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ABSTRACT

The Multi-agent system (MAS) optimal control problem is a recently emerging

research topic that benefits industries such as robotics, communication, and power

systems. The traditional MAS control algorithms are developed by extending the

single agent optimal controllers, requiring heavy information exchange. More-

over, the information exchanged within the MAS needs to be used to compute the

optimal control resulting in the coupling between the computational complexity

and the agent number. With the increasing need for large-scale MAS in practical

applications, the existing MAS optimal control algorithms suffer from the “curse

of dimensionality” problem and limited communication resources. Therefore, a

new type of MAS optimal control framework that features a decentralized and

computational friendly decision process is desperately needed. To deal with the

aforementioned problems, the mean field game theory is introduced to generate

a decentralized optimal control framework named the Actor-critic-mass (ACM).

Moreover, the ACM algorithm is improved by eliminating constraints such as ho-

mogeneous agents and cost functions. Finally, the ACM algorithm is utilized in

two applications.
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CHAPTER 1

INTRODUCTION

Pursuing a strategy that automatically generates the optimal decisions in vari-

ous tasks has become one of the main pillars in artificial intelligence (AI) studies.

As a general representation of different tasks, the intelligent agent-based system

has been serving as the tool to study the theory of AI decision-making [80]. In

the past decades, the intelligent agent-based system with only a single agent has

incubated well-known reinforcement learning algorithms such as the approximate

dynamic programming (ADP) [51], the deep Q network (DQN) [68], and the pol-

icy gradient descent algorithms [31] etc. However, with the development of the

urgent need for a system with multiple agents [69], the single agent algorithms

have been modified to adapt to the multi-agent systems (MAS) (see the survey pa-

per [25]). The limit of such naive modifications has challenged these algorithms’

future applications because the modern MAS contains more and more agents (see

the survey paper [86]). The modern MAS is now named the large-scale MAS.

Due to enormous diversity gain from a larger population, large-scale multi-

agent systems have recently attracted growing interests from academic research

societies as well as industrial companies [103]. However, different than tradi-

tional optimal control methods [37], massive MAS optimal control is defined as

a collective motion of a vast number of individuals such as schooling of fish and

swarming of bacteria. There are two significant challenges, i.e., 1) how to break the

well known ”curse of dimensionality” [7] while optimizing tracking performance,

and 2) how to share information under complex and uncertain environment, e.g.,

limited communication ability [24], uncertain wind and so on. Most recent multi-

agent control algorithms [79] have stringent constraints, i.e., distributed agents
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must share information with neighbors timely and accurately. However, this re-

quirement could not be guaranteed in massive MAS optimal control since a com-

plex and uncertain environment cannot support high-quality communication (e.g.,

less delay and packet dropouts) especially while the number of agents goes to in-

finity. This challenge has been recognized as the notorious “Curse of Dimension-

ality” problem [7].

To overcome the “Curse of dimensionality” problem, a decentralized solution

is much more preferred since less communication is needed. Recently, A new type

of decentralized multi-agent decision-making algorithm, named Mean Field Game

(MFG), has been developed by Lasry and Lions [48], [34] under stochastic nonco-

operative games theory. A parallel work of MFG (or Nash Certainty Equivalence)

has been provided by Huang et al. [39] independently. It has been applied in

different areas successfully [23], [85].

The key idea of Mean Field Control Theory is to design decentralized control

only based on local information and impact from mass, i.e., the entire other agents.

[48] and [34] have proven that the individual agent’s influence will be replaced by

mass influence while the population of agents goes to infinity. When each agent

plays the best response to the environment and population distribution, the so-

lution of Mean Field Controller converges to εN -Nash equilibrium [39]. To ob-

tain Mean Field optimal control solution, we need to minimize cost function as

well as consider the practical influence from other agents that has been described

as a probability density function (PDF) [34], [48]. Recall that for optimal control

[53], the optimal cost function attained through solving Hamilton-Jacobi-Bellman

(HJB) equation which is usually solved backward-in-time. Meanwhile, the mas-

sive multi-agent population distribution can also be represented through a new
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type of partial differential equation, Fokker-Planck-Kolmogorov (FPK) equation,

introduced by [34]. The FPK equation, however, must be solved forward-in-time.

In this chapter, we will elaborate in details to introduce the optimal control,

reinforcement learning, and the motivation of introducing mean field games.

1.1 Optimal Control Problem and Reinforcement Learning Algo-

rithms

To seek the automatic decision process that consumes less energy, the optimal

control and decision-making methods have been studied for decades [78]. Al-

though the optimal control problems and decision-making problems sometimes

have different meanings, the control problems usually target the lower-level con-

trol adjustment of devices, while decision-making problems target solving decision-

level tasks. In this dissertation, we refer to both as the same type of problems, i.e.,

finding the optimal action/control for a given task. An optimal control task is of-

ten defined in a given state and action space. Depending the type of the problem,

an equation that describes the physics of the agent may be given. Finally, a cost

function is defined to evaluate the behavior of the agent. The goal is to design an

algorithm to automatically select the optimal control/action such that:

• The cost function is minimized.

• The physical system remains stable.

These two rules will be used to evaluate the different versions of the ACM algo-

rithm through this dissertation.
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Due to the high computational complexity, traditional optimizers [78] are not

suitable in real-time systems. The dynamic programming method was developed

by Richard Bellman [7] to break the computational intensive optimization problem

into simpler sub-problems. The dynamic programming method requires recur-

sively solving the Bellman equation in each computation step. And the resulting

solution set is a sequence of parameters that minimize the cost function. Inspired

by Bellman’s work, researchers introduced this recursive optimizer into the opti-

mal control problem and generated the reinforcement learning algorithm [47]. In

reinforcement learning, the cost function is used to generate the Bellman equa-

tion since it is the objective function to minimize. Consequently, the parameters

of the cost function, which are states and actions, become the subject of adjust-

ment. Intuitively, the parameters are “reinforced” based on the stimuli (reward or

punishment) received from the cost function.

A major development of reinforcement learning happened when a scheme called

the Actor-critic is introduced by Andrew G. Barto et al. [6]. In the Actor-critic

scheme, the actor applies actions, and the critic assesses the actions applied. The

importance of this scheme is that it clearly describes the two-step frames (policy

evaluation and policy improvement), which are now used in most modern rein-

forcement learning algorithms. Barto’s work was adopted by both control and

computer science societies and inspired the two leading branches of reinforcement

learning. Both branches, however, propose to use neural networks in the Actor-

critic framework. The major development of the reinforcement learning algorithm

in computer science was contributed by Volodymyr Mnih et al. [68], where deep

neural networks are introduced to approximate the optimal cost function. This

algorithm has many developments such as double Q-learning [36], Deep Deter-

ministic Policy Gradient (DDPG) [59], etc. On the other hand, Frank Lewis et al.
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[50] introduced the approximate dynamic programming (ADP) based on optimal

control problems. Although describing similar processes, the ADP allows rigor-

ous derivations and Lyapunov stability analysis to provide a more reliable per-

formance guarantee. Therefore, in this dissertation, the development of the ACM

algorithm will follow Lewis’s approach. However, it is worth noting that the ACM

framework can also be easily transformed into the computer science’s style.

In [2], the authors derived the Hamilton-Jacobi-Bellman (HJB) equation from

the cost function. Moreover, the authors proposed to use two neural networks

that fulfill the Actor-critic structure, i.e., the actor neural network to approximate

the optimal control and the critic neural network to approximate the optimal cost

function.

1.2 Multi-agent Reinforcement Learning and the Motivation of

Mean Field Games

The multi-agent systems (MAS) with large scale agent population have bene-

fited various industries, i.e., IoT [43], robotics [57], communication [83], etc. In the

MAS control problem, all agents’ real-time information in the team is required for

coordination. To accomplish more complex tasks, the MAS’s size has been brought

to a very large-scale setup. However, it brings challenges.

The first is the communication difficulty that occurs because a very large-scale

low latency communication network is required for the individual agent to ex-

change real-time information. For instance, the state-of-art consensus algorithms

[72, 106] require a communication graph to be connected for ensuring that all
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agents can share information. Similarly, in multi-agent reinforcement learning

[69, 111], and the multi-agent optimal control [110], the requirement of the infor-

mation from the other agents are stringent since it is often and nearly impossible to

build and maintain a very large-scale communication mobile network, especially

in uncertain environments [83, 29, 100]. Many types of research have been focus-

ing on solving the unreliable communication issue in MAS games to deal with this

issue. In [54], the authors developed two observers to estimate the state informa-

tion of the followers with input delays caused by an unreliable communication

network. Some researchers have found ways to reduce the communication effort

among agents by transferring the all-time transmitting scenario into an on-demand

communication scenario, e.g., the event-triggered consensus algorithm [27, 53].

Others tried to compress the information and set up multiple hop transmission

via various advanced information flow techniques described in [12]. Despite the

effort made to reduce communication traffic, the challenge of building and main-

taining a massive network remains as the agent number goes to infinity. Therefore,

a decentralized solution that requires no communication is much more preferred.

Secondly, traditional MAS algorithms suffered from the well-known ”Curse

of Dimensionality” problem since they demand each agent to include all other

agents’ states to compute the optimal strategy. Traditional reinforcement algo-

rithms, like Q-learning, want to estimate each possible discrete state or state-action

pairs’ values for every other agent, and thus the complexity grows along with

the increasing number of agents. Eventually, this increase leads directly to an

exponential rise in the computational complexity [69, 10]. To tackle this chal-

lenge, the authors in [107] proposed the mean field reinforcement learning method

which replaced the information of other agents by averaging the actions. Although

this effectively solves the “Curse of Dimensionality” difficulty, acquiring the other
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agents’ real-time actions still requires accurate observations or reliable communi-

cation capability. Therefore, a decentralized MAS algorithm that 1) does not re-

quire observation or communication, 2) encodes the information of other agents

to reduce the dimension is desperately needed.

Recently, the mean-field game (MFG) theory is emerging to solve the multi-

agent noncooperative games with infinity agents [34, 120]. The key idea of the

mean-field game is to use a probability density function (PDF), named “mass”,

among all agents’ states to replace the required other agents’ information in tra-

ditional non-cooperative games. Since the mass function’s output has the same

dimension with the state space, the computational complexity to compute optimal

control is no longer related to the agent number. Therefore, the “curse of dimen-

sionality” is tackled. Intuitively, the infinity players’ non-cooperative game has

been shifted into a two-player game for each agent, i.e., the agent himself versus

the whole population (mass). Moreover, the mass is computed by a PDE named the

Fokker-Planck-Kolmogorov (FPK), which is solved using local information only

[34]. It is worth noting that all agents are assumed to be homogeneous in MFG

and have the same objective function, so the time evolution of the global state PDF

(mass) of all agents can be approximated by applying local control policy [34].

Therefore, no information exchange is required for an agent in the MAS compared

to the aforementioned algorithms. To this end, the two major concerns for large

scale MAS optimal tracking control is promising to be solved by formulating as an

MFG. However, another major complication arises as the optimal tracking control

brings another PDE, making the two coupled PDEs nearly impossible to solve in

real-time.

Recall the optimal control and reinforcement learning [52, 92, 49], each agent’s
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objective is to minimize a given evaluation function by selecting the optimal con-

trol policy while considering the effect from other agents [94]. The optimal evalu-

ation function, which is the evaluation function corresponding to the optimal con-

trol policy, can be computed by solving a PDE named Hamilton-Jacobian-Bellman

(HJB) equation [92, 61, 22]. The HJB equation is solved reversely in the time since

it comes from the Bellman equation [52] while the FPK is solved forward in time

[34]. Moreover, both FPK and HJB are high dimensional nonlinear PDEs, which

are also coupled by the optimal evaluation function and mass. Some researchers

have provided offline empirical approximations such as [4, 15]. However, an on-

line algorithm to solve the HJB-FPK needed in real applications is still lacking.

Inspired by the well-known actor-critic algorithm [92], which can online solve

the multi-agent optimal control and reinforcement learning problem [94], we de-

veloped the actor-critic-mass (ACM) structure to solve the mean field game type

optimal control problem. The ACM algorithm includes three neural networks, i.e.,

1) the actor NN which approximates the optimal control, 2) the critic NN which

approximates the optimal evaluation function by estimating the solution of the

HJB equation, 3) the mass NN, which approximates the FPK equation’s solution

(mass).

1.3 Contributions of the Dissertation

In this dissertation, the large-scale multi-agent optimal control is discussed.

The main contributions can be summarized as:

1. A decentralized algorithm that utilizes the mean field game theory has been
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developed and named as the actor-critic-mass (ACM) algorithm. The de-

veloped algorithm can effectively reduce the computational complexity and

communication burden in a MAS whose agent size goes to infinity.

2. The original mean field game theory’s stringent assumptions on homoge-

neous agents has been relaxed. The ACM-Opponent algorithm has been

designed to deal with agents with different physical dynamics in pursuit-

evasion games.

