topic is to detect the temporal order of two stimuli, and

is often studied via a logistic model called a psychometric function. These studies

are often interested in making inferences at the group level (age, gender, etc.)
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and at an individual level. Conventional practice is to use simple models that

are easy to fit, but inflexible and vulnerable to fitting issues in the situation of

complete separation. Bayesian multilevel models are flexible and easy to interpret,

yet are not broadly adopted among practitioners. We describe a model selection

process in a principled workflow, including specifying priors and implementing

adaptive pooling. Then we propose and develop specialized quantities of interest

and study their operating characteristics. In the development of the model we

conduct prior predictive simulations studies into these proposed quantities of

interest that provide insights into experimental design considerations. We discuss

in detail a case study of real and previously unpublished data from a small-scale

preliminary study.

1.1. Conventional (classical) statistics

Regression techniques commonly rely on maximum likelihood estimation (MLE)

of parameters, and there are numerous resources on the subject of linear regres-

sion and MLE (Johnson et al., 2002; Larsen and Marx, 2005; Sheather, 2009;

Navidi, 2015). Most introductory courses on statistics and regression describe

frequentist-centered methods and estimation such as MLE, data transformations,

hypothesis testing, residual analysis/goodness-of-fit tests, and model variable

selection through coefficient testing. While these methods are well studied and

broadly applied (largely due to software availability and domain traditions), the

injudicious use of classical hypothesis testing and associated p-values has lead to

sub-optimal model selection/comparison – such as omission of truly influential

variables or the inclusion of confounding variables. Variable selection through
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step-wise algorithms or penalized maximum likelihood estimation (Hoerl and

Kennard, 1970; Tibshirani, 1996) may be appropriate in an exploratory data

analysis, but fail to produce quality predictions or determine the most statistically

important associations with an outcome variable.

Bayesian statistics (or inverse probability as it was once called) has a long history,

with origins prior to now “classical” statistical methods of R.A. Fisher and Karl

Pearson developed during the 1930s (Fisher et al., 1934). These researchers

thought Bayesian statistics was founded on a logical error and should be “wholly

rejected”. Later, the foundational work of Dennis Lindley (Lindley, 2000) refuted

these ideas. However, the widespread acceptance of classical methods was already

underway as Fisher developed a robust theory of MLE, made possible through

normal approximations, that dominates statistical inference to this day. This was

in part due to philosophical reasons, but also due to a limited class of Bayesian

models that could actually be conducted in a real data analysis.

1.2. Bayesian statistics

In contrast to frequentist methods that use the fanciful idea of an infinite sam-

pling process, Bayes’ Theorem (Equation (1.1)) offers a philosophically coherent

procedure to learn from data. It is a simple restatement of conditional probability

with deep and powerful consequences. From a Bayesian standpoint, we model all

quantities as having a (joint) probability distribution, since we are uncertain of

their values. The goal is to update our current state of information (the prior)

with the incoming data (given its likelihood) to receive an entire probability dis-

tribution reflecting our new beliefs (the posterior), with all modeling assumptions
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made explicit.

π(θ|data) = π(data|θ)π(θ)∫
Ωπ(data|θ)π(θ)dθ (1.1)

Prior knowledge must be stated explicitly in a given model and the entire posterior

distribution is available to summarize, visualize, and draw inferences from. The

prior π(θ) is some distribution over the parameter space and the likelihood

π(data|θ) is the probability of an outcome in the sample space given a value in

the parameter space.

Since the posterior is probability distribution, the sum or integral over the

parameter space must evaluate to one. Because of this constraint, the denominator

in (1.1) acts as a scale factor to ensure that the posterior is valid. Computing

this integral for multiple parameters was the major roadblock to the practical

application of Bayesian statistics, but as we describe below, using computers to

execute cleverly designed algorithms, the denominator need not be evaluated.

Further, since it evaluates to a constant, it is generally omitted. And so Bayes’

Theorem can be informally restated as “the posterior is proportional to the prior

times the likelihood”:

π(θ|data)∝ π(θ)×π(data|θ)

.
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1.3. Markov Chain Monte Carlo enables modern

Bayesian models

For simple models, the posterior distribution can sometimes be evaluated analyt-

ically, but often it happens that the integral in the denominator is complex or of

a high dimension. In the former situation, the integral may not be possible to

evaluate, and in the latter there may not be enough computational resources in

the world to perform a simple numerical approximation.

A solution is to use Markov Chain Monte Carlo (MCMC) simulations to draw

samples from the posterior distribution in a way that samples proportional to

the density. This sampling is a form of an approximation to the integral in

the denominator of (1.1). Rejection sampling (Gilks and Wild, 1992) and slice

sampling (Neal, 2003) are basic methods for sampling from a target distribution,

however they can often be inefficient – large proportion of rejected samples. Gibbs

sampling and the Metropolis-Hastings algorithm are more efficient (Chib and

Greenberg, 1995), but do not scale well for models with hundreds or thousands

of parameters.

Hamiltonian Monte Carlo (HMC) simulation is the current state-of-the-art as

a general-purpose Bayesian inference algorithm, motivated by a particle sim-

ulation, to sample the posterior. In particular, HMC and its variants sample

high-dimensional probability spaces with high efficiency, and also comes with

informative diagnostic tools that indicate when the sampler is having trouble

efficiently exploring the posterior. Stan is a probabilistic programming language

(PPL) with an R interface that uses Hamiltonian dynamics to conduct Bayesian

statistical inference (Guo et al., 2020).
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In the chapters to come, we produce a novel statistical model for temporal order

judgment data by following a principled workflow to fit a series of Bayesian

models efficiently using Hamiltonian Monte Carlo.

1.4. Organization

This paper is organized as follows: Chapter 2 goes over the modeling background,

including model fitting, checking, and evaluating predictive performance. Chap-

ter 3 introduces the background for psychometric experiments, the motivating

temporal order judgment data, and quirks about visualizing the data. In chapter

4 we apply the Bayesian modeling workflow adopted by members of the Stan

community, and provide rationale for model parameterization and selection of

priors. In chapter 5 we present the results of the model and the inferences we

can draw. In chapter chapter 6 we discuss experimental design considerations,

future work, and finish with concluding remarks.
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2. Background

2.1. Fitting the psychometric function using GLMs

Psychometric functions are commonly fit using generalized linear models which

allows for the linear model to be related to the response variable via a link

function, which for psychometric functions comes from the family of S-shaped

curves called a sigmoid.

Commonly GLMs are fit using maximum likelihood estimation. The outcome

of a single experiment can be represented as the result of a Bernoulli trial. The

psychometric function, F (x;θ), determines the probability that the outcome is

1:

Y ∼ Bernoulli(π)
π = P (Y = 1|x;θ) = F (x;θ)

If P (Y = 1|x;θ) = F (x;θ), then P (Y = 0|x;θ) = 1−F (x;θ), and hence the proba-

bility of an outcome is:

P (Y = y|x;θ) = F (x;θ)y(1−F (x;θ))1−y (2.1)
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The likelihood L of observing a set of independent and identically distributed

data given the parameterization θ is determined by taking the product of the

probabilities for each datum:

L=
N∏
i

P (yi|xi;θ)

=
N∏
i

F (xi;θ)yi(1−F (xi;θ))1−yi

(2.2)

For some θ, L achieves a maximum value, so maximum likelihood estimation

determines the parameters that maximizes the likelihood of the observed data.

Equation (2.2) is commonly expressed in terms of its logarithm as a function

of θ, where due to monotonicity of the logarithm, is an equivalent optimization

problem:

lnL(θ|y,x) =
N∑
i

yi ln(F (xi;θ)) + (1−yi) ln(1−F (xi;θ))) (2.3)

The classical approach is to differentiate (2.3) with respect to θ, set the equation

equal to 0, and solve for θ:

d

dθ
lnL(θ) = 0 (2.4)

However, no closed form expression exists for the solution to (2.4), and so

numerical root finding methods such as gradient descent are used to iteratively

find the maximum likelihood solution. The likelihood function, L(θ|y), also has

a connection to Bayes’ Theorem:
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L(θ|y) = P (y|θ)P (θ)
P (y) (2.5)

In (2.5), P (y|θ) is the likelihood of the data given θ, P (θ) is the prior distribution

for the parameter θ, and P (y) is the probability of the data averaged over the

parameter space. When the prior distribution is uniform over the parameter

space, then the Bayesian maximum a posteriori (MAP) estimate coincides with

the maximum likelihood estimate.

There are common situations where MLE fails such as complete separation in the

data. This is when the positive class can be separated from the negative class by

a set of linear predictors (shown in figure 2.1).

0.00

0.25

0.50

0.75

1.00

−2 −1 0 1 2
x

y

Figure 2.1.: Example of complete separation in the data. All of the ‘0‘-responses
can be separated from the ‘1‘-responses by some value of ‘x‘ between
‘-1‘ and ‘0‘.

For a slope-intercept model, the MLE for the slope is infinity, and the location

is undefined. Figure 2.2 displays a grid of log-likelihoods for a range of scale

(inverse slope) and location parameters. The log-likelihood increases to zero as

the scale decreases to zero (slope increases to infinity). Numerical root finding
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methods will converge after a finite number of iterations – usually by a stopping

condition such as the difference in log-likelihoods between steps.

1e−04

1e−02

1e+00

−1.00 −0.75 −0.50 −0.25 0.00
Location

S
ca

le
 (

in
ve

rs
e 

sl
op

e)

−3

−2

−1

0
Log Likelihood

Figure 2.2.: Grid of log-likelihoods for the completely separable data. The log-
likelihood increases to zero as the scale decreases to zero (slope
increases to infinity). For smaller slopes, the MLE for the location
is ‘0.5‘ – the median of the inner-most datum from each class. At
larger slopes, the MLE for the location matters little.

When the separable data from above is fit using R’s glm function, there is a

warning about fitted probabilities being 0 or 1, indicating that the slope is very

steep.

fit <- glm(y ~ x, family = binomial("logit"))
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
coefficients(fit)
#> (Intercept) x
#> 22.89 45.97

The coefficients of the linear predictor are in slope-intercept form (23 + 46x).

Rearranging the coefficients into location-scale form yields:

θ = x− (−0.5)
1/46 (2.6)

However, this is not the true maximum likelihood estimate. Table 2.1 shows
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that the log-likelihood is still increasing as the scale decreases to zero. The

change between −2.05×10−10 and −3.86×10−22 is very large on a relative scale,

but computers cannot tell the difference on an absolute scale. The precision

of most modern computers is around 10−15, and anything smaller is treated as

numerically zero.

Table 2.1.: Log-likelihood estimates for different scale parameters. *Indicates the
MLE solution from R.

Scale Log-Likelihood
1/10 -1.34e-02
1/46* -2.05e-10
1/100 -3.86e-22
1/1000 -1.42e-217

Using a weakly-informative prior for the slope instead of the non-informative

uniform distribution will allow for a proper MAP estimate, but care should be

taken to consider what prior is appropriate, or why the data is separable in the

first place. If an experiment can be improved to avoid the situation, that should

be the first action.

The models in this paper rely on MCMC techniques to sample from the posterior

distribution. In certain models, the posterior distribution takes on a familiar

form given a specific prior distribution. These conjugate likelihood-priors exist

for some exponential family models, like for the binomial-beta, Poisson-gamma,

and gamma-gamma. The benefit of conjugate prior models are that they do not

require computationally expensive sampling techniques to derive the posterior

distribution. Chen and Ibrahim (2003) discuss conjugate priors for GLMs by

specifying a prior for the scale (strength of belief in the prior) and for the observed

data, yo, and then relates the prior in yo to the parameters, β. This methodology

can be convenient, but limits model flexibility.
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2.2. Multilevel modeling

In classical regression, a simple single-level slope-intercept model can be specified

as:

yi = α+βxi+ εi (2.7)

The slope and intercept is fixed for all observations in the data set. If there is

a categorical variable with J levels, then a varying-slope varying-intercept (or

simply varying effects) model can be specified as:

yi = αj[i] +βj[i]xi+ εi (2.8)

where j[i] indexes the group for observation i. In a multilevel model, the

coefficients are modeled by a separate regression:

yi = αj[i] +βj[i]xi

αj ∼N (a0 +a1uj ,σ
2
α)

βj ∼N (b0 + b1uj ,σ
2
β)

(2.9)

In (2.9), x is a population level predictor, and u is a group level predictor.

Equations (2.7) and (2.8) represent the two extremes of excluding a categorical

variable from a model (complete pooling) and fitting a regression coefficient for

each level in the categorical variable (no pooling). Multilevel modeling provides a

compromise between these two extremes, resulting in partial pooling estimates.

For a simple intercept-only model, the partial pooling estimate of the intercept,
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α̂j is a weighted average of the mean of the of the observations in the group (no

pooling estimate, ȳj) and the mean over all groups (complete pooling estimate,

ȳ):

α̂j ≈
nj
σ2
y
ȳj + 1

σ2
α
ȳ

nj
σ2
y

+ 1
σ2
α

where nj is the number of observations in group level j, σ2
y is the within-group

variance, and σ2
α is the variance between the group level averages. As the between-

group variance goes to infinity (or as nj →∞), the partial pooling estimates

approach the no pooling estimates. When there are fewer samples, the partial

pooling estimate is closer to the overall average. In this way, partial pooling

reflects the relative information contained within each group. For an in-depth

introduction to multilevel modeling, see Gelman and Hill (2006).

2.3. Hamiltonian Monte Carlo and NUTS

We will be using Stan for model fitting throughout this paper. Stan allows

for MCMC sampling of Bayesian models using a variant of Hamiltonian Monte

Carlo called the No-U-Turn sampler (NUTS). HMC can be though of as a

physics simulation: a massless “particle” is imparted with a random direction

and some amount of kinetic energy in a probability field, and is stopped after a

number of steps, L, called leapfrog steps. The stopping point is the new proposal

sample. The NUTS algorithm removes the need for leapfrog steps by stopping

automatically when the particle begins to double back and retrace its steps

(Hoffman and Gelman, 2014). This sampling scheme has a much higher rate of
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accepted samples, and also comes with many built-in diagnostic tools that let us

know when the sampler is having trouble efficiently exploring the posterior.

The NUTS algorithm samples in two phases: a warm-up phase and a sampling

phase. During the warm-up phase, the sampler is automatically tuning three

internal parameters that can significantly affect the sampling efficiency.

2.4. Non-centered parameterization

Because HMC is a physics simulation, complicated geometry or posteriors with

steep slopes can be difficult to traverse if the step size is too course. The solution

is to explore a simpler geometry, and then transform the sample into the target

distribution. Reparameterization is especially important for hierarchical models.

For Stan, sampling from a standard normal or uniform distribution is very easy,

and so the non-centered parameterization can alleviate divergent transitions.

Here we present three reparameterizations that we use in the next chapter. The

left-hand side shows the centered parameterization, and the right-hand side shows

the non-centered parameterization.

Gaussian distribution with mean µ and standard deviation σ:

X ∼N (µ,σ2) =⇒
Z ∼N (0,12)
X = µ+σ ·Z

(2.10)

Log-Normal distribution with mean-log µ and standard deviation-log σ:

X ∼ Lognormal(µ,σ2) =⇒
Z ∼N (0,12)
X = exp(µ+σ ·Z)

(2.11)



15

Cauchy distribution with location µ and scale τ :

X ∼ Cauchy(µ,τ) =⇒
U ∼ U

(
−π2 ,

π

2

)
X = µ+ τ · tan(U)

(2.12)

2.5. Methods for model checking

Below is the 8 Schools data (Gelman et al., 2013) which is a standard textbook

example for introducing multilevel modeling. Here we use it to illustrate essential

MCMC model checking tools.

schools_dat <- list(

J = 8,

y = c(28, 8, -3, 7, -1, 1, 18, 12),

sigma = c(15, 10, 16, 11, 9, 11, 10, 18)

)

Trace Plots. Trace plots have been used since the conception of MCMC to

assess chain sampling efficiency and quality. They are visual aids that let the

practitioner asses the qualitative health of the chains, looking for properties such

as autocorrelation, heteroskedacity, non-stationarity, and convergence. Healthy

chains are well-mixed and stationary. It’s often better to run more chains during

the model building process so that issues with mixing and convergence can be

diagnosed sooner. One unhealthy chain can be indicative of a poorly specified

model. The addition of more chains also contributes to the estimation of the
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split R̂ statistic (discussed below). Figure 2.3 shows what a set of healthy chains

looks like – the chains are nearly indistinguishable, fluctuate around the same

mean, and do not show any long periods of being in the same location.
mu tau

0 200 400 600 800 1000 0 200 400 600 800 1000

0

10

20

30

40

−10

0

10

20

Chain

1
2
3
4

Figure 2.3.: An example of healthy chains.

