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Abstract

Dollar-cost and value averaging investing strategies are theoretically examined

and applied for two asset classes: stocks and bonds. Theoretical expression of the cu-

mulative distribution function, expectation and variance is developed for both strate-

gies. Most of the obtained results are recursive, but some results for dollar-cost

averaging are obtained in a closed form. In particular, closed form theoretical re-

sults are developed for dollar-cost averaging expectation, variance, Sharpe ratio and

related optimization. Applications use annual data from the S&P Composite Index

and 6-month bonds, providing results for expectation, variance, Sharpe ratio, related

optimization and quantiles of returns. In applications, simulation is employed when

theoretical results are unfeasible to compute. The results can be used by investors for

selecting a desired risk-return balance. From a policy perspective, the results indicate

that dollar-cost averaging is a viable investing strategy for large investment funds like

university endowment funds.
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1. INTRODUCTION

There are countless investing strategies available to the aspiring capitalist. The ideal

strategy yields unusually high returns without exposing the investor to loss. Unfortu-

nately, get-rich-quick strategies like this are hard to come by. In his famous book A

Random Walk Down Wall Street, Burton Malkiel summarizes the large body of scien-

tific evidence against the idea that frequent traders can consistently beat a diversified

portfolio of broad-based index funds [18]. Following this line of thought, Malkiel

advocates long-term investing strategies that focus on broad-based index funds. Fur-

thermore, the proportion of investments in stocks, bonds and real estate funds can

be adjusted to fit an investor’s tolerance for risk. This paper selects two investing

strategies that align with Malkiels advice and elaborates on the relationship between

different asset-class proportions, risk and return.

The first investing strategy considered is dollar-cost averaging. In dollar-cost

averaging, a constant amount is invested at set intervals. When investing in multiple

asset classes, a proportion of that constant amount is invested in each asset class, at

each time step. For example, consider investing $100 at the beginning of each year:

$70 in stocks, $20 in real estate and $10 in bonds. Then repeat this for n years. This

procedure is dollar-cost averaging with three asset classes. A similar procedure exists

for dollar-cost averaging with any finite number of asset classes.

The second investing strategy considered is value averaging. In the context of

this thesis, value averaging involves two asset classes. At the beginning of each

investment period, a target amount is set for the riskier asset class to achieve at the

end of the investment period. Upon reaching the end of the investment period, the

target amount is achieved by buying or selling the riskier asset class. The less risky

asset class is used as a reserve for when the target amount is surpassed. When the
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target amount is not surpassed, the less risky asset class is sold, with the profits being

used to buy the riskier asset class and meet the target amount. If the target amount

is still not met, a bottomless cash reserve is used to make the necessary additional

purchases of the riskier asset class.

Here is an example of value averaging. Consider having $100 invested in risky

stocks and $10 invested in riskless bonds at the beginning of the year. Set a target of

$106 for the end of the year. Suppose the stock investment rises to $110. Then sell

$4 of stock and buy $4 of bonds to end with $106 in stocks, $14 in bonds and $110

total invested. Suppose the stock investment rises to $102. Then sell $4 of bonds

and buy $4 of stock to end with $106 in stocks, $6 in bonds and $110 total invested.

Suppose the stock investment drops to $95. Then sell $10 of bonds and buy $11 of

stock to end with $106 in stocks, $0 in bonds and $111 total invested. Modify initial

investments and the target amount to repeat for the next year.

1.1 Literature review

Dollar-cost averaging is a well-known investing strategy that has been practiced for

over 70 years. In 1951, the Chicago Daily Tribune advocated for the dollar-cost

averaging investing strategy [1]. The Tribune celebrated dollar-cost averaging because

it makes no attempt at market timing, thereby helping investors avoid the pitfalls

associated with trying to time the market. Under dollar-cost averaging with stock(s),

investors buy more shares when market prices are low, and less shares with market

prices are high. In effect, the average price payed per share is below average. As an

example, it was shown that the dollar-cost averaging stragegy performed quite well

with the single asset of EI du Pont de Nemours stock: an annual investment of $1, 000

for 26 years grew to $93, 400.

Morris (1959) provided a mathematical foundation for dollar-cost averaging with

a single asset class. Using a uniform price distribution and some select parameters,

Morris proved that an investor who buys N shares over T time steps using dollar-

cost averaging is expected to pay less per share than an investor who buys N
T

shares
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per time step. Wilson (1961) extended the notion of dollar-cost averaging given by

Morris to accelerated dollar-cost averaging for a single asset class. Accelerated dollar-

cost averaging makes purchases a function of the squared price in order to examine

price sensitivity. This construction was created solely to examine the effect of price

sensitivity on an abstract notion of dollar-cost averaging. Theoretical results hint

that increased price sensitivity results in an even lower expected price per share.

In [7], Dolley presented the dollar-cost averaging strategy in a large-scale, multi-

asset setting. Using dollar-cost averaging, the University of Texas Permanent Uni-

versity Fund was able to achieve roughly market performance without needing to rely

so heavily on human judgement. In addition, Dolley argued that funds reliant on

human judgement are likely not to beat the market in the long run because the good

and bad judgements balance each other out.

Khouja and Lamb (1999) optimized the time step length and the amount in-

vested at each time step for dollar-cost averaging with a single asset class. Important

considerations like commissions and the ability to automate investments via direct

deposit of paychecks were taken into account during optimization.

Dubil (2004) showed via simulation that, in the long-term, dollar-cost averaging

offers superior risk and reliability benefits when compared to the lump sum strategy.

In fact, long-term investment in high risk assets is supported by dollar-cost averaging

because the risk reduction is so significant. Moreover, dollar-cost averaging is more

reliable in that it is less likely to fall short of a retirement target.

Kirkby, Mitra and Nguyen (2020) rigorously developed the dollar-cost averaging

strategy with one asset class, also incorporating an interest earning cash reserve from

which funds are pulled to buy shares of the asset class. An exponential Levy process

was used as framework, and the dollar-cost averaging strategy is compared with a

lump sum strategy. The lump sum strategy offers better returns, but at higher risk.

To describe this risk-return tradeoff in depth, Kirkby, Mitra and Nguyen introduced

and rigorously developed a strategy that is part dollar-cost averaging and part lump

sum. Balvers and Mitchell (1997) used a normal ARMA(1,1) process to examine
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dollar-cost averaging, also finding that gradual entry into an asset class is suboptimal.

Value averaging is a more recent development compared to dollar-cost averaging.

In 1988, Michael Edleson introduced the notion of value averaging to contrast with

dollar-cost averaging, see [10]. The original idea involved a linear target amount, one

risky asset and a cash reserve. Using market data, value averaging was shown to

outperform dollar-cost averaging in annual return.

Eng and Wang (2007) used simulation to compare dollar-cost averaging, value

averaging and the lump sum strategy when prices are mean reverting. An exponential

target amount was used, and results supported the idea that mean reverting prices

favor value averaging.

Chen and Estes (2010) used Monte Carlo simulations to compare dollar-cost and

value averaging with two asset classes: stocks and bonds. Value averaging was deemed

the all-around winner in terms of the risk-return balance. No theoretical attempt was

made to describe the distribution of returns for dollar-cost and value averaging.

The risk-return tradeoff of value averaging with linear target amounts has been

analyzed empirically [14]. Sharpe ratio was used to measure risk-return tradeoff. Re-

sults indicated long-term implementation of value averaging produces higher Sharpe

ratios.

Lai, Tseng and Huang (2016) introduced a modified value averaging strategy

that uses Bollinger Bands to determine entrance and exit times. In simulation, the

modified strategy outperformed traditional value averaging.

It is conceivable to extend value averaging to an arbitrary number of asset classes

using multiple target amounts and conditions dictating where funds should go when

target amounts are met or not. However this gets quite complicated for theoretical

results, and research on value averaging has not ventured into this realm.

1.2 Goal of theoretical results

Thus far, dollar-cost averaging has been described rigorously with one asset class [16].

Value averaging has yet to be described rigorously. This thesis describes the dollar-
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cost and value averaging strategies for two asset classes via distribution, expected

value and variance of returns. The idea is that, given two asset classes, an investor can

assess the risk-return tradeoff between strategies and parameters using the theoretical

distribution, expected value and variance of returns. Note that full realization of this

idea depends on computation of the theoretical expressions developed for distribution,

expected value and variance of returns. As it turns out, only the theoretical results

having to do with expectated value and variance of dollar-cost averaging returns are

feasible to compute.

Because dollar-cost averaging is more tractable than value averaging, the ex-

pected value, variance and Sharpe ratio are optimized as well. Note that Sharpe

ratio is used to measure risk-return tradeoff, as it provides the ratio between ex-

pected value and standard deviation of returns [21]. The Sharpe ratio was selected

here because it is a function of expected value and variance, which have closed form

expression in the dollar-cost averaging case. A higher Sharpe ratio is supposed to

indicate a better investment. However, the Sharpe ratio can be misleading in certain

situations, like when the expected value is positive but the variance is so near to 0

that the Sharpe ratio is absurdly high. As a consequence, it is best to support the

Sharpe ratio with additional information, like quantiles of returns.

1.3 Stocks and bonds

Stock represents part-ownership in a corporation. As a result of this part-ownership,

stock owners recieve voting rights and a portion of a corporation’s profits, namely

dividends, depending on how much stock they own. Some corporations do not pay

dividends, instead offering stock buybacks to maintain stock prices.

Stocks are sold at market value, which can be above or below the price initially

payed for the stock. Volatility in the market makes stock investment risky. However,

this added risk translates to increased return, making stocks attractive to investors

wishing for high returns [18].

Bonds are nearly risk-free investments. They redeem at par value, which can be
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above or below the price initially payed for the bond [3]. Par value is what the issuer

promises to pay bondholders when the bond matures. Furthermore, par value is set

when the bond is initially purchased. The risk comes from probability of a default.

Risk is avoided by choosing insured bonds or issuers with outstanding credit. Bonds

can be withdrawn early for a penalty or traded in the secondary market.

The maturity on bonds can be short, like 1 month, or long, like 20 years. In

general, longer maturities offer better returns. Bonds are often issued by banks and

governments to raise funds. Unlike stocks, bonds have a promised return on maturity

that makes bonds attractive to investors looking for positive returns at low risk.

Investors in stocks and bonds should be aware of the impact of brokers, the

consumer price index and taxes on returns. Brokers like US Bank and Vanguard act

as a medium through which investors buy and sell stock and bonds. They charge fees

for their service as middlemen. If an investor reads the fine print and chooses a broker

carefully, fees can be reduced to very small levels. The consumer price index tracks

inflation in consumer goods and services. After accounting for inflation, a risk-free

bond investment can actually yield a negative return if inflation outpaces the par

value. Taxes must be paid on capital gains, which are realized by selling stock or

redeeming bonds for profit. More details about taxes can be found in [18].

1.4 Index funds and diversification

An index fund is a collection of assets designed to summarize a segment of the financial

market. Usually the assets in a given index fund are from the same class, like the

class of stocks. Alternatively, the asset class can be more specific, like US stocks.

Index funds are attractive investments because of their diversification [18]. Di-

versification is defined here as low correlation between assets. If some assets in a fund

lose significant value, the remaining assets prop the fund up. In effect, the investor

feels a fraction of that loss. Because stocks are so risky, index funds are especially

attractive. The diversification reduces risk and makes stocks palatable for investors.

Through index funds, investors are able to get the increased returns offered by stocks
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at a manageable level of risk.

Here is the reason owning stock in a small number of corporations is so dangerous.