3. The ACM algorithms have been applied to practical problems such as the

electrical vehicle charging and communication optimal power allocation.

1.4 Organization of the Dissertation

In Chapter 2, the general ACM framework and theoretical foundations are in-

troduced. Specifically, the large-scale MAS optimal control problem is formulated

into the mean field type optimal control. Besides the Hamiltonian-Jacobi-Bellman

(HJB) equation that is derived from the single agent optimal control scheme, an ex-

tra partial differential equation (PDE) named the Fokker-Plank-Kolmogorov (FPK)

equation is introduced. To solve the coupled PDE system, referred to as the mean

field equation system in this dissertation, a numerical approximation algorithm

that includes three neural networks is introduced. Specifically, the actor, critic, and

mass neural networks are designed to approximate the optimal control, optimal

cost function, and the PDF of all agents’ states, respectively.

The general ACM framework suffers from stringent constraints due to some

unrealistic assumptions of the original mean field game theory. To release those

constraints, the mean field game theory is improved to adapt to practical applica-
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tions. In Chapter 3, the assumption that requires all agents to be homogeneous is

lifted by considering the pursuer and evader agents with different system dynam-

ics.

In Chapter 4, a case study based on an optimal electrical vehicle charging sched-

ule is designed to verify the ACM algorithm’s practical performance.

In Chapter 5, the proposed ACM framework is applied to optimal transmission

power control in wireless networks to illustrate the practicability.
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CHAPTER 2

LARGE-SCALE MULTI-AGENT REINFORCEMENT LEARNING

ALGORITHM AND STABILITY ANALYSIS [114, 118]

2.1 Introduction

During the past decade, the multi-agent systems (MAS) has attracted consider-

able amount of attention in complicated missions [113], [53]. Especially with the

rapid development of game theory [87], the complex task-oriented decision mak-

ing and control policy for MAS has been effectively investigated with profound

mathematical support. Upon the traditional optimal control methods [52, 50], the

differential game theory [93] has been thoroughly studied and applied to MAS by

modeling the MAS control problem as a multi-player game. All players’ states

are integrated into one evaluation equation and maintained by each individual

agent. To update that evaluation equation, the information is required to be ex-

changed among different agents. However, recall to latest researches [28], such

multi-player game theory can effectively address the control problem in MAS with

a small number of agents but not a very large-scale multi-agent system. It is be-

cause the increasing number of agents challenge the traditional MAS control algo-

rithms in two aspects, i.e., 1) the difficulty of obtaining real-time information from

all other agents due to unreliable wireless communication, 2) drastically increased

dimension of the partial differential equations in optimal control methods due to

the increasing augmented state dimension. Therefore, a new type of multi-agent

control algorithm that is specially designed for a large size agent group is desper-

ately needed.

In most MAS control and optimization researches [122], e.g., the consensus al-
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gorithm [77], a reliable communication network is necessary for maintaining the

basic information exchange among distributed agents, e.g., agent’s states, control

policies, etc. However, in large-scale multi-agent systems, building a reliable com-

munication network is challenging and even impossible due to limited communi-

cation resources for the massive peer-to-peer wireless links [19, 112, 3]. Especially,

the burden of large-scale communication network will significantly compromise

the performance when the agent number goes to infinity. Some researchers are

recently actively developing new methods to reduce the communication effort by

introducing the on-demand style information exchange protocol. In [17, 53], the

authors designed a new type of event-driven communication network by setting

an appropriate threshold to trigger communication at the optimal time, which can

effectively improve network usage efficiency. Other researchers have focused on

the information reduction and further set up multi-hop transmission via efficient

information flow design [74, 12]. Moreover, another type of algorithm focuses on

solving the MAS control with less team information needed amid the difficulty

of information exchange among large-scale MAS [60]. Despite the extreme effort

made for the communication reduction in large-scale MAS, the huge information

exchanging load continues if the agent number is ultra large. Besides the commu-

nication problem, the complicity of the individual agent’s high-dimension state

space can also lead to the notorious “Curse of Dimensionality” challenge in MAS

design. For instance, in a vast majority of MAS intelligent control algorithms that

feature deep reinforcement learning [45, 11], the finite discrete state space and/or

action space have been considered [73, 33]. The drawbacks in those algorithms

are that the complexity of the algorithm is coupled with the agent number [119].

Therefore, the computational effort increases drastically in the large-scale multi-

agent systems.
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To solve the above difficulties, the game theory [34, 41, 119] has been adopted.

In the Mean Field Game (MFG) theory, each agent can model all the other agents’

influence as a probability density function (PDF) to avoid the dimension explo-

sion. More importantly, obtaining the PDF requires no communication but solving

the Fokker-Planck-Kolmogorov (FPK) equation [34] locally. By assuming that all

agents are homogeneous and share the same objective [9], each agent can estimate

other agents’ actions by substituting all agents’ states (in the form of PDF) into its

policy. Then, these actions can be used to update the PDF via the FPK equation.

Since all information is generated locally (except the agents’ initial distribution [9]),

the communication traffic load has been relieved significantly.

In this chapter, the optimal control for large-scale MAS is investigated with the

tracking control problem as an example. Each agent in the large-scale MAS must

follow a reference trajectory and interact with other agents in the team. To deal

with the communication and computation problems, a novel decentralized algo-

rithm, i.e., the Actor-critic-mass (ACM) algorithm, has been proposed. Specifically,

three neural networks are designed to solve the previously unsolvable coupled

PDEs, i.e., the critic NN for HJB equation, actor NN for optimal control, and mass

NN for FPK equation.

The contributions can be summarized as:

1. The Actor-critic-mass (ACM) algorithm has been developed to tackle the

computation explosion and communication difficulties in the large-scale multi-

agent optimal control problem. The dimension of the problem is reduced by

introducing a probability function density (PDF) function to replace the effect

of the team. Moreover, the PDF can be solved locally via the FPK equation

2. Three neural networks are designed to approximate the optimal control on-
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line. Rigorous theoretical analysis is given to guarantee the performance of

the neural networks.

2.2 Problem Statement

The large-scale tracking control problem is firstly defined. Then, the mean field

game theory is introduced so that the original problem is reformulated into the

mean field type tracking formulation.

2.2.1 The Original Multi-agent Tracking Control Problem

Let N mobile agents move in a map with l dimension. The noised motion

dynamic equations of each agent can be written as:

dρi(t) = [fy(ρi(t)) + gy(ρi(t))ui] dt+ σdwi (2.1)

where fy(ρi(t)) and gy(ρi(t)) represent the intrinsic dynamic equations, ui ∈ Rl

is the deterministic control input, ρi(t) is a l-dimensional stochastic vector which

represents the position of agent i, wi denotes a the Brownian noise term, and σ is

the noise’s coefficient matrix. A reference trajectory is provided and is known to

all agents prior to the mission, i.e., xd(t). The trajectory should be tracked by all

members in the team.

Therefore, we set a cost function to evaluate each agent’s performance. And the

lower the cost is, the better the agent performs.

Ji(ρi, ρ
(N), ui) = E

{∫ ∞
0

[
‖ρi − xd‖2

Q + ‖ui‖2
R + Φ′(ρ(N), ρi)

]
dt
}

(2.2)
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where ρ(N) denotes the augmented states of all agents, and Φ′(ρ(N), ρi) evaluates the

team’s effect on agent i. The dimension of (2.2) is coupled with the agent number

N , which goes to infinity in the very large-scale MAS case. The growing dimension

of the cost function would cause computational explosion. To tackle this difficulty,

the Mean Field Games (MFG) is embedded in the next subsection.

2.2.2 MFG-based Tracking Control

Mean Field Games [48] are designed to solve large-scale non-cooperative games.

In the mean field games, the global information is encoded into a PDF, which can

be measured by a local PDE named the FPK equation. The computed PDF over-

comes the difficulty of collecting information from all other agents as well as re-

duces the dimension of the optimal control problem.

All agents are considered to track a reference trajectory which is denoted by

xd(t) ∈ Rl. Therefore the tracking error is defined as :

xi(t) = ρi(t)− xd(t) (2.3)

where xi represents the tracking error. Moreover, we obtain the tracking error as:

dxi = dρi − dxd

= [fy(ρi) + gy(ρi)ui −
dxd
dt

]dt+ σdwi

= [fy(xi + xd) + gy(xi + xd)ui −
dxd
dt

]dt+ σdwi

= [f(xi) + g(xi)ui]dt+ σdwi

(2.4)

where f(xi) = fy(xi + xd)− dxd
dt

, and g(xi) = gy(xi + xd).

Similar to [39], in order to optimize the massive MAS performance, the cost
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function (2.2) can be formalized as

Ji(xi,m, ui) = E
{∫ ∞

0

[
L(xi, ui) + Φ(m,xi)

]
dt

}
(2.5)

where the m(xi, t) denotes the probability density function that is used to replace

ρ(N), Φ(m,xi) is the corresponding new coupling function, L(xi, ui) = ‖xi‖2
Q +

‖ui‖2
R.

Recall the Bellman equation [52]:

J∗i (xi, u
∗
i (t)) = min

ui
{r(xi, ui(t)) + J∗i (xi, ui(t+ dt)} (2.6)

where r(xi, ui(t)) = ‖xi‖2
Q + ‖ui(t)‖2

R + Φ(m,xi), and u∗i represents i-th agent’s op-

timal control input.

According to the optimal control theory [52], we select the Hamiltonian as

H [xi, ∂xJi(xi,m, ui)] = L(xi, ui) + ∂xJi(xi,m, ui)
T [f(xi) + g(xi)ui] (2.7)

Next, the HJB equation is obtained by substituting the Hamiltonian into the

Bellman equation, i.e.,

Φ(m,xi) = −∂tJ∗i (xi,m, u
∗
i )− 0.5σ2∆J∗i (xi,m, u

∗
i ) +H [xi, ∂xJ

∗
i (xi,m, u

∗
i )] (2.8)

Moreover, the optimal control can be derived as

u∗i (x) = −1

2
R−1gT (xi)∂xJ

∗
i (xi,m, t) (2.9)

In the formulated game, the optimal control is the Nash equilibrium [8], i.e.

Ji(ui;u
∗
o) ≥ Ji(u

∗
i ;u
∗
o) (2.10)

where u∗o denotes all other agents’ control.
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To calculate the optimal tracking control for individual agents in the large-scale

MAS team, the PDF, i.e., m(xi, t) is needed. In the MFG [48, 34], this PDF can be

measured through the locally solvable Fokker-Plank-Kolmogorov (FPK) equation.

∂tm(xi, t)−
σ2

2
∆m(xi, t)− div

{
mDpH

[
xi, ∂xJ

∗
i (xi,m, t)

]}
= 0 (2.11)

The solution that satisfies the HJB and FPK equation at the same time is guar-

anteed to be unique [34], [48], [39]). Specifically, the solution is called the εN -Nash

equilibrium [48]:

Ji(ui;u
∗
o) ≥ Ji(u

∗
i ;u
∗
o)− εN (2.12)

where εN is a constant and limN→∞ εN = 0.

Remark 1. In order to find the εN -Nash equilibrium, the HJB-FPK equation system

has to be solved first. However, these two equations are coupled high-dimensional

partial differential equations (PDEs) which are challenging to solve online. Hence,

the reinforcement learning method [52] is introduced and extended to solve this

problem.

2.3 Actor-critic-Mass Decentralized Algorithm

In this section, the actor-critic-mass algorithm is proposed. The main idea in-

cludes three coupled neural network estimators.
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Figure 2.1: The proposed reinforcement learning structure

2.3.1 The Actor-critic-mass Estimator

To calculate the optimal control for each agent, the mean field equations (2.8),

(2.11) needs to be solved. In reinforcement learning [52], two neural networks are

designed to approximate the optimal solution. However, in the large-scale multi-

agent system case, the PDF is also required to be approximated. Therefore, the

proposed algorithm includes a new neural network, i.e., the mass NN.

Let W T
J,i, W

T
u,i, and W T

m,i denote the weights vectors of the designed three neural

networks, the critic, actor, and mass neural networks are
J∗i (xi,m, t) = W T

J,iφJ,i(xi,m, t) + εJ,i

u∗i (xi,m, t) = W T
u,iφu,i(xi,m, t) + εu,i

m(xi, t) = W T
m,iφm,i(xi, m̄i, t) + εm,i

(2.13)

where m̄i is defined as m̄i(t) = 1
t̂

∫ t
[t−t̂]+ E[m(xi, τ)]dτ , and t̂ is a constant historical

window, φ(·) are activation functions, and ε are the reconstruction errors.