As the number of parameters in a model grows, it becomes exceedingly tedious to

check the trace plots of all parameters, and so numerical summaries are helpful

to flag potential issues within the model.

R-hat Statistic. The most common summary statistic for chain health is the

potential scale reduction factor (Gelman et al., 1992) that measures the ratio of

between chain variance and within chain variance. When the two have converged,

the ratio is one. We’ve shared examples of healthy chains which would also have

healthy R̂ values, but it’s valuable to also share an example of a bad model.

The initial starting parameters for this model are intentionally set to vary between

−10 and 10 – in contrast to the default range of (−2,2) – and with only a few

samples drawn in order to artificially drive up the split R̂ statistic. The model is

provided as supplementary code in the appendix.
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fit_cp <- sampling(schools_cp, data = schools_dat, refresh = 0,
iter = 40, init_r = 10, seed = 671254821)

Stan warns about many different issues with this model, but the R-hat is the

one of interest. The largest is 1.71 which is incredibly large. Gelmen suggests

using a threshold of 1.10 to flag unhealthy chains.
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These chains do not look good at all – they have not converged to a stationary

distribution. This is by design, however, as only 40 samples were simulated. The

R̂ values are listed in table 2.2.

Table 2.2.: Split R-hat values from the 8 Schools example.

Parameter Rhat
mu 1.709
tau 1.169

To calculate the (non split) R̂, first calculate the between-chain variance, and

then the average chain variance. For M independent Markov chains, {θ1, . . .θM},

with N samples each, the between-chain variance is:

B = N

M −1

M∑
m=1

(
θ̄m− θ̄

)2
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where

θ̄m = 1
N

N∑
n=1

θ(n)
m

and

θ̄ = 1
M

M∑
m=1

θ̄m

The within-chain variance, W , is the variance averaged over all the chains:

W = 1
M

M∑
m=1

s2
m

where

s2
m = 1

N −1

N∑
n=1

(
θ(n)
m − θ̄m

)2

The weighted mixture of the within-chain and cross-chain variation is:

ˆvar = N −1
N

W + 1
N
B

and finally the R̂ statistic is:

R̂=
√

ˆvar
W

Here is the calculation in R:

param <- "mu"
theta <- p_cp[,,param]
N <- nrow(theta)
M <- ncol(theta)

theta_bar_m <- colMeans(theta)
theta_bar <- mean(theta_bar_m)

B <- N / (M - 1) * sum((theta_bar_m - theta_bar)^2)
s_sq_m <- apply(theta, 2, var)

W <- mean(s_sq_m)
var_hat <- W * (N - 1) / N + B / N
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(mu_Rhat <- sqrt(var_hat / W))
#> [1] 1.409

The R̂ statistic is smaller than the split R̂ value provided by Stan. This is a

consequence of steadily increasing or decreasing chains. The split value does

what it sounds like, and splits the samples from the chains in half – effectively

doubling the number of chains and halving the number of samples per chain. In

this way, the measure is more robust in detecting unhealthy chains. This also

highlights the utility in using both visual and statistical tools to evaluate models.

Here is the calculation of the split R̂:

param <- "mu"
theta_tmp <- p_cp[,,param]
theta <- cbind(theta_tmp[1:10,], theta_tmp[11:20,])
N <- nrow(theta)
M <- ncol(theta)

theta_bar_m <- colMeans(theta)
theta_bar <- mean(theta_bar_m)

B <- N / (M - 1) * sum((theta_bar_m - theta_bar)^2)
s_sq_m <- apply(theta, 2, var)

W <- mean(s_sq_m)
var_hat <- W * (N - 1) / N + B / N

(mu_Rhat <- sqrt(var_hat / W))
#> [1] 1.709

We’ve successfully replicated the calculation of the split R̂. Vehtari et al. (2020b)

propose an improved rank-normalized R̂ for assessing the convergence of MCMC

chains, and also suggest using a threshold of 1.01.

Effective Sample Size. Samples from Markov Chains are typically autocor-

related, which can increase uncertainty of posterior estimates. The solution

is generally to reparameterize the model to avoid steep log-posterior densities.
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When the HMC algorithm is exploring difficult geometry, it can get stuck in

regions of high densities, which means that there is more correlation between

successive samples. Equation (2.13) shows the centered (left) and non-centered

(right) parameterization of the 8-Schools model, and the benefit of reparameteri-

zation is conveyed by the ratio of effective sample size to actual sample size in

figure 2.4.

σ ∼ U(0,∞)
µ∼N (0,10)
τ ∼HalfCauchy(0,10)
θ ∼N (µ,τ)
y ∼N (θ,σ)

=⇒

σ ∼ U(0,∞)
µ∼N (0,10)
τ ∼HalfCauchy(0,10)
η ∼N (0,1)
θ = µ+ τ ·η
y ∼N (θ,σ)

(2.13)
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Figure 2.4.: Ratio of N_eff to actual sample size. Low ratios imply high autocor-
relation which can be alleviated by reparameterizing the model or
by thinning.

As the strength of autocorrelation generally decreases at larger lags, a simple

prescription to decrease autocorrelation between samples and increase the effective

sample size is to use thinning. Thinning means saving every kth sample and

throwing the rest away. If one desired to have 2000 posterior draws, it could be
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done in two of many possible ways

• Generate 2000 draws after warmup and save all of them

• Generate 10,000 draws after warmup and save every 5th sample.

Both will produce 2000 samples, but the method using thinning will have less

autocorrelation and a higher effective number of samples. Though it should be

noted that generating 10,000 draws and saving all of them will have a higher

number of effective samples than the second method with thinning, so thinning

should only be favored to save memory.

Divergent Transitions. Unlike the previous tools for algorithmic faithfulness

which can be used for any MCMC sampler, information about divergent transitions

is intrinsic to Hamiltonian Monte Carlo. Recall that the HMC and NUTS

algorithm can be imagined as a physics simulation of a particle in a potential

energy field, and a random momentum is imparted on the particle. The sum of the

potential energy and the kinetic energy of the system is called the Hamiltonian,

and is conserved along the trajectory of the particle (Stan Development Team,

2020). The path that the particle takes is a discrete approximation to the actual

path where the position of the particle is updated in small steps called leapfrog

steps (see Leimkuhler and Reich (2004) for a detailed explanation of the leapfrog

algorithm). A divergent transition happens when the simulated trajectory is far

from the true trajectory as measured by the Hamiltonian.

A few divergent transitions is not indicative of a poorly performing model,

and often divergent transitions can be mitigated by reducing the step size and

increasing the adapt delta parameter. On the other hand, a bad model may

never be improved just by tweaking some parameters. This is the folk theorem of
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statistical computing - if there is a problem with the sampling, blame the model,

not the algorithm.

Divergent transitions are never saved in the posterior samples, but they are saved

internally to the Stan fit object and can be compared against good samples.

Sometimes this can give insight into which parameters and which regions of the

posterior the divergent transitions are coming from.
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Figure 2.5.: Divergent transitions highlighted for some parameters from the cen-
tered parameterization of the eight schools example.

From figure 2.5 we can see that most of the divergent transitions occur when

the variance term τ is close to zero. This is common for multilevel models,

and illustrates why non-centered parameterization is so important. We discuss

centered and non-centered parameterization in the next chapter.

2.6. Estimating predictive performance

All models are wrong, but some are useful. This quote is from George Box (Box,

1976), and it is a popular quote that statisticians like to throw around. All models

are wrong because it is nearly impossible to account for the minutiae of every
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process that contributes to an observed phenomenon, and often trying to results

in poorer performing models. Also it is never truly possible to prove that a model

is correct. At best the scientific method can falsify certain hypotheses, but it

cannot ever determine if a model is universally correct. That does not matter.

What does matter is if the model is useful and can make accurate predictions.

Why is predictive performance so important? Consider five points of data (figure

2.6). They have been simulated from some polynomial equation of degree less

than five, but with no more information other than that, how can the best

polynomial model be selected?
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Figure 2.6.: Five points from a polynomial model.

One thing to try is fit a handful of linear models, check the parameter’s p-values,

the R2 statistic, and perform other goodness of fit tests, but there is a problem.

As the degree of the polynomial fit increases, the R2 statistic will always increase.

In fact with five data points, a fourth degree polynomial will fit the data perfectly

(figure 2.7).

If a 6th point were to be added – a new observation – which of the models would

be expected to predict best? Can it be estimated which model will predict best
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Figure 2.7.: Data points with various polynomial regression lines.

before testing with new data? One guess is that the quadratic or cubic model will

do well because because the linear model is potentially underfit to the data and

the quartic is overfit to the data. Figure 2.8 shows the new data point from the

polynomial model. Now the linear and cubic models are trending in the wrong

direction. The quadratic and quartic models are both trending down, so perhaps

they may be the correct form for the model.
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Figure 2.8.: The fitted polynomial models with a new observation.

Figure 2.9 shows the 80% and 95% prediction intervals for a new observation
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given x= 1 as well as the true outcome as a dashed line at y = 1.527. The linear

model has the smallest prediction interval (PI), but completely misses the target.

The remaining three models all include the observed value in their 95% PIs, but

the quadratic model has the smallest PI of the three. The actual data generating

polynomial is

y ∼N (µ,12)
µ=−0.5(x−2)2 + 2
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Figure 2.9.: 95% Prediction intervals for the four polynomial models, as well as
the true value (dashed line).

The best fit to the observed data is the quartic model, but it is too variable

and doesn’t capture the regular features of the data, so it does poorly for the

out-of-sample prediction. The linear model suffers as well by being more biased

and too inflexible to capture the structure of the data. The quadratic and cubic

are in the middle, but the quadratic does well and makes fewer assumptions

about the data. The quadratic model is just complex enough to predict well

while making fewer assumptions. Information criteria is a way of weighing the



26

prediction quality of a model against its complexity, and is arguably a better

system for model selection/comparison than other goodness-of-fit statistics such

as R2 or p-values (Burnham and Anderson, 2002).

A technique to evaluate predictive performance is cross validation, where the data

is split into training data and testing data (Friedman et al., 2001). The model

is fit to the training data, and then predictions are made with the testing data

and compared to the observed values. This can often give a good estimate for

out-of-sample prediction error. Cross validation can be extended into k-fold cross

validation. The idea is to fold the data into k disjoint partitions, and predict

partition i using the rest of the data to train on. The prediction error of the

k-folds can then be averaged over to get an estimate for out-of-sample prediction

error.

Taking k-fold CV to the limit by letting k equal the number of observations

results in leave-one-out cross validation (LOOCV), where for each observation in

the data, the model is fit to the remaining data and predicted for the left out

observation. k-fold cross validation requires fitting the model k times, which can

be computationally expensive for complex Bayesian models. Thankfully there is

a way to approximate LOOCV without having to refit the model many times.

Estimating cross validation error via Pareto-Smoothed-Importance

Sampling. LOOCV and many other evaluation tools such as the widely applica-

ble information criterion (Watanabe, 2013) rest on the log-pointwise-predictive-

density (lppd), which measures deviance from some “true” probability distribution.

Typically we don’t have the analytic form of the predictive posterior density, so

instead we use S MCMC draws to approximate the lppd (Vehtari et al., 2017):
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lppd(y,Θ) =
N∑
i=1

log 1
S

S∑
s=1

p(yi|Θs) (2.14)

To estimate LOOCV, the relative “importance” of each observation must be

computed. Certain observations have more influence on the posterior distribution,

and so have more impact on the posterior if they are removed. By omitting

a sample, the relative importance weight can be measured by the lppd. This

omitted calculation is known as the out-of-sample lppd. For each omitted yi,

lppdCV =
N∑
i=1

1
S

S∑
s=1

logp(yi|θ−i,s)

The method of using weights to estimate the cross-validation is called Pareto-

Smoothed Importance Sampling Cross-Validation (PSIS). Pareto-smoothing is

a technique for making the importance weight more reliable. Each sample s is

re-weighted by the inverse of the probability of the omitted observation:

r(θs) = 1
p(yi|θs)

Then the importance sampling estimate of the out-of-sample lppd is calculated

as:

lppdIS =
N∑
i=1

log
∑S
s=1 r(θs)p(yi|θs)∑S

s=1 r(θs)

However, the importance weights can have a heavy right tail, and so they can be

stabilized by using the Pareto distribution (Vehtari et al., 2015). The distribution
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of weights theoretically follow a Pareto distribution, so the larger weights can be

used to estimate the generalized Pareto distribution

p(r;µ,σ,k) = 1
σ

(
1 + k(r−µ)

σ

)−(1/k+1)

where µ is the location, σ is the scale, and k is the shape. Then the estimated

distribution is used to smooth the weights. A side-effect of using PSIS is that the

estimated value of k can be used as a diagnostic tool for a particular observation.

For k > 0.5, the Pareto distribution will have infinite variance, and a really heavy

tail. If the tail is very heavy, then the smoothed weights are harder to trust.

In theory and in practice, however, PSIS works well as long as k < 0.7 (Vehtari

et al., 2015).

There is an R package called loo that can compute the expected log-pointwise-

posterior-density (ELPD) using PSIS-LOO, as well as the estimated number

of effective parameters and LOO information criterion (Vehtari et al., 2020a).

For the part of the researcher, the log-likelihood of the observations must be

computed. This can be calculated in the generated quantities block of a Stan

program, and it is standard practice to name the log-likelihood as log_lik in the

model. An example of calculating the log-likelihood for the eight schools data in

Stan is:

generated quantities {
vector[J] log_lik;
for (j in 1:J) {
log_lik[j] = normal_lpdf(y[j] | theta[j], sigma[j]);

}
}

Models can be compared simply using loo::loo_compare. It estimates the
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ELPD and its standard error, then calculates the relative differences between

all the models. The model with the highest ELPD is predicted to have the best

out-of-sample predictions. The comparison of four polynomial models from the

earlier example is shown below.

comp <- loo_compare(linear, quadratic, cubic, quartic)

Table 2.3.: LOO comparison of Polynomial equations.

Model elpd_diff se_diff p_loo looic
Cubic 0.0000 0.0000 2.832 18.67
Quartic -0.2284 0.7248 3.603 19.12
Quadratic -2.1277 1.4328 3.200 22.92
Linear -3.0593 1.7171 2.747 24.79

This comparison is unreliable since there are only five data points to estimate

the predictive performance. This assertion is backed by the difference in ELPD

and the standard error of the differences – the standard error of the difference is

at the same order of magnitude for the difference in each case.

2.7. A modern principled bayesian modeling

workflow

A principled workflow is a method of employing domain expertise and statistical

knowledge to iteratively build a statistical model that satisfies the constraints

and goals set forth by the researcher. Many other workflow and model checking

techniques are given without context for when they are appropriate, and according

to Betancourt (2020), this leaves “practitioners to piece together their own model

building workflows from potentially incomplete or even inconsistent heuristics.”
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For any given problem, there is not, nor should there be, a default set of steps to

take to get from data exploration to predictive inferences. Rather, consideration

must be given to domain expertise and the questions that one is trying to answer

with the statistical model.