Stocks represent individual corporations, each with unique characteristics. Even in

the same industry, corporations have idiosyncrasies that can lead one into bankruptsy

and the other into prosperity. It is extremely difficult to predict which corporations

will tend toward bankruptsy vs prosperity. Moreover, the impact of dramatic loss is

most significant when a large proportion of an investor’s portfolio is stock with that

loss. The diversification of index funds reduces the impact of a dramatic loss and

helps investors avoid the possibility of holding worthless investments.

1.5 Goal of applications

The dollar-cost and value-averaging strategies are applied to a US stock index fund

and short-term US bonds. More details on the particular US stock index and short-

term US bonds can be found in Chapter 2. The idea behind choosing a high risk,

high return stock index and low risk, low return bonds is that an investor, by se-

lection of parameters, can achieve a desired risk-return tradeoff that is somewhere

inbetween high risk, high return and low risk, low return. Furthermore, applications

provide investors with several figures describing what the various risk-return tradoffs

are for a range of parameters. When computation is feasible, figures are produced

for theoretical results. Otherwise, simulation is used to produce figures. After pre-

senting applications, an arguement is made in favor of dollar-cost averaging for large

investment funds like university endowment funds, see Section 8.1.

1.6 Organization

The remainder of the thesis is organized as follows.

• Chapter 2 describes the data used in applications and the abreviations used to

shorten notation.

• Chapter 3 describes the general methods, including notation, used throughout.
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Methods pertaining to dollar-cost and value averaging are also described, but

separately.

• Chapter 4 gives the theoretical results for dollar-cost averaging. First the cu-

mulative distribution function for real returns is presented through recursion.

Next the expectation and variance of real returns are given recursively and in

closed-form. Last, the expectation, variance and Sharpe ratio of real returns

are optimized.

• Chapter 5 gives the theoretical results for value averaging. First, relevant cu-

mulative distribution functions are presented through recursion. Then related

expectations and variances are described using those cumulative distribution

functions.

• Chapter 6 investigates the distribution of real returns given by the data to be

used in applications. Autoregression is fitted, and residuals are modeled with a

Normal distribution and an alternate kernel density estimate for comparison.

• Chapter 7 first applies the dollar-cost averaging theoretical results and summa-

rizes observations. Value averaging theoretical results are not applied because

they take too much time and space to compute. Next the dollar-cost and value

averaging strategies are simulated. Distributions of real returns are described

with quantiles, expectation, standard deviation and Sharpe ratio. Observations

about the distributions of real returns are summarized for each strategy.

• Chapter 8 provides an argument in favor of dollar-cost averaging for large in-

vestment funds. Then some final remarks are given.

• Chapter 9 is an appendix containing details used in the kernel density estimate

from Chapter 6.
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2. DATA & ABBREVIATIONS

2.1 Data

The stock and bond data used in applications describes 1871 to 2020 on an annual

basis [5]. Relevant variables are described below.

Tab. 2.1: Data variable descriptions
Notation Description

Index average monthly close of the S&P composite index
Dividend dividend per share of the S&P composite index

CPI January consumer price index
1YTR returns from 6-month bonds, averaged January and July

S&P and CPI data was taken from [22]. Specifically, the S&P indexes used were

Cowles and Associates from 1871 to 1926, Standard & Poor 90 from 1926 to 1957

and Standard & Poor 500 from 1957 to 2020. The 1YTR data was taken from [22]

for the period 1871-2011. Specifically, the 1YTR rates were off US commercial paper

from 1871 to 1997 and US certificates of deposit, secondary market rate, from 1998

to 2011. The 1YTR data was taken from [20] for the period 2012-2019. Specifically,

the 1YTR rates were off US certificates of deposit, non-jumbo deposits.

2.1.1 S&P Composite Index

There are three S&P composite indexes used in applications. All were developed to

summarize the US stock market in terms of market capitalization [25]. Companies are

given different weights in an index based on their individual market capitalization.

The S&P 90 consists of 90 companies and the S&P 500 consists of 500 companies

[12]. The Cowles and Associates index is a backward extension of the S&P index.
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2.1.2 6-month bonds

The 6-month bonds consist of US commerical paper and US certificates of deposits.

Both are short-term, low-risk instruments used by lenders to accrue interest on avail-

able capital [2]. Commercial paper is traded at a discount that accounts for current

interest rates. Certificates of deposit are receipts for bank deposits, which accrue

interest and cannot be withdrawn until a set maturity.

Note that the average of January and July 6-month bond rates is used instead

of the 1 year bond rate because Robert Shiller and colleagues assembled a long-term

spreadsheet of the former only [22]. Applications could have used 1 year bond rates,

but the most reliable source was Shiller’s website. Consequently, the average of 6-

month bond rates is used in applications.

2.2 Abbreviations

In order to simplify statements, common phrases are abbreviated.

Tab. 2.2: Abbreviations
Notation Description

S&P S&P Composite Index
1YTR 6-month bonds

RR Real returns
RR+1 Add 1 to real returns
DCA Dollar-cost averaging
VA Value averaging

DCRR Dollar-cost averaging real returns
VARR Value averaging real returns
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3. METHODS

3.1 General methods

Both the dollar-cost and value averaging investing strategies begin with the following

setup. Take two distinct asset classes, denoted A and B. If an asset class consists of

multiple individual assets, bundle the desired individual assets into a single broad-

based asset; this broad-based asset will be used to represent that asset class. Next,

assume RR+1 of the two asset classes is a continuous bivariate random variable.

Approximate the distribution of the RR+1 bivariate random variable and simulate

n time steps. The n simulations are stored in a n × 2 matrix X. The first column

holds asset class A’s RR+1 and the second column holds asset class B’s RR+1. The

ith row represents RR+1 for time step i.

In this paper, the two asset classes used are S&P and 1YTR with an annual time

step. Asset class A is S&P and asset class B is 1YTR.

All random variables are assumed to be real-valued. When working with contin-

uous and mixed random variables, the probability density functions are denoted with

f and cumulative distribution functions are denoted with F . Variables involved are

indicated by the subscript.

3.1.1 Real returns

Real return is defined as

Real return =
1 + Nominal return

1 + Inflation rate
− 1.

Now the actual (not simulated) annual RR of S&P and 1YTR is formulated for use in

applications. Use the subscript k to denote the kth year of a given variable described
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in Section 2.1. Let sk denote the RR during year k from S&P.

sk =

Indexk+1+Dividendk

Indexk

CPIk+1

CPIk

− 1 (3.1)

Similarly, let bk denote the RR during year k from 1YTR.

bk =
1 + 1YTRk

100
CPIk+1

CPIk

− 1 (3.2)

Figure 3.1 illustrates 149 years of annual RR, computed using (3.1) and (3.2). Ob-

serve the distinct change in variance of 1YTR real returns around 1950. This is a

result of the Treasury-Fed Accord of 1951, which removed the connection between

US monetary policy and management of government debt [13]. In order to account

for this significant historical event, applications will split the data at 1951.

Fig. 3.1: Annual RR for S&P and 1YTR from 1871 to 2019

3.2 Dollar-cost averaging methods

In dollar-cost averaging, a constant amount is invested at each time step. When

investing in two asset classes, a proportion of that constant amount is invested in
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each asset class. The algorithm below is used to compute the total RR after using

dollar-cost averaging for n years.

Algorithm 1 DCRR after n years of value averaging

p ∈ [0, 1] {Proportion invested in S&P}
TI ← 0 {Total invested}
V oBI ← 0 {Value of bond (1YTR) investments}
V oSI ← 0 {Value of stock (S&P) investments}
for i← 1 to n do
V oBI ← Xi2(V oBI + 1− p)
V oSI ← Xi1(V oSI + p)

end for
DCRR← V oSI+V oBI

TI
− 1

The recursion is described with subscripts below.

DC11 = X11, DC12 = X12

DCk1 = Xk1 (1 +DCk−1,1) 2 ≤ k ≤ n

DCk2 = Xk2 (1 +DCk−1,2) 2 ≤ k ≤ n

DCRRk =
1

k
(pDCk1 + (1− p)DCk2 − k) 1 ≤ k ≤ n.

Alternatively, DCRRn can be expressed via the following explicit formula. De-

fine the n × 2 matrix X ′ such that X ′ij =
∏n

k=n−i+1Xkj. Then X ′ij represents the

cumulative RR+1 from time step n− i+ 1 to n. Moreover, the total RR after n time

steps of using dollar-cost averaging with p ∈ [0, 1] of the constant investment amount

going to S&P and 1− p going to asset 1YTR is given by

DCRRn =
p

n

n∑
i=1

X ′i1 +
1− p
n

n∑
i=1

X ′i2 − 1. (3.3)

3.3 Value averaging methods

In value averaging, a target amount is set for the beginning of each year, and it is

acheived by buying or selling assets. When investing in two assets, target amounts

are placed on the riskier asset. The less risky asset is used as a reserve for when the

target is surpassed. Here, S&P is the risky asset and 1YTR is the less risky asset. The
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target amount for S&P is increased exponentially with time by the function (1+r)t−1

where r denotes the desired growth rate and t denotes the time in years. Every time

S&P is sold to meet a target, the money from the sale is used to buy 1YTR. If S&P

needs to be bought in order to meet a target, money for the purchase is pulled from

1YTR first; any additional money required is pulled from a bottomless cash reserve.

The algorithm below is used to compute the total RR after using value averaging

for n years.

Algorithm 2 VARR after n years of value averaging

T ← 1
1+r
{Target amount}

TI ← 0 {Total invested}
V oBI ← 0 {Value of bond (1YTR) investments}
V oSI ← 0 {Value of stock (S&P) investments}
for i← 1 to n do
T ← (1 + r) · T
V oBI ← V oBI + V oSI − T
if V oBI < 0 then
TI ← TI − V oBI
V oBI ← 0

end if
V oSI ← Xi1 · T
V oBI ← Xi2 · V oBI

end for
V ARR← V oSI+V oBI

TI
− 1

Now define the function g : R → R such that g(x) =

{
x if x ≥ 0

0 otherwise
. Using

similar notation as in Algorithm 2, let the subscript k denote a variable’s state at the

end of year k, before the next year’s investments are made. The recursion is defined
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with subscripts below where 1 ≤ k ≤ n.

0 = V oSI0 = V oBI0 = TI0

Tk = (1 + r)k−1

V oSIk = Xk1Tk

Ak = V oBIk−1 + V oSIk−1 − Tk

V oBIk = Xk2g(Ak)

TIk = TIk−1 + g(−Ak)

V ARRk =
V oSIk + V oBIk

TIk
− 1.
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4. DOLLAR-COST AVERAGING THEORETICAL RESULTS

Simplicity of the dollar-cost averaging recursion makes for straightforward derivation

of the distribution, expectation and variance of DCRRn. First the distribution,

expectation and variance of DCRRn are found via recursion. Then the expectation

and variance of DCRRn are described in closed-form.

4.1 DCRRn Cumulative distribution function

Theorem 1. Let 2 ≤ k ≤ n, Z1 = (Xk1, Xk2) and Z2 = (DCk−1,1, DCk−1,2). Then

(DCk1, DCk2) and DCRRn are continuous,

fDC11,DC12(α, β) = fX11,X12(α, β)

fDCk1,DCk2
(α, β) =

∫
(R−{0})2

fZ1(x1, x2)fZ2(
α

x1
− 1,

β

x2
− 1)

1

|x1x2|
dV (x1, x2).

and

FDCRRn(a) =

∫ a

−∞

∫
R
fDCn1,DCn2(α,

1

1− p
(nβ + n− pα))

n

1− p
dαdβ.