Since the actual value of the weights are unknown, they have to be approxi-

mated. Let Ŵ T
J,i, Ŵ

T
u,i, and Ŵ T

m,i denote the approximated weights, the approxi-
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mated optimal cost function, control and PDF are
Ĵi(xi, m̂i, t) = Ŵ T

J,i(t)φJ,i(xi, m̂i, t)

ûi(xi, m̂i, t) = Ŵ T
u,i(t)φu,i(xi, m̂i, t)

m̂i(xi, m̄i, , t) = Ŵ T
m,i(t)φm,i(xi, m̄i, t)

(2.14)

When the approximated equations (2.14) are substituted into the mean field

equations (2.8), (2.9) and (2.11), the generated errors are used to tune the neural

networks, i.e.,

eHJBi= Φ(m̂i, xi, t) + Ŵ T
J,i(t)(∂tφ̂J,i +

σ2

2
∆φ̂J,i − ĤWJ) (2.15)

eFPKi = Ŵ T
m,i(t)

[
∂tφ̂m,i −

σ2

2
∆φ̂m,i − div(φ̂m,i Dp Ĥ)

]
(2.16)

eui = Ŵ T
u,i(t)φu,i(xi, m̂i, t) +

1

2
R−1gT (xi)∂xĴi (2.17)

where

φ̂J,i = φJ,i(xi, m̂i, t)

φ̂m,i = φm,i(xi, m̄i, t)

φ̂u,i = φu,i(xi, m̂i, t)

ĤWJ = HWJ [xi, ∂xφ̂J,i(xi, m̂i, t)]

Ĥ = H[xi, ∂xφ̂J,i(xi, m̂i, t)]

ĤWJ satisfies

Ĥ[xi, ∂xJi(xi, m̂i, t)] = Ŵ T
J,i(t)ĤWJ

Next, we simplify the notations of Eqs. 2.15 and 2.16

eHJBi = Φ(xi,m, t) + Φ̃i(xi, m̃i, t) + Ŵ T
J,i(t)ΨJ,i(xi, m̂i, t) (2.18)

eFPKi = Ŵ T
m(t)Ψm,i(xi, m̄i, Ĵi, t) (2.19)
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with ΨJ,i(xi, m̂i, t), and Ψm,i(xi, m̄i, Ĵi, t) being defined as

ΨJ,i(xi, m̂i, t) = ∂tφ̂J,i +
σ2

2
∆φ̂J,i −HWJ(xi, ∂xφ̂J,i) (2.20)

Ψm,i(xi, m̄i, Ĵi, t) = ∂tφ̂m,i −
σ2

2
∆φ̂m,i − div

{
φ̂m,iDpH

[
xi, ∂xĴ(xi, m̂i, t)

]}
(2.21)

and Φ̃i(xi, m̃i, t) represents:

Φ̃i(xi, m̃i, t) = Φ(xi, m̂i, t)− Φ(xi,m, t) (2.22)

Substitute 2.13 into 2.8 and 2.11, one obtains

Φ(xi,m, t) +W T
J,i{∂tφJ,i +

σ2

2
∆φJ,i(xi,m, t)−HWJ}+ εHJBi = 0 (2.23)

W T
m,i

{
∂tφm,i −

σ2

2
∆φm,i(xi, m̄i, t)− div [φm,iDpH (xi, ∂xJ(xi,m, t))]

}
+ εFPKi = 0

(2.24)

Namely,

Φ(xi,m, t) +W T
J,iΨJ,i(xi,m, t) + εHJBi = 0 (2.25)

W T
m,iΨm,i(xi, m̄i, Ji, t) + εFPKi = 0 (2.26)

where εHJBi, εFPKi are the errors caused by neural networks’ reconstruction errors.

And they can be ignored when the reconstruction errors are negligible.

Substitute Eq,. 2.25 and 2.26 into Eqs. 2.18 and 2.19, one obtains the affect of

the reconstruction errors on the neural networks’ estimation errors.

Φ(xi, m̃i, t)− W̃ T
J,iΨJ,i(xi, m̂i, t)−W T

J,iΨ̃J,i(xi, m̃i, t)− εHJBi = eHJBi (2.27)

− W̃ T
m,iΨm,i(xi, m̄i, Ĵi, t)−W T

m,iΨ̃m,i(xi, m̄i, J̃i, t)− εFPKi = eFPKi (2.28)

Similarly,

− W̃ T
u,iφu,i(xi, m̂i, t)−W T

u,iφ̃u,i(xi, m̃i, t)

− 1

2
R−1gT (xi)∂xJ̃i − εui = eui

(2.29)
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with

εui = εmi +
1

2
R−1gT (xi)∂xεHJBi

W̃J,i = WJ,i − ŴJ,i(t)

Ψ̃J,i(xi, m̃i, t) = ΨJ,i(xi,m, t)−ΨJ,i(xi, m̂i, t)

Ψ̃m,i(xi, m̄i, J̃i, t) = Ψm,i(xi, m̄, Ji, t)−Ψm,i(xi, m̄i, Ĵi, t)

φ̃u,i(xi, m̃i, t) = φu,i(xi,m, t)− φu,i(xi, m̂i, t)

Apply the gradient descent algorithm on the neural networks’ estimation errors,

the update laws are

˙̂
WJ,i(t) = −αh,i

ΨJ,i(xi, m̂i, t)e
T
HJBi

1 + ΨT
J,i(xi, m̂i, t)ΨJ,i(xi, m̂i, t)

(2.30)

˙̂
Wm,i(t) = −αm,i

Ψm,i(xi, m̄i, Ĵi, t)e
T
FPKi

1 + ΨT
m,i(xi, m̄i, Ĵi, t)Ψm,i(xi, m̄i, Ĵi, t)

(2.31)

˙̂
Wu,i(t) = −αu,i

φu,i(xi, m̂i, t)e
T
ui

1 + φTu,i(xi, m̂i, t)φu,i(xi, m̂i, t)
(2.32)

where αh,i, αm,i, and αu,i are the learning rates.

2.3.2 The Actor-critic-mass Algorithm Performance Analysis

Recall to (2.30), (2.31), and (2.32), the Actor-critic-mass NN weights estimation

error can be represented as:

˙̃WJ,i(t) = − ˙̂
WJ,i(t) = αh,i

ΨJ,i(xi, m̂i, t)e
T
HJBi

1 + ΨT
J,i(xi, m̂i, t)ΨJ,i(xi, m̂i, t)

(2.33)

˙̃Wm,i(t) = − ˙̂
Wm,i(t) = αm,i

Ψm,i(xi, m̄i, Ĵi, t)e
T
FPKi

1 + ΨT
m,i(xi, m̄i, Ĵi, t)Ψm,i(xi, m̄i, Ĵi, t)

(2.34)

˙̃Wu,i(t) = − ˙̂
Wu,i(t) = αu,i

φu,i(xi, m̂i, t)e
T
ui

1 + φTu,i(xi, m̂i, t)φu,i(xi, m̂i, t)
(2.35)
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Next, the bound of the approximated optimal cost function, PDF of all tracking

errors, optimal control, the bound will depend on the NNs’ reconstruction errors

and the weights’ approximation errors, i.e.,

Cost function estimation error:

‖J̃i(t)‖ = ‖W̃ T
J,i(t)φJ,i(xi, m̂i, t) +W T

J,iφ̃J,i(xi, m̃i, t) + εJ,i‖

≤ ‖W̃ T
J,i(t)‖‖φ̂J,i‖+ lφJ,i‖WJ,i‖‖m̃i‖+ ‖εJ,i‖

≤ bWv,i
(t)‖φ̂J,i‖+ lφJ,i‖WJ,i‖bm,i(t) + ‖εJ,i‖

≡ bJ,i(t)

(2.36)

, where φ̃J,i(xi, m̃i, t) = φJ,i(xi,m, t)− φJ,i(xi, m̂i, t)

Mass function estimation error:

‖m̃i(t)‖ = ‖W̃ T
m,i(t)φm.i(xi, m̄i, t) + εm,i||

≤ ‖W̃m,i‖‖φm,i‖+ ‖εm,i‖ ≤ bWm,i
(t)‖φm,i‖+ ‖εm,i‖

≡ bm,i(t)

(2.37)

Optimal Mean Field type control estimation error:

‖ũi(t)‖ = ‖W̃ T
u,i(t)φ̂u,i +W T

u,i(t)φ̃u,i(xi, m̃i, t)εu,i||

≤ ‖W̃u,i‖‖φ̂u,i‖+ ‖Wu,i‖‖φ̃u,i(xi, m̃i, t)‖+ ‖εu,i‖

≤ bWu,i
(t)‖φ̂u,i‖+ lφ‖Wu,i‖‖m̃i‖+ ‖εu,i‖

≡ bu,i(t)

(2.38)

The convergence and stability of neural networks and the closed-loop system

can be described using the following theorems.

Theorem 1. (Actor neural network convergence): Let the actor neural network weights

be updated following the updated law (2.32), and let the learning rate αu,i be a

positive number, the actor neural network’s weight approximation error W̃u,i and

the the optimal control approximation error ũi = ui − ûi are uniformly ultimately
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bounded (UUB) in the stochastic sense. The bounds are negligible if the recon-

struction error is ignored.

Proof. Considering the Lyapunov function candidate selected as

Lu,i(t) =
1

2
tr
{
W̃ T
u,iW̃u,i

}
(2.39)

Take the first derivative of selected Lyapunov function candidate and substitute

actor NN weights estimation error dynamics given in Eq. 2.35, Eq. 2.39 can be

represented as

L̇u,i(t) = tr
{
W̃ T
u,i

˙̃Wu,i

}
= αu,itr

{
W̃ T
u,i

φ̂u,ie
T
ui

1 + φ̂Tu,iφu,i

}
(2.40)

Next, substituting Eq.2.29 into Eq. 2.40, Eq. 2.40 can be expressed as

L̇u,i(t) =− αu,itr{W̃ T
u,i

φ̂u,iφ
T
u,i

1 + φ̂Tu,iφu,i
W̃u,i}

− αu,itr{W̃ T
u,i

φ̂u,iφ̃
T
u,i

1 + φ̂Tu,iφu,i
Wu,i}

− αu,itr{W̃ T
u,i

φ̂u,i[
1
2
R−1gT (ei)∂eṼi]

1 + φ̂Tu,iφu,i
}

− αu,itr{W̃ T
u,i

φ̂u,iε
T
u,i

1 + φ̂Tu,iφu,i

}
(2.41)

Let bui =
φ̂u,i

1+φ̂Tu,iφu,i
, the triangle inequality properties (e.g. Cauchy-Schwarz in-

equality etc.) are applied for simplifying Eq. 2.41 as

L̇u,i(t) = −αu,itr{W̃ T
u,ibuiφ

T
u,iW̃u,i}

− αu,itr{W̃ T
u,ibuiφ̃

T
u,iWu,i} − αu,itr{W̃ T

u,ibuiε
T
ui}

− αu,itr{W̃ T
u,ibui

1

2
R−1gT (ei)∂eṼi}

≤ −αu,i
4

∥∥∥φ̂u,i∥∥∥2

1 +
∥∥∥φ̂u,i∥∥∥2

∥∥∥W̃u,i

∥∥∥2

− αu,i
4

‖φu,i‖2

1 + ‖φu,i‖2

∥∥∥W̃u,i

∥∥∥2
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− αu,itr{W̃ T
u,ibuiφ̃

T
u,iWu,i} − αu,i

∥∥∥W T
u,iφ̃u,i

∥∥∥2

1 +
∥∥∥φ̂u,i∥∥∥2

+ αu,i

∥∥∥W T
u,iφ̃u,i

∥∥∥2

1 +
∥∥∥φ̂u,i∥∥∥2 −

αu,i
4

∥∥∥φ̂u,i∥∥∥2

1 +
∥∥∥φ̂u,i∥∥∥2

∥∥∥W̃u,i

∥∥∥2

− αu,itr{W̃ T
u,ib1uiφ̃

T
u,iWu,i} − αu,i

∥∥∥W T
u,iφ̃u,i

∥∥∥2

1 +
∥∥∥φ̂u,i∥∥∥2

− αu,itr{W̃ T
u,i

φ̂u,i[
1
2
R−1gT (ei)∂eṼi]

1 + φ̂Tu,iφu,i
}

− αu,i

∥∥∥1
2
R−1gT (ei)∂eṼi

∥∥∥2

1 +
∥∥∥φ̂u,i∥∥∥2 + αu,i

∥∥∥1
2
R−1gT (ei)∂eṼi

∥∥∥2

1 +
∥∥∥φ̂u,i∥∥∥2

− αu,i
4

∥∥∥φ̂u,i∥∥∥2

1 +
∥∥∥φ̂u,i∥∥∥2

∥∥∥W̃u,i

∥∥∥2

− αu,itr{W̃ T
u,ibuiε

T
ui}

− αu,i
‖εui‖2

1 + φ̂Tu,iφu,i
+ αu,i

‖εui‖2

1 + φ̂Tu,iφu,i
(2.42)