Because everyone asks different questions, the value of a model is not in how

well it ticks the boxes of goodness-of-fit checks, but in how consistent it is with

domain expertise and its ability to answer the unique set of questions. Betancourt

suggests answering four questions to evaluate a model by, summarized in table

2.4.

Table 2.4.: Questions for model evaluation.

Evaluation Question
1. Domain Expertise
Consistency

Is our model consistent with our domain
expertise?

2. Computational
Faithfulness

Will our computational tools be sufficient to
accurately fit our posteriors?

3. Inferential Adequacy Will our inferences provide enough information to
answer our questions?

4. Model Adequacy Is our model rich enough to capture the relevant
structure of the true data generating process?

Much work is done before seeing the data or building a model. This includes

talking with experts to gain domain knowledge or to elicit priors. A benefit of

modeling in a Bayesian framework is that all prior knowledge may be incorporated

into the model to be used to estimate the posterior distribution. The same prior

knowledge may also be used to check the posterior to ensure that predictions

remain within physical or expert-given constraints.

In this section we describe a simulation-based, principled workflow proposed

by Betancourt (2020) and broadly adopted by many members of the Bayesian

community. The workflow broadly consists of specifying the likelihood and priors,
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performing prior predictive checks, fitting a model, and performing posterior

predictive checks. The steps of the workflow are divided into three phases: 1)

pre-model, pre-data, 2) post-model, pre-data, and 3) post-model, post-data.

Tables 2.5, 2.6, and 2.7 list the steps of each phase.

Table 2.5.: Pre-Model, Pre-Data steps.

Step Description
Conceptual Analysis Write down the inferential goals and consider how

the variables of interest interact with the
environment and how those interactions work to
generate observations.

Define Observational
Space

What are the possible values that the observed
data can take on? The observational space can
help inform the statistical model such as in count
data.

Construct Summary
Statistics

What measurements and estimates can be used
to help ensure that the inferential goals are met?
Prior predictive checks and posterior retrodictive
checks are founded on summary statistics that
answer the questions of domain expertise
consistency and model adequacy.

These steps are not meant to be followed in a strictly linear fashion. If a

conceptual misunderstanding is discovered at any step in the process, then it

is recommended to go back to an earlier step and start over. The workflow is

a process of model expansion, and multiple iterations are required to get to a

final model (or collection of models). Similarly if the model fails prior predictive

checks, then one may need to return to the model development step. A full

diagram of the workflow is displayed in figure 2.10.
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Figure 2.10.: Diagram is copywrited material of Michael Betancourt and used
under the CC BY-NC 4.0 license. Image created with Lucid app.
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Table 2.6.: Post-Model, Pre-Data steps.

Step Description
Develop Model Build an observational model that is consistent

with the conceptual analysis and observational
space, and then specify the complementary prior
model.

Construct Summary
Functions

Use the developed model to construct explicit
summary functions that can be used in prior
predictive checks and posterior retrodictive
checks.

Simulate Bayesian
Ensemble

Since the model is a data generating model, it
can be used to simulate observations from the
prior predictive distribution without yet having
seen any data.

Prior Checks Check that the prior predictive distribution is
consistent with domain expertise using the
summary functions developed in the previous
step.

Configure Algorithm Having simulated data, the next step is to fit the
data generating model to the generated data.
There are many different MCMC samplers with
their own configurable parameters, so here is
where those settings are tweaked.

Fit Simulated Ensemble Fit the simulated data to the model using the
algorithm configured in the previous step.

Algorithmic Calibration How well did the algorithm do in fitting the
simulated data? This step helps to answer the
question regarding computational faithfulness. A
model may be well specified, but if the algorithm
used is unreliable then the posterior distribution
is also unreliable, and this can lead to poor
inferences.

Inferential Calibration Are there any pathological behaviors in the
model such as overfitting or non-identifiability?
This step helps to answer the question of
inferential adequacy.
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Table 2.7.: Post-Model, Post-Data steps.

Step Description
Fit Observed Data After performing the prior predictive checks and

being satisfied with the model, the next step is to
fit the model to the observed data.

Diagnose Posterior Fit Did the model fit well? Can a poorly performing
algorithm be fixed by tweaking the algorithmic
configuration, or is there a problem with the
model itself where it is not rich enough to capture
the structure of the observed data? Utilize the
diagnostic tools available for the algorithm to
check the computational faithfulness.

Posterior Retrodictive
Checks

Do the posterior retrodictions match the observed
data well, or are there still apparent discrepancies
between what is expected and what is predicted
by the model? It is important that any changes to
the model going forward are motivated by domain
expertise so as to mitigate the risk of overfitting.

Celebrate After going through the tedious process of
iteratively developing a model, it is okay to
celebrate before moving on to answer the research
questions.
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3. Motivating data

This paper focuses on a type of psychometric experiment called a temporal order

judgment (TOJ) experiment. If there are two distinct stimuli occurring nearly

simultaneously then our brains will bind them into a single percept (perceive

them as happening simultaneously). Compensation for small temporal differences

is beneficial for coherent multisensory experiences, particularly in visual-speech

synthesis as it is necessary to maintain an accurate representation of the sources

of multisensory events.

It was Charles Darwin who in his book “On the Origin of Species” developed the

idea that living organisms adapt in order to better survive in their environment.

Sir Francis Galton, inspired by Darwin’s ideas, became interested in the differences

in human beings and in how to measure those differences. Galton’s works on

studying and measuring human differences lead to the creation of psychometrics

– the science of measuring mental faculties. Around the same time that he was

developing his theories, Johann Friedrich Herbart was also interested in studying

consciousness through the scientific method, and is responsible for creating

mathematical models of the mind.

E.H. Weber built upon Herbart’s work, and sought out to prove the idea of

a psychological threshold. A psychological threshold is a minimum stimulus
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intensity necessary to activate a sensory system – a liminal stimulus. He paved the

way for experimental psychology and is the namesake of Weber’s Law (Equation

(3.1)), which states that the change in a stimulus that will be just noticeable is a

constant ratio of the original stimulus (Ekman, 1959).

∆I
I

= k (3.1)

To demonstrate this law, consider holding a 1 kg weight (I = 1), and further

suppose that the difference between a 1 kg weight and a 1.2 kg weight (∆I = 0.2)

can just be detected. Then the constant just noticeable ratio is:

k = 0.2
1 = 0.2

Now consider picking up a 10 kg weight. The mass required to just detect a

difference can be calculated as:

∆I
10 = 0.2⇒∆I = 2

The difference between a 10 kg and a 12 kg weight is expected to be just barely

perceptible. Note that the difference in the first set of weights is 0.2, and in

the second set it is 2. The perception of the difference in stimulus intensities is

not absolute, but relative. G.T. Fechner devised the law (Weber-Fechner Law,

Equation (3.2)) that the strength of a sensation grows as the logarithm of the

stimulus intensity.
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S =K lnI (3.2)

Consider two light sources: one that is 100 lumens (S1 =K ln100) and another

that is 200 lumens (S2 = K ln200). The intensity of the second light is not

perceived as twice as bright, but only about 1.15 times as bright according to

(3.2):

θ = S2/S1 ≈ 1.15

Notice that the value K cancels out when calculating the relative intensity, but

knowing K can lead to important psychological insights about differences between

persons or groups of people. What biological and contextual factors affect how

people perceive different stimuli? How do we measure their perception in a

meaningful way? We can collect data from psychometric experiments, fit a model

to the data from a family of functions called psychometric functions, and inspect

key operating characteristics of those functions.

3.1. Psychometric experiments

Psychometric experiments are devised in a way to examine psychophysical pro-

cesses, or the response between the world around us and our inward perceptions.

A psychometric function relates an observer’s performance to an independent

variable, usually some physical quantity of a stimulus in a psychophysical task

(Wichmann and Hill, 2001a). Psychometric functions were studied as early as
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the late 1800’s, and Edwin Boring published a chart of the psychometric function

in The American Journal of Psychology in 1917 (Boring, 1917).

Figure 3.1 displays the key aspects of the psychometric function. The most

crucial part is the sigmoid function, the S-like non-decreasing curve which in this

case is represented by the Normal CDF, Φ(γ). The horizontal axis represents the

stimulus intensity: the separation of two points in centimeters. The vertical axis

represents the probability that a subject has the impression of two points. With

only experimental data, the response proportion becomes an approximation for

the probability.

The temporal asynchrony between stimuli is called the stimulus onset asynchrony

(SOA), and the range of SOAs for which sensory signals are integrated into a

global percept is called the temporal binding window. When the SOA grows

large enough, the brain segregates the two signals and the temporal order can be

determined.

Our experiences in life as we age shape the mechanisms of processing multisensory

signals, and some multisensory signals are integrated much more readily than

others. Perceptual synchrony has been previously studied through the point

of subjective simultaneity (PSS) – the temporal delay between two signals at

which an observer is unsure about their temporal order (Stone et al., 2001). The

temporal binding window is the time span over which sensory signals arising

from different modalities appear integrated into a global percept.

A deficit in temporal sensitivity may lead to a widening of the temporal binding

window and reduce the ability to segregate unrelated sensory signals. In TOJ

tasks, the ability to discriminate the timing of multiple sensory signals is referred
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Figure 3.1.: A chart of the psychometric function. The experiment in this paper
places two points on a subject’s skin separated by some distance,
and has them answer their impression of whether there is one point
or two, recorded as either ‘two points‘ or ‘not two points‘. As the
separation of aesthesiometer points increases, so too does the subject’s
confidence in their perception of ‘two-ness‘. So at what separation is
the impression of two points liminal?
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to as temporal sensitivity, and is studied through the measurement of the just

noticeable difference (JND) – the smallest lapse in time so that a temporal order

can just be determined.

Figure 3.2 highlights the features through which we study psychometric functions.

The PSS is defined as the point where an observer can do no better at determining

temporal order than random guessing (i.e. when the response probability is 50%).

The JND is defined as the extra temporal delay between stimuli so that the

temporal order is just able to be determined. Historically this has been defined

as the difference between the 84% level – one standard deviation away from the

mean – and the PSS, though the upper level often depends on domain expertise.
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Figure 3.2.: The PSS is defined as the point where an observer can do no better
at determining temporal order than random guessing. The just
noticeable difference is defined as the extra temporal delay between
stimuli so that the temporal order is just able to be determined.
Historically this has been defined as the difference between the
0.84 level and the PSS, though the upper level depends on domain
expertise.
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3.2. Temporal order judgment tasks

The data set used in this paper comes from small-scale preliminary experiments

done by A.N. Scurry and Dr. Jiang in the Department of Psychology at the

University of Nevada. Reduced temporal sensitivity in the aging population

manifests in an impaired ability to perceive synchronous events as simultaneous,

and similarly more difficulty in segregating asynchronous sensory signals that

belong to different sources. The consequences of a widening of the temporal

binding window is considered in Scurry et al. (2019), as well as a complete

detailing of the experimental setup and recording process. Here we present a

shortened summary of the experimental methods.

There are four different tasks in the experiment: audio-visual, visual-visual, visual-

motor, and duration, and each task is respectively referred to as audiovisual,

visual, sensorimotor, and duration. The participants consist of 15 young adults

(age 20-27), 15 middle age adults (age 39-50), and 15 older adults (age 65-75),

all recruited from the University of Nevada, Reno. Additionally all subjects are

right handed and are reported to have normal or corrected to normal hearing

and vision.

Table 3.1.: Sample of motivating data.

soa response sid task trial age_group age sex
-350 0 O-m-BC audiovisual pre older_adult 70 M
-200 0 M-m-SJ duration post1 middle_age 48 M
28 1 O-f-KK sensorimotor pre older_adult 66 F

275 1 O-f-MW visual post1 older_adult 69 F

In the audiovisual TOJ task, participants were asked to determine the temporal

order between an auditory and visual stimulus. Stimulus onset asynchrony values
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were selected uniformly between -500 to +500 ms with 50 ms steps, where negative

SOAs indicated that the visual stimulus was leading, and positive values indicated

that the auditory stimulus was leading. Each SOA value was presented 5 times in

random order in the initial block. At the end of each trial the subject was asked

to report if the auditory stimulus came before the visual, where a 1 indicates

that they perceived the sound first, and a 0 indicates that they perceived the

visual stimulus first.

A similar setup is repeated for the visual, sensorimotor, and duration tasks. The

visual task presented two visual stimuli on the left and right side of a display

with temporal asynchronies that varied between -300 ms to +300 ms with 25 ms

steps. Negative SOAs indicated that the left stimulus was first, and positive that

the right came first. A positive response indicates that the subject perceived the

right stimulus first.

The sensorimotor task has subjects focus on a black cross on a screen. When

it disappears, they respond by pressing a button. Additionally, when the cross

disappears, a visual stimulus was flashed on the screen, and subjects were asked

if they perceived the visual stimulus before or after their button press. The

latency of the visual stimulus was partially determined by individual subject’s

average response time, so SOA values are not fixed between subjects and trials.

A positive response indicates that the visual stimulus was perceived after the

button press.

The duration task presents two vertically stacked circles on a screen with one

appearing right after the other. The top stimulus appeared for a fixed amount

of time of 300 ms, and the bottom was displayed for anywhere between +100
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ms to +500 ms in 50 ms steps corresponding to SOA values between -200 ms to

+200 ms. The subject then responds to if they perceived the bottom circle as

appearing longer than the top circle.

Table 3.2.: Summary of TOJ Tasks

Task Positive Response Positive SOA Truth
Audiovisual Perceived audio first Audio came before visual
Visual Perceived right first Right came before left
Sensorimotor Perceived visual first Visual came before tactile
Duration Perceived bottom as longer Bottom lasted longer than top

Perceptual synchrony and temporal sensitivity can be modified through a baseline

understanding. In order to perceive physical events as simultaneous, our brains

must adjust for differences in temporal delays of transmission of both psychical

signals and sensory processing (Fujisaki et al., 2004). In some cases such as with

audiovisual stimuli, the perception of simultaneity can be modified by repeatedly

presenting the audiovisual stimuli at fixed time separations (called an adapter

stimulus) to an observer (Vroomen et al., 2004). This repetition of presenting

the adapter stimulus is called temporal recalibration.

After the first block of each task was completed, the participants went through

an adaptation period where they were presented with the respective stimuli from

each task repeatedly at fixed temporal delays, then the TOJ task was repeated.

To ensure that the adaptation affect persisted, the subject was presented with the

adapter stimulus at regular intervals throughout the second block. The blocks

are designated as pre and post1, post2, etc. in the data set. In this paper we

only focus on the baseline block (pre) and the post-adaptation block (post1).
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3.3. Data visualization and quirks

The dependent variable in these TOJ experiments is the subject’s perceived

response, encoded as a 0 or a 1, and the independent variable is the SOA value.

If the response is plotted against the SOA values, then it is difficult to determine

the relationship (see the right panel of figure 3.3). Transparency can be used

to better visualize the relationship. The center panel in figure 3.3 shows the

same data as the left, except that the transparency is set to 0.05. Note that

there is a higher density of “0” responses towards more negative SOAs, and

a higher density of “1” responses for more positive SOAs. The proportion of

“positive” responses for a given SOA is computed and plotted against the SOA

value (displayed in the right panel of figure 3.3). The relationship between SOA

values and responses is clear – as the SOA value goes from more negative to more

positive, the proportion of positive responses increases from near 0 to near 1.
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Figure 3.3.: Left: Simple plot of response vs. soa value. Center: A plot of
response vs. soa with transparency. Right: A plot of proportions vs.
soa with transparency.

The right panel in figure 3.3 is the easiest to interpret, and we often present the

observed and predicted data using the proportion of responses rather than the
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raw responses. Proportional data is also bounded on the same interval as the

response in contrast to the raw counts.

For the audiovisual task, the responses can be aggregated into binomial data –

the number of positive responses for given SOA value – which is more efficient

to work with than the Bernoulli data (see table 3.3). However the number of

times an SOA is presented varies between the pre-adaptation and post-adaptation

blocks; 5 and 3 times per SOA respectively.