Proof. The continuity of (DCk1, DCk2) follows from linearity in its recursive definition

and the continuity of (Xj1, Xj2) for all 1 ≤ j ≤ k. Similarly, the continuity of DCRRn

follows from its definition as a linear combination of the continuous DCn1 and DCn2.

The cdf of DCRRn is attained through recursion because the two sums of products

in (3.3) make it too difficult to formulate a cdf otherwise.

First observe that DCRRn is a linear combination of DCn1 and DCn2, so it

suffices to find the joint cdf of DCn1 and DCn2 and then make a transformation to

get the cdf of DCRRk.

Define the transformation G : (R − {0})2 × R2 → (R − {0})2 × R2 such that

G(x1, x2, α, β) = (x1, x2, x1(1 + α), x2(1 + β)).
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The transformation G is one-to-one because G(a1, a2, a3, a4) = G(b1, b2, b3, b4)

implies (a1, a2, a1(1 + a3), a2(1 + a4)) = (b1, b2, b1(1 + b3), b2(1 + b4)). Since a1 = b1

and a2 = b2, it follows from substitution that a3 = b3 and a4 = b4.

Let (x1, x2, α, β) ∈ (R− {0})2 × R2. The transformation G is onto because

G(x1, x2,
α

x1
− 1,

β

x2
− 1) = (x1, x2, x1(1 +

α

x1
− 1), x2(1 +

β

x2
− 1))

= (x1, x2, α, β).

Since x1, x2 6= 0, G−1 is clearly C1 and the Jacobian of G−1 is given by

∣∣∣∣∣∂(x1, x2,
α
x1
− 1, β

x2
− 1)

∂(x1, x2, α, β)

∣∣∣∣∣ = |det(


1 0 0 0
0 1 0 0
−α
x21

0 1
x1

0

0 −β
x22

0 1
x2

)| = 1

|x1x2|
.

Let Y = {(x1, x2, α, β) ∈ R4 : x1, x2 ∈ R, α ≤ a, β ≤ b} and Y ′ =

Y − (0)× R3 − R× (0)× R2. Then

P (DCk1 ≤ a, DCk2 ≤ b)

= P ((Xk1, Xk2, DCk1, DCk2) ∈ Y )

= P ((Xk1, Xk2, DCk1, DCk2) ∈ Y ′)

+ P ((Xk1, Xk2, DCk1, DCk2) ∈ (0)× R3)

+ P ((Xk1, Xk2, DCk1, DCk2) ∈ R× (0)× R2)

= P ((Xk1, Xk2, DCk1, DCk2) ∈ Y ′).

G being one-to-one and onto allows

P ((Xk1,Xk2, DCk1, DCk2) ∈ Y ′)

= P (G−1(Xk1, Xk2, DCk1, DCk2) ∈ G−1(Y ′))

= P ((Xk1, Xk2, DCk−1,1, DCk−1,2) ∈ G−1(Y ′)).

(4.1)

In order to shorten notation, let Z = (Z1, Z2) where Z1 = (Xk1, Xk2) and Z2 =

(DCk−1,1, DCk−1,2). Observe that Z2 is a sum of products of continuous random

variables, so Z2 is continuous. Moreover, Z1 is continuous by definition. From the

continuity of Z, the last expression in (4.1) can be written as∫
G−1(Y ′)

fZ(x1, x2, α, β)dV (x1, x2, α, β). (4.2)
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Using the change of variables described in [23], the integral in (4.2) is transformed

into ∫
Y ′
fZ(x1, x2,

α

x1
− 1,

β

x2
− 1)

1

|x1x2|
dV (x1, x2, α, β). (4.3)

The independence of Xki and DCk−1,j for i, j = 1, 2 allows (4.3) to be written as,∫
Y ′
fZ1(x1, x2)fZ2(

α

x1
− 1,

β

x2
− 1)

1

|x1x2|
dV (x1, x2, α, β). (4.4)

Taking the derivative of (4.4) with respect to α and β yields the pdf of (DCk,1, DCk,2).

fDCk,1,DCk,2
(α, β) =

∫
(R−{0})2

fZ1(x1, x2)fZ2(
α

x1
−1,

β

x2
−1)

1

|x1x2|
dV (x1, x2). (4.5)

So the fDCk,1,DCk,2
can be found via recursion as long as fZ1 is known or estimated.

Next define the transformation G : R2 → R2 such that G(α, β) = (α, 1
n
(pα +

(1− p)β − n)).

The transformation G is clearly one-to-one and onto. Moreover, the inverse is

given by G−1(α, β) = (α, 1
1−p(nβ + n− pα)). G−1 is clearly C1 and the Jacobian of

G−1 is∣∣∣∣∣∂(α, 1
1−p(nβ + n− pα))

∂(α, β)

∣∣∣∣∣ = |det(
[

1 0
−p
1−p

n
1−p

]
)| = n

1− p
.

Let Y = R× (−∞, a]. G being one-to-one and onto allows

P (DCRRn ≤ a) = P ((DCn1, DCRRn) ∈ Y )

= P (G−1(DCn1, DCRRn) ∈ G−1(Y ))

= P ((DCn1, DCn2) ∈ G−1(Y )).

From the continuity of (DCn1, DCn2),

P ((DCn1, DCn2) ∈ G−1(Y )) =

∫
G−1(Y )

fDCn1,DCn2(α, β)dV (α, β). (4.6)

Again using the change of variables described in [23], the integral in (4.6) is trans-

formed into∫
Y

fDCn1,DCn2(α,
1

1− p
(nβ + n− pα))

n

1− p
dV (α, β).
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4.2 DCRR Expectation and variance

Assuming bivariate real returns are independent and identically distributed, the ex-

pectation and variance of DCRRn can be formulated with and without recursion.

The method with recursion is easier to achieve. Assuming autoregression in the real

returns is reasonable, but it adds considerable complexity and interrupts application

of the linear properties for expectation and variance. As a result, autoregression is not

considered here. All theorems within this chapter use the assumption that bivariate

real returns are independent and identically distributed. The mean and covariance of

the iid [Xk1, Xk2]
T will be notated as

µ =

[
µ1

µ2

]
, Σ =

[
σ11 σ12
σ21 σ22

]
. (4.7)

The following lemma is needed for the formulation without recursion.

Lemma 1. For j = 1, 2, E[X ′ij] = µij.

Proof. SubstitutingX ′ij with its product form yields E[X ′ij] = E[
∏n

k=n−i+1Xkj]. Since

the Xkj are independent, the expectation of products becomes a product of expecta-

tions.

E[
n∏

k=n−i+1

Xkj] =
n∏

k=n−i+1

E[Xkj]. (4.8)

Substituting µj for E[Xkj] in the righthand side of (4.8) yields
∏n

k=n−i+1 µj, which is

further simplified to µij.
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4.2.1 DCRRk Expectation and variance (with recursion)

Theorem 2. The expectation and variance of DCRRk for 1 ≤ k ≤ n is given

recursively via the following set of equations.

E[DC11] = µ1, E[DC12] = µ2

V ar(DC11) = σ11, V ar(DC12) = σ22, Cov(DC11, DC12) = σ12

E[DCk1] = µ1 (1 + E[DCk−1,1])

E[DCk2] = µ2 (1 + E[DCk−1,2])

V ar(DCki) = (σii + µ2
i )V ar(DCk−1,i) + σii(1 + E[DCk−1,i])

2

Cov(DCk1, DCk2) = σ12(1 + E[DCk−1,2] + E[DCk−1,1])

+ Cov(DCk−1,1, DCk−1,2)

E[DCRRk] =
1

k
(pE[DCk1] + (1− p)E[DCk2]− k)

V ar(DCRRk) =
1

k2
(p2V ar(DCk1) + (1− p)2V ar(DCk2)

+ 2p(1− p)Cov(DCk1, DCk2)).

(4.9)

Proof. First the recursive formula for expectation is presented. From the linearity of

expectation and independence of Xki with DCk−1,i for i = 1, 2,

E[DC11] = µ1, E[DC12] = µ2

E[DCk1] = µ1 (1 + E[DCk−1,1])

E[DCk2] = µ2 (1 + E[DCk−1,2])

E[DCRRk] =
1

k
(pE[DCk1] + (1− p)E[DCk2]− k).

Now the recursive formula for variance is developed. The recursion for variance

requires more effort to develop than the recursion for expectation. For i = 1, 2 and

1 ≤ k ≤ n the definition of variance allows

V ar(DCki) = E[DC2
ki]− E[DCki]

2

= E[X2
ki(1 +DCk−1,i)

2]− E[DCki]
2.

(4.10)
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First employing the independence of Xki with (1 + DCk−1,i) and then the definition

of variance,

E[X2
ki(1 +DCk−1,i)

2] = E[X2
ki]E[(1 +DCk−1,i)

2]

= (σii + µ2
i )(V ar(DCk−1,i) + (1 + E[DCk−1,i])

2).
(4.11)

Substituting (4.11) into (4.10) yields

V ar(DCki) = (σii + µ2
i )(V ar(DCk−1,i) + (1 +E[DCk−1,i])

2)−E[DCki]
2. (4.12)

(4.12) is simplified by substituting µi(1 + E[DCk−1,i]) for E[DCki] and reducing.

V ar(DCki) = (σii + µ2
i )V ar(DCk−1,i) + σii(1 + E[DCk−1,i])

2.

Moving to covariance, the linearity property of covariance is applied, taking into

account the independence of DCk−1,i with Xk1 and Xk2 for i = 1, 2,

Cov(DCk1, DCk2) = Cov(Xk1(1 +DCk−1,1), Xk2(1 +DCk−1,2))

= Cov(Xk1, Xk2) + Cov(Xk1, Xk2DCk−1,2)

+ Cov(Xk2, Xk1DCk−1,1) + Cov(DCk−1,1, DCk−1,2)

= Cov(Xk1, Xk2) + E[DCk−1,2]Cov(Xk1, Xk2)

+ E[DCk−1,1]Cov(Xk2, Xk1) + Cov(DCk−1,1, DCk−1,2)

= σ12(1 + E[DCk−1,2] + E[DCk−1,1])

+ Cov(DCk−1,1, DCk−1,2).

The final step of the recursion is found using the quasi-linearity of variance,

V ar(DCRRk) =
1

k2
(p2V ar(DCk1) + (1− p)2V ar(DCk2)

+ 2p(1− p)Cov(DCk1, DCk2)).

Collecting all the recursive equations used for expectation and variance gives the

result.

4.2.2 DCRRn Expectation (without recursion)

Theorem 3. The expectation of DCRRn is given by

E[DCRRn] =
1

n

(
p
µ1(1− µn1 )

1− µ1

+ (1− p)µ2(1− µn2 )

1− µ2

)
− 1. (4.13)
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Proof. Here a closed-form representation for the expectation of DCRRn is developed

based on (3.3).

Using the linearity of expectation and the fact that E[1] = 1,

E[DCRRn] =
1

n

(
p

n∑
i=1

E[X ′i1] + (1− p)
n∑
i=1

E[X ′i2]

)
− 1. (4.14)

It follows from Lemma 1 that (4.14) can be simplified to

E[DCRRn] =
1

n

(
p

n∑
i=1

µi1 + (1− p)
n∑
i=1

µi2

)
− 1. (4.15)

Noticing the sums in (4.15) are geometric sums,

n∑
i=1

µij =
µj(1− µnj )

1− µj
, j = 1, 2. (4.16)

Substituting (4.16) into (4.15) gives the result.