Moreover, according to the −1
4
a2 ± ab− b2 = −

(
1
2
a∓ b

)2, Eq. 2.42 can be repre-

sented as

L̇u,i(t) ≤ −
αu,i
4

∥∥∥φ̂u,i∥∥∥2∥∥∥W̃u,i

∥∥∥2

1 +
∥∥∥φ̂u,i∥∥∥2

− αu,i

‖1 + φu,i‖2

∥∥∥∥∥W̃ T
u,iφ̂u,i

2
−W T

u,iφ̃u,i

∥∥∥∥∥
2

− αu,i

‖1 + φu,i‖2

∥∥∥∥∥W̃ T
u,iφ̂u,i

2
− 1

2
R−1gT (ei)∂eṼ

∥∥∥∥∥
2

− αu,i

‖1 + φu,i‖2

∥∥∥∥∥W̃ T
u,iφ̂u,i

2
− εui

∥∥∥∥∥
2

+
αu,iR

−1gT (ei)∂eṼ

4(1 +
∥∥∥φ̂u,i∥∥∥2

)
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+
αu,i‖εui‖2

1 +
∥∥∥φ̂u,i∥∥∥2

︸ ︷︷ ︸
εNui

(2.43)

To simplify the derivation in Eq. 2.43, several negative terms are dropped such

as

L̇u,i(t) ≤

− αu,i
4

∥∥∥φ̂u,i∥∥∥2∥∥∥W̃u,i

∥∥∥2

1 +
∥∥∥φ̂u,i∥∥∥2 +

αu,iR
−1gT (ei)∂eṼ

4(1 +
∥∥∥φ̂u,i∥∥∥2

)
+ εNu,i

≤ −αu,i
4

∥∥∥φ̂u,i∥∥∥2∥∥∥W̃u,i

∥∥∥2

1 +
∥∥∥φ̂u,i∥∥∥2 +BWu,i

(2.44)

where

BWu,i
= αu,i

∥∥R−1gT (ei)
∥∥2
∥∥∥Ṽi∥∥∥2

1 +
∥∥∥φ̂u,i∥∥∥2 + εNu,i

and Ṽi is the actor estimation error given in Eq. 2.36.

According to Lyapunov stability analysis and Eq. 2.44, the actor NN weight

estimation error will be uniformly bounded with the bound given as

∥∥∥W̃ui

∥∥∥ ≤
√√√√√√4(1 +

∥∥∥φ̂ui∥∥∥2

)

αu,i

∥∥∥φ̂ui∥∥∥2 BWu,i(t) ≡ bWu,i(t) (2.45)

This completes the proof.

Theorem 2. (Optimal cost function convergence) Let the critic neural network weights

be updated following the update law (2.30), and let the learning rate αh,i be a pos-

itive number, the critic neural network’s weight approximation error W̃J,i and the
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cost function approximation error J̃i = Ji− Ĵi are UUB in the stochastic sense. The

bounds are negligible if the reconstruction error is ignored.

Proof. Consider the Lyapunov function candidate as

LJ,i(t) =
1

2
tr
{
W̃J,iW̃J,i

}
(2.46)

According to the Lyapunov stability analysis method, take the first derivative

of selected Lyapunov function candidate, we have

L̇J,i(t) = tr{W̃ T
J,i

˙̃WJ,i} (2.47)

Substituting critic NN weights estimation error dynamics given in Eq. 2.33, Eq.

2.47 can be represented as

L̇J,i(t) = αh,itr

{
W̃ T
J,i

ΨJ,i(ei, m̂i, t)e
T
HJBi

1 + Ψ̂T
J,iΨJ,i

}
(2.48)

Let Ψ̂J,i denotes ΨJ,i(ei, m̂i, t), and Ψ̃J,i denotes ΨJ,i(ei, m̃i, t). Substituting Eq.2.27

into Eq. 2.48, Eq. 2.48 can be expressed as

L̇J,i(t) =αh,itr

{
W̃ T
J,i

Ψ̂J,iΦ̃
T

1 + Ψ̂T
J,iΨJ,i

}
− αh,itr

{
W̃ T
J,i

Ψ̂J,iΨ
T
J,i

1 + Ψ̂T
J,iΨJ,i

W̃J,i

}

− αh,itr
{
W̃ T
J,i

Ψ̂J,iΨ̃
T
J,i

1 + Ψ̂T
J,iΨJ,i

WJ,i

}
− αh,itr

{
W̃ T
J,i

Ψ̂J,iε
T
HJBi

1 + Ψ̂T
J,iΨJ,i

}
(2.49)

Let b1V i =
Ψ̂J,i

1+Ψ̂T
J,iΨJ,i

, the triangle inequality properties (e.g. Cauchy-Schwarz in-

equality etc.) are applied for simplifying Eq. 2.49 as

L̇J,i(t) ≤ αh,itr{W̃ T
J,ib1V iΦ̂

T} − αh,itr{W̃ T
J,ib1V iΨ

T
J,iW̃J,i}

− αh,itr{W̃ T
J,ib1V iΨ̃

T
J,iWJ,i} − αh,itr{W̃ T

J,ib1V iε
T
HJBi}

≤ −αh,i
4

∥∥Ψ̂J,i

∥∥2

1 +
∥∥Ψ̂J,i

∥∥2

∥∥W̃J,i

∥∥2 − αh,i
4

∥∥Ψ̂J,i

∥∥2

1 +
∥∥Ψ̂J,i

∥∥2

∥∥W̃J,i

∥∥2
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+ αh,itr{W̃ T
J,ib1V iΦ̃

T} − αh,i
1

1 +
∥∥∥Ψ̂J,i

∥∥∥2

∥∥∥Φ̃T
∥∥∥2

+ αh,i
1

1 +
∥∥∥Ψ̂J,i

∥∥∥2

∥∥∥Φ̃T
∥∥∥2

− αh,i
4

∥∥∥Ψ̂J,i

∥∥∥2

1 +
∥∥∥Ψ̂J,i

∥∥∥2

∥∥∥W̃J,i

∥∥∥2

− αh,itr{W̃ T
J,ib1V iΨ̃

T
J,iWJ,i} − αh,i

∥∥∥W T
J,iΨ̃J,i

∥∥∥2

1 +
∥∥∥Ψ̂J,i

∥∥∥2

+ αh,i

∥∥∥W T
J,iΨ̃J,i

∥∥∥2

1 +
∥∥∥Ψ̂J,i

∥∥∥2 −
αh,i
4

∥∥∥Ψ̂J,i

∥∥∥2

1 +
∥∥∥Ψ̂J,i

∥∥∥2

∥∥∥W̃J,i

∥∥∥2

− αh,itr{W̃ T
J,ib1V iε

T
HJBi} − αh,i

‖εHJBi‖2

1 +
∥∥∥Ψ̂J,i

∥∥∥2

+ αh,i
1

1 +
∥∥Ψ̂J,i

∥∥2

∥∥εHJBi∥∥2 (2.50)

Moreover, according to the −1
4
a2 ± ab− b2 = −

(
1
2
a∓ b

)2, Eq. 2.50 can be repre-

sented as

L̇J,i(t) ≤ −
αh,i
4

∥∥∥Ψ̂J,i

∥∥∥2∥∥∥W̃J,i

∥∥∥2

1 +
∥∥∥Ψ̂J,i

∥∥∥2 −
αh,i

∥∥∥∥W̃T
J,iΨ̂J,i

2
− Φ̃

∥∥∥∥2

‖1 + ΨJ,i‖2

−
αh,i

∥∥∥∥W̃T
J,iΨ̂J,i

2
−W T

J,iΨ̃J,i

∥∥∥∥2

1 +
∥∥∥Ψ̂J,i

∥∥∥2 − αh,i

∥∥∥∥W̃T
J,iΨ̂J,i

2
− εHJBi

∥∥∥∥2

1 +
∥∥∥Ψ̂J,i

∥∥∥2

+
αh,i

∥∥∥Φ̃
∥∥∥2

1 +
∥∥∥Ψ̂J,i

∥∥∥2 +
αh,i

∥∥∥W T
J,iΨ̃J,i

∥∥∥2

1 + ‖ΨJ,i‖2 +
αh,i‖εHJBi‖2

1 +
∥∥∥Ψ̂J,i

∥∥∥2

︸ ︷︷ ︸
εV HJBi

(2.51)

To simplify the derivation in Eq. 2.51, several negative terms are dropped such



28

as

L̇J,i(t) = −αh,i
4

∥∥∥Ψ̂J,i

∥∥∥2∥∥∥W̃J,i

∥∥∥2

1 +
∥∥∥Ψ̂J,i

∥∥∥2 +
αh,i

∥∥∥Φ̃
∥∥∥2

1 + ‖ΨJ,i‖2

+
αh,i

∥∥∥W T
J,iΨ̃J,i

∥∥∥2

1 +
∥∥∥Ψ̂J,i

∥∥∥2 + εV HJBi

≤ −αh,i
4

∥∥Ψ̂J,i

∥∥2

1 +
∥∥Ψ̂J,i

∥∥2

∥∥W̃J,i

∥∥2
+BWJ,i(t) (2.52)

where BWJ,i(t) =
[lΦ,i+lΨJ,i‖W̃J,i‖2

]‖m̃i‖2

1+‖Ψ̂J,i‖2 + εV HJBi, lΦ,i, lΨJ,i
are Lipschitz constants of

the coupling function Φ(·) and ΨJ,i(·) respectively, and m̃i is the mass estimation

bound given in Eq. 2.37.

According to Lyapunov stability analysis and Eq. 2.52, the critic NN weight

estimation error will be uniformly bounded with the bound given as

∥∥∥W̃J,i

∥∥∥ ≤
√√√√√√4(1 +

∥∥∥Ψ̂J,i

∥∥∥2

)

αh,i

∥∥∥Ψ̂J,i

∥∥∥2 BWJ,i(t) ≡ bWJ,i(t) (2.53)

This completes the proof.

Theorem 3. (Mass neural network convergence): Let the mass neural network weights

be updated following the updated law (2.31), and let the learning rate αm,i be a

positive number, the mass neural network’s weight error W̃m,i and the PDF ap-

proximation error m̃i = mi − m̂i are UUB in the stochastic sense. The bounds are

negligible if the reconstruction error is ignored.

Proof. Considering the Lyapunov function candidate selected as

Lm,i(t) =
1

2
tr
{
W̃ T
m,iW̃m,i

}
(2.54)
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Take the first derivative of selected Lyapunov function candidate and substitute

mass NN weights estimation error dynamics given in Eq. 2.34, Eq. 2.54 can be

represented as

L̇m,i(t) = tr
{
W̃ T
m,i

˙̃Wm,i

}
= αm,itr

{
W̃ T
m,i

Ψ̂m,ie
T
FPKi

1 + Ψ̂T
m,iΨm,i

}
(2.55)

Next, substituting Eq.2.28 into Eq. 2.55, Eq. 2.55 can be expressed as

L̇m,i(t) =− αm,itr{W̃ T
m,i

Ψ̂m,iΨ
T
m,i

1 + Ψ̂T
m,iΨm,i

W̃m,i}

− αm,itr{W̃ T
m,i

Ψ̂m,iΨ̃
T
m,i

1 + Ψ̂T
m,iΨm,i

Wm,i}

− αm,itr{W̃ T
m,i

Ψ̂m,iε
T
FPKi

1 + Ψ̂T
m,iΨm,i

} (2.56)

Let bmi =
Ψ̂m,i

1+Ψ̂T
m,iΨm,i

, the triangle inequality properties (e.g. Cauchy-Schwarz

inequality etc.) are applied for simplifying Eq. 2.56 as

L̇m,i(t) = −αm,itr{W̃ T
m,ibmiΨ

T
m,iW̃m,i}

− αm,itr{W̃ T
m,ibmiΨ̃

T
m,iWm,i} − αm,itr{W̃ T

m,ibmiε
T
FPKi}

≤ −αm,i
2

∥∥∥Ψ̂m,i

∥∥∥2∥∥∥W̃m,i

∥∥∥2

1 +
∥∥∥Ψ̂m,i

∥∥∥2 − αm,i
4

‖Ψm,i‖2
∥∥∥W̃m,i

∥∥∥2

1 +
∥∥∥Ψ̂m,i

∥∥∥2

− αm,itr{W̃ T
m,ibmiΨ̃

T
m,iWm,i} − αm,i

∥∥∥W T
m,iΨ̃m,i

∥∥∥2

1 +
∥∥∥Ψ̂m,i

∥∥∥2

+ αm,i

∥∥∥W T
m,iΨ̃m,i

∥∥∥2

1 +
∥∥∥Ψ̂m,i

∥∥∥2 −
αm,i

4

∥∥∥Ψ̂m,i

∥∥∥2∥∥∥W̃m,i

∥∥∥2

1 + ‖Ψm,i‖2

− αm,itr{W̃ T
m,ibmiε

T
FPKi} −

αm,i‖εFPKi‖2

1 +
∥∥∥Ψ̂m,i

∥∥∥2

+
αm,i‖εFPKi‖2

1 + ‖Ψm,i‖2 (2.57)
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Moreover, according to the −1
4
a2 ± ab− b2 = −