Table 3.3.: Audiovisual task with aggregated responses.

trial soa n k proportion
200 5 4 0.80
150 5 5 1.00

pre

-350 5 0 0.00
350 3 3 1.00
-500 3 1 0.33

post1

-200 3 0 0.00

There is one younger subject that did not complete the audiovisual task, and

one younger subject that did not complete the duration task. There is also one

older subject who’s response data for the post-adaptation audiovisual task is

unreasonable – it is extremely unlikely that the data represents genuine responses

(see figure 3.4).

Of all the negative SOAs, there were only two “correct” responses (the perceived

order matches the actual order). If a subject is randomly guessing the temporal

order, then a naive estimate for the proportion of correct responses is 0.5. If

a subject’s proportion of correct responses is above 0.5, then they are doing

better than random guessing. Figure 3.5 shows that subject O-f-CE is the only

one who’s proportion is below 0.5 (and by a considerable amount), and so their
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Figure 3.4.: Post-adaptation response data for O-f-CE

post-adaptation block is removed from data set for model fitting.
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4. Bayesian Multilevel Modeling of

the Psychometric Function

Now we apply the workflow to our data set, seeking to build a model that satisfies

the four criteria in chapter 2. During model refinement, we’ll pick up on the

regular features while assessing the statistical significance of covariates through

predictive comparison. In our final model, we’ll model well-known data quality

issues (from participant lapses in judgment) and show that this improves model

prediction.

As we iterate through our model development workflow, we have a preference for

multilevel models (for the reasons discussed in chapter 2). Hierarchical models

are a specific kind of multilevel model where one or more groups are nested within

a larger one. In the case of the psychometric data, there are three age groups,

and within each age group are individual subjects.

4.1. Modeling psychometric quantities

Before formally conducting the workflow, we motivate our choice of using the

logistic function to model the psychometric function as well as our choice for the
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parameterization of the linear predictor. Three common sigmoid functions are

displayed in figure 4.1.
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Figure 4.1.: Assortment of psychometric functions.

The Weibull psychometric function is more common when it comes to 2-alternative

forced choice (2-AFC) psychometric experiments where the independent variable

is a stimulus intensity (non-negative) and the goal is signal detection. The data

in this paper includes both positive and negative SOA values, so the Weibull is

not a natural choice. Our first choice is the logistic function as it is the canonical

choice for Binomial count data. The data in this study are exchangeable, meaning

that the label of a positive response can be swapped with the label of a negative

response and the inferences would remain the same. Since there is no natural

ordering, it makes more sense for the psychometric function to be symmetric,

e.g. the logistic function and Gaussian CDF. We use symmetric loosely to mean

that the probability density function (PDF) has zero skewness. In practice,

there is little difference in inferences between the logit and probit links, but

computationally the logit link is more efficient.

It is appropriate to provide additional background to GLMs and their role in
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working with psychometric functions. A GLM allows the linear model to be

related to the outcome variable via a link function. An example of this is the

logit link – the inverse of the logistic function. The logistic function, F , takes

x ∈ R and constrains the output to be in (0,1).

F (θ) = 1
1 + exp(−θ) (4.1)

Since F is a strictly increasing and continuous function, it has an inverse, and

the link for (4.1) is the log-odds or logit function.

F−1(π) = logit(π) = ln
(

π

1−π

)
(4.2)

By taking (F−1 ◦F )(θ) we can arrive at a relationship that is linear in θ.

π = F (θ)⇐⇒ F−1(π) = F−1(F (θ))

= ln
(

F (θ)
1−F (θ)

)
= ln(F (θ))− ln(1−F (θ))

= ln
( 1

1 + exp(−θ)

)
− ln

( exp(−θ)
1 + exp(−θ)

)
=− ln(1 + exp(−θ))− ln(exp(−θ)) + ln(1 + exp(−θ))
=− ln(exp(−θ))
= θ

The motivation for this background is to show that a model for the psychometric

function can be specified using a linear predictor, θ. Given a simple slope-intercept

model, the linear predictor would typically be written as:
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θ = α+βx (4.3)

This isn’t the only possible form; it could be written in the slope-location

parameterization:

θ = β(x−a) (4.4)

Both parameterizations will describe the same geometry, so why should it matter

which form is chosen? The interpretation of the parameters change between the

two models, but the reason becomes clear when we consider how the linear model

relates back to the physical properties that the psychometric model describes.

Take equation (4.3), substitute it in to (4.1), and then take the logit of both

sides:

logit(π) = α+βx (4.5)

Now recall that the PSS is defined as the SOA value such that the response

probability, π, is 0.5. Substituting π = 0.5 into (4.5) and solving for x yields:

pss=−α
β

Similarly, the JND is defined as the difference between the SOA value at the 84%

level and the PSS. Substituting π = 0.84 into (4.5), solving for x, and subtracting

off the pss yields:
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jnd= logit(0.84)
β

(4.6)

From the conceptual analysis, it is easy to define priors for the PSS and JND,

but then how does one set the priors for α and β? Let’s say the prior for the just

noticeable difference is jnd∼ πj . Then the prior for β would be:

β ∼ logit(0.84)
πj

The log-normal distribution has a nice property where its multiplicative inverse

is still a log-normal distribution. If we let πj = Lognormal(µ,σ2), then β would

be distributed as:

β ∼ Lognormal(−µ+ ln(logit(0.84)),σ2)

This is acceptable as the slope must always be positive for this psychometric data,

and a log-normal distribution constrains the support to positive real numbers.

Next suppose that the prior distribution for the PSS is pss∼ πp. Then the prior

for α is:

α∼−πp ·β

If πp is set to a log-normal distribution as well, then πp ·β would also be log-

normal, but there is still the problem of the negative sign. If α is always negative,

then the PSS will also always be negative, which is certainly not always true.
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Furthermore, we don’t want to a priori put more weight on positive PSS values

compared to negative ones.

Let’s now consider using equation (4.4) and repeat the above process.

logit(π) = β(x−a) (4.7)

The just noticeable difference is still given by (4.6), and so the same method for

choosing a prior can be used. However, the PSS is now given by:

pss= α

This is a fortunate consequence of using (4.4) because now the JND only depends

on β and the PSS only depends on α. Additionally α can be interpreted as the

PSS of the estimated psychometric function. Also thrown in is the ability to set

a prior for α that is symmetric around 0 such as a Gaussian distribution.

This also highlights the benefit of using a modeling language like Stan over

others. For fitting GLMs in R, one can use stats::glm which utilizes MLE,

or others such as rstanarm::stan_glm and arm::bayesglm that use Bayesian

methods (Gabry and Goodrich, 2020; Gelman and Su, 2020). Each of these

functions requires the linear predictor to be in the form of (4.3). The stan_glm

function uses Stan in the back-end to fit a model, but is limited to priors from

the Student-t family of distributions. By writing the model directly in Stan, the

linear model can be parameterized in any way and with any prior distribution,

and so allows for much more expressive modeling.
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With the consideration for the choice of sigmoid function and linear parameteri-

zation complete, we begin to develop a multilevel model for the psychometric

function.

4.2. Iteration 1: base model

Pre-Model, Pre-Data

Conceptual Analysis

In section 3.2 we discussed the experimental setup and data collection. Subjects

are presented with two stimuli separated by some temporal delay, and they are

asked to respond as to their perception of the temporal order. There are 45

subjects with 15 each in the young, middle, and older age groups. As the SOA

becomes larger in the positive direction, subjects are expected to give more

“positive” responses, and as the SOA becomes larger in the negative direction,

more “negative” responses are expected. By the way the experiment and responses

are constructed, there is no expectation to see a reversal of this trend unless

there was an issue with the subject’s understanding of the directions given to

them or an error in the recording process.

After the first experimental block the subjects go through a temporal recalibration

period, and repeat the experiment. The interest is in seeing if the recalibration

has an effect on temporal sensitivity and perceptual synchrony, and if the effect

is different for each age group.

Define Observational Space
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The response that subjects give during a TOJ task is recorded as a zero or a one,

and their relative performance is determined by the SOA value. Let y represent

the binary outcome of a trial and let x be the SOA value.

yi ∈ {0,1}
xi ∈ R

If the SOA values are fixed as in the audiovisual task, then the responses can be

aggregated into Binomial counts, k.

ki,ni ∈ Z+
0 ,ki ≤ ni

In the above expression, Z+
0 represents the set of non-negative integers. Notice

that the number of trials n has an index variable i. This is because the number

of trials per SOA is not fixed between blocks. In the pre-adaptation block, there

are five trials per SOA compared to three in the post-adaptation block. So if

observation 32 is recorded during a “pre” block, n32 = 5, and if observation 1156

is during a “post” block, n1156 = 3.

Then there are three categorical variables: age group, subject ID, and trial (block).

The first two are treated as factor variables (also known as index variable or

categorical variable). Rather than using one-hot encoding or dummy variables,

the age levels are left as categories, and a coefficient is fit for each level. If dummy

variables were used for all 45 subjects, there would be 44 dummy variables to work

with times the number of coefficients that make estimates at the subject level.

The number of parameters in the model grows rapidly as the model complexity
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grows.

Age groups and individual subjects can be indexed in the same way that the

number of trials is indexed. Si refers to the subject in record i, and similarly

Gi refers to the age group of that subject. Observation 63 is for record ID

av-post1-M-f-HG, so then S63 is M-f-HG and G63 is middle_age. Under the hood

of R, these factor levels are represented as integers (e.g. middle age group level is

stored internally as the number 2).

(x <- factor(c("a", "a", "b", "c")))
#> [1] a a b c
#> Levels: a b c
storage.mode(x)
#> [1] "integer"

This data storage representation can later be exploited for the Stan model.

The pre- and post-adaptation categories are treated as a binary indicator referred

to as trt (short for treatment) since there are only two levels in the category. In

this setup, a value of 1 indicates a post-adaptation block. This encoding is chosen

over the reverse because the pre-adaptation block is like the baseline performance,

and it is more appropriate to interpret the post-adaptation block as turning on

some effect. Using a binary indicator in a regression setting may not be the best

practice as we discuss in section 4.3.

Construct Summary Statistics

A set of summary statistics are constructed that help answer the questions of

domain expertise consistency and model adequacy. We are studying the affects

of age and temporal recalibration through the PSS and JND (see section 3.1), so

it is natural to define summary statistics around these quantities to verify model

consistency.
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It is impossible that a properly conducted block would result in a JND less than 0

(the psychometric function is always non-decreasing), so that can be a lower limit

for its threshold. It is also unlikely that the just noticeable difference would be

more than a second. Some studies show that we cannot perceive time differences

below 30 ms, and others show that an input lag as small as 100ms can impair

a person’s typing ability. A time delay of 100ms is enough to notice, and so a

just noticeable difference should be much less than one second – much closer to

100ms. We will continue to use one second as an extreme estimate indicator, but

will incorporate this knowledge when it comes to selecting priors.

The point of subjective simultaneity can be either positive or negative, with the

belief that larger values are less likely. Some studies suggest that for audio-visual

temporal order judgment tasks, the separation between stimuli need to be as

little as 20ms for subjects to be able to determine which modality came first

(Vatakis et al., 2007). Other studies suggest that our brains can detect temporal

differences as small as 30ms. If these values are to be believed then we should be

skeptical of PSS estimates larger than say 150ms in absolute value, just to be

safe.

A histogram of computed PSS and JND values will suffice for summary statis-

tics. We can estimate the proportion of values that fall outside of our limits

defined above, and use them as indications of problems with the model fitting or

conceptual understanding.

Post-Model, Pre-Data

Develop Model

We begin with the simplest model that captures the structure of the data without
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including information about age group, treatment, or subject. Here is a simple

model that draws information from the conceptual analysis:

ki ∼ Binomial(ni,pi)
logit(pi) = β(xi−α)

Recall that we are using the linear model from (4.4). The PSS can be positive or

negative without any expected bias towards either, so a symmetric distribution

such as the Gaussian is a reasonable choice for α. We determined earlier that

a PSS value more than 150ms in absolute value is unlikely, so we can define a

Gaussian prior such that P (|pss|> 0.150)≈ 0.01. Since the prior does not need

to be exact, the following mean and variance suffice:

pss∼N (0,0.062)⇐⇒ α∼N (0,0.062)

For the just noticeable difference, we continue to use the log-normal distribution

because it is constrained to positive values and has the reciprocal property. The

JND is expected to be close to 100ms and unlikely to exceed 1 second. This implies

a prior such that the mean is around 100ms and the bulk of the distribution is

below 1 second. I.e. E[X]≈ 0.100 and P (X < 1)≈ 0.99. This requires solving a

system of nonlinear equations in two variables:

0.100 = exp
(
µ+σ2/2

)
0.99 = 0.5 + 0.5 · erf

[
ln(1)−µ√

2·σ

]

This nonlinear system can be solved using Stan’s algebraic solver (code provided
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in the appendix).

fit <- sampling(prior_jnd,
iter=1, warmup=0, chains=1, refresh=0,
seed=31, algorithm="Fixed_param")

sol <- extract(fit)
sol$y
#>
#> iterations [,1] [,2]
#> [1,] -7.501 3.225

The solver has determined that Lognormal(−7.5,3.22) is the appropriate prior.

However, simulating some values from this distribution produces a lot of extremely

small values (< 10−5) and a few extremely large values (≈ 102). This is because

the expected value of a log-normal random variable depends on both the mean

and standard deviation. If the median is used in place for the mean, then a more

acceptable prior may be determined.

fit <- sampling(prior_jnd_using_median,
iter=1, warmup=0, chains=1, refresh=0,
seed=31, algorithm="Fixed_param")

sol <- extract(fit)
sol$y
#>
#> iterations [,1] [,2]
#> [1,] -2.303 0.9898

Sampling from a log-normal distribution with these parameters and plotting the

histogram shows no inconsistency with the domain expertise.
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Prior Distribution for the JND

With a prior for the JND, the prior for β can be determined:

jnd∼ Lognormal(−2.3,0.992)⇐⇒ 1
jnd
∼ Lognormal(2.3,0.992)

and

β = logit(0.84)
jnd

∼ Lognormal(2.8,0.992)

The priors do not need to be too exact. Rounding the parameters for β, the
simple model is:

ki ∼ Binomial(ni,pi)
logit(pi) = β(xi−α)

α∼N (0,0.062)
β ∼ Lognormal(3,12)

and in Stan, the model code is:

data {
int N;
int n[N];
int k[N];
vector[N] x;

}
parameters {
real alpha;
real<lower=0> beta;

}
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model {
vector[N] p = beta * (x - alpha);
alpha ~ normal(0, 0.06);
beta ~ lognormal(3.0, 1.0);
k ~ binomial_logit(n, p);

}
generated quantities {

vector[N] log_lik;
vector[N] k_pred;
vector[N] theta = beta * (x - alpha);
vector[N] p = inv_logit(theta);
for (i in 1:N) {
log_lik[i] = binomial_logit_lpmf(k[i] | n[i], theta[i]);
k_pred[i] = binomial_rng(n[i], p[i]);

}
}

Notice that the model block is nearly identical to the mathematical model specified

above.

Construct Summary Functions

The next step is to construct any relevant summary functions. Since the distri-

bution of posterior PSS and JND values are needed for the summary statistics,

it will be convenient to have a function that can take in the posterior samples for

α and β and return the PSS and JND values. We define Q as a more general

function that takes in the two parameters and a target probability, π, and returns

the distribution of SOA values at π.