4.2.3 DCRRn Variance (without recursion)

Theorem 4. The variance of DCRRn is given by

V ar(DCRRn) =
1

n2

(
p2V ar(

n∑
i=1

X ′i1) + (1− p)2V ar(
n∑
i=1

X ′i2)

+2p(1− p)Cov(
n∑
i=1

X ′i1,
n∑
i=1

X ′i2)

)
.

(4.17)

The V ar and Cov expressions in (4.17) are found using (4.18).

Cov(
n∑
i=1

X ′ij1 ,

n∑
i=1

X ′ij2) =
n∑

i1=1

(
n∑

i2=i1

(σj1j2 + µj1µj2)
i1µi2−i1j2

+

i1∑
i2=1

(σj1j2 + µj1µj2)
i2µi1−i2j1

−(σj1j2 + µj1µj2)
i1 −

n∑
i2=1

µi1j1µ
i2
j2

)
.

(4.18)

Proof. An explicit formula for the variance is trickier to find compared to the expec-

tation. It is necessary to work out Cov(
∑n

i=1X
′
ij1
,
∑n

i=1X
′
ij2

) first, where j1, j2 = 1, 2.
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First the covariance of sums is expanded into the double sum of covariances.

Cov(
n∑
i=1

X ′ij1 ,
n∑
i=1

X ′ij2) =
n∑

i1=1

n∑
i2=1

Cov(X ′i1j1 , X
′
i2j2

) (4.19)

Substituting for Cov(X ′i1j1 , X
′
i2j2

) in the right-hand side of (4.19) using the definition

of covariance,

n∑
i1=1

n∑
i2=1

(E[X ′i1j1X
′
i2j2

]− E[X ′i1j1 ]E[X ′i2j2 ]). (4.20)

Distributing the sum in (4.20) and substituting for E[X ′i1j1 ]E[X ′i2j2 ] using Lemma 1,

n∑
i1=1

n∑
i2=1

E[X ′i1j1X
′
i2j2

]−
n∑

i1=1

n∑
i2=1

µi1j1µ
i2
j2
. (4.21)

Substituting X ′i1j1 and X ′i2j2 in (4.21) with their product forms,

n∑
i1=1

n∑
i2=1

E[
n∏

k=n−i1+1

Xkj1

n∏
k=n−i2+1

Xkj2 ]−
n∑

i1=1

n∑
i2=1

µi1j1µ
i2
j2
. (4.22)

Expanding the left-hand sum of (4.22),

n∑
i1=1

n∑
i2=i1

E[
n∏

k=n−i1+1

Xkj1

n∏
k=n−i2+1

Xkj2 ]

+
n∑

i1=1

i1∑
i2=1

E[
n∏

k=n−i1+1

Xkj1

n∏
k=n−i2+1

Xkj2 ]

−
n∑

i1=1

E[
n∏

k=n−i1+1

Xkj1Xkj2 ]−
n∑

i1=1

n∑
i2=1

µi1j1µ
i2
j2
.

(4.23)

Rearranging the products of (4.23),

n∑
i1=1

n∑
i2=i1

E[
n∏

k=n−i1+1

Xkj1Xkj2

n−i1∏
k=n−i2+1

Xkj2 ]

+
n∑

i1=1

i1∑
i2=1

E[
n∏

k=n−i2+1

Xkj1Xkj2

n−i2∏
k=n−i1+1

Xkj1 ]

−
n∑

i1=1

E[
n∏

k=n−i1+1

Xkj1Xkj2 ]−
n∑

i1=1

n∑
i2=1

µi1j1µ
i2
j2
.

(4.24)
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Observing the independence of [Xkj1 , Xkj2 ]
T across k allows the expectation of prod-

ucts in (4.24) to be written as the product of expectations.

n∑
i1=1

n∑
i2=i1

n∏
k=n−i1+1

E[Xkj1Xkj2 ]

n−i1∏
k=n−i2+1

E[Xkj2 ]

+
n∑

i1=1

i1∑
i2=1

n∏
k=n−i2+1

E[Xkj1Xkj2 ]

n−i2∏
k=n−i1+1

E[Xkj1 ]

−
n∑

i1=1

n∏
k=n−i1+1

E[Xkj1Xkj2 ]−
n∑

i1=1

n∑
i2=1

µi1j1µ
i2
j2

(4.25)

From (4.25), substitute for E[Xkj1Xkj2 ] using the definition of covariance. In addition,

substitute µj1 and µj2 for E[Xkj1 ] and E[Xkj2 ].

n∑
i1=1

n∑
i2=i1

n∏
k=n−i1+1

(σj1j2 + µj1µj2)

n−i1∏
k=n−i2+1

µj2

+
n∑

i1=1

i1∑
i2=1

n∏
k=n−i2+1

(σj1j2 + µj1µj2)

n−i2∏
k=n−i1+1

µj1

−
n∑

i1=1

n∏
k=n−i1+1

(σj1j2 + µj1µj2)−
n∑

i1=1

n∑
i2=1

µi1j1µ
i2
j2

(4.26)

Rewriting the products in (4.26) with exponents,

n∑
i1=1

n∑
i2=i1

(σj1j2 + µj1µj2)
i1µi2−i1j2

+
n∑

i1=1

i1∑
i2=1

(σj1j2 + µj1µj2)
i2µi1−i2j1

−
n∑

i1=1

(σj1j2 + µj1µj2)
i1 −

n∑
i1=1

n∑
i2=1

µi1j1µ
i2
j2
.

(4.27)

Factoring out the
∑n

i1=1 in (4.27) gives the finished equation for covariance,

Cov(
n∑
i=1

X ′ij1 ,
n∑
i=1

X ′ij2) =
n∑

i1=1

(
n∑

i2=i1

(σj1j2 + µj1µj2)
i1µi2−i1j2

+

i1∑
i2=1

(σj1j2 + µj1µj2)
i2µi1−i2j1

−(σj1j2 + µj1µj2)
i1 −

n∑
i2=1

µi1j1µ
i2
j2

)
.
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From the quasi-linearity of variance, the variance of (3.3) is given by

V ar(DCRRn) =
1

n2

(
p2V ar(

n∑
i=1

X ′i1) + (1− p)2V ar(
n∑
i=1

X ′i2)

+2p(1− p)Cov(
n∑
i=1

X ′i1,
n∑
i=1

X ′i2)

)
.

4.3 DCRRn Optimization

The expectation, variance and Sharpe ratio of DCRRn are optimized over p.

4.3.1 DCRRn Argmax expectation

Theorem 5. The argmax of DCRRn expectation over p ∈ [0, 1] is given by

arg max
p∈[0,1]

E[DCRRn] =

{
1 if µ1 ≥ µ2

0 otherwise
.

Proof. First E[DCRRn] is differentiated. Using the explicit formula in (4.13) to take

the derivative,

d

dp
E[DCRRn] =

1

n

(
µ1(1− µn1 )

1− µ1

− µ2(1− µn2 )

1− µ2

)
. (4.28)

Observing that
µi(1−µni )

1−µi =
∑n

k=1 µ
k
i for i = 1, 2, it is clear that d

dp
E[DCRRn] � 0 if

and only if µ1 � µ2 where � ∈ {>,<,=}. If µ1 > µ2, then d
dp
E[DCRRn] > 0 on p ∈

[0, 1]. Therefore maxp∈[0,1]E[DCRRn] = E[DCRRn]|p=1. Similarly, µ1 < µ2 implies

maxp∈[0,1]E[DCRRn] = E[DCRRn]|p=0. When µ1 = µ2, E[DCRRn] is constant over

p ∈ [0, 1].

4.3.2 DCRRn Argmin variance

Theorem 6. The argmin of DCRRn variance over p is given by

arg min
p
V ar(DCRRn)

=
V ar(

∑n
i=1X

′
i2)− Cov(

∑n
i=1X

′
i1,
∑n

i=1X
′
i2)

V ar(
∑n

i=1X
′
i1) + V ar(

∑n
i=1X

′
i2)− 2Cov(

∑n
i=1X

′
i1,
∑n

i=1X
′
i2)
.

(4.29)
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Proof. Using the explicit formula in (4.17) to take the derivative,

d

dp
V ar(DCRRn) =

2

n2

(
pV ar(

n∑
i=1

X ′i1)− (1− p)V ar(
n∑
i=1

X ′i2)

+(1− 2p)Cov(
n∑
i=1

X ′i1,

n∑
i=1

X ′i2)

)
.

(4.30)

Setting d
dp
V ar(DCRRn) = 0 and using (4.30) to solve for p,

p =
V ar(

∑n
i=1X

′
i2)− Cov(

∑n
i=1X

′
i1,
∑n

i=1X
′
i2)

V ar(
∑n

i=1X
′
i1) + V ar(

∑n
i=1X

′
i2)− 2Cov(

∑n
i=1X

′
i1,
∑n

i=1X
′
i2)
. (4.31)

Furthermore, the second derivative of V ar(DCRRn) with respect to p is

d2

dp2
V ar(DCRRn) =

2

n2

(
V ar(

n∑
i=1

X ′i1) + V ar(
n∑
i=1

X ′i2)

−2Cov(
n∑
i=1

X ′i1,
n∑
i=1

X ′i2)

)
.

(4.32)

The right-hand side of (4.32) reduces to 2
n2V ar(

∑n
i=1X

′
i1−

∑n
i=1X

′
i2), and it becomes

clear that d2

dp2
V ar(DCRRn) ≥ 0. Therefore the solution given by (4.31) is indeed the

value for p at which the minimum of V ar(DCRRn) occurs.

4.3.3 DCRRn Argmax Sharpe ratio

Theorem 7. The derivative of the DCRRn Sharpe ratio d
dp

E[DCRRn]√
V ar(DCRRn)

is zero at

p∗ = − n(c− v2)− bc+ av2
v1(n− b) + n(v2 − 2c) + c(a+ b)− av2

.

where

a = E[
n∑
i=1

X ′i1] b = E[
n∑
i=1

X ′i2]

v1 = V ar(
n∑
i=1

X ′i1) v2 = V ar(
n∑
i=1

X ′i2)

c = Cov(
n∑
i=1

X ′i1,

n∑
i=1

X ′i2).

Moreover, p∗ is the argmax of the Sharpe ratio E[DCRRn]√
V ar(DCRRn)

when n ≤ 50, 1.11 >

µ1 > µ2 > 1 and σii > σ12 for i = 1, 2.
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Proof. The Sharpe ratio E[DCRRn]√
V ar(DCRRn)

is optimized. Taking the derivative via the

quotient rule,

d

dp

E[DCRRn]√
V ar(DCRRn)

=

√
V ar(DCRRn) d

dp
E[DCRRn]− E[DCRRn] d

dp

√
V ar(DCRRn)

V ar(DCRRn)
.