(
1
2
a∓ b

)2, Eq. 2.57 can be repre-

sented as

L̇m,i(t) ≤ −
αm,i

2

∥∥∥Ψ̂m,i

∥∥∥2∥∥∥W̃m,i

∥∥∥2

1 +
∥∥∥Ψ̂m,i

∥∥∥2

− αm,i

1 +
∥∥∥Ψ̂m,i

∥∥∥2

∥∥∥∥∥W̃ T
m,iΨ̂m,i

2
−W T

m,iΨ̃i

∥∥∥∥∥
2

+ αm,i

∥∥∥W T
m,iΨ̃m,i

∥∥∥2

1 +
∥∥∥Ψ̂m,i

∥∥∥2 + εNFPKi (2.58)

where

εNFPKi =
αm,i‖εFPKi‖2

1 + ‖Ψm,i‖2

To simplify the derivation in Eq. 2.58, several negative terms are dropped such

as

L̇m,i(t) ≤ (2.59)

− αm,i
2

∥∥∥Ψ̂m,i

∥∥∥2∥∥∥W̃m,i

∥∥∥2

1 +
∥∥∥Ψ̂m,i

∥∥∥2 + αm,i

∥∥∥W T
m,iΨ̃m,i

∥∥∥2

1 +
∥∥∥Ψ̂m,i

∥∥∥2 + εNFPKi

− αm,i
2

∥∥∥Ψ̂m,i

∥∥∥2∥∥∥W̃m,i

∥∥∥2

1 +
∥∥∥Ψ̂m,i

∥∥∥2 +BWm,i(t) (2.60)

where

BWm,i(t) = αm,i
lΨm,i
‖Wv,i‖2

∥∥∥Ṽi∥∥∥2

1 +
∥∥∥Ψ̂m,i

∥∥∥2 + εNFPKi

and lΨm,i
represents the Lipschitz constant of Ψm,i(·), Ṽi is the critic estimation error

given in Eq. 2.36.

According to Lyapunov stability analysis and Eq. 2.59, the mass NN weight
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estimation error will be uniformly bounded with the bound given as

∥∥∥W̃m,i

∥∥∥ ≤
√√√√√√2(1 +

∥∥∥Ψ̂m,i

∥∥∥2

)

αm,i

∥∥∥Ψ̂m,i

∥∥∥2 BWm,i(t) ≡ bWm,i(t) (2.61)

This completes the proof.

Theorem 4. (Mass neural network convergence): Let the mass neural network weights

be updated following the updated law (2.31), and let the learning rate αm,i be a

positive number, the mass neural network’s weight error W̃m,i and the PDF ap-

proximation error m̃i = mi − m̂i are UUB in the stochastic sense. The bounds are

negligible if the reconstruction error is ignored.

Proof. The details are presented in Appendix C.

Finally, the closed-loop stability is given with an additional lemma.

Lemma 1. Given the system dynamics in (2.1), the optimal control u∗i satisfies,

xTi

[
f(xi) + g(xi)u

∗
i + σ

dwi
dt

]
≤ −γ ‖xi‖2 (2.62)

where γ > 0.

Theorem 5. Let the critic, mass, and actor neural network weights are updated as

Eqs. 2.30, 2.31, and 2.32. There exist constants αh,i > 0, αm,i > 0, and αu,i > 0 such

that xi, W̃J,i, W̃m,i, and W̃u,i are all UUB in the stochastic sense. The corresponding

bounds are negligible if the reconstruction error is ignored.

Proof.

Lsysm,i(t) =
β1

2
tr
{
eTi (t)ei(t)

}
+
β2

2
tr
{
W̃ T
V,i(t)W̃V,i(t)

}



32

+
β3

2
tr
{
W̃ T
m,i(t)W̃m,i(t)

}
+
β4

2
tr
{
W̃ T
u,i(t)W̃u,i(t)

}
(2.63)

According the Lyapunov stability method, taking the first derivative of selected

Lyapunov candidate, we have

L̇sysm,i(t) =
β1

2
tr
{
eTi (t)ėi(t)

}
+
β1

2
tr
{
ėTi (t)ei(t)

}
+
β2

2
tr
{
W̃ T
V,i(t)

˙̃W V,i(t)
}

+
β2

2
tr
{

˙̃W T
V,i(t)W̃V,i(t)

}
+
β3

2
tr
{
W̃ T
m,i(t)

˙̃Wm,i(t)
}

+
β3

2
tr
{

˙̃W T
m,i(t)W̃m,i(t)

}
+
β4

2
tr
{
W̃ T
u,i(t)

˙̃W u,i(t)
}

+
β4

2
tr
{

˙̃W T
u,i(t)W̃u,i(t)

}
= β1tr

{
eTi (t)ėi(t)

}
+ β2tr

{
W̃ T
V,i(t)

˙̃W V,i(t)
}

+ β3tr
{
W̃ T
m,i(t)

˙̃Wm,i(t)
}

+ β4tr
{
W̃ T
u,i(t)

˙̃W u,i(t)
}

(2.64)

Recall to Lemma 1 and Theorem 1, 2, and 3 given in Eq. 2.52, Eq. 2.59, and Eq.

2.44, Eq. 2.64 can be represented as:

L̇sysm,i(t) = β1tr
{
eTi (t)ėi(t)

}
+ β2tr

{
W̃ T
V,i(t)

˙̃W V,i(t)
}

+ β3tr
{
W̃ T
m,i(t)

˙̃Wm,i(t)
}

+ β4tr
{
W̃ T
u,i(t)

˙̃W u,i(t)
}

≤ β1tr

{
eTi [f(eI) + g(ei)u

∗
i −

ded
dt

+ σi
dwi
dt

]

}
− β1tr

{
eTi g(ei)ũi

}
− 2β1

γ
‖g(ei)ũi‖+

2β1

γ
‖g(ei)ũi‖

− αh,iβ2

4

∥∥∥Ψ̂V,i

∥∥∥2

1 +
∥∥∥Ψ̂V,i

∥∥∥2

∥∥∥W̃V,i

∥∥∥2

(2.65)

+ αh,i
β2

[
lΦ,i + lΨV,j

‖WV,i‖2] ‖m̃i‖2

1 +
∥∥∥Ψ̂V,i

∥∥∥2

− αm,i
2

β3

∥∥∥Ψ̂m,i

∥∥∥2∥∥∥W̃m,i

∥∥∥2

1 +
∥∥∥Ψ̂m,i

∥∥∥2 + αm,i
β3‖Wv,i‖2

∥∥∥Ṽi∥∥∥2

1 +
∥∥∥Ψ̂m,i

∥∥∥2
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− αu,i
4

β4

∥∥∥φ̂u,i∥∥∥2

1 +
∥∥∥φ̂u,i∥∥∥2

∥∥∥W̃u,i

∥∥∥2

+ αu,iβ4

∥∥R−1gT (ei)
∥∥2
∥∥∥Ṽi∥∥∥2

1 +
∥∥∥φ̂u,i∥∥∥2

+ β2εV HB,i + β3εNFPKi + β4εNu,i

≤ −γβ1

2
‖ei‖2 − γβ1

2
‖ei‖2 − β1 tr

{
eTi g (ei) ũi

}
− 2β1

γ
‖g (ei) ũi‖2 +

2β1

γ
‖g (ei) ũi‖2

− αh,iβ2

4

∥∥∥Ψ̂V,i

∥∥∥2

1 +
∥∥∥Ψ̂V,i

∥∥∥2

∥∥∥W̃V,i

∥∥∥2

+ αh,i
β2

[
lΦ,i + lΨV,j

‖WV,i‖2] ‖m̃i‖2

1 +
∥∥∥Ψ̂V,i

∥∥∥2

− αm,i
2

β3

∥∥∥Ψ̂m,i

∥∥∥2∥∥∥W̃m,i

∥∥∥2

1 +
∥∥∥Ψ̂m,i

∥∥∥2 + αm,i
β3‖Wv,i‖2

∥∥∥Ṽi∥∥∥2

1 +
∥∥∥Ψ̂m,i

∥∥∥2

− αu,i
4

β4

∥∥∥φ̂u,i∥∥∥2

1 +
∥∥∥φ̂u,i∥∥∥2

∥∥∥W̃u,i

∥∥∥2

+ αu,iβ4

∥∥R−1gT (ei)
∥∥2
∥∥∥Ṽi∥∥∥2

1 +
∥∥∥φ̂u,i∥∥∥2

+ β2εV HB,i + β3εNFPKi + β4εNu,i

≤ −γβ1

2
‖ei‖2 − β1

[√
γ

2
‖ei‖+

√
2

γ
‖g (ei) ũi‖

]2

+
2g2

Mβ1

γ
‖ũi‖2 − αh,iβ2

4

∥∥∥Ψ̂V,i

∥∥∥2

1 +
∥∥∥Ψ̂V,i

∥∥∥2

∥∥∥W̃V,i

∥∥∥2

+ αh,i
β2

[
lΦ,i + lΨV,j

‖WV,i‖2] ‖m̃i‖2

1 +
∥∥∥Ψ̂V,i

∥∥∥2

− αm,i
2

β3

∥∥∥Ψ̂m,i

∥∥∥2∥∥∥W̃m,i

∥∥∥2

1 +
∥∥∥Ψ̂m,i

∥∥∥2 + αm,i
β3‖Wv,i‖2

∥∥∥Ṽi∥∥∥2

1 +
∥∥∥Ψ̂m,i

∥∥∥2

− αu,i
4

β4

∥∥∥φ̂u,i∥∥∥2

1 +
∥∥∥φ̂u,i∥∥∥2

∥∥∥W̃u,i

∥∥∥2

+ αu,iβ4

∥∥R−1gT (ei)
∥∥2
∥∥∥Ṽi∥∥∥2

1 +
∥∥∥φ̂u,i∥∥∥2
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+ β2εV HB,i + β3εNFPKi + β4εNu,i

≤ −γ
2
β1‖ei‖2 +

2g2
Mβ1

γ
‖ũi‖2 − αh,iβ2

4

∥∥∥Ψ̂V,i

∥∥∥2∥∥∥W̃V,i

∥∥∥2

1 +
∥∥∥Ψ̂V,i

∥∥∥2

+ αh,i
β2

[
lΦ,i + lΨV,j

‖WV,i‖2] ‖m̃i‖2

1 +
∥∥∥Ψ̂V,i

∥∥∥2

− αm,i
2

β3

∥∥∥Ψ̂m,i

∥∥∥2∥∥∥W̃m,i

∥∥∥2

1 +
∥∥∥Ψ̂m,i

∥∥∥2 − αu,i
4

β4

∥∥∥φ̂u,i∥∥∥2

1 +
∥∥∥φ̂u,i∥∥∥2

∥∥∥W̃u,i

∥∥∥2

+ β2εV HB,i + β3εNFPKi + β4εNu,i

+
αm,iβ3lΨmi

‖WV,i‖2 + αu,iβ4

∥∥R−1gT (ei)
∥∥2

1 +
∥∥∥Ψ̂m,i

∥∥∥2

∥∥∥Ṽi∥∥∥2

(2.66)

where gM is the Lipschitz constant of the dynamic equation g(ei). Let

b2 =− γ

2
β1‖ei‖2 +

2g2
Mβ1

γ
‖ũi‖2 − αh,iβ2

4

∥∥∥Ψ̂V,i

∥∥∥2∥∥∥W̃V,i

∥∥∥2

1 +
∥∥∥Ψ̂V,i

∥∥∥2

b3 =− αm,i
2

β3

∥∥∥Ψ̂m,i

∥∥∥2∥∥∥W̃m,i

∥∥∥2

1 +
∥∥∥Ψ̂m,i

∥∥∥2 − αu,i
4

β4

∥∥∥φ̂u,i∥∥∥2

1 +
∥∥∥φ̂u,i∥∥∥2

∥∥∥W̃u,i

∥∥∥2

+ β2εV HB,i + β3εNFPKi + β4εNu,i

b4 =
αm,iβ3lΨmi

‖WV,i‖2 + αu,iβ4

∥∥R−1gT (ei)
∥∥2

1 +
∥∥∥Ψ̂m,i

∥∥∥2

b5 =αh,i
β2

[
lΦ,i + lΨV,i

‖WV,i‖2]
1 +

∥∥∥Ψ̂V,i

∥∥∥2

Substituting 2.36 into 2.65, Eq. 2.65 can be represented as:

L̇sysm,i(t) ≤ b2 + b5‖m̃i‖2

+ b4[‖W̃ T
V,i(t)‖‖Ψ̂v,i‖+ lΨV,i

‖WV,i‖‖m̃i‖+ ‖εV,i‖]2

≤ b2 + b3 + 3b4

∥∥∥Ψ̂V,i

∥∥∥2∥∥∥W̃V,i

∥∥∥2
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+
[
3b4l

2
ΨV,i
‖WV,i‖+ b5

]
‖m̃i‖2 + 3b4‖εV,i‖2 (2.67)

Furthermore, substitute Eq.2.37 into 2.67, Eq. 2.67 can be expressed as:

L̇sysm,i(t) ≤ b2 + b3 + 3b4

∥∥∥Ψ̂V,i

∥∥∥2∥∥∥W̃V,i

∥∥∥2

+ 2
[
3b4l

2
ΨV,i
‖WV,i‖2 + b5

]
‖Ψm,i‖2

∥∥∥W̃m,i

∥∥∥2

+ 2
[
3b4l

2
ΨV,i
‖WV,i‖2 + b5

]
‖εm,i‖2 + 3b4‖εV,i‖2 (2.68)

Furthermore, substitute Eq.2.38 into Eq. 2.68 and combine terms, Eq.2.68 can be

expressed as:

L̇sysm,i(t) ≤ −
γβ1

2
‖ei‖2

−

αu,iβ4

4

∥∥∥φ̂u,i∥∥∥2

1 +
∥∥∥φ̂u,i∥∥∥2 −

6g2
Mβ1

γ

∥∥∥φ̂u,i∥∥∥2

∥∥∥W̃u,i

∥∥∥2

−
[
αh,iβ1

4
Ψ̂V,i − b6

∥∥∥Ψ̂V,i

∥∥∥2
] ∥∥∥W̃V,i

∥∥∥2

−
[
αm,iβ3

2
Ψ̂m,i − 2(b6l

2
ΨV,i
‖WV,i‖2 + b7)

∥∥∥Ψ̂m,i

∥∥∥2
] ∥∥∥W̃m,i

∥∥∥2

+ 2
(
b6l

2
ΨV,i
‖WV,i‖2 + b7

)
‖εm,i‖2 +

6g2
Mβ1

γ
‖εu,i‖2

+ b6 ‖εV,i‖2 + β4εNu,i + β3ENFPK,i + β2εV HB,i (2.69)

where

b6 =
3
[
αm,ilΨm,i

β3 ‖WV,i‖2 + αu,iβ4

∥∥R−1gT (ei)
∥∥2
]

1 +
∥∥∥Ψm,i

(
ei,mi, V̂i, t

)∥∥∥2

b7 = αH,i

[
lhi + lΨvi

‖WV,i‖2] β1

1 + ‖ΨV,i (ei, m̂i, t)‖2 +
6g2

Mβ1

γ
‖Wu,i‖2 l2φu,i

where lφu,i is the Lipschitz constant for the actor activation functions φu,i(·). Eq.

2.69 can be rewrote as:
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L̇sysm,i(t) ≤−
γβ1

2
‖ei‖2 − κu

∥∥∥W̃u,i

∥∥∥2

− κm
∥∥∥W̃m,i

∥∥∥2

− κV
∥∥∥W̃V,i

∥∥∥2

+ εCLS

Using the Lyapunov stability analysis, the derivative of selected Lyapunov func-

tion candidate L̇sysm,i(t) is less than zero outside a compact set, i.e.

‖ei‖ >
√

2

γβ1

εCLS or
∥∥∥W̃u,i

∥∥∥ >√ 1

κu
εCLS

or ∥∥∥W̃m,i

∥∥∥ >√ 1

κm
εCLS or

∥∥∥W̃V,i

∥∥∥ >√ 1

κV
εCLS

with

κu =
αu,iβ4

4
Ψ̂m,i −

6g2
Mβ1

γ

∥∥∥φ̂u,i∥∥∥2

]

κm =
αm,iβ3

2
Ψ̂m,i + 2(a1l

2
ΨV,i
‖WV,i‖2 + a2)‖Ψ̂m,i‖2

κV =
αH,iβ4

4
Ψ̂V,i − a1‖Ψ̂V,i‖2

εCLS =2(a1l
2
ΨV,i
‖WV,i‖2 + a2)‖εm,i‖2 +

6g2
Mβ1

γ
‖εu,i‖2

+ a1 ‖εV,i‖2 + β4εNu,i + β3εNFPK,i + β2εV HB,i

This completes the proof.

If the weights are perfectly approximated and assuming the reconstruction er-

rors are negligible, the optimal cost function, PDF of all agents’ tracking error, and

the optimal control can be approximated correctly.

2.4 Numerical Experiments

In this section, the developed algorithm has been evaluated using a large-scale

multi-agent control task. A 2-D map is scaled to 20×20 as the task’s map with 1000
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agents simulate and interact with each other. The agents’ initial positions are ran-

domly distributed and a planned reference trajectory is given to all agents. Mean-

while, initial distribution of all agents’ tracking errors are measured and broad-

casted to all agents prior to the mission. No communication is allowed after the

task starts due to the harsh environment. To demonstrate the effectiveness, both

linear and non-linear simulations are provided.

2.4.1 Linear System

In this subsection, a linear case of the tracking control problem is considered.

The continuous-time linear second-order motion equations without noise for each

agent are given by dpi = qidt

dqi = uidt
(2.70)

where pi, qi ∈ R2. To test the robustness of the designed controller, a Brownian

noise is added to the system. The corresponding stochastic state-space model with

noise can be derived as

dρi =
[
Aρi +Bui

]
dt+ σdwi (2.71)

where ρi = [pi, qi] ∈ R4 is the augmented state, A,B can be computed from (2.70),

σ is set to 0.5 for all agents. The time-dependent reference trajectory is given as:

xd(t) =



0.24 sin(4t) + 0.0034t3 + 0.5

0.2t

0.96 cos(4t) + 0.0102t2

0.2


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(a) t = 0s (b) t = 1s

(c) t = 3s (d) t = 5s

Figure 2.2: The overall position and trajectory of all agents in the MAS.
The green curve represented the reference trajectory. Positions
are marked with red dots. A linear system is used for simula-
tion.

Thus, tracking error xi ∈ R4 can be computed by (2.3).

For simplicity, Φ(m,xi) is designed as

Φ(m,xi) = ‖xi − E[m]‖ (2.72)

The initial state distribution of all agents are given as,

m0 ∼ N (

10

10

 ,
52 0

0 52

) (2.73)



39

(a) t = 0s (b) t = 1s

(c) t = 3s (d) t = 5s

Figure 2.3: The PDF of all agents in the MAS. The red curve represents the
average trajectory of all agents, and the green curve denotes
the reference trajectory. A linear system is used for simulation.

As illustrated by the key idea of the developed ACM algorithm, three neu-

ral networks are designed. The activation functions of these neural networks are

vector of functions which are designed from the polynomial’s expansion. Addi-

tionally, the time t is first normalized to prevent output explosion.

The experiment results in the linear system are demonstrated in Fig. 2.2(a) to

2.8. In Fig. 2.2(a), all agents’ positions are marked with the red dots. The green

dot at the bottom denotes the initial position of the reference trajectory. All agents’

trajectories at 1s, 3s, and 5s are plotted in Figs. 2.2(b), 2.2(c), and 2.2(d) where
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Figure 2.4: Linear case tracking error PDF of x1 to time.

green curve marks the reference trajectory, and other curves denote the individ-

ule trajectories. It can be observed that all agents follow the reference trajectory

successfully. To better analyze the whole population’s mass behavior, we plot the

distribution of the agents in Figs. 2.3(a), 2.3(b), 2.3(c), and 2.3(d) with respect to

time. Note that the plots are the probability density function regressed from the

agents’ position distribution. The mean trajectory is also computed and marked as

a red curve in those plots. The agents’ trajectories and mass plot confirm that the

reference trajectory can be tracked successfully.

Then, we plot the tracking errors. Fig. 2.4 and Fig. 2.5 demonstrate the distri-
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Figure 2.5: Linear case tracking error PDF of x2 to time.

bution of agents tracking error x with respect to time. We only plot the agent’s first

and second entry of tracking error states (i.e., x1 and x2) because they represent the

positions of all agents. The plots show that the initial tracking error is high and

randomly distributed. However, after 3 seconds, the agents’ mean tracking errors

are bounded near zero and the variance of tracking error PDF decreases to near

zero. This also proves that the system is able to track the given trajectory.

Finally, the performance of three neural networks are studied. The HJB, FPK,

and actor NN errors (i.e.eHJBi in (2.15), eFPKi in (2.16), and eui in (2.17)) are plot-

ted to show the convergence of 3 NNs. We plot agent 1’s FPK equation error, HJB



42

Figure 2.6: Linear case HJB equation error.

equation error, and actor NN approximation error in Figs. 2.8, 2.6, and 2.7, respec-

tively. All the three figures show that the errors reduce to near zero after 4 seconds.

Meanwhile, the convergence of both FPK equation error and HJB equation error

confirm that the NNs reveal a correct approximation of the MFG equation’s solu-

tion if the reconstruction error are ignored. And the convergence of the actor NN

guaranteed that the computed control is the optimal control.

2.4.2 Nonlinear System

Now we consider a more complicate nonlinear dynamics with noise. The non-

linear stochastic state-space model is selected as:

dρi =
[
fy(ρi) + gy(ρi)ui

]
dt+ σdwi (2.74)
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Figure 2.7: Linear case actor NN estimation error.

where ρi = [pi qi]
T ∈ R4, and

fy(ρ) =



ρ2 − ρ1

ρ4 − ρ3

ρ2

2
[(cos(2ρ1 + 2)2 − 1]− ρ1

2

ρ4

2
[(cos(2ρ3 + 2)2 − 1]− ρ3

2



gy(ρ) =



0

0

cos(2ρ1) + 2

cos(2ρ3) + 2


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Figure 2.8: Linear case FPK equation error.

The coefficient of the noise σ in (2.74) is set to σ = 0.5. The reference trajectory is

given as:

xd(t) =



0.2 sin(4t) + 0.002t2 + 250

0.2

0.8 cos(4t) + 0.004t

0.2


(2.75)

The initial agents’ PDF is randomly selected using the following normal distribu-

tion:

m0 ∼ N
(10

10

 ,
82 0

0 82

) (2.76)

The activation functions of the neural networks are designed the same as the

linear case.
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(a) t = 0s (b) t = 1s

(c) t = 3s (d) t = 5s

Figure 2.9: The density of all agents in the MAS. The green curve repre-
sents the reference trajectory. A nonlinear system is used for
simulation.

Similar to the linear system case, we also plot the PDF of of all agents’ position

and the mean trajectory in Figs. 2.9(a) to 2.9(d) as a demonstration of the stability

of the system. The legends are the same with the linear case simulation. We can

observe that all agents can successfully follow the reference trajectory.

Next, the tracking error’s PDF is plotted in Fig. 2.10(a) and 2.10(b). Similar

to the linear case, the mean tracking error converges to zero in Fig. 2.10(a) and

2.10(b). This confirms that the developed ACM algorithm is a stable controller in

nonlinear systems.
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(a) Nonlinear case tracking error PDF of x1 .

(b) Nonlinear case tracking error PDF of x2

Figure 2.10: Neural network approximation errors.
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(a) Nonlinear case HJB equation error.

(b) Nonlinear case FPK equation error.

(c) Nonlinear case actor neural network estimation error.

Figure 2.11: Neural network approximation errors.
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Finally, the performance of the neural networks are evaluated through the error

of the FPK and HJB equations. The time evolution of the errors are shown in Figs.

2.11(b), 2.11(a), and 2.11(c).

We can see that the HJB and FPK equation error converge near zero after 4

seconds. This confirms that the approximation of the mean field equations is ac-

curate. Recall the original mean field game theory [48], the solution to the mean

field equations is the εN−Nash equilibrium, which is the optimal solution of the

large-scale tracking control problem.

2.5 Conclusions

this chapter has developed a novel decentralized large-scale MAS control algo-

rithm based on approximate dynamic programming and reinforcement learning.

The mean field games theory are embedded to solve the large-scale multi-agent

tracking control problem in a decentralized and computational efficient manner.