Q(π;α,β) = logit(π)
β

+α (4.8)

The function can be defined in R as
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Q <- function(p, a, b) qlogis(p) / b + a

With Q, the PSS and JND can be calculated as

pss=Q(0.5)
jnd=Q(0.84)−Q(0.5)

Simulate Bayesian Ensemble

During this step, we simulate the Bayesian model and later feed the prior values

into the summary functions in order to verify that there are no inconsistencies

with domain knowledge. Since the model is fairly simple, we simulate directly in

R.

set.seed(124)
n <- 10000

a <- rnorm(n, 0, 0.06)
b <- rlnorm(n, 3.0, 1)

dat <- with(av_dat, list(N = N, x = x, n = n))
n_obs <- length(dat$x)

idx <- sample(1:n, n_obs, replace = TRUE)
probs <- logistic(b[idx] * (dat$x - a[idx]))
sim_k <- rbinom(n_obs, dat$n, probs)

Prior Checks

This step pertains to ensuring that prior estimates are consistent with domain

expertise. We already did that in the model construction step by sampling

values for the just noticeable difference. The first prior chosen was not producing

JND estimates that were consistent with domain knowledge, so we adjusted

accordingly.
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Figure 4.2 shows the distribution of prior psychometric functions derived from

the simulated ensemble. There are a few very steep and very shallow curves, but

the majority fall within a range that appears likely.
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Figure 4.2.: Prior distribution of psychometric functions using the priors for alpha
and beta.

Additionally most of the PSS values are within ±0.1 with room to allow for some

larger values. Let’s check the prior distribution of PSS and JND values.

−0.2 −0.1 0.0 0.1 0.2
seconds

Prior Distribution for the PSS

Figure 4.3.: PSS prior distribution.

We are satisfied with the prior coverage of the PSS and JND values, and there

are only a few samples that go beyond the extremes that were specified in the
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Figure 4.4.: JND prior distribution.

summary statistics step.

Configure Algorithm

There are a few parameters that can be set for Stan. On the user side, the

main parameters are the number of iterations, the number of warm-up iterations,

the target acceptance rate, and the number of chains to run. By default, Stan

will use half the number of iterations for warm-up and the other half for actual

sampling. For now we use the default algorithm parameters in Stan, and will

tweak them later if and when issues arise.

Fit Simulated Ensemble

We now fit the model to the simulated data.

sim_dat <- with(av_dat, list(N = N, x = x, n = n, k = sim_k))
m041 <- rstan::sampling(m041_stan, data = sim_dat,

chains = 4, cores = 4, refresh = 0)

Algorithmic Calibration

To check the basic diagnostics of the model, we run the following code.
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check_hmc_diagnostics(m041)
#>
#> Divergences:
#> 0 of 4000 iterations ended with a divergence.
#>
#> Tree depth:
#> 0 of 4000 iterations saturated the maximum tree depth of 10.
#>
#> Energy:
#> E-BFMI indicated no pathological behavior.

There is no undesirable behavior from this model, so next we check the summary

statistics of the estimated parameters.

Table 4.1.: Summary statistics of the fitted Bayesian ensemble.

parameter mean se_mean sd 2.5% 97.5% n_eff Rhat
alpha 0.0061 0.0001 0.0038 -0.0012 0.0136 4039 0.9995
beta 10.7681 0.0051 0.2404 10.3043 11.2313 2202 1.0003

Both the R̂ and Neff look fine for both α and β, though it is slightly concerning

that α is centered relatively far from zero. This could just be due to sampling

variance, so we will continue on to the next step.

Post-Model, Post-Data

Fit Observed Data

All of the work up until now has been done without peaking at the observed data.

We go ahead and run the data through the model.

m041 <- sampling(m041_stan, data = obs_dat,
chains = 4, cores = 4, refresh = 200)

Diagnose Posterior Fit

Here we repeat the diagnostic checks that were used after fitting the simulated

data.
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check_hmc_diagnostics(m041)
#>
#> Divergences:
#> 0 of 4000 iterations ended with a divergence.
#>
#> Tree depth:
#> 0 of 4000 iterations saturated the maximum tree depth of 10.
#>
#> Energy:
#> E-BFMI indicated no pathological behavior.

Table 4.2.: Summary statistics of the fitted Bayesian ensemble.

parameter mean se_mean sd 2.5% 97.5% n_eff Rhat
alpha 0.0373 0.0001 0.0043 0.029 0.0458 3765 1.000
beta 8.4259 0.0039 0.1839 8.070 8.7897 2249 1.001

There are no indications of an ill-behaved posterior fit. Let’s also check the

posterior distribution of α and β against the prior density (4.5).
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Figure 4.5.: Comparison of posterior distributions for alpha and beta to their
respective prior distributions.

The posterior distributions for α and β are well within the range determined

by domain knowledge, and highly concentrated due to both the large amount

of data and the fact that this is a completely pooled model – all subject data

is used to estimate the parameters. As expected, the prior for the JND could
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have been tighter with more weight below half a second compared to the one

second limit used, but this is not prior information, so it is not prudent to change

the prior in this manner after having seen the posterior. As a rule of thumb,

priors should only be updated as motivated by domain expertise and not by the

posterior distribution.

Posterior Retrodictive Checks

It is time to run the posterior samples through the summary functions and then

perform retrodictive checks. A retrodiction is using the posterior model to predict

and compare to the observed data. This is simply done by drawing samples from

the posterior and feeding in the observational data. This may be repeated to

gain posterior predictive samples.

posterior_pss <- Q(0.5, p041$alpha, p041$beta)
posterior_jnd <- Q(0.84, p041$alpha, p041$beta) - posterior_pss

20 30 40 50
milliseconds

Posterior Distribution for the PSS

190 200 210
milliseconds

Posterior Distribution for the JND

Figure 4.6.: Posterior distribution of the PSS and JND.

Neither of the posterior estimates for the PSS or JND exceed the extreme cutoffs

set in the earlier steps, so we can be confident that the model is consistent

with domain expertise. Note how simple it is to visualize and summarize the
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distribution of values for these measures. Using classical techniques like MLE

might require using bootstrap methods to estimate the distribution of parameter

values, or one might approximate the parameter distributions using the mean

and standard error of the mean to simulate new values.

Next is to create the posterior predictive samples. We do this in two steps to

better show how the distribution of posterior psychometric functions relates to

the observed data, and then compare the observed data to the retrodictions.

Figure 4.7 shows the result of the first step.
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Figure 4.7.: Posterior distribution of psychometric functions using pooled obser-
vations.

Next we sample parameter values from the posterior distribution and use them

to simulate a new data set. In the next iteration we show how to get Stan to

automatically produce posterior predictive samples from the model fitting step.

The results of the posterior predictions are shown in figure 4.8.

alpha <- sample(p041$alpha, n_obs, replace = TRUE)
beta <- sample(p041$beta, n_obs, replace = TRUE)
logodds <- beta * (av_dat$x - alpha)
probs <- logistic(logodds)
sim_k <- rbinom(n_obs, av_dat$n, probs)



69

Observations Retrodictions

pre
post1

−0.50 −0.25 0.00 0.25 0.50 −0.50 −0.25 0.00 0.25 0.50

0.0

0.5

1.0

0.0

0.5

1.0

SOA (seconds)

re
sp

on
se

 p
ro

ba
bi

lit
y

Observed Data with Posterior Retrodictions

Figure 4.8.: Observed data compared to the posterior retrodictions. The data is
post-stratified by block for easier visualization.

Let’s be clear what the first iteration of this model describes. It is the average

distribution of underlying psychometric functions across all subjects and blocks.

It cannot tell us what the differences between pre- and post-adaptation blocks

are, or what the variation between subjects is. It is useful in determining if the

average value for the PSS is different from 0 or if the average JND is different

from some other predetermined level. This model is still useful given the right

question, but it cannot answer questions about group-level effects.

Figure 4.8 shows that the model captures the broad structure of the observed

data, but is perhaps a bit under-dispersed in the tail ends of the SOA values.

Besides this one issue, we are satisfied with the first iteration of this model and

are ready to proceed to the next iteration.

4.3. Iteration 2: adding age and block

In this iteration we add the treatment and age groups into the model. There are

no changes with the conceptual understanding of the experiment, and nothing to
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change with the observational space. As such we skip the first three steps and go

to the model development step. As we build the model, the number of changes

from one iteration to the next should go to zero as the model expands to become

only as complex as necessary to answer the research questions.

Post-Model, Pre-Data

Develop Model

To start, let’s add in the treatment indicator and put off consideration of adding

in the age group levels. In classical statistics, it is added as an indicator variable –

a zero or one – for both the slope and intercept (varying slopes, varying intercepts

model). Let trt be 0 if it is the pre-adaptation block and 1 if the observation

comes from the post-adaptation block.

θ = α+αtrt× trt+β×x+βtrt× trt×x

Now when an observation comes from the pre-adaptation block (trt = 0) the

linear predictor is given by

θpre = α+β×x

and when an observation comes from the post-adaptation block (trt = 1) the

linear predictor is

θpost = (α+αtrt) + (β+βtrt)×x
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This may seem like a natural way to introduce an indicator variable, but it comes

with serious implications. This model implies that there is more uncertainty

about the post-adaptation block compared to the baseline block, and this is not

necessarily true.

Var(θpost) = Var((α+αtrt) + (β+βtrt)×x)
= Var(α) + Var(αtrt) +x2Var(β) +x2Var(βtrt)

On the other hand, the variance of θpre is:

Var(θpre) = Var(α) +x2Var(β)≤Var(θpost)

Furthermore, the intercept, α, is no longer the average response probability

at x = 0 for the entire data set, but is instead exclusively the average for the

pre-adaptation block. This may not matter in certain analyses, but one nice

property of multilevel models is the separation of population level estimates (fixed

effects) and group level estimates (mixed effects).

Instead the treatment variable is introduced into the linear model as a factor

variable. This means that each level in the treatment gets its own parameter, and

this makes it easier to set priors when there are many levels in a group (such as

for the subject level). The linear model, using equation (4.4), with the treatment

is written as:

θ = (β+βtrt[i])
[
xi− (α+αtrt[i])

]
(4.9)



72

As more predictors and groups are added in, equation (4.9) becomes more difficult

to read. What we do is break up the slope and intercept parameters and write

the linear model as:

µα = α+αtrt[i]

µβ = β+βtrt[i]

θ = µβ(x−µα)

In this way the combined parameters can be considered separately from the linear

parameterization. Now we consider the priors for αtrt. Equation (4.10) shows

three ways of adding in the block variable for α. The left equation is a standard

single-level predictor, the center equation is the centered parameterization for a

multilevel predictor, and the right equation is the non-centered parameterization

for a multilevel predictor.

µα = αtrt[i]

αtrt ∼N (0,0.062)

µα = αtrt[i]

α∼N (0,0.062)
αtrt ∼N (α,σ2

trt)
σtrt ∼ πσ

µα = α+αtrt[i]

α∼N (0,0.062)
αtrt ∼N (0,σ2

trt)
σtrt ∼ πσ

(4.10)

In the center and right models of equation (4.10), α gets a fixed prior (the same

as in the first iteration), and αtrt gets a Gaussian prior with an adaptive variance

term that is allowed to be learned from the data. This notation is compact,

but αtrt is two parameters - one each for the blocks. They both share the same

variance term σtrt.

We will discuss selecting a prior for the variance term shortly. Instead of modeling

β with a log-normal prior, we can sample from a normal distribution and take
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the exponential of it to produce a log-normal distribution:

X ∼N (3,12)
Y = exp(X)⇐⇒ Y ∼ Lognormal(3,12)

This is the non-centered parameterization of the log-normal distribution, and

the motivation behind this parameterization is that it is now easier to include

new slope variables as an additive affect. If both β and βtrt are specified with

Gaussian priors, then the exponential of the sum will be a log-normal distribution.

The model now becomes:

ki ∼ Binomial(ni,pi)
logit(pi) = exp(µβ)(xi−µα)

µα = α+αtrt[i]

µβ = β+βtrt[i]

α∼N (0,0.062)
αtrt ∼N (0,σ2

trt)
β ∼N (3,12)

βtrt ∼N (0,γ2
trt)

σtrt ∼ πσ
γtrt ∼ πγ

(4.11)

Deciding on priors for the variance term requires some careful consideration. In

one sense, the variance term is the within-group variance. Gelman et al. (2006)

recommends that for multilevel models with groups with less than say 5 levels to

use a half-Cauchy prior. This weakly informative prior still has a regularizing

affect and dissuades larger variance estimates. Even though the treatment group

only has two levels, there is still value in specifying an adaptive prior for them,

and there is enough data for each treatment so that partial pooling won’t have
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as extreme of a regularizing effect.

σtrt ∼HalfCauchy(0,1)
γtrt ∼HalfCauchy(0,1)

We add in the age group level effects to (4.11) and specify their variance terms:

ki ∼ Binomial(ni,pi)
logit(pi) = exp(µβ)(xi−µα)

µα = α+αtrt[i] +αG[i]

µβ = β+βtrt[i] +βG[i]

α∼N (0,0.062)
αtrt ∼N (0,σ2

trt)
αG ∼N (0, τ2

trt)
β ∼N (3,12)

βtrt ∼N (0,γ2
trt)

βG ∼N (0,ν2
G)

σtrt,γtrt ∼HalfCauchy(0,1)
τG,νG ∼HalfCauchy(0,2)

(4.12)

The Stan code corresponding to model (4.12) is becoming quite long, so we omit it

from here on out. The final Stan model code may be found in the supplementary

code section of the appendix.

Post-Model, Post-Data

Fit Observed Data

We skip the prior checks and use the observed data to configure the algorithm

and diagnose the posterior fit.

m042 <- sampling(m042_stan, data = obs_dat, seed = 124,
chains = 4, cores = 4, refresh = 100)
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Diagnose Posterior Fit

check_hmc_diagnostics(m042)
#>
#> Divergences:
#> 4 of 4000 iterations ended with a divergence (0.1%).
#> Try increasing 'adapt_delta' to remove the divergences.
#>
#> Tree depth:
#> 0 of 4000 iterations saturated the maximum tree depth of 10.
#>
#> Energy:
#> E-BFMI indicated no pathological behavior.

As well as the 4 divergent transitions, there is also a message about the effective

sample size (ESS) being too low. The recommended prescription for low ESS is

to run the chains for more iterations. The posterior summary shows that Neff is

low for the age group level parameters (table 4.3).

Table 4.3.: Summary statistics of the second iteration.

parameter mean se_mean sd 2.5% 97.5% n_eff Rhat
a 0.0222 0.0014 0.0412 -0.0683 0.1024 824.6 1.002
aG[1] -0.0009 0.0012 0.0313 -0.0531 0.0714 703.5 1.003
aG[2] 0.0274 0.0012 0.0316 -0.0218 0.0990 698.3 1.003
aG[3] -0.0078 0.0012 0.0311 -0.0609 0.0609 714.3 1.004
b 2.4114 0.0216 0.5665 1.4902 3.8499 688.2 1.003
bG[1] 0.0030 0.0170 0.2942 -0.7681 0.5013 301.3 1.004
bG[2] 0.0538 0.0170 0.2940 -0.7101 0.5499 299.9 1.004
bG[3] -0.2223 0.0172 0.2955 -1.0150 0.2597 296.9 1.004

We can return to the algorithm configuration step and increase the number of

iterations and warm-up iterations, as well as increase the adapt delta parameter

to reduce the number of divergent transitions (which really isn’t a problem right

now).

Another technique we can employ is non-centered parameterization. Model (4.12)

uses non-centered parameterization for µα and µβ . Other parameters, especially
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the variance terms, can also benefit from non-centered parameterization. Model

(4.13) shows the results of reparameterizing:

ki ∼ Binomial(ni,pi)
logit(pi) = exp(µβ)(xi−µα)

µα = α+αtrt[i] +αG[i]

µβ = β+βtrt[i] +βG[i]

α̂, α̂trt, α̂G ∼N (0,12)
β̂, β̂trt, β̂G ∼N (0,12)

σ̂trt, γ̂trt, τ̂G, ν̂G ∼ U(0,π/2)
α= 0.06 · α̂

αtrt = σtrt · α̂trt
αG = γG · α̂G
σtrt = tan(σ̂trt)
γG = tan(γ̂G)
β = 3 + 1 · β̂

βtrt = τtrt · β̂trt
βG = νG · β̂G
τtrt = tan(τ̂trt)
νG = tan(ν̂G)

(4.13)

Develop Model

The model changes consist of using the non-centered parameterizations discussed

in the previous step.