(4.33)

So d
dp

E[DCRRn]√
V ar(DCRRn)

= 0 if and only if the numerator in the right-hand side of (4.33) is

0. Next, the numerator is rewritten using the chain rule.√
V ar(DCRRn)

d

dp
E[DCRRn]− E[DCRRn]

d

dp

√
V ar(DCRRn)

=
√
V ar(DCRRn)

d

dp
E[DCRRn]−

E[DCRRn] d
dp
V ar(DCRRn)

2
√
V ar(DCRRn)

=
1

2
√
V ar(DCRRn)

(
2V ar(DCRRn)

d

dp
E[DCRRn]

−E[DCRRn]
d

dp
V ar(DCRRn)

)
(4.34)

Using the last expression in (4.34), d
dp

E[DCRRn]√
V ar(DCRRn)

= 0 when

2V ar(DCRRn)
d

dp
E[DCRRn]− E[DCRRn]

d

dp
V ar(DCRRn) = 0. (4.35)

Substituting from (4.14), (4.17), (4.28) and (4.30), the solution of (4.35) is

p∗ = − n(c− v2)− bc+ av2
v1(n− b) + n(v2 − 2c) + c(a+ b)− av2

. (4.36)

where

a = E[
n∑
i=1

X ′i1] b = E[
n∑
i=1

X ′i2]

v1 = V ar(
n∑
i=1

X ′i1) v2 = V ar(
n∑
i=1

X ′i2)

c = Cov(
n∑
i=1

X ′i1,

n∑
i=1

X ′i2).

But under what conditions is p∗ the argmax of the Sharpe ratio? It suffices

to look at the sign of the derivative on either side of p∗. From (4.33) and (4.34),
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d
dp

E[DCRRn]√
V ar(DCRRn)

expands to

√
V ar(DCRRn) d

dp
E[DCRRn]− E[DCRRn] d

dp

√
V ar(DCRRn)

2V ar(DCRRn)
3
2

. (4.37)

The denominator of (4.37) is positive by the definition of variance and randomness of

V ar(DCRRn). Therefore, the sign of d
dp

E[DCRRn]√
V ar(DCRRn)

depends only on the numerator

of (4.37). Consequently, p∗ is the argmax if the derivative of the numerator is negative

at p∗. Using the same notation that defined p∗, the derivative of the numerator of

(4.37) with respect to p is

2

n3
((a− n)(c− v2) + (b− n)(c− v1)) . (4.38)

p∗ can be verified as the argmax by checking (4.38) for negativity. Fortunately,

this check can be avoided by fixing the parameter space to cover most likely investing

scinerios. Assume that n ≤ 50, 1.11 > µ1 > µ2 > 1 and σii > σ12 for i = 1, 2. From

the definitions of a and b, it follows that a > b > n. Therefore a − n and b − n

are positive. So in order to show (4.38) is negative, it suffices to show that c − vi is

negative for i = 1, 2. This is done through recursion.

Using the recursive definitions in (4.9), Cov(DCk1, DCk2) − V ar(DCki) is ex-

panded into

σ12(1 + E[DCk−1,2] + E[DCk−1,1]) + Cov(DCk−1,1, DCk−1,2)

− (σii + µ2
i )V ar(DCk−1,i)− σii(1 + E[DCk−1,i])

2.
(4.39)

A short lemma is introduced to facilitate induction.

Lemma 2. σii(1 + E[DCki])
2 > σ12(1 + E[DCk2] + E[DCk1]) for i = 1, 2 and 1 ≤

k ≤ n, given 1.11 > µ1 > µ2 > 1, σii > σ12 and n ≤ 50.

Proof. Since σii > σ12, it suffices to show that (1+E[DCki])
2 > 1+E[DCk2]+E[DCk1].

Furthermore, the assumption µ1 > µ2 implies E[DCk1] > E[DCk2], so it suffices to

show the latter with i = 2. From the definition of DCk2, µ2 > 1 and n ≤ 50 implies

E[DCk2] + E[DCk2]
2 > 50 + 502 = 2550. (4.40)
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Similarly, µ1 < 1.11 implies

E[DCk1] < 1.11
1− 1.1150

1− 1.11
= 1852.336. (4.41)

After expanding and reducing, there is (1 + E[DCk2])
2 > 1 + E[DCk2] + E[DCk1]

if and only if E[DCk2] + E[DCk2]
2 > E[DCk1]. Moreover, (4.40) and (4.41) implies

E[DCk2] + E[DCk2]
2 > E[DCk1].

Now the induction begins. By assumption and definition of DC1i,

Cov(DC11, DC12)− V ar(DC1i) = σ12 − σii < 0.

Suppose Cov(DCk−1,1, DCk−1,2) − V ar(DCk−1,i) < 0 for some k ∈ {2, .., n}. Since

σii + µ2
i > 1, it follows that Cov(DCk−1,1, DCk−1,2) − (σii + µ2

i )V ar(DCk−1,i) < 0.

Lemma 2 implies σ12(1 + E[DCk−1,2] + E[DCk−1,1])− σii(1 + E[DCk−1,i])
2 < 0. The

previous two statements and (4.39) imply Cov(DCk1, DCk2)− V ar(DCki) < 0. The

induction is finished.

In summary, the argmax of the Sharpe ratio is found using (4.36) and then

checking (4.38) for negativity. In an effort to avoid the check for negativity, p∗ is

the argmax under the assumptions n ≤ 50, 1.11 > µ1 > µ2 > 1 and σii > σ12.

Those assumptions fit realistic investing scinerios, so the check can likely be avoided

in practice.
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5. VALUE AVERAGING THEORETICAL RESULTS

The decision over whether to move money out of or into 1YTR adds considerable

complexity to value averaging - far more than in dollar-cost averaging. This added

complexity limits theoretical results for value-averaging. Finding the distribution,

expectation and variance of V ARRn and TIn is difficult, but it can be done through

recursion. Note that in dollar-cost averaging, the total invested after n years is always

n(n+1)
2

. Here, the total invested is more complicated, so it is treated separately.

The main inroad into the complexity of value-averaging lies in Ak. First the

distribution of Ak is found recursively. From there, it is straigtforward to formulate

the distribution of (TIk, Ak). The distribution of V ARRn is derived using the distri-

bution of (TIk, Ak). Furthermore, expectations and variances are formulated from

those distributions.

5.1 Ak Cumulative distribution function

The distribution of Ak is found via recursion. A lemma is provided as setup.

Lemma 3. Let X, Y and Z be real-valued random variables such that Y is inde-

pendent from X and Z, but X and Z are dependent. Moreover, X, Y and Z are

continuous. Then A = Xg(Y ) + Z is continuous and has cdf and pdf given by

FA(a) =

∫
R

∫ a−z

−∞

∫ ∞
0

1

y
fX,Z(

α

y
, z)fY (y)dydαdz + FZ(a)FY (0)

fA(a) =

∫
R

∫ ∞
0

1

y
fX,Z(

a− z
y

, z)fY (y)dydz + fZ(a)FY (0).

Proof. The definition of g allows A to be split into cases.

A =

{
XY + Z if Y > 0

Z otherwize
(5.1)
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It follows from (5.1) and the Law of Total Probability that

P (A ≤ a) = P (XY + Z ≤ a, Y > 0) + P (Z ≤ a, Y ≤ 0). (5.2)

Using the continuity of X, Y and Z along with the independence of Y and Z, (5.2)

is rewritten as

P (A ≤ a) =

∫
R

∫ a−z

−∞

∫ ∞
0

fXY,Y,Z(α, y, z)dydαdz + FZ(a)FY (0). (5.3)

The integral in (5.3) is transformed via the same method as in Section 4.1. Then the

independence of Y with X and Z is applied.

P (A ≤ a) =

∫
R

∫ a−z

−∞

∫ ∞
0

1

y
fX,Y,Z(

α

y
, y, z)dydαdz + FZ(a)FY (0)

=

∫
R

∫ a−z

−∞

∫ ∞
0

1

y
fX,Z(

α

y
, z)fY (y)dydαdz + FZ(a)FY (0).

Lastly, observe that P (A ≤ a) is differentiable in a using Leibniz’s integral rule and

d

da
P (A ≤ a) =

d

da

∫
R

∫ a−z

−∞

∫ ∞
0

1

y
fX,Z(

α

y
, z)fY (y)dydαdz +

d

da
FZ(a)FY (0)

=

∫
R

d

da

∫ a−z

−∞

∫ ∞
0

1

y
fX,Z(

α

y
, z)fY (y)dydαdz + fZ(a)FY (0)

=

∫
R

∫ ∞
0

1

y
fX,Z(

a− z
y

, z)fY (y)dydz + fZ(a)FY (0).

The differentiability of P (A ≤ a) implies A is continuous.

Theorem 8. Let 3 ≤ k ≤ n. Ak is continuous with distribution given by

FA2(a) =

∫ a

−∞

∫
R

1

|T1|
fX11,X12(

z + T2
T1

, x)dxdz

fA2(a) =

∫
R

1

|T1|
fX11,X12(

a+ T2
T1

, x)dx

FAk
(a) =

∫
R

∫ a−z

−∞

∫ ∞
0

1

y

1

|Tk−1|
fXk−1,1,Xk−1,2

(
z + Tk
Tk−1

,
α

y

)
fAk−1

(y)dydαdz

+

(∫
R

∫ a

−∞

1

|Tk−1|
fXk−1,1,Xk−1,2

(
z + Tk
Tk−1

, x)dzdx

)
FAk−1

(0)

fAk
(a) =

∫
R

∫ ∞
0

1

y

1

|Tk−1|
fXk−1,1,Xk−1,2

(
z + Tk
Tk−1

,
a− z
y

)
fAk−1

(y)dydz

+

(∫
R

1

|Tk−1|
fXk−1,1,Xk−1,2

(
a+ Tk
Tk−1

, x)dx

)
FAk−1

(0).
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Proof. By definition,

Ak = V oBIk−1 + V oSIk−1 − Tk

= Xk−1,2g(Ak−1) +Xk−1,1Tk−1 − Tk.
(5.4)

Now set X = Xk−1,2, Y = Ak−1 and Z = Xk−1,1Tk−1 − Tk. The only dependent

variables in the righthand side of (5.4) are Xk−1,2 and Xk−1,1, so it follows that

Cov(X, Y ) = Cov(Y, Z) = 0 and Cov(X,Z) 6= 0. Furthermore, the cdf FX,Z is found

by making an integral transformation involving fXk−1,1,Xk−1,2
. Using the same method

as in Section 4.1,

FX,Z(x′, z′) =

∫ x′

−∞

∫ z′

−∞

1

|Tk−1|
fXk−1,1,Xk−1,2

(
z + Tk
Tk−1

, x)dzdx. (5.5)

Differentiating (5.5) with respect to x and z yields the pdf

fX,Z(x, z) =
1

|Tk−1|
fXk−1,1,Xk−1,2

(
z + Tk
Tk−1

, x). (5.6)

The cdf of Z is found by taking a limit in (5.5).

FZ(z) =

∫
R

∫ z′

−∞

1

|Tk−1|
fXk−1,1,Xk−1,2

(
z + Tk
Tk−1

, x)dzdx. (5.7)

Observe that since A2 = X11T1−T2, substituting k = 2 into (5.6) and (5.7) gives

fA2(a) and FA2(a). Furthermore, A2 is continuous by the continuity of X11. This

statement about the continuity of A2 is necessary to start the induction showing the

continuity of Ak.

Suppose Y is continuous for some k ∈ {2, .., n}. Since X and Z are continuous

for all k ∈ {2, .., n}, Lemma 3 implies Ak is continuous. This completes the induction.

All conditions of Lemma 3 have been satisfied, so Ak is continuous and substitu-

tion from Lemma 3 gives fAk
(a) and FAk

(a).