Specifically, the complexity of the infinite number non-cooperative game is de-

coupled with the agent number. Moreover, the actor-critic reinforcement learning

method is extended to a actor-critic-mass algorithm where three neural networks

are employed to approximate the solution, i.e., the εN -Nash equilibrium. The sta-

bility and the convergence of the states and neural networks are guaranteed by the

Lyapunov stability analysis. Then the near optimality can be achieved provided

by the proof in traditional mean field games. Finally, the numerical simulations

on both linear and nonlinear cases are given to evaluate the algorithm in practical

scenarios.
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CHAPTER 3

LARGE-SCALE MULTI-AGENT REINFORCEMENT LEARNING FOR

PURSUIT-EVASION GAMES [117, 120]

3.1 Introduction

During the past decades, the multi-agent systems (MAS) have attracted in-

creasing attention since MAS brings the new capability to achieve a series of com-

plex missions that cannot be accomplished using the single agent/system [108, 84,

58, 55]. Among the various MAS applications [98, 32], the multi-player pursuit-

evasion game is one of most important problem that has profound influence to

both civilian and military industries, i.e., autonomous drone control [14], the track-

ing control for autonomous vehicles [95], guided missile and defense system [90],

etc. To obtain the optimal multi-player pursuit-evasion strategies, some nontrivial

issues arise, especially while the agent’s number is continuously increasing larger

and even close to infinite.

The first challenge is that the limited communication resource cannot ensure

reliable information exchange among ultra-large numbers of agents [19, 112, 3].

According to most conventional MAS designs, e.g., the consensus algorithms [64,

122], formation control [71] etc., computing control policy at local agent requires

the relevant system state/control information from the other agents. To maintain

the information exchange among large scale multiple agents, a reliable and high-

quality communication network is critical. However, when the number of agents

goes to infinity, the large scale communication network’s burden will be simul-

taneously increased. Hence, more researchers are actively developing a series of

new methods to reduce the communication effort by introducing a new type of
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on-demand style. In [17, 53], the authors redesigned the communication network

as an event-driven system by setting an appropriate threshold and communica-

tion resource requests. Other researchers proposed reducing the communication

burden by compressing the information and building multi-hop transmissions as

[74, 12]. Another new type of technique focus on solving the multi-player pursuit-

evasion game with reduced information exchange [60]. Besides the challenge from

the communication network as well as information exchange, the notorious “Curse

of Dimensionality” will lead to another issue while solving optimal large-scale

multi-player pursuit-evasion strategy at the individual agent level, i.e., the compu-

tational complexity arising drastically along with the increasing number of agents.

In many recent reinforcement learning-based intelligent MAS designs, including

learning-based intelligent pursuit-evasion strategy development, only the finite

discrete state space and/or action space has been considered [45, 11, 73, 33]. Those

approaches cannot be directly utilized to large scale multi-player pursuit-evasion

games since the dimension of agent/player’s state space and/or action space may

be exploded even close to infinite as the number of agents continuously grows

large. For example, [67] introduced the states and control augmentation algorithm

which transform the multi-agent tracking control problem into a regular optimal

control problem. The dimension of the augmented states, however, increase with

respect to the number of agents, which cause the increment of complexity. Sim-

ilarly, Wang et al. [102] proposed a reinforcement learning method to solve the

multi-pursuers versus single superior evader game. In [102], a ring topology and

leader-follower line topology communication network is developed to further re-

duce communication and computational complexity. However, the computational

complexity of the centralized global critic neural network in [102]’s design is still

related to the agent number.
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Figure 3.1: Problem formulation and challenges of multi-agent pursuit-
evasion games.

To overcome these challenges, the Mean Field Games (MFG) [34, 48] has been

utilized and further modified to apply to the multi-player pursuit-evasion game.

In the MFG, individual agents will encode all other agents’ states and actions as

a form of probability density function (PDF) to avoid the dimension explosion

while the number of agents is increasing. More importantly, the new form of PDF

does not need to be acquired through communication. It can be obtained by solv-

ing a new type of partial differential equation (PDE) named the Fokker-Planck-

Kolmogorov (FPK) equation [34] with local information. In large scale multi-player

pursuit-evasion games, assuming that all agents/players with the same objective

are homogeneous, the individual agent can estimate other agents’ actions by sub-

stituting all agents’ states in the new form of PDF into corresponding policy. Then,
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these actions can be utilized further to update the time-varying PDF via the FPK

equation. Since all agents’ state distribution can be generated locally (except the

initial distribution), the communication burden can be released significantly. In

our previous work on the tracking control design [120], the general mean field

game theory was applied to generate a decentralized online algorithm. However,

while considering the large scale multi-player pursuit-evasion game, the previous

algorithms are challenged in two different aspects, i.e. 1) The MFG cannot handle

the case where the pursuers and the evaders have different dynamics, and 2) Un-

like the traditional mean field game where all agents’ dynamics are transparent,

the pursuer team and the evader group formulate a differential game where no

opponents’ information is provided.

Recently, reinforcement learning and approximate dynamic programming (ADP)

has been integrated appropriately to solve non-linear HJB and HJI equations forward-

in-time, e.g., [51], [97]. In [66], an identifier-critic neural networks approach has

been proposed to effectively solve the optimal control problem while estimating

the unknown system dynamics. In [2], Abu-Khalaf, Murad, and F.L. Lewis have

developed the actor-critic algorithm and proved the possibility of using it to ap-

proximate the solution of the HJB equation [2]. Similar to the HJI equation, the

FPK equation is a partial differential equation as well. Therefore, a novel actor-

critic-mass algorithm has been designed to obtain the decentralized optimal track-

ing control for massive MAS by online learning HJI as well as FPK using neural

networks simultaneously.

In this paper, the multi-player pursuit-evasion game with massive pursuers

and evaders has been considered. Specifically, the pursuers are operating non-

cooperatively within the pursuers’ group and so as the evaders. Meanwhile, the
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pursuer group aims to intercept the evader group without knowing their dynamics

and strategies. The Hamilton-Jacobi-Isaacs (HJI) equation is defined for both the

pursuit and evasion groups to solve the large scale multi-player pursuit-evasion

game. Moreover, each agent maintains a local FPK equation to approximate its

own team’s entire state PDF. By solving these coupled equations, the individual

agent’s optimal control strategy can be obtained, which features the Nash Equi-

librium. However, solving those coupled partial differential equations (PDEs) an-

alytically is nearly impossible [119, 35]. Therefore, we proposed the Actor-Critic-

Mass-Opponent (ACMO) algorithm based on the emerging approximate dynamic

programming (ADP) [51, 52] method to approximate the optimal solutions online.

The main contribution of this paper can be summarized as:

1. The traditional Mean Field Game theory has been extended and further ap-

ply to the large-scale multi-player pursuit-evasion game where the opponent

group dynamics are heterogeneous and unknown.

2. The proposed Actor-Critic-Mass-Opponent algorithm is a decentralized al-

gorithm that can solve the two common problems in the large-scale pursuit-

evasion game as well as other multi-player games, i.e., the “Curse of Di-

mensionality” and the communication burden, by coding all other agents’

information into two PDFs that are solvable locally.

3.2 Problem Formulation

The multi-player pursuit-evasion game with very large scale pursuit and evader

groups is first introduced in this section. Then, the Mean Field Games theory has
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been formulated.

3.2.1 Multi-Player Pursuit-evasion Game

In this subsection, the large scale multi-player pursuit-evasion game includes

two competitive large groups of players, i.e., the pursuer group G1 and the evader

group G2. Consider group G1 and G2 having N1 and N2 agents, respectively. The

numbersN1 andN2 are two countably infinite numbers in the ideal case [34]. Next,

the agents/players in two groups have heterogeneous stochastic nonlinear dynam-

ics defined as:

Pursuer group G1 agents:

dxj,1(t) =

f1 (xj,1) + l1(xj,1)x̄2

+g1 (xj,1)uj,1(t)

 dt+D1dwj,1(t), 1 ≤ j ≤ N1 (3.1)

Evader group G2 agents:

dxi,2(t) =

 f2 (xi,2) + l2(xi,2)x̄1

+g2 (xi,2)ui,2(t)

 dt+D2dwi,2(t), 1 ≤ i ≤ N2 (3.2)

where xj,1 ∈ Rl denotes the state of the j-th agent in group 1, xi,2 ∈ Rl denotes

the state of the i-th agent in group 2, x(N1)
1 and x

(N2)
2 are the set of all pursuers’

and evaders’ states respectively, l1(xj,1) and l2(xi,2) are smooth functions, uj,1 and

ui,2 are the corresponding control input, wj,1 and wi,2 mark independent Brownian

noise, D1 andD2 are the coefficient matrices for the noise term. The functions f1(·),

f2(·), g1(·), g2(·) are the nonlinear intrinsic dynamic equations of the pursuers and

evaders.

The goal of the pursuers is to capture the evaders while the evaders are trying
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their best run away from. In previous pursuit-evasion game studies [28, 65], the

authors defined point capture, where the positions of the pursuers and evaders

are same, as the sign of a success capture. Considering the large scale pursuit and

evader agents in this paper, the point capture can be extended to the mass capture,

where the pursuers’ the average position, instead of every single points, has to be

the same with the average evaders’ position. In other words, when the condition

1/N1

∑
x1 = 1/N2

∑
x2 is satisfied, the pursuers’ group has been considered as

capturing the evaders’ group successfully. Following this goal, a cost function can

be defined to evaluate the performance of each agents in both pursuit and evader

groups, i.e.,

G1: Vj,1
(
xj,1, x

(N1)
1 , x

(N2)
2

)
= E


∫ ∞

0

 ΦQ1(xj,1, x
(N1)
1 ) + ΦQ2(xj,1, x

(N2)
2 )

+ ‖uj,1(t)‖2
R1

 dt

(3.3)

G2: Vi,2
(
xi,2, x

(N1)
1 , x

(N2)
2

)
= E


∫ ∞

0

 ΦQ3(xi,2, x
(N2)
2 )− ΦQ4(xi,2, x

(N1)
1 )

+ ‖ui,2(t)‖2
R2

 dt

(3.4)

where the function Φ(·) denotes the coupling effect between the pursuit and evader

groups, ‖Z‖C denotes the quadratic term, i.e., ‖Z‖C = ZTCZ . In the case of large

scale multi-player pursuit-evasion game, we consider the coupling functions as

the euclidean distances [28]. Guided by the mass capture principle, the group effect

functions are defined as the group state average, i.e., 1/N
∑

i xi. Then, the coupling

function can be represented as:

ΦQ(Zi, Z
(N)) =

∥∥∥∥∥Zi − 1

N

N∑
i=1

Zi

∥∥∥∥∥
Q

with the notation ‖Z‖Q being the weighted norm of a vector, i.e., ZTQZ. The other

terms are quadratic terms similarly designed as other differential game researches,
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e.g. [97, 93].

To achieve the optimal strategy, each agent/player in pursuit-evasion game

aims to minimize its cost function while the opponents are maximizing it, i.e.,

For pursuers in G1 :

Vj,1(xj,1, x
(N1)
1 , x

(∗N2)
2 ) = min

uj,1
max

ΦQ2(xj,1,x
(∗N2)
2 )

E


∫ ∞

0


ΦQ1(xj,1, x

(N1)
1 )

+ΦQ2(xj,1, x
(∗N2)
2 )

+ ‖uj,1(t)‖2
R1

 dt
 (3.5)

For evaders in G2 :

Vi,2(xi,2, x
(∗N1)
1 , x

(N2)
2 ) = min

ui,2
max

ΦQ4(xi,2,x
(∗N1)
1 )

E


∫ ∞

0


ΦQ3(xi,2, x

(N2)
2 )

−ΦQ4(xi,2, x
(∗N1)
1 )

+ ‖ui,2(t)‖2
R2

 dt
 (3.6)

where the terms x(∗N1)
1 and x

(∗N2)
2 represent the average states with Vj,1 and Vi,2

are being maximized, respectively. The coupling functions ΦQ3(xi,2, x
(N1)
2 ) and

ΦQ1(xj,1, x
(N1)
1 ) denote the influence level from agent’s own group to keep agent

stay in the same group and gather around the group mass while the agent min-

imizing the cost. The function ΦQ2(xj,1, x
(N2)
2 ) in (3.3) leads each pursuer to re-

duce the distance between itself and evaders’ mass center. On the other hand,

the function ΦQ4(xi,2, x
(N1)
1 ) in (3.4) forces the evaders to keep away from the pur-

suers’ mass center to prevent being captured. Next, two sets of optimal con-

trol strategies can be defined as Ω1(t) = {u∗1,1(t), u∗2,1(t), · · · , u∗N1,1
(t)} and Ω2(t) =

{u∗1,2(t), u∗2,2(t), · · · , u∗N1,2
(t)} as the solution to the cost functions (3.5) or (3.6). The

goal of pursuit-evasion game is to find such optimal control strategy sets.

However, the main issue arises with the coupling term in the cost functions (3.3)

and (3.4) where large scale agents’ information x(N1)
1 and x

(N2)
2 will increase the di-

mension of coupling function. When the number of agents goes to infinity, the
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computational complexity of cost function arises drastically due to the coupling

function. Moreover, the coupling function also requires other agents’ real-time in-

formation in order to evaluate the cost function that is another stringent constraint

since large-scale real-time communication network is not always available and re-

liable [99]. To overcome these practical challenges, the Mean Field Game (MFG)

[30, 48, 34] is utilized to form a mean field type of decentralized control.