As an aside, a multilevel model can be fit in R using lme4::glmer, brms::brm, or

rstanarm::stan_glmer, and they all use the same notation to specify the model.

The notation is very compact, but easy to unpack. Values not in a grouping term

are fixed effects and values in a grouping term (e.g. (1 + x | G)) are mixed or

random effects depending on which textbook you read.

f <- formula(k|n ~ 1 + x + (1 + x | G) + (1 + x | trt))

lme4::glmer(f, data = data, family = binomial("logit"))
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rstanarm::stan_glmer(f, data = data, family = binomial("logit"))
brms::brm(f, data = data, family = binomial("logit"))

The simpler notation and compactness of these methods are very attractive, and

for certain analyses they may be more than sufficient. The goal here is to decide

early on if these methods satisfy the model adequacy, and to use more flexible

modeling tools like Stan if necessary.

Fit Observed Data

This time we fit the model with the non-centered parameterization. Since this

model is sampling from intermediate parameters, we can choose to keep only the

transformed parameters.

m042nc <- sampling(m042nc_stan, data = obs_dat, seed = 143,
iter = 4000, warmup = 2000, pars = keep_pars,
control = list(adapt_delta = 0.95), thin = 2,
chains = 4, cores = 4, refresh = 100)

Diagnose Posterior Fit

check_hmc_diagnostics(m042nc)
#>
#> Divergences:
#> 32 of 4000 iterations ended with a divergence (0.8%).
#> Try increasing 'adapt_delta' to remove the divergences.
#>
#> Tree depth:
#> 0 of 4000 iterations saturated the maximum tree depth of 10.
#>
#> Energy:
#> E-BFMI indicated no pathological behavior.

There are still a few divergent transitions (< 1%), but the effective sample size

increased significantly (table 4.4).

A more direct way to compare the efficiency is through the ratio of Neff/N (figure

4.9).
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Table 4.4.: Summary statistics of the second iteration with non-centered parame-
terization.

parameter mean se_mean sd 2.5% 97.5% n_eff Rhat
a 0.0192 0.0008 0.0419 -0.0744 0.0956 2509 1.0005
aG[1] -0.0025 0.0006 0.0326 -0.0636 0.0739 2737 1.0014
aG[2] 0.0262 0.0006 0.0328 -0.0342 0.1044 2644 1.0014
aG[3] -0.0093 0.0006 0.0326 -0.0713 0.0652 2752 1.0011
aT[1] 0.0185 0.0009 0.0425 -0.0546 0.1242 2338 1.0005
aT[2] 0.0039 0.0009 0.0419 -0.0679 0.1089 2404 1.0005
b 2.3841 0.0115 0.5284 1.4762 3.6952 2109 1.0010
bG[1] 0.0170 0.0049 0.2730 -0.6323 0.4979 3106 1.0004
bG[2] 0.0678 0.0049 0.2728 -0.5773 0.5671 3113 1.0005
bG[3] -0.2075 0.0050 0.2741 -0.8506 0.2767 3026 1.0004
bT[1] -0.2764 0.0106 0.4914 -1.6338 0.5427 2141 0.9999
bT[2] -0.0501 0.0106 0.4909 -1.4120 0.7778 2125 1.0000

Figure 4.10 shows the trace plot for the slope and intercept parameters. Each

chain looks like it is sampling around the same average value as the others with

identical spreads (stationary and homoscedastic). This also helps to solidify the

idea that the R̂ statistic is the measure of between chain variance compared to

cross chain variance.

The chains displayed in figure 4.10 are healthy, as well as for the other parameters

not shown. Since there are no algorithmic issues, we proceed to the posterior

retrodictive checks.

Posterior Retrodictive Checks

We now have estimates for the age groups and the treatment. The posterior

estimates for the PSS and JND are shown in figure 4.11. There are many ways

to visualize and compare the distributions across age groups and conditions that

depend on what question is being asked. If for example the question is “what is

the qualitative difference between pre- and post-adaptation across age groups?”,

then figure 4.11 could answer that because it juxtaposes the two blocks in the
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Figure 4.9.: Model efficiency as measured by the N_eff/N ratio.
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Figure 4.10.: Traceplot for the slope and intercept parameters.
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same panel. We will consider alternative ways of arranging the plots in chapter

5.
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Figure 4.11.: Posterior distribution of the PSS and JND.

For the posterior retrodictions, we can do something similar to last time. We

had Stan perform posterior predictive sampling during the fitting step. This was

achieved by adding a generated quantities block to the code that takes the

posterior samples for the parameters, and then randomly generates a value from

a binomial distribution for each observation in the data. In effect, we now have

4000 simulated data sets. We only need one data set to compare to the observed

data, so it is selected randomly from the posterior.

The posterior retrodictions in figure 4.12 show no disagreement between the

model and the observed data. This model is almost complete, but has one more

problem: it measures the average difference in blocks, and the average difference

in age groups, but does not consider any interaction between the two. Implicitly

it assumes that temporal recalibration affects all age groups the same which may

not be true, so we address this in the next iteration.
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Figure 4.12.: Observed data compared to the posterior retrodictions.

4.4. Iteration 3: adding age-block interaction

There is no change in the pre-model analysis, so we will jump straight to the model

development step, after which we will jump right to the posterior retrodictive

checks. The changes to the model going forward are minor, and subsequent steps

are mostly repetitions of the ones taken in the first two iterations.

Post-Model, Pre-Data

Develop Model

We need to model an interaction between age group and treatment. In a simple

model in R, interactions between factor variable A and factor variable B can be

accomplished by taking the cross-product of all the factor levels. For example, if

A has levels a,b,c and B has levels x,y, then the interaction variable C =A×B

will have levels ax,ay,bx,by,cx,cy. The concept is similar in Stan: create a new

variable that is indexed by the cross of the two other factor variables.



82

βG[i]×trt[i] =⇒ bGT [G[i], trt[i]] (4.14)

In expression (4.14), the interaction variable βG[i]×trt[i] is between age group and

treatment. The right hand side is the corresponding Stan parameter. Notice that

it is an array-like object that is indexed by the age group at observation i and

the treatment at observation i. For example, observation 51 is for a middle age

adult subject during the post-adaptation block, so bGT [G[51], trt[51]] = bGT [2,2].

An interaction term is added for both the slope and intercept in this iteration.

Post-Model, Post-Data

Diagnose Posterior Fit

This model has no divergent transitions and no R̂ values greater than 1.1.

Furthermore the trace-rank plots show uniformity between chains indicating

that the chains are all exploring the same regions.

Posterior Retrodictive Checks

Because the model now allows for the interaction of age group and block, there

is no longer a fixed shift in the posterior distribution of the PSS and JND values.

Figure 4.13 shows that temporal recalibration had no discernible affect on the

PSS estimates for the middle age group.

The posterior retrodictions for this model are going to be similar to the last

iteration. Instead, we want to see how this model performs when it comes to

the posterior retrodictions of the visual TOJ data. There is something peculiar

about that data that is readily apparent when we try to fit a GLM using classical

MLE.
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Figure 4.13.: Posterior distribution of the PSS and JND.

vis_mle <- glm(cbind(k, n-k) ~ 0 + sid + sid:soa,
data = visual_binomial,
family = binomial("logit"),
subset = trial %in% c("pre", "post1"))

We get a message saying that the fitted probabilities are numerically 0 or 1. In

2.1 we determined that this indicates a large estimate for the slope. This model

estimates a slope and an intercept for each subject individually (no pooling),

so we can look at the estimates for each subject. Table 4.5 shows the top 3

coefficients sorted by largest standard error of the estimate for both slope and

intercept.

Table 4.5.: Coefficients with the largest standard errors.

Subject Coefficient Estimate Std. Error z value Pr(>|z|)
Y-m-CB Slope 0.6665 25.193 0.0265 0.9789
M-m-BT Slope 0.6707 24.921 0.0269 0.9785
M-f-DB Slope 0.6707 24.919 0.0269 0.9785
O-f-MW Intercept -3.2427 1.235 -2.6261 0.0086
Y-f-CJ Intercept -2.1336 1.024 -2.0829 0.0373
M-f-CC Intercept -2.1336 1.024 -2.0829 0.0373

The standard error of the slope estimate for subject Y-m-CB is incredibly large
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in comparison to its own estimate and in comparison to the slope with the next

largest standard error. Figure 4.14 shows that there is almost perfect separation

in the data for this subject, and that is resulting in a larger slope estimate. In

consequence, the estimated JND for this subject is just 3ms which is questionably

low.
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Figure 4.14.: There is almost complete separation in the data.

One remedy for this is to pool observations together as we have done for the

model in this iteration. The data is pooled together at the age group level and

variation in the subjects’ responses removes the separation. This isn’t always

ideal, as sometimes researchers are interested in studying the individuals within

the experiment. If accurate inferences about the individual cannot be obtained,

then the results are not valid.

Figure 4.15 shows the posterior distribution of psychometric functions for the

visual TOJ data. Notice that there is almost no difference between the pre- and

post-adaptation blocks.

Furthermore, as shown by the posterior retrodictions (figure 4.16), the model is

not fully capturing the variation in the responses near the outer SOA values –
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Figure 4.15.: Posterior distribution of psychometric functions for the visual TOJ
data. There is almost no visual difference between the pre- and
post-adaptation blocks.
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the posterior predictive samples are tight around SOA values near zero.
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Figure 4.16.: Observed visual TOJ data compared to the posterior retrodictions.
The retrodictions are not capturing the variation at the outer SOA
values.

Why is the model having difficulty expressing the data? There is one more

concept pertaining to psychometric experiments that has been left out until now,

and that is a lapse in judgment. Not a lapse in judgment on our part, but the

act of a subject having a lapse in judgment while performing an experiment.

4.5. Iteration 4: adding a lapse rate

Pre-Model, Pre-Data

Conceptual Analysis

A lapse in judgment can happen for any reason, and is assumed to be random and

independent of other lapses. They can come in the form of the subject accidentally

blinking during the presentation of a visual stimulus, or unintentionally pressing

the wrong button to respond. Whatever the case is, lapses can have a significant

affect on the estimation of the psychometric function.
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Post-Model, Pre-Data

Develop Model

Lapses can be modeled as occurring independently at some fixed rate. This

means that the underlying psychometric function, F , is bounded by some lower

and upper lapse rate. This manifests as a scaling and translation of F . For a

given lower and upper lapse rate λ and γ, the performance function Ψ is

Ψ(x;α,β,λ,γ) = λ+ (1−λ−γ)F (x;α,β)
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Figure 4.17.: Psychometric function with lower and upper performance bounds.

In certain psychometric experiments, λ is interpreted as the lower performance

bound, or the guessing rate. For example, in certain 2-AFC tasks, subjects are

asked to respond which of two masses is heavier, and the correctness of their

response is recorded. When the masses are the same, the subject can do no better

than random guessing. In this task, the lower performance bound is assumed to

be 50% as their guess is split between two choices. As the absolute difference

in mass grows, the subject’s correctness rate increases, though lapses can still
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happen. In this scenario, λ is fixed at 0.5 and the lapse rate γ is a parameter in

the model.

The model we are building for this data does not explicitly record correctness,

so we do not give λ the interpretation of a guessing rate. Since the data are

recorded as proportion of positive responses, we instead treat λ and γ as lapse

rates for negative and positive SOAs. But why should the upper and lower lapse

rates be treated separately? A lapse in judgment can occur independently of the

SOA, so λ and γ should be the same. With this assumption, we can throw away

γ and assume that the lower and upper performance bounds are restricted by

the same amount. I.e.

Ψ(x;α,β,λ) = λ+ (1−2λ)F (x;α,β) (4.15)

While we are including a lapse rate, we will also ask the question of if different

age groups have different lapse rates. To answer this (or rather have the model

answer this), we include the new parameter λG[i] into the model so that the lapse

rate is estimated for each age group.

It’s okay to assume that lapses in judgment are rare, and it’s also true that the

rate (or probability) of a lapse is bounded in the interval [0,1]. Because of this,

we put a Beta(4,96) prior on λ which puts 99% of the weight below 0.1 and an

expected lapse rate of 0.04.

Construct Summary Functions

Since the fundamental structure of the linear model has changed, it is important

to update the summary function that computes the distribution of SOA values
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for a given response probability. Given equation (4.15), the summary function Q

is:

Q(π;α,β,λ) = 1
exp(β) · logit

(
π−λ
1−2λ

)
+α (4.16)

Post-Model, Post-Data

Fit Observed Data

Because it is the visual data that motivated this iteration, we continue using that

data to fit the model and perform posterior retrodictive checks.

Posterior Retrodictive Checks

The plot for the distribution of psychometric functions is repeated in figure 4.18.

There is now visual separation between the pre- and post-adaptation blocks,

with the latter exhibiting a higher slope, which in turn implies a reduced just

noticeable difference which is consistent with the audiovisual data in the previous

model.

The model is now doing better to capture the variation in the outer SOAs. This

can best be seen in the comparison of the younger adult pre-adaptation block of

figure 4.19.

We can also reintroduce the package loo from the chapter 2 to evaluate the

predicted predictive performance of the model with lapse rate to the model

without the lapse rate as a way of justifying its inclusion. Subjectively the

lapse rate model is already doing better, but it is necessary to have quantitative

comparisons. Table 4.6 shows the comparison.
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Figure 4.18.: There is now a visual distinction between the two blocks unlike
in the model without lapse rate. The lapse rate acts as a balance
between steep slopes near the PSS and variation near the outer
SOA values.
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Figure 4.19.: The lapse rate produces posterior retrodictions that are visually
more similar to the observed data than in the previous model,
suggesting that the model is now just complex enough to capture
the relevant details of the data generating process.
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When extracting the PSIS-LOO values, loo warns about some Pareto k diagnostic

values that are slightly high:

pareto_k_table(l044)
#> Pareto k diagnostic values:
#> Count Pct. Min. n_eff
#> (-Inf, 0.5] (good) 2249 100.0% 1457
#> (0.5, 0.7] (ok) 1 0.0% 794
#> (0.7, 1] (bad) 0 0.0% <NA>
#> (1, Inf) (very bad) 0 0.0% <NA>
#>
#> All Pareto k estimates are ok (k < 0.7).

There is one observation in the data set that has a k value between 0.5 and 0.7.

This means that the estimated Pareto distribution used for smoothing has infinite

variance, but practically it is still usable for estimating predictive performance.

Table 4.6.: Model without lapse rate compared to one with lapse rate.

Model elpd_diff se_diff elpd_loo p_loo se_p_loo
Lapse 0.0 0.00 -1001 19.22 1.902
No Lapse -259.4 31.92 -1260 23.10 2.259

The model with the lapse rates has higher estimated predicted performance than

the model without lapse rates as measured by the ELPD. We can now perform

one last iteration of the model by including the subject level estimates. Even

though we’re only interested in making inferences at the group level, including

the subject level might improve predictive performance.

4.6. Iteration 5: adding subjects

The only change in this iteration is the addition of the subject level parameters

for the slope and intercept. The model is:
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ki ∼ Binomial(ni,pi)
pi = λG[i] + (1−2λG[i])exp(µβ)(xi−µα)
µα = α+αG[i],trt[i] +αS[i]

µβ = β+βG[i],trt[i] +βS[i]

λG ∼ Beta(4,96)
α̂, α̂G×trt, α̂S ∼N (0,12)
β̂, β̂G×trt, β̂S ∼N (0,12)

σ̂G×trt, γ̂G×trt, τ̂S , ν̂S ∼ U(0,π/2)
α= 0.06 · α̂

αG×trt = σG×trt · α̂trt
αS = τS · α̂S

σG×trt = tan(σ̂G×trt)
τS = tan(τ̂S)
β = 3 + 1 · β̂

βG×trt = γG×trt · β̂G×trt
βS = νS · β̂S

γG×trt = tan(γ̂G×trt)
νS = tan(ν̂S)

(4.17)

Post-Model, Post-Data

Diagnose Posterior Fit

There is only one divergent transition for this model indicating no issues with

the algorithmic configuration. Checking the trace plot for the multilevel variance

terms also indicates no problems with the sampling.