5.2 TIk Cumulative distribution function

The procedure used to construct the distribution of Ak is modified to construct the

distribution of (TIk, Ak). A lemma is provided as setup.
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Lemma 4. Let W , X, Y and Z be real-valued random variables such that W and

Y are independent from X and Z, but X and Z are dependent and W and Y are

dependent. Moreover, W is mixed and X, Y and Z are continuous. The only dis-

continuity in W ’s cdf is at w∗ and FW (w) = 0 for w < w∗. Then (A,B), where

A = Xg(Y ) + Z and B = W + g(−Y ), is mixed with continuous joint cdf except at

B = w∗. Furthermore, FA,B(a, b) = 0 for b < w∗ and

FA,B(a, b) = P (w∗ ≤ b)

∫
R

∫ a−z

−∞

∫ ∞
0

1

y
fW,Y (w∗, y)fX,Z(

α

y
, z)dydαdz

+

∫
R

∫ a−z

−∞

∫ ∞
0

∫ b

w∗

1

y
fW,Y (w, y)fX,Z(

α

y
, z)dwdydαdz

+ FZ(a)

∫ 0

w∗−b
fW,Y (w∗, y)dy

+ FZ(a)

∫ 0

−∞

∫ b+y

w∗
fW,Y (w, y)dwdy

fA,B(a, b) =

{
d2

dadb
FA,B(a, b), b 6= w∗

d
da
FA,B(a, b), b = w∗

.

Proof. The definition of g allows A and B to be split into cases.

A =

{
XY + Z if Y > 0

Z otherwize
, B =

{
W if Y > 0

W − Y otherwize
(5.8)

It follows from (5.8) and the Law of Total Probability that

P (A ≤ a, B ≤ b)

= P (XY + Z ≤ a, W ≤ b, Y > 0) + P (Z ≤ a, W − Y ≤ b, Y ≤ 0).
(5.9)

The mixed nature of W and another application of the Law of Total Probability

expands the righthand side of (5.9) into

P (XY + Z ≤ a, w∗ = W ≤ b, Y > 0)

+ P (XY + Z ≤ a, w∗ < W ≤ b, Y > 0)

+ P (Z ≤ a, w∗ = W ≤ b+ Y, Y ≤ 0)

+ P (Z ≤ a, w∗ < W ≤ b+ Y, Y ≤ 0).

(5.10)
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Taking advantage of X, Y and Z’s continuity and W ’s limited continuity, (5.10) can

be written with integrals and joint pdfs.

P (w∗ ≤ b)

∫
R

∫ a−z

−∞

∫ ∞
0

fW,XY,Y,Z(w∗, α, y, z)dydαdz

+

∫
R

∫ a−z

−∞

∫ ∞
0

∫ b

w∗
fW,XY,Y,Z(w, α, y, z)dwdydαdz

+

∫ a

−∞

∫ 0

w∗−b
fW,Y,Z(w∗, y, z)dydz

+

∫ a

−∞

∫ 0

−∞

∫ b+y

w∗
fW,Y,Z(w, y, z)dwdydz.

(5.11)

Transforming the integrals like in Section 5.1, (5.11) becomes

P (w∗ ≤ b)

∫
R

∫ a−z

−∞

∫ ∞
0

1

y
fW,X,Y,Z(w∗,

α

y
, y, z)dydαdz

+

∫
R

∫ a−z

−∞

∫ ∞
0

∫ b

w∗

1

y
fW,X,Y,Z(w,

α

y
, y, z)dwdydαdz

+

∫ a

−∞

∫ 0

w∗−b
fW,Y,Z(w∗, y, z)dydz

+

∫ a

−∞

∫ 0

−∞

∫ b+y

w∗
fW,Y,Z(w, y, z)dwdydz.

(5.12)

Accounting for independence in (5.12) gives the result for FA,B(a, b). Moreover, the

continuity of X, Y and Z, the limited continuity of W and Leibniz’s integral rule

imply that d2

dadb
FA,B(a, b) makes sense for b 6= w∗. So (A,B) is mixed with continuous

joint cdf except at B = w∗. It is also clear from (5.12) that FA,B(a, b) = 0 for

b < w∗.

Theorem 9. Let 3 ≤ k ≤ n+1. Then (TIk−1, Ak) is mixed and the only discontinuity
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in its cdf is at TIk−1 = T1. Moreover, FTIk−1,Ak
(b, a) = 0 for b < T1 and

FTIk−1,Ak
(b, a) = P (T1 ≤ b)

∫
R

∫ a−z

−∞

∫ ∞
0

1

y
fTIk−2,Ak−1

(T1, y)fX,Z(
α

y
, z)dydαdz

+

∫
R

∫ a−z

−∞

∫ ∞
0

∫ b

T1

1

y
fTIk−2,Ak−1

(w, y)fX,Z(
α

y
, z)dwdydαdz

+ FZ(a)

∫ 0

T1−b
fTIk−2,Ak−1

(T1, y)dy

+ FZ(a)

∫ 0

−∞

∫ b+y

T1

fTIk−2,Ak−1
(w, y)dwdy

fTIk−1,Ak
(b, a) =

{
d2

dadb
FTIk−1,Ak

(b, a), b 6= T1
d
da
FTIk−1,Ak

(b, a), b = T1

where

fX,Z(x, z) =
1

|Tk−1|
fX·1,X·2(

z + Tk
Tk−1

, x).

Proof. Set W = TIk−2, X = Xk−1,2, Y = Ak−1 and Z = Xk−1,1Tk−1 − Tk. From

the recursive definitions for value averaging, Lemma 4’s dependency requirements are

satisfied. X and Z are continuous by their definitions. Y is continuous by Theorem

8.

When k = 3, W = T1, so (W,Y ) is mixed, with the only discontinuity at W =

T1 and FW,Y (w, y) = 0 for w < T1 (this is necessary to start the induction). An

application of Lemma 4 finishes the induction, showing that (TIk−1, Ak) is mixed and

the only discontinuity in its cdf is at TIk−1 = T1; moreover, FTIk−1,Ak
(b, a) = 0 for

b < T1. Applying Lemma 4 with the recursive definitions of Ak and TIk−1 yields the

result. The pdf fX,Y was derived in Section 5.1.

5.3 V ARRn Cumulative distribution function

Theorem 10. The cdf of V ARRn is given by

P (V ARRn ≤ v) =

∫ ∞
0

∫ v

−∞
bfTIn,An+1(b, (α + 1)b− Tn+1)dαdb

+

∫ v

−∞
T1fTIn,An+1(T1, (α + 1)T1 − Tn+1)dα.
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Proof. Using the definition of An to substitute for V oBIn + V oSIn,

V ARRn =
An+1 + Tn+1

TIn
− 1.

So the cdf of V ARRn is found by bootstrapping off the cdf of (TIn, An+1), which is

obtained through recursion and Theorem 9.

From the Law of Total Probability,

P (V ARRn ≤ v) = P (
An+1 + Tn+1

TIn
− 1 ≤ v, T In > T1)

+ P (
An+1 + Tn+1

TIn
− 1 ≤ v, T In = T1).

(5.13)

Accounting for the mixed nature of (TIn, An+1), (5.13) is rewritten with integrals and

pdfs.

P (V ARRn ≤ v) =

∫ ∞
0

∫ v

−∞
f
TIn,

An+1+Tn+1
TIn

−1(b, α)dαdb

+

∫ v

−∞
f
TIn,

An+1+Tn+1
TIn

−1(T1, α)dα.

(5.14)

Transforming the integral in (5.14) like in Section 4.1 gives the result.

5.4 TIk Expectation and variance

The expectation of TIk can be expressed recursively using Theorem 8. By definition,

TIk = TIk−1 + g(−Ak). It follows from the linearity and definition of expectation

that

E[TIk] = E[TIk−1] + E[g(−Ak)]

= E[TIk−1]−
∫ 0

−∞
afAk

(a)da.

Alternatively, the expectation and variance of TIk can be expressed directly using

Theorem 9.

E[TIk] =

∫ ∞
T1

b

∫
R
fTIk−1,Ak

(b, a)dadb

V ar(TIk) =

∫ ∞
T1

b2
∫
R
fTIk−1,Ak

(b, a)dadb− E[TIk−1]
2.
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5.5 V ARRn Expectation and variance

The expectation and variance of V ARRn can be expressed directly using Theorem 8.

E[V ARRn] =

∫
R
vfV ARRn(v)dv

V ar(V ARRn) =

∫
R
v2fV ARRn(v)dv − E[V ARRn]2.
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6. DISTRIBUTION OF REAL RETURNS

S&P and 1YTR real returns are tested separately for autoregression of order 2. Then

residuals are fit to a bivariate random variable. The Normality of residuals is as-

sessed. The 95% confidence standard is used to make decisions about autoregression

and Normality of residuals. An alternative kernel density estimate for residuals is

developed. Results under the kernel density estimate and Normality assumption will

be compared in applications.

6.1 Autoregression of real returns

The Ljung-Box test with lag 2 produces p-values greater than 0.2 for pre- and post-

1951 S&P, so the null hypothesis that the data is AR(0) is not rejected. The same test

produces p-values less than 0.007 for pre- and post-1951 S&P, so the null hypothesis

that the data is AR(0) is rejected. Therefore S&P real returns will be modeled as

AR(0) and 1YTR real returns will be modeled as AR(1) or AR(2).

Fitting pre- and post-1951 1YTR to AR(2) produces insignificant p-values (> 0.3)

for the coefficient of the second lag. As a result, AR(2) is rejected. Fitting AR(1)

yields significant p-values (< 0.009) for the coefficient of the first lag, so AR(1) is

selected as the model for 1YTR real returns. Results are given in (6.1).

pre-1951 S&P RR: sk = 0.081 + εs1k

post-1951 S&P RR: sk = 0.085 + εs2k

pre-1951 1YTR RR: bk = 0.024 + 0.296bk−1 + εb1k

post-1951 1YTR RR: bk = 0.005 + 0.663bk−1 + εb2k

(6.1)

Before 1951, the mean and covariance for the bivariate random variable [εs1k , ε
b1
k ]T
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are

µ1 =

[
0
0

]
, Σ1 =

[
0.0354 0.0010
0.0010 0.0065

]
. (6.2)

After 1951, the mean and covariance for the bivariate random variable [εs2k , ε
b2
k ]T are

µ2 =

[
0
0

]
, Σ2 =

[
0.0265 0.0003
0.0003 0.0004

]
. (6.3)

6.1.1 Normality of residuals

The residuals of each model in (6.1) produces a p-value greater than 0.3 from the

Kolmogorov-Smirnov test. This indicates that residuals can be modeled with a Nor-

mal random variable. Quantile-quantile plots are presented to further asses Normality

and decide whether a Normal assumption is justified. Figures 6.1 and 6.2 show that

S&P and 1YTR residuals align well with Normality, but 1YTR has more deviations.

Overall, the deviations from Normality are minor, and the QQ plots support the

Kolmogorov-Smirnov tests. A Normal assumption of residuals is justified.

Fig. 6.1: Quantile-quantile plots of S&P residuals (see (6.1)) vs the standard Normal dis-
tribution in two sets of years: 1871-1950 and 1951-2019. The black line indicates
where quantile coordinates should be if the unknown distribution is Normal.
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Fig. 6.2: Quantile-quantile plots of 1YTR residuals (see (6.1)) vs the standard Normal dis-
tribution in two sets of years: 1871-1950 and 1951-2019. The black line indicates
where quantile coordinates should be if the unknown distribution is Normal.