This model also utilizes thinning while fitting for data saving reasons. As such

the autocorrelation between samples is reduced and the model achieves a high

Neff/N ratio (figure 4.21).

Posterior Predictive Comparison

In lieu of posterior retrodictions (which would appear similar to those of the
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Figure 4.20.: The multilevel model with lapse and subject-level terms fits effi-
ciently with no issues.
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Figure 4.21.: The model with lapse rates and subject-level parameters achieves a
sampling efficiency partially due to thinning.
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last iteration), we compare the model with subject-level parameters to the one

without. There are a handful of observations in the subject-level model that have

a Pareto k value higher than 0.7 which indicates impractical convergence rates

and unreliable Monte Carlo error estimates. For more accurate estimation of

predictive performance, k-fold CV or LOOCV is recommended.

#> Pareto k diagnostic values:
#> Count Pct. Min. n_eff
#> (-Inf, 0.5] (good) 2174 96.6% 285
#> (0.5, 0.7] (ok) 63 2.8% 170
#> (0.7, 1] (bad) 13 0.6% 98
#> (1, Inf) (very bad) 0 0.0% <NA>

Table 4.7.: Model without subjects compared to one with subjects.

Model elpd_diff se_diff elpd_loo p_loo se_p_loo
With Subjects 0.00 0.00 -925.1 75.57 5.432
Without Subjects -75.96 19.13 -1001.1 19.22 1.902

Including the subject-level information significantly improves the ELPD, and

even though there are over 100 parameters in the model (slope and intercept for

each of the 45 subjects), the effective number of parameters is much less. Since

this new model is capable of making inferences at both the age group level and

the subject level, we use it for drawing inferences in the results chapter.
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5. Psychometric Results

What was the point of going through all the work of building a model if not to

answer the questions that motivated the model in the first place? To reiterate, the

questions pertain to how the brain reconciles stimuli originating from different

sources, and if biological (age) and contextual (task, temporal recalibration)

factors contribute to global percepts. The way through which these questions are

answered is through a psychometric experiment and the resulting psychometric

function (chapter 3). This chapter is divided into three sections: the affects of

temporal recalibration on perceptual synchrony, the affects of temporal recalibra-

tion on temporal sensitivity, and the consideration of a lapse rate. Also recall that

there are four separate tasks - audiovisual, visual, duration, and sensorimotor.

Temporal recalibration consists of presenting a subject with an adapting stimulus

throughout a block of a psychometric experiment. Depending on the mechanisms

at work, the resulting psychometric function can either be shifted (biased) towards

the adapting stimulus (lag adaption) or away (Bayesian adaptation). The theory

of integrating sensory signals is beyond the scope of this paper, but some papers

discussing sensory adaptation in more detail are Miyazaki et al. (2006), Sato and

Aihara (2011), and Stocker and Simoncelli (2005). The statistical associations

are reported without consideration for the deeper psychological theory.
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5.1. On Perceptual Synchrony

Perceptual synchrony is when the temporal delay between two stimuli is small

enough so that the brain integrates the two signals into a global percept -

perceived as happening simultaneously. Perceptual synchrony is studied through

the point of subjective simultaneity (PSS), and in a simple sense represents

the bias towards a given stimulus. Ideally the bias would be zero, but human

perception is liable to change due to every day experiences. The pre-adaptation

block is a proxy for implicit bias, and the post-adaptation indicates whether

lag or Bayesian adaptation is taking place. Some researchers believe that both

forms of adaptation are taking place at all times and that the mixture rates

are determined by biological and contextual factors. We try to stay away from

making any strong determinations and will only present the results conditional

on the model and the data.

Audiovisual TOJ Task

There are two ways that we can visually draw inferences across the six different

age-block combinations. The distributions can either be faceted by age group,

or they can be faceted by block. There are actually many ways that the data

can be presented, but these two methods of juxtaposition help to answer two

questions - how does the effect of adaptation vary by age group, and is there a

difference in age groups by block? The left hand plot of figure 5.1 answers the

former, and the right hand plot answers the latter.

Across all age groups, temporal recalibration results in a negative shift towards

zero in the PSS (as shown by the left hand plot), but there is no significant

difference in the PSS between age groups (right hand plot). A very convenient



97

Young
M

iddle
O

lder

−0.04 0.00 0.04 0.08 0.12
PSS

Block Pre Post

P
re

P
ost

−0.04 0.00 0.04 0.08 0.12
PSS

Age Group Young Middle Older

PSS − Audiovisual TOJ

Figure 5.1.: Posterior distribution of PSS values for the audiovisual task.

consequence of using MCMC is that the samples from the posterior can be

recombined in many ways to describe new phenomena. The PSS values can even

be pooled across age groups so that the marginal affect of recalibration may be

considered (left hand plot of figure 5.2).
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Figure 5.2.: Posterior distribution of PSS values for the audiovisual task. Left:
Marginal over age group. Right: Marginal over block.

Now with the marginal of age group, the distribution of differences between pre-

and post-adaptation blocks can be calculated. We could report a simple credible

interval, but it almost seems disingenuous given that the entire distribution is
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available. We could report that the 90% highest posterior density interval (HPDI)

of the difference is (−0.036,0.003), but consider the following figure instead (figure

5.3).

−0.050 −0.025 0.000 0.025
SOA (seconds)

Between pre− and post−adaptation

Distribution of the difference in PSS

Figure 5.3.: Distribution of differences for pre- and post-adaptation PSS values
with 90% HPDI.

Figure 5.3 shows the distribution of differences with the 90% HPDI region shaded.

From this figure, one might conclude that the effect of recalibration, while small,

is still noticeable for the audiovisual task. While this could be done for every task

in the rest of this chapter, it is not worth repeating as we are not trying to prove

anything about the psychometric experiment itself (that is for a later paper).

The point of this demonstration is simply that it can be done (and easily), and

how to summarize the data both visually and quantitatively.

Visual TOJ Task

Here there is no clear determination if recalibration has an effect on perceptual

synchrony, as it is only the middle age group that shows a shift in bias. Even

more, there is a lot of overlap between age group. Looking at the marginal

distributions (figure 5.5), there may be a difference between the younger and
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Figure 5.4.: Posterior distribution of PSS values for the visual task.

older age groups, and the middle age and older age groups.
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Figure 5.5.: The difference between the older age group and the two others is
noticeable, but not likely significant.

These plots are useful for quickly being able to determine if there is a difference in

factors. If there is a suspected difference, then the distribution can be calculated

from the posterior samples as needed. We suspect that there may be a difference

between the older age group and the other two, so we calculate the differences

and summarize them with the histogram in figure 5.6.

The bulk of the distribution is above zero, but there is still a chance that there is
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Figure 5.6.: The bulk of the distribution is above zero, but there is still a chance
that there is no difference in the distribution of PSS values between
the age groups during the visual TOJ experiment.

no difference in the distribution of PSS values between the age groups during the

visual TOJ experiment.
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Figure 5.7.: Posterior distribution of PSS values for the duration task.

The duration TOJ task is very interesting because 1) recalibration had a visually

significant effect across all age groups, and 2) there is virtually no difference

between the age groups. We could plot the marginal distribution, but it would
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not give any more insight. What we might ask is what is it about the duration

task that lets temporal recalibration have such a significant effect? Is human

perception of time duration more malleable than our perception to other sensory

signals?

Sensorimotor TOJ Task
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Figure 5.8.: Posterior distribution of PSS values for the sensorimotor task.

There are no differences between age groups or blocks when it comes to perceptual

synchrony in the sensorimotor task.

5.2. On Temporal Sensitivity

Temporal sensitivity is the ability to successfully integrate signals arising from

the same event, or segregate signals from different events. When the stimulus

onset asynchrony increases, the ability to bind the signals into a single percept is

reduced until they are perceived as distinct events with a temporal order. Those

that are more readily able to determine temporal order have a higher temporal

sensitivity, and it is measured through the slope of a psychometric function -
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specifically the quantity known as the just noticeable difference.
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Figure 5.9.: Posterior distribution of JND values for the audiovisual task.

All age groups experienced an increase in temporal sensitivity, but the effect is

largest in the older age group which also had the largest pre-adaptation JND

estimates. There also appears to be some distinction between the older age group

and the younger ones in the pre-adaptation block, but recalibration closes the

gap.

Visual TOJ Task

The story for the visual TOJ task is similar to the audiovisual one - each age

group experience heightened temporal sensitivity after recalibration, with the

two older age groups receiving more benefit than the younger age group. It’s

also worth noting that the younger age groups have higher baseline temporal

sensitivity, so there may not be as much room for improvement.

Duration TOJ Task
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Figure 5.10.: Posterior distribution of JND values for the visual task.
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Figure 5.11.: Posterior distribution of JND values for the duration task.
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This time the effects of recalibration are not so strong, and just like for the PSS,

there is no significant difference between age groups in the duration task.

Sensorimotor TOJ Task
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Figure 5.12.: Posterior distribution of JND values for the sensorimotor task.

Finally in the sensorimotor task there are mixed results. Temporal recalibration

increased the temporal sensitivity in the younger age group, reduced it in the

middle age group, and had no effect on the older age group. Clearly the biological

factors at play are complex, and the data here is a relatively thin slice of the

population. More data and a better calibrated experiment may give better

insights into the effects of temporal recalibration.

5.3. Lapse Rate across Age Groups

In the above figure, the outcome of one experiment can be represented as a

directed acyclic graph (DAG) where at the start of the experiment, the subject

either experiences a lapse in judgment with probability γ or they do not experience

a lapse in judgment. If there is no lapse, then they will give a positive response
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1−F(x)

Figure 5.13.: Process model of the result of a psychometric experiment with the
assumption that lapses occur at random and at a fixed rate, and
that the subject guesses randomly in the event of a lapse.

with probability F (x). If there is a lapse in judgment, then it is assumed that

they will respond randomly – e.g. a fifty-fifty chance of a positive response. In

this model of an experiment, the probability of a positive response is the sum of

the two paths.

P(positive) = P(lapse) ·P(positive|lapse)

+ P(no lapse) ·P(positive|no lapse)

= 1
2γ+ (1−γ) ·F (x)

If we then let γ = 2λ then the probability of a positive response becomes

P(positive) = λ+ (1−2λ) ·F (x)

This is the same lapse model described in (4.15)! But now there is more insight
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into what the parameter λ is. If γ is the true lapse rate, then λ is half the lapse

rate. This may sound strange at first, but remember that equation (4.15) was

motivated as a lower and upper bound to the psychometric function where the

bounds are constrained by the same amount. Here the motivation is from an

illustrative diagram, yet the two lines of reasoning arrive at the same model.

Figure 5.14 shows the distribution of lapse rates for each age group across the four

separate tasks. There is no visual trend in the ranks of lapse rates, meaning that

no single age group definitively experiences a lower lapse rate than the others,

though the middle age group comes close to being the winner and the older age

group is more likely to be trailing behind. The distribution of lapse rates does

reveal something about the tasks themselves.
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Lapse Rate

Age Group
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Middle

Older

Distribution of lapse rates across tasks

Figure 5.14.: Lapse rates for the different age groups across the four separate
tasks. Visually there is no clear trend in lapses by age group, but
the concentration of the distributions give insight into the perceived
difficulty of a task where more diffuse distributions may indiciate
more difficult tasks.

We used the audiovisual data in the first few iterations of building a model and

there were no immediate issues, but when we tested the model on the visual data

it had trouble expressing the variability at outer SOA values. We also noted
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that one subject had a near perfect response set, and many others had equally

impressive performance. The model without a lapse rate was being torn between

a very steep slope near the PSS and random variability near the outer SOAs.

The remedy was to include a lapse rate (motivated by domain expertise) which

allowed for that one extra degree of freedom necessary to reconcile the opposing

forces.

Why did the visual data behave this way when the audiovisual data had no

issue? That gets deep into the theory of how our brains integrate signals arising

from different modalities. Detecting the temporal order of two visual stimuli

may be an easier mental task than that of heterogeneous signals. Then consider

the audiovisual task versus the duration or sensorimotor task. Visual-speech

synthesis is a much more common task throughout the day than visual-tactile

(sensorimotor), and so perhaps we are better adjusted to such a task as audiovisual.

The latent measure of relative performance or task difficulty might be picked up

through the lapse rate.

To test this idea, the TOJ experiment could be repeated, but also ask the subject

afterwards how they would rate the difficulty of each task. For now, a post-hoc

test can be done by comparing the mean and spread of the lapse rates to a

pseudo-difficulty measure as defined by the proportion of the incorrect responses.

A response is correct when the sign of the SOA value is concordant with the

response, e.g. a positive SOA and the subject gives the “positive” response or a

negative SOA and the subject gives the “negative” response. Looking at figure

5.14, we would subjectively rate the tasks from easiest to hardest based on ocular

analysis as
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1. Visual

2. Audiovisual

3. Duration

4. Sensorimotor

Again, this ranking is based on the mean (lower intrinsically meaning easier) and

the spread (less diffuse implying more agreement of difficulty between age groups).

The visual task has the tightest distribution of lapse rates, and the sensorimotor

has the widest spread, so we can rank those first and last respectively. Audiovisual

and duration are very similar in mean and spread, but the audiovisual has a

bit more agreement between the young and middle age groups, so second and

third go to audiovisual and duration. Table 5.1 shows the results arranged by

increasing pseudo difficulty. As predicted, the visual task is squarely at the top

and the sensorimotor is fully at the bottom. The only out of place group is the

audiovisual task for the older age group, which is about equal to the older age

group during the duration task. In fact, within tasks, the older age group always

comes in last in terms of proportion of correct responses, while the young and

middle age groups trade back and forth.

5.4. Subject specific inferences

The multilevel model described by (4.17) provides subject-specific estimation as

well as the age group level estimations presented above. If desired, we can make

comparisons between subjects or use the subject level estimates to highlight the

variation within age groups. Figure 5.15 shows the comparison of two middle

aged subjects from the visual TOJ task. They both show heightened temporal
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Table 5.1.: Relative difficulty of the different tasks by age group. The difficulty
is measured by the proportion of incorrect responses.

Task Age Group Pseudo Difficulty
visual Middle Age 0.03
visual Young Adult 0.03
visual Older Adult 0.06
audiovisual Young Adult 0.12
audiovisual Middle Age 0.12
duration Middle Age 0.14
duration Young Adult 0.16
duration Older Adult 0.17
audiovisual Older Adult 0.17
sensorimotor Young Adult 0.22
sensorimotor Middle Age 0.24
sensorimotor Older Adult 0.29

sensitivity through an increased slope.

Figure 5.15.: Comparison of subject-specific distribution of psychometric func-
tions from the Visual TOJ task.

The subject-level model can make predictions for new individuals or for individuals

that did not complete a block. Recall that the post-adaptation block for subject

O-f-CE was removed from the audiovisual data set (see figure 3.4). We can still

predict their post-adaptation performance because we have information from

their pre-adaptation responses and the age-block level estimates as demonstrated
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in figure 5.16.

Figure 5.16.: Block estimates for subject ‘O-f-CE‘. Even though their post-
adaptation block was not in the data set, we can make predtictions
thanks to the multilevel model with subject-level predictors.
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6. Discussion and Conclusion

The results from the previous chapter provide insight into how future experiments

can be designed to offer better inferences. In the visual TOJ task, the granularity

in the SOA values near the PSS could be increased to get more reliable estimates

of the slope and to avoid complete separation. Including a lapse rate helps, but

can be unreliable if the range of SOA values is too narrow. For more difficult

tasks like the sensorimotor TOJ task, larger SOA values are necessary so that

the lapse rate can be accurately measured.

The results presented previously are based off of a small scale preliminary data

set, so there’s a lot of uncertainty in the measure of the psychometric quantities.

One way to remove the uncertainty of the lapse rate could be to have some trials

with very large SOA values. The reasoning is that if the difficulty of a task

(given an SOA value) is lowered, than an incorrect response is more likely to

be correctly attributed to a true lapse in judgment as opposed to a genuinely

incorrect response. Wichmann and Hill (2001b) recommends at least one sample

at π ≥ 0.95 is necessary for reliable bootstrap confidence intervals, so the same

reasoning can be applied when using Bayesian credible intervals. For a task such

as visual TOJ, the 90% level may occur at an SOA of ≈ 40ms while for the

audiovisual TOJ it may be ≈ 220ms, so the sampling scheme for psychometric
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experiments must be tuned to the task.

Wichmann and Hill (2001a) experimentally determined that the lapse rate for

trained observers is between 0% and 5%, and the data in this paper loosely agree

with that conclusion. Any excess in lapse rate may be attributed to the perceived

task difficulty and a sub-optimal sampling scheme. Since the visual TOJ task is

relatively the easiest, the estimated lapse rates are more believable as true lapse

rates, and fall closely within the (0,0.05) range. Since the lapse rate is estimated

to be no more than 0.05, an experiment would need about 20 trials at a larger

SOA in order to pick up on a single lapse. In this data, we have multiple subjects

within an age group, so the repetition is spread out. As a consequence, it is

possible to estimate an age group level lapse rate, but more difficult to estimate

subject specific lapses.

For multilevel modeling and partial pooling to have a significant benefit, five

or more groups is recommended. The study could be expanded to have five or

six age groups (20-30, 30-40, etc.). More age groups would also allow for finer

tracking of trends in the distribution of PSS and JND values and the affect of

temporal recalibration on them.

In the future we would like to explore a causal inference model for the psychometric

function. The results drawn from the statistical model are simply associations

between the predictor variables, and of course correlations do not imply causation.

How do we move from association to cause-and-effect? Drawing the model as

a directed acyclic graph and testing the implications of the model is a start.

With a proper model, total effects of a certain variable on the outcome can be

determined.



113

The model development was motivated by domain expertise consistency and the

model’s ability to answer domain-related research questions. The emphasis is

on model comparison which is not necessarily model selection. Certain models

are useful for answering different questions. We compared models that have the

potential to answer questions pertaining to the age group level and compared their

estimated predictive performance. Predictive performance is a reliable metric

for model comparison because a model that can predict well likely captures the

regular features of the observed data and the data generating model.

We have produced a novel statistical model for temporal order judgment data by

following a principled workflow and fitting a series of Bayesian models efficiently

using Hamiltonian Monte Carlo in the R programming language with Stan. We

described methods for selecting priors for the slope and intercept parameters,

and argued why the selected linear parameterization can have practical benefits

on prior specification. Finally we motivated the inclusion of a lapse rate into the

model for the psychometric function with an illustrative diagram of the result of

a temporal order judgment experiment.
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A. Supplementary Code

Eight Schools Model

data {
int<lower=0> J; // number of schools
real y[J]; // estimated treatment effects
real<lower=0> sigma[J]; // standard error of effect estimates

}
parameters {

real mu; // population treatment effect
real<lower=0> tau; // standard deviation in treatment effects
vector[J] eta; // unscaled deviation from mu by school

}
transformed parameters {

vector[J] theta = mu + tau * eta; // school treatment effects
}
model {

target += normal_lpdf(eta | 0, 1); // prior log-density
target += normal_lpdf(y | theta, sigma); // log-likelihood

}
generated quantities {

vector[J] log_lik;

for (j in 1:J) {
log_lik[j] = normal_lpdf(y[j] | theta[j], sigma[j]);

}
}
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Model with Lapse and Subject-level Parameters

data {
int N; // Number of observations
int N_G; // Number of age groups
int N_T; // Number of treatments
int N_S; // Number of subjects
int n[N]; // Number of Bernoulli trials
int k[N]; // Number of "positive" responses
vector[N] x; // SOA values
int G[N]; // Age group index variable
int trt[N]; // Treatment index variable
int S[N]; // Subject index variable

}
parameters {

real a_raw;
real<lower=machine_precision(),upper=pi()/2> aGT_unif;
real<lower=machine_precision(),upper=pi()/2> aS_unif;
matrix[N_G, N_T] aGT_raw;
vector[N_S] aS_raw;

real b_raw;
real<lower=machine_precision(),upper=pi()/2> bGT_unif;
real<lower=machine_precision(),upper=pi()/2> bS_unif;
matrix[N_G, N_T] bGT_raw;
vector[N_S] bS_raw;

vector[N_G] lG;
}
transformed parameters {

real a;
matrix[N_G, N_T] aGT;
vector[N_S] aS;
real sd_aGT;
real sd_aS;

real b;
matrix[N_G, N_T] bGT;
vector[N_S] bS;
real sd_bGT;
real sd_bS;

a = a_raw * 0.06;
sd_aGT = tan(aGT_unif);
sd_aS = tan(aS_unif);
aS = aS_raw * sd_aS;

b = 3.0 + b_raw;
sd_bGT = 2 * tan(bGT_unif);
sd_bS = 2 * tan(bS_unif);
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bS = bS_raw * sd_bS;

for (i in 1:N_G) {
for (j in 1:N_T) {

aGT[i, j] = aGT_raw[i, j] * sd_aGT;
bGT[i, j] = bGT_raw[i, j] * sd_bGT;

}
}

}
model {

vector[N] p;

a_raw ~ std_normal();
b_raw ~ std_normal();
lG ~ beta(4, 96);

aS_raw ~ std_normal();
bS_raw ~ std_normal();
to_vector(aGT_raw) ~ std_normal();
to_vector(bGT_raw) ~ std_normal();

for (i in 1:N) {
real alpha = a + aGT[G[i], trt[i]] + aS[S[i]];
real beta = b + bGT[G[i], trt[i]] + bS[S[i]];
real lambda = lG[G[i]];
p[i] = lambda + (1 - 2*lambda) * inv_logit(exp(beta) * (x[i] - alpha));

}

k ~ binomial(n, p);
}
generated quantities {

vector[N] log_lik;
vector[N] k_pred;

for (i in 1:N) {
real alpha = a + aGT[G[i], trt[i]] + aS[S[i]];
real beta = b + bGT[G[i], trt[i]] + bS[S[i]];
real lambda = lG[G[i]];

real p = lambda + (1 - 2*lambda) * inv_logit(exp(beta) * (x[i] - alpha));

log_lik[i] = binomial_lpmf(k[i] | n[i], p);
k_pred[i] = binomial_rng(n[i], p);

}
}
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Stan Algebraic Solver

functions {
vector system(vector y, vector theta, real[] x_r, int[] x_i) {
vector[2] z;
z[1] = exp(y[1] + y[2]^2 / 2) - theta[1];
z[2] = 0.5 + 0.5 * erf(-y[1] / (sqrt(2) * y[2])) - theta[2];
return z;

}
}
transformed data {

vector[2] y_guess = [1, 1]';
real x_r[0];
int x_i[0];

}
transformed parameters {
vector[2] theta = [0.100, 0.99]';
vector[2] y;
y = algebra_solver(system, y_guess, theta, x_r, x_i);

}
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B. Developing a Model

Our final modeling strategy is an evolution from other attempts. The development

proceeded through multiple iterations described in chapter 4, but doesn’t tell the

full story. We learn more from others when they share what didn’t work along

with the final path that did work. There is knowledge to be gained in failed

experiments, because then there is one more way to not do something, just like a

failing outcome reduces the variance of the Beta distribution.

In the first attempt at modeling, we used a classical GLM to get a baseline

understanding of the data, but the fact that some estimates for certain subjects

failed due to complete separation reinforced the our adoption of non-classical

techniques. Our first Bayesian model was derived from Lee and Wagenmakers

(2014) which used nested loops to iterate over subjects and SOA values. The

data were required to be stored in a complicated way that made it difficult to

comprehend and extend.

We moved on to using arm::bayesglm to remove convergence issues, but we were

met with other limitations such as linear parameterization and lack of hierarchical

modeling. The book Statistical Rethinking (McElreath, 2020) offers a great first

introduction to Bayesian multilevel modeling. McElreath’s rethinking package
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accompanies the book, and offers a compact yet expressive syntax for models

that get translated into a Stan model. A model with age group and block can be

written using rethinking::ulam as

rethinking::ulam(alist(
k ~ binomial_logit(n, p),
p = exp(b + bG[G] + bT[trt]) * (x - (a + aG[G] + aT[trt])),
a ~ normal(0, 0.06),
aG[G] ~ normal(0, sd_aG),
aT[trt] ~ normal(0, sd_aT),
b ~ normal(3, 1),
bG[G] ~ normal(0, sd_bG),
bT[trt] ~ normal(0, sd_bT),
c(sd_aG, sd_aT, sd_bG, sd_bT) ~ half_cauchy(0, 5)

), data = df, chains = 4, cores = 4, log_lik = TRUE)

While learning about multilevel models, we tried writing a package that generates

a Stan program based on R formula syntax. At the time the concepts of no-

pooling, complete pooling, and partial pooling were vaguely understood, and

the package was plagued by the same lack of flexibility that rstanarm and brms

have. Then it was discovered that brms and rstanarm already did what we were

trying to do, but programming experience was invaluable.

We also tried using lme4, rstanarm, and brms, and learned more about the

concepts of fixed and random effects. We noticed that parameterization can have

a significant affect on the efficiency of a model and the inferential power of the

estimated parameters. When fitting a classical model, there is little difference

in estimating a + bx vs. d(x - c) since the latter can just be expanded as

-cd + dx which is essentially the same as the first parameterization, but there

is a practical difference in the interpretation of the parameters. The second

parameterization implies that there is a dependence among the parameters that

can be factored out. In the context of psychometric functions, there is a stronger
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connection between PSS and c and the JND and d. This parameterization

made it easier to specify priors and also increased the model efficiency. Of

the modeling tools mentioned, only rethinking and Stan allow for arbitrary

parameterization.

We finally arrived at a model that worked well, but learned that using a binary

indicator variable for the treatment comes with the assumption of higher uncer-

tainty for one of the conditions. The linear model that we arrived at is displayed

in equation (B.1).

θ = exp(β+βG+ (βT +βTG)× trt) [x− (α+αG+ (αT +αTG)× trt)] (B.1)

Using an indicator variable in this fashion also introduced an interaction effect

into the model that we almost did not account for after switching to using a

factor variable. Interaction effects between factors is handled by creating a new

factor that is essentially the cross-product of other factor variables. E.g. for

factor variables x and y

x=

ab
c

 ,y =
[
i
j

]
=⇒ x×y =

ai aj
bi bj
ci cj



The final round of reparameterization came in the form of adopting non-centered

parameterization for more efficient models. To us, Z ∼N(0,12); X = 3 + 2Z is

the same as X ∼N(3,22), but to a computer the process of sampling from X

can be more difficult than sampling from Z (discussed in chapter 2).
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C. Reproducible Results

Data doesn’t always come in a nice tidy format, and we had to turn the raw

experimental data into a clean data set that is ready for modeling. Sometimes the

process is quick and straight forward, but other times, like with this psychometric

data, it takes more effort and clever techniques. There is academic value in

describing the steps taken to reduce the headache later.

To begin, there is a strong push in recent years for reproducible data science.

Scientific methods and results should be able to be replicated by other researchers,

and part of that includes being able to replicate the process that takes the raw

data and produces the tidy data that is ready for analysis. Tidy data is described

by Wickham et al. (2014) and can be summed up by three principles

1. Each variable forms a column
2. Each observation forms a row

3. Each type of observational unit forms a table

One problem is having data in a spread sheet, modifying it, and then having
no way of recovering the original data. Spread sheets are a convenient way to
organize, transform, and lightly analyze data, but problems can quickly arise
unless there is a good backup/snapshot system in place. Mutability in computer
science is the property of a data structure where its contents can be modified
in place. Immutability means that the object cannot be modified without first
making a copy. Data is immutable, or at least that is the mindset that researchers
must adopt in order to have truly reproducible workflows. The raw data that is
collected or produced by a measurement device should never be modified without
first being copied, even if for trivial reasons such as correcting a spelling mistake.
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If a change is made to the raw data, it should be carefully documented and
reversible.

To begin the data cleaning journey, we introduce the directory system that we
had been given to work with. Each task is separated into its own folder, and
within each folder is a subdirectory of age groups.

Figure C.1.: Top-level data directory structure.

Within each age group subdirectory are the subdirectories for each subject named
by their initials which then contain the experimental data in Matlab files.

Figure C.2.: Subdirectory structure.

The data appears manageable, and there is information contained in the directory
structure such as task, age group, and initials, and file name contains information
about the experimental block. There is also an excel file that we were later given
that contains more subject information like age and sex, though that information
is not used in the model. The columns of the Matlab file depend on the task, but
generally they contain an SOA value and a response, but no column or row name
information – that was provided by the researcher who collected the data.

We then created a table of metadata – information extracted from the directory
structure and file names combined with the the subject data and the file path.
Regular expressions can be used to extract patterns from a string. With a list
of all Matlab files within the RecalibrationData folder, we tried to extract the
task, age group, initials, and block using the regular expression:
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"^(\\w+)/(\\w+)/(\\w+)/[A-Z]{2,3}_*[A-Z]*(adapt[0-9]|baseline[0-9]*).*"

The ˆ(\\w+)/ matches any word characters at the start and before the next slash.
Since the directory is structured as Task/AgeGroup/Subject/file.mat, the reg-
ular expression should match three words between slashes. The file name generally
follows the pattern of Initials__block#__MAT.mat, so [A-Z]{2,3}_*[A-Z]*
should match the initials, and (adapt[0-9]|baseline[0-9]*) should match
the block (baseline or adapt). This method works for 536 of the 580 individual
records. For the ones it failed, it was generally do to misspellings or irregular
capitalizing of “baseline” and “adapt”.

Since there is only a handful of irregular block names, they can be dealt with
by a separate regular expression that properly extracts the block information.
Other challenges in cleaning the data include the handling of subjects with the
same initials. This becomes a problem when filtering by a subject’s initials is
not guaranteed to return a unique subject. Furthermore there are two middle
age subjects with the same initials of “JM”, so one was also identified with their
sex “JM_F”. The solution is to create a unique identifier (labeled as SID) that
is a combination of age group, sex, and initials. For an experiment identifier
(labeled as RID), the task and block were prepended to the SID. Each of these
IDs uniquely identify the subjects and their experimental records making it easier
to filter and search.

glimpse(features, width = 60)
#> Rows: 580
#> Columns: 8
#> $ rid <fct> av-post1-M-f-CC, av-post1-M-f-DB, av-...
#> $ sid <fct> M-f-CC, M-f-DB, M-f-HG, M-f-JM, M-f-M...
#> $ path <chr> "Audiovisual/MiddleAge/CC/CCadapt1__M...
#> $ task <chr> "audiovisual", "audiovisual", "audiov...
#> $ trial <fct> post1, post1, post1, post1, post1, po...
#> $ age_group <fct> middle_age, middle_age, middle_age, m...
#> $ age <dbl> 39, 44, 41, 48, 49, 43, 47, 49, 49, 4...
#> $ sex <fct> F, F, F, F, F, F, F, F, F, M, M, M, M...

Then with the table of clean metadata, the task is simply to loop through each

row, read the Matlab file given by path, add the unique ID as a column, and

then join the experimental data with the metadata to create a data set that is

ready for model fitting and data exploration. The full code used to generate the

clean data is not yet available online, but can be shared with the committee.

The benefit of writing a script to generate the data is that others can look over

the code and verify that it is doing what it is intended to do, and we can go back
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to any step within the process to make changes if the need comes up. Another

tool that contributed to the reproducibility is the version control management

software, Git. With Git we can take a snapshot of the changes made, and revert

if necessary. This thesis is also hosted on Github, and the entire history of

development can be viewed there.
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