6.1.2 Bivariate kernal density estimation of residuals

While residuals do align well with Normality, there are still deviations, and it is easy

to construct a kernel density estimate for comparison. Denote the bivariate Gaussian

kernel with K(x) = (2π)−1 exp(−1
2
xTx). Then the density estimate is given by the

following equation.

f̂(x) =
1

n
√
|H|

n∑
i=1

K(H−
1
2 (x−

[
Xi1

Xi2

]
)). (6.4)

H is the plug-in bandwidth, defined as arg minH∈HAMISEf̂(·;H), where H is the

space of symmetric, positive-definite 2× 2 matrices and

AMISEf̂(·;H) =
R(K)

n
√
|H|

+
m2(K)2

4
(vechTH)Ψ4(vechH). (6.5)



41

In (6.5),

R(K) =

∫
R2

K(x)2dx

m2(K)I2 =

∫
R2

xxTK(x)dx

vechH = [h11 h12 h22]

Ψ4 =

∫
R2

vech[2D2f(x)− dgD2f(x)]vechT [2D2f(x)− dgD2f(x)]dx

(6.6)

where D2f(x) denotes the Hessian matrix and dg is an operator performed on a

matrix to set non-diagonal elements to zero.

H is selected with the goal of minimizing MISEf̂(·;H). AMISE is used instead

of MISE because it approximates MISE and is more wieldy [9].

Since the K is the Gaussian kernel here, R(K) = 1
4π

and m2(K) = 1 (see Ap-

pendix). Hence, (6.5) reduces to

AMISEf̂(·;H) =
1

4πn
√
|H|

+
1

4
(vechTH)Ψ4(vechH). (6.7)

Bandwidth matrices for the bivariate random variable

[S&P residuals, 1YTR residuals]T

are given below. H1 is for the pre-1951 density, and H2 is for the post-1951 density.

H1 =

[
0.0087623046 0.0003308656
0.0003308656 0.0012262923

]
H2 =

[
0.0072875595 0.0001173202
0.0001173202 0.00007379545

] (6.8)

Figure 6.3 shows the density estimates for residuals.
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Fig. 6.3: Bivariate kernel density estimate of S&P and 1YTR residuals as described by (6.1)
and (6.4). The 25%, 50% and 75% quantiles are outlined. For comparison, the
actual bivariate residuals are plotted as points.
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7. APPLICATIONS

The simplicity of dollar-cost averaging led to more applicable theoretical results.

Specifically, the expectation, standard deviation, Sharpe ratio and related optimiza-

tion are easily computed. None of the theoretical results on recursively defined dis-

tributions are applied because they take too much time and space to compute with

accuracy. The value averaging theoretical results consist entirely of recursively de-

fined distributions, so there are no applications there. In order to make statements

about their distributions, the dollar-cost and value averaging strategies are simulated.

From there, samples are used to estimate quantiles, expectation, standard deviation,

Sharpe ratio and related optimization. The code used to produce figures is on github

[5].

7.1 Applications of DCA theoretical results

Dollar-cost averaging theoretical results require AR(0) real returns, which implies real

returns are iid with constant mean and covariance. The following applications make

use of the sample mean and covariance for the pre-1951 and post-1951 time periods,

given in (7.1) and (7.2). Recall that p indicates the proportion invested in S&P each

year.

Before 1951, the mean and covariance for the bivariate random variable [sk +

1, bk + 1]T are

µ1 =

[
1.0808
1.0344

]
, Σ1 =

[
0.0350 0.0018
0.0018 0.0070

]
. (7.1)

After 1951, the mean and covariance for the bivariate random variable [sk+1, bk+1]T

are

µ2 =

[
1.0850
1.0147

]
, Σ2 =

[
0.0262 0.0005
0.0005 0.0007

]
. (7.2)
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7.1.1 Expectation

Figure 7.1 shows the expectation of DCRRn for a range of n. Observe the linearity of

expectation. The value p at which the post-1951 expectation overtakes the pre-1951

expectation decreases as the investment length increases.

Fig. 7.1: Computed using Theorem 2 and the sample mean and covariance for two time
periods. Green indicates pre-1951 expectations. Red indicates post-1951 expecta-
tions.

7.1.2 Standard deviation

Figure 7.2 shows the standard deviation of DCRRn for a range of n. Regardless of

investment length, the standard deviation is higher with the pre-1951 period. Post-

1951, there is a linear trend in standard deviation. Pre-1951, there is increased

convexity for small p, but a linear trend develops as p increases. That stretch of

convexity is less and less noticeable as the length of investment increases.
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Fig. 7.2: Computed using Theorem 2 and the sample mean and covariance for two time
periods. Green indicates pre-1951 standard deviations. Red indicates post-1951
standard deviations.

Figure 7.3 shows arg minp V ar(DCRRn) - which is the same with standard de-

viation - for a range of n. All investment lengths have small argmins, close to 0.

Pre-1951, with investment length greater than 4 years, it is less volatile to invest a

small proportion in S&P than to invest everything in 1YTR. However, Figure 7.2

shows that this difference in standard deviation was small.
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Fig. 7.3: Computed using Theorem 6, Theorem 2 and the sample mean and covariance for
two time periods. Green indicates pre-1951 argmins. Red indicates post-1951
argmins.

7.1.3 Sharpe ratio

Figure 7.4 shows the Sharpe ratio of DCRRn for a range of n. The post-1951 period

has a higher Sharpe ratio for investment lengths of 2, 6 and 12 years. Starting with

an investment length of 20 years, the pre-1951 period begins to have a higher Sharpe

ratio at some p. The range of p at which the Sharpe ratio of the pre-1951 period

is higher increases as the investment length increases past 20 years. Regardless of

time period, the Sharpe ratio tends to level out as the proportion invested in S&P

increases.
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Fig. 7.4: Computed using Theorem 2 and the sample mean and covariance for two time
periods. Green indicates pre-1951 Sharpe ratios. Red indicates post-1951 Sharpe
ratios.

Figure 7.5 shows the Sharpe ratio argmax of DCRRn for a range of n. The

difference in argmax between the two time periods decreases as the investment length

increases. Pre-1951 has a larger argmax for each investment length. Regardless of

investment length or time period, the argmax occurs at p < 0.4. Furthermore, the

argmax decreases close to 0 as investment length increases.
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Fig. 7.5: Computed using Theorem 7, Theorem 2 and the sample mean and covariance for
two time periods. Green indicates pre-1951 argmaxes. Red indicates post-1951
argmaxes. p indicates the proportion invested in S&P.

Figure 7.6 shows the Sharpe ratio max of DCRRn for a range of n. The post-

1951 Sharpe ratio max continues to grow, whereas the pre-1951 max levels out as the

length of investment increases. In general, the post-1951 time period offers higher

Sharpe ratios.
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Fig. 7.6: Computed using Theorem 7, Theorem 2 and the sample mean and covariance
for two time periods. Green indicates pre-1951 maxes. Red indicates post-1951
maxes.

7.1.4 Summary

There is a proportion invested in S&P where both time periods produce the same

expectation. Moreover, post-1951 expectations are higher than pre-1951 expectations

for larger proportions invested in S&P. The opposite is true for smaller proportions.

When the proportion is fixed, expectation is sensative to time period and investment

length. Longer investments and larger proportions invested in S&P lead to greater

expectations and standard deviations. In other words, return and volatility increases

with investment length and the proportion invested in S&P.

Longer investments offer higher Sharpe ratios, implying that risk-return tradeoff

improves as investment length increases. Investing a small proportion in S&P of-

fers better risk-return tradeoff than investing everything into 1YTR. Alternatively,

the risk-return tradeoff gained by investing a small proportion into 1YTR decreases

as investment length increases. For longer investments, it can be better to focus

exclusively on S&P.
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7.2 Dollar-cost averaging simulation

The dollar-cost averaging strategy is simulated using the bivariate random variables

fitted in Chapter 6. The time-span is split into two sets, 1871-1950 and 1951-2019,

in an attempt to account for the apparent change in 1YTR RR variance starting at

1951. 0.975, 0.5 and 0.025 quantiles for real return are plotted in Figures 7.7, 7.8

and 7.9. The kernel density estimate of residuals has a tendency to create a slightly

larger 0.975 quantile and smaller 0.025 quantile compared to the Normal residuals.

So kernel density estimates of residuals produce larger confidence intervals. However,

the difference is not egregious. Furthermore, the shape of each quantile (as a function

of proportion) is very similar regardless of how residuals were generated.

Figure 7.9 indicates that it is least risky when the proportion invested in S&P

is between 0.1 and 0.5, depending on investment length. This reference to risk is

different from the Sharpe ratio in that it minimizes probability of incurring a loss and

does not factor in possible gains. Figures 7.7 and 7.8 show that the 0.975 and 0.5

quantiles are approximately linear over p. Similar to how the kernel density estimate

produced larger confidence intervals, pre-1951 confidence intervals are larger than

post-1951 confidence intervals.
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Fig. 7.7: DCA upper bound of 95% confidence interval for total real returns after investing
for 2, 6, 12, 20, 30 and 42 years using the dollar-cost averaging strategy. In each
plot, the proportion p of the fixed annual investment placed in S&P is varied from
0 to 1 in 0.1 size intervals; the remaining proportion is invested in 1YTR. Green
indicates the residuals for S&P and 1YTR used in computation were simulated
using a (pre-1951) bivariate random variable. Red indicates the residuals were
simulated using a (post-1950) bivariate random variable. A circle indicates the
bivariate random variable was Normal, described by (6.2). A plus indicates the
bivariate random variable was estimated by (6.4) and (6.8). 3000 simulations were
conducted for each time period and proportion invested in S&P.
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Fig. 7.8: DCA 0.5 quantile with the same details as in Figure 7.7.

Fig. 7.9: DCA lower bound of 95% confidence interval with the same details as in Figure
7.7.

Expectation, standard deviation and Sharpe ratio are plotted in Figures 7.10,
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7.11 and 7.12. The difference resulting from generating residuals via kernel density

estimate or Normal density is not egregious. Furthermore, shape is nearly identical

for each investment length.

The expectations in Figure 7.10 tend to be larger than the 0.5 quantiles in Figure

7.8, indicating right skew; the difference is most significant at higher rates. Theo-

retical expectations and standard deviations are almost identical to their simulated

versions, which account for autoregression. Theoretical Sharpe ratios tend to exceed

their simulated versions, but the shape and argmax is close. The Normal assumption

tends to exaggerate Sharpe ratios compared with the kernel density estimate. In ad-

dition, the argmax of the 0.025 quantile tends to be larger than the argmax Sharpe

ratio.

Fig. 7.10: DCA expectation with the same details as in Figure 7.7.
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Fig. 7.11: DCA standard deviation with the same details as in Figure 7.7.

Fig. 7.12: DCA Sharpe ratio with the same details as in Figure 7.7.
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7.2.1 Summary

Pre-1951 confidence intervals are slightly larger than post-1951 confidence intervals.

Using Normal residuals produces larger confidence intervals than kernel density es-

timates, but the difference is not eggregious. When quantiles are graphed over the

proportion, shape is about the same for Normal and kernel density estimates. Overall,

the Normal assumption of residuals produces similar results.

Regardless of investment length or proportion invested in S&P, real returns are

right skewed. If the goal is to minimize probability of incurring a loss, the optimal

proportion invested in S&P may be larger than the argmax Sharpe ratio. When the

proportion is fixed, quantiles increase with investment length. So longer investments

are less risky and offer better returns.

Assuming real returns are AR(0) despite evidence to the contrary does not have

a major impact on expectation, standard deviation and Sharpe ratio. Furthermore,

investing decisions can be made using the AR(0) assumption, as the decisions are

similar after accounting for autoregression of higher order.

7.3 Value averaging simulation

The value averaging strategy is simulated using the bivariate random variables fitted

in Chapter 6. The time-span is split into two sets, 1871-1950 and 1951-2019, in an

attempt to account for the apparent change in 1YTR RR variance starting at 1951.

0.975, 0.5 and 0.025 quantiles for real return are plotted in Figures 7.13, 7.14 and

7.15. The kernel density estimate of residuals has a tendency to create a slightly

larger 0.975 quantile and smaller 0.025 quantile compared to the Normal residuals.

So kernel density estimates of residuals produce larger confidence intervals. However,

the difference is not egregious. Furthermore, the shape of each quantile (as a function

of rate) is very similar regardless of how residuals were generated.

Figure 7.15 indicates that it is least risky, in terms of incurring a loss, when

the rate is small and investment length is over 20 years. For shorter investments,
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the 0.025 quantile is approximately constant over r, so it is best to choose a rate

with high potential return. Figures 7.13 and 7.15 show that the 0.975 and 0.025

quantiles are approximately linear over r until the investment length passes 20 years.

When the investment length is greater than 6 years, there is a value at which potential

returns worsen as the rate increases past that value. Similar to how the kernel density

estimate produced larger confidence intervals, pre-1951 confidence intervals are larger

than post-1951 confidence intervals.

Fig. 7.13: VA upper bound of 95% confidence interval for total real returns after investing
for 2, 6, 12, 20, 30 and 42 years using the value averaging strategy. In each plot,
the rate r is varied from 0.02 to 0.12 in 0.005 size intervals. Green indicates the
residuals for S&P and 1YTR used in computation were simulated using a (pre-
1951) bivariate random variable. Red indicates the residuals were simulated using
a (post-1950) bivariate random variable. A circle indicates the bivariate random
variable was Normal, described by (6.2). A plus indicates the bivariate random
variable was estimated by (6.4) and (6.8). 3000 simulations were conducted for
each time period and rate.
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Fig. 7.14: VA 0.5 quantile with the same details as in Figure 7.13.

Fig. 7.15: VA lower bound of 95% confidence interval with the same details as in Figure
7.13.

Expectation, standard deviation and Sharpe ratio are plotted in Figures 7.16,
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7.17 and 7.18. The difference resulting from generating residuals via kernel density

estimate or Normal density is not egregious. Furthermore, shape is nearly identical

for each investment length.

The expectations in Figure 7.16 tend to be larger than the 0.5 quantiles in Figure

7.14, indicating right skew. The difference is most significant at higher rates. In

terms of the least risky investment being at small rates, the Sharpe ratios in Figure

7.18 agree with the 0.025 quantiles in Figure 7.15. The post-1951 Sharpe ratios

are higher, suggesting that the risk-return tradeoff improved after 1951. Pre-1951

standard deviations are higher, which explains the larger confidence intervals.

Fig. 7.16: VA expectation with the same details as in Figure 7.13.
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Fig. 7.17: VA standard deviation with the same details as in Figure 7.13.

Fig. 7.18: VA Sharpe ratio with the same details as in Figure 7.13.

Figure 7.19 shows 0.975, 0.5 and 0.025 quantiles of the annual investment, placed

at the beginning of the year. For a given year, the annual investment is not pulling
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from the bottomless cash reserve most of the time.

Fig. 7.19: Ak is plotted for six different rates, where k is the year. Positive Ak indicates
the annual investment does not pull from the bottomless cash reserve. Negative
Ak indicates the annual investment is moving money from the bottomless cash
reserve to S&P. The 0.975, 0.5 and 0.025 quantiles are at the top, middle and
bottom respectively. Remaining details about color and points are the same
details as in Figure 7.13.

Figure 7.19 shows 0.975, 0.5 and 0.025 quantiles of the total investment, tallied at

the end of the year before next year’s investment is made. Observe the change in con-

cavity around rate 0.06. 50% of the time, the total investment is quite low compared

to the initial investment of 1. As rate increases, so does the total investment.
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Fig. 7.20: TIk is plotted for six different rates, where k is the year. The 0.975, 0.5 and 0.025
quantiles are at the top, middle and bottom respectively. Remaining details about
color and points are the same details as in Figure 7.13.

7.3.1 Summary

Pre-1951 confidence intervals are slightly larger than post-1951 confidence intervals.

Using Normal residuals produces larger confidence intervals than kernel density es-

timates, but the difference is not eggregious. When quantiles are graphed over the

proportion, shape is about the same for Normal and kernel density estimates. Overall,

the Normal assumption of residuals produces similar results.

Regardless of investment length or rate, real returns are right skewed. There is

a rate at which potential returns are maximized. This has to do with the increase

in total investment as investment length and rate increase. The investment with

the least risk of loss and the investment with the best risk-return tradeoff have a

small rate, close to 0. Risk-return tradeoff is better after 1951 than before. Longer

investments offer less risk of loss and better risk-return tradeoff.

The annual investment is random, and so is the total investment. Provided a

rate less than 0.12 and equal initial investment, the total investment is smaller than
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in dollar-cost averaging.
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8. CONCLUSION

8.1 Dollar-cost averaging for large investment funds

Large investment funds like university endowment funds have certain characterstics

that set them apart from most individual investors. In particular, the sheer amount of

capital being invested makes investment funds take additional steps to mitigate risk.

Special consideration must be given to liquidity and risk of incurring a loss when

purchasing assets. For example, investing everything into a single asset can cause

problems when the fund managers wish to sell a significant portion of the investment.

There may not be enough buyers, and then the investment would be tied up. As will

be shown in the following paragraphs, the dollar-cost averaging application of this

thesis takes such factors into account, making dollar-cost averaging a viable investing

strategy for large investment funds.

First recall that applications use 6-month bonds: US certificates of deposit and

US commercial paper to be specific. These are readily available for purchase in large

capacities. Moreover, the bonds are insured by the US federal government, making

liquidity a non-issue.

In addition to 6-month bonds, applications use the S&P Composite Index. To-

day, the S&P Composite Index consists of 500 companies, weighted based on market

capitalization. As a result of the large amount of capital invested, funds can buy

individual stocks at the correct weights, thereby creating a portfolio that follows the

S&P Composite Index. Moreover, the fund’s capital is dispersed across 500 com-

panies, making it possible to sell a significant portion of the total invested without

experiencing major liquidity issues.

Now that the issue of liquidity has been addressed and reduced, the issue of risk
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is considered. Funds often have many people relying on their success. For example,

a unviersity endowment fund cannot take too much risk. If it does, the future of

the university can face major setbacks in terms of expansion and renovation. Conse-

quently, funds need reliable returns at manageable risk. The definitions of reliable and

manageable vary from fund to fund, so an investing strategy with variable risk-return

offerings is needed. Fortunately, the application of dollar-cost averaging presented

here provides variable risk-return offerings by tuning the proportion invested in the

S&P Composite Index. Moreover, the risk-return offerings are quite favorable, espe-

cially in the long-term.

Lastly, a fund needs an investing strategy that is reasonable to implement. Since

dollar-cost averaging requires a fixed investment at fixed proportions and time steps,

it is predictable and can be planned out. Moreover, it does not require any knack for

market timing, so funds can implement it without hiring so-called investment gurus

and paying their exorbitant salaries.

Value averaging is not advised for investment funds because of randomness in the

periodic investment. It would place a significant burden on a fund to try planning for

such randomness. Dollar-cost averaging avoids this randomness with a fixed periodic

investment. Note that other options exist for large investment funds besides 6-month

US bonds and the S&P Composite Index. For example, 5 year bonds and the Nasdaq

100 Index can be used, with a 5 year time step.

8.2 Final remarks

Two well-known investing strategies were presented: dollar-cost averaging and value

averaging. Their recursive definitions led to recursive theoretical results. In the

case of dollar-cost averaging, a simpler recursive definition allowed for closed-form

representation of some theoretical results. Closed-form results were easily applied.

Probability distributions for each strategy were developed recursively, but the inte-

gration involved takes too much time and space to apply with accuracy. In addition

to the closed-form applications, each strategy was summarized through simulation.
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Dollar-cost averaging is attractive because it takes fixed investments at equidis-

tant time steps. It is reasonable for an investor to set aside a fixed amount of income

to invest each year. Furthermore, the desired risk-return tradeoff is achieved by ad-

justing the proportion invested in stocks vs bonds.

The structure of value averaging makes it more attractive in some situations and

less in others. Value averaging is less attractive because it takes random investments.

Investors must set aside a larger amount, say the 0.95 quantile, even though the

actual investment will likely be less. This sort of preparation may not be reasonable

for some investors. Value averaging is more attractive because it offers a series of

investments that can have a trend other than a straight line. For example, lower

rates fit an investor who wants to place a large initial investment, and plans to invest

a smaller amount in subsequent years.

Investors looking to invest in S&P and 1YTR can use the results presented earlier

to select which strategy and parameters best fits their desired investment amounts,

tolerance for risk and desired returns. Investors looking to invest in alternative asset

class pairs can modify the code in github [5] to reproduce figures and make investment

decisions.
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9. APPENDIX

Lemma 5. R(K) = 1
4π

when K is the bivariate Gaussian kernel.

Proof. By definition,

R(K) =

∫
R2

K(x)2dx =

∫
R2

(
1

2π
exp(−x

2
1 + x22

2
)

)2

d[x1 x2]
T ). (9.1)

The integral can be rewritten as
∫
R

∫
R

1
4π2 exp(−x21 − x22)dx1dx2. Continuing to ma-

nipulate the integral and noticing the Gaussian integral,

R(K) =
1

4π2

∫
R

∫
R

exp(−x21 − x22)dx1dx2

=
1

4π2

∫
R

exp(−x22)
∫
R

exp(−x21)dx1dx2

=
1

4π2

∫
R

exp(−x22)
√
πdx2

=
1

4π2
π

=
1

4π
.

(9.2)

Lemma 6. m2(K) = 1 when K is the Gaussian kernel.

Proof. By definition,

m2(K)I2 =

∫
R2

xxTK(x)dx =

∫
R

∫
R

[
x21 x1x2
x1x2 x22

]
1

2π
exp(−x

2
1 + x22

2
)dx1dx2. (9.3)

Taking the element in position (1,1) of (9.3),∫
R

∫
R
x21

1

2π
exp(−x

2
1 + x22

2
)dx1dx2 =

1

2π

∫
R

exp(−x
2
2

2
)

∫
R
x21exp(−x

2
1

2
)dx1dx2 (9.4)

Using the substitution u = −x21
2

and the Gamma function, the right hand side of (9.4)

reduces to

1

2π

∫
R

exp(−x
2
2

2
)
√

2πdx2. (9.5)
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Noticing the Gaussian integral, (9.5) reduces to

1

2π

√
2π
√

2π = 1. (9.6)

By symmetry, the element in position (2,2) of (9.3) is also 1.

Now to verify that the element in position (1,2) of (9.3) is 0. By symmetry, this

will imply that the element in position (2,1) is also 0.∫
R

∫
R
x1x2

1

2π
exp(−x

2
1 + x22

2
)dx1dx2 =

1

2π

∫
R
x2exp(−x

2
2

2
)

∫
R
x1exp(−x

2
1

2
)dx1dx2 (9.7)

Using the substitution u =
x21
2

, the right-hand side of (9.7) reduces to

1

2π

∫
R
x2exp(−x

2
2

2
)[

∫ ∞
0

exp(−u1)du1 −
∫ ∞
0

exp(−u1)du1]dx2 = 0. (9.8)
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