3.2.2 Mean Field Games Formulation

The main characteristics of the Mean Field Game theory include: 1) Reduce

the dimension of the information flow between each agent by encoding the state

information of large scale agents as a time-varying probability density function

(PDF), and 2) Eliminate the communications by computing the time-varying PDF

locally.

Recall the Mean Field Game theory [30], let m1(x1, t) and m2(xi,2, t) denote the

time-varying PDF of the agents states in both pursuit and evader teams as G1 and

G2 respectively. Moreover, denote E{m∗2} and E{m∗1} as the average states of oppo-

nents when the team reaches maximum cost, i.e., the worst case to the team. Then,

the cost functions (3.3) and (3.4) can be loosely rewritten as:

G1: Vj,1 (xj,1,m1,E{m∗2}) = E


∫ ∞

0

 ΦQ1(xj,1,m1) + ΦQ2(xj,1,E{m∗2})

+ ‖uj,1(t)‖2
R1

 dt

(3.7)

G2: Vi,2 (xi,2,E{m∗1},m2) = E


∫ ∞

0

 ΦQ3(xi,2,m2)− ΦQ4(xi,2,E{m∗1})

+ ‖ui,2(t)‖2
R2

 dt

(3.8)
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where the group average states can be represented through the PDF m1 and m2 as

the expected value as

1

N1

N1∑
j=1

xj,1 = E{m1(x1, t)}

1

N2

N2∑
i=1

xi,2 = E{m2(xi,2, t)}

The replaced coupling functions are now named as the mean field coupling

functions where the computational complexity is greatly reduced since the value

of the introduced PDF has the same dimension as system states. Intuitively, the

Mean Field Games transformed the large scale multi-player pursuit-evasion (PE)

game into two mass players PE game where each mass player has a mean-field

type of stochastic states. More importantly, the PDF used in the coupling function

can be computed through a locally solvable partial differential equation (PDF), i.e.

Fokker Planck Kolmogorov (FPK) equation [34], which will be introduced in the

next section. Since the PDF can be calculated by using local information only, the

communication among large scale pursuers and evaders can be eliminated as well.

3.3 Methodologies

Due to the difficulties from the coupling terms introduced in the last section,

the Mean Field type of control is introduced first. Moreover, a neural network

based online solver for the Mean Field type of control will also be derived. Since

the pursuers and evaders share the similar cost function and dynamics, we will

introduce the Actor-Critic-Mass-Opponent (ACMO) control for pursuers only in

this section. Without loss of generality, the evaders’ control can be obtained by

easily replacing relevant parameters in pursuer design.
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HJI-G1 :
− ∂Vj,1 (xj,1,m1,E{m∗2})

∂t
− D2

1

2
∆Vj,1 (xj,1,m1,E{m∗2})

+Hj,1

(
xj,1,

∂Vj,1 (xj,1,m1,E{m∗2})
∂xj,1

)
= 0

(3.9)

FPK-G1 :

∂m1 (x1, t)

∂t
− D2

1

2
∆m1 (x1, t)

− div

[
m1DpHj,1

(
xj,1,

∂Vj,1 (xj,1,m1,E{m∗2})
∂xj,1

)]
= 0

(3.10)

HJI-G2 :
− ∂Vi,2 (xi,2,E{m∗1},m2)

∂t
− D2

2

2
∆Vi,2 (xi,2,E{m∗1},m2)

+Hi,2

(
xi,2,

∂Vi,2 (xi,2,E{m∗1},m2)

∂xi,2

)
= 0

(3.11)

FPK-G2 :

∂m2 (x2, t)

∂t
− D2

2

2
∆m2 (x2, t)

− div

[
m2DpHi,2

(
xi,2,

∂Vi,2 (xi,2,E{m∗1},m2)

∂xi,2

)]
= 0

(3.12)

m1 (x1, 0) = m1,0 (x1)

m2 (x2, 0) = m2,0 (x2)

3.3.1 The Mean Field Type of Optimal Control for Pursue Evasion

Games

The objective of a mean field type of optimal control for a pursuer is to obtain

a set of control Ω(t) = {u∗1,1(t), u∗2,1(t), · · · , u∗N1,1
(t)} such that pursuer group’s cost

functions (3.7) can no longer be minimized. This equilibrium is also known as the

Nash Equilibrium in game theory [9]. According to the traditional optimal control

theory [50] and differential games [97], one can derive the Hamiltonian-Jacobi-

Isaacs (HJI) equation for individual agent in the group G1 from the cost function

(3.7) as (3.9) where Hj,1(·) is the Hamiltonian defined as:

Hj,1

[
xj,1, ∂xj,1Vj,1(xj,1,m1,E{m∗2})

]
= ‖uj,1‖R1

+ ΦQ1(xj,1,m1) + ΦQ2(xj,1,E{m∗2})
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+ ∂xj,1Vj,1(xj,1,m1,E{m∗2})T


f1 (xj,1)

+g1 (xj,1)uj,1

+l1(xj,1)E{m∗2}


with the m∗2 being evaders’ states’ PDF that aims to cause the greatest cost on pur-

suers.

The solution to the group G1’s HJI equation yields the minimum cost

Vj,1(xj,1,m1,E{m∗2}) and the corresponding optimal control strategy which can be

derived as:

u∗j,1(xj,1,m1,E{m∗2}) = −1

2
R−1

1 gT1 (xj,1)
∂V ∗j,1(xj,1,m1,E{m∗2})

∂xj,1
(3.13)

The optimal solution to the cost function (3.5) features a saddle point where

the maxima is the optimal control (3.13) and the minima represents m∗2. According

to the mean field coupling function, the expected value E{m2} instead the PDF

m2 is used. Thus, to calculate the minima m∗2, we take partial derivative on the

Hamiltonian with respect to E{m2} and let it equal to zero, which yields:

ΦQ2(xj,1,E{m∗2})−
1

2
Q−1

2 lT1 (xj,1)
Vj,1(xj,1,m1,E{m∗2})

∂xj,1
= 0 (3.14)

Similarly, one obtains the HJI equation for the evaders as (3.11). Moreover, the

corresponding Hamiltonian is defined as:

Hi,2

[
xi,2, ∂xi,2Vi,2(xi,2,E{m∗1},m2)

]
= ‖ui,2‖R2

+ ΦQ3(xi,2,m2)− ΦQ4(xi,2,E{m∗1})

+ ∂xi,2Vi,2(xi,2,E{m∗1},m2)T


f2 (xi,2)

+g2 (xi,2)ui,2

+l2(xi,2)E{m∗1}


The saddle point can be computed similar to the pursuers.
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Figure 3.2: The structure of the proposed Actor-Critic-Mass-Opponent al-
gorithm. The four neural networks are presented.

In the optimal control (3.13) for any pursuer, the PDF of the pursuer group

m1 remains unknown. In the MFG [13], the group PDF can be computed by

the Fokker-Plank-Kolmogorov equation. In this problem, the FPK equations for

both groups are given in (3.10) and (3.12). For a pursuer, the HJI (3.9) and FPK

(3.9) equation form a coupled partial differential equation (PDE) named the mean

field equation systems whose solutions provide the Nash Equilibrium (NE) con-

trol strategy for all players, i.e., Ω1. However, the mean field equation systems are

difficult and nearly impossible to be solved analytically due to the complexity of

two coupled high-dimensional PDEs [35]. Therefore, in this paper, we extend the

Actor-Critic structure from approximate dynamic programming (ADP) [52] to a

novel Actor-Critic-Mass-Opponent (ACMO) structure that can learn the solutions

numerically.
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3.3.2 The ACMO Neural Network Estimators

As the challenges rising in solving two coupled PDEs, i.e., HJI-FPK, the emerg-

ing neural network estimators are proposed to overcome this difficulty. In this

section, the proposed Actor-Critic-Mass-Opponent (ACMO) algorithm for the pur-

suers’ group G1 is explained in detail. The evaders’ group is similarly developed

and thus omitted. In the proposed ACMO, each agent maintains four neural net-

works, i.e., the actor neural network to approximate the optimal control, critic

neural network to approximate the optimal cost function, and two mass neural

networks to approximate the PDF for group G1 and G2 respectively. Figure 3.2

demonstrates the structure of the ACMO algorithm as well. In Fig. 3.2, four neural

networks are constructed, i.e.,

• the actor neural network is designed to approximate the optimal control.

• the critic neural network is designed to approximate the optimal cost func-

tion.

• the mass neural network is designed to approximate the PDF of the pursuers’

team.

• the opponent neural network is designed to approximate the average states

of the opponents when the team reaches maximum cost, i.e., the worst case

for the team.

The four neural networks are coupled through the HJI and FPK equations. With

the mild assumption that there exists constant neural network weights, i.e., WV,j,1,

Wu,j,1, Wm,1, Wm,2, and activation functions φV,j,1, φu,j,1, φm,1, φm,j,2 such that the op-

timal cost function, optimal control, and the PDF for pursuer and evader groups
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can be written as:

Vj,1(xj,1,m1,ΦQ2(xj,1,E{m∗2})) = W T
V,j,1φV,j,1(xj,1,m1,ΦQ2(xj,1,E{m∗2})) + εV,j,1

uj,1(xj,1,m1,ΦQ2(xj,1,E{m∗2})) = W T
u,j,1φu,j,1(xj,1,m1,ΦQ2(xj,1,E{m∗2})) + εu,j,1

m1(x1, t) = W T
m,j,1φm,j,1(xj,1, t) + εm,j,1

ΦQ2(xj,1,E{m∗2}) = W T
m,j,2φm,j,2(xj,1,m1) + εm,j,2

(3.15)

where the activation functions φV,j,1, φu,j,1, φm,1, φm,j,2 are bounded and continuous,

εV,j,1, εu,j,1, εm,j,1, εm,j,2 are the reconstruction error of the corresponding neural net-

works. The weights W T
V,j,1,W

T
u,j,1,W

T
m,j,1,W

T
m,j,2 are unknown and expected to be

learnt. Let the approximated weights be denoted as Ŵ T
V,j,1, Ŵ

T
u,j,1, Ŵ

T
m,j,1, Ŵ

T
m,j,2, the

optimal control and cost functions can be approximated as:

V̂j,1(xj,1, m̂j,1, x̂j,2) = Ŵ T
V,j,1φV,j,1(xj,1, m̂j,1, x̂j,2)

ûj,1(xj,1, m̂j,1, x̂j,2) = Ŵ T
u,j,1φu,j,1(xj,1, m̂j,1, x̂j,2)

m̂j,1(xj,1, t) = Ŵ T
m,j,1φm,j,1(xj,1, t)

∣∣
Vj,1=V̂j,1

x̂j,2 = Ŵ T
m,j,2φm,j,2(xj,1, m̂j,1)

∣∣
Vj,1=V̂j,1

(3.16)

where x̂j,2 represents j-th agent’s estimated coupling cost, i.e.,

x̂j,2 = ΦQ2(xj,1,E{m∗2}).

Next, substituting the estimation equations (3.16), the mean field equations,

i.e., (3.9), (3.10) as well as the optimal control equation (3.13), the worst mass from

the evaders (3.14) will not hold. The resulting errors are used to tune the neural

network weights, i.e.,

eHJI,j = ΦQ1(xj,1, m̂j,1) + x̂j,2 + Ŵ T
V,j,1(t)

 ∂φV,j,1(xj,1,m̂j,1,x̂j,2)

∂t
− ĤWV

+
D2

1

2
∆φV,j,1(xj,1, m̂j,1, x̂j,2)

 (3.17)

eFPK,j = Ŵ T
m,j,1(t)

∂φm,j,1(xj,1,t)

∂t
− D2

1

2
∆φm,j,1(xj,1, t)

− div(φm,j,1(xj,1, t) Dp Ĥj)

 (3.18)
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where

Ĥj = Hj,1

[
xj,1, ∂xj,1V (xj,1, m̂j,1, x̂j,2)

]
− ΦQ1(xj,1, m̂j,1)− x̂j,2

and

ŴV,j,1(t)ĤWV = Ĥj

Moreover, substituting the estimation equation (3.16) into the optimal control

equation (3.13) and the worst evaders’ expected states (3.14), one obtains:

eu,j = Ŵ T
u,j,1(t)φu,j,1(xj,1, m̂j,1, x̂j,2) +

1

2
R−1

1 gT1 (xj,1)
∂Vj,1(xj,1, m̂j,1, x̂j,2)

∂xj,1
(3.19)

em2,j = x̂j,2 −
1

2
Q−1

2 lT1 (xj,1)
∂Vj,1(xj,1, m̂j,1, Ŵ

T
m,j,2φm,j,2(xj,1, t))

∂xj,1
(3.20)

Denote

ΨV,j(xj,1, m̂j,1, x̂j,2) =

 ∂φV,j,1(xj,1,m̂j,1,x̂j,2)

∂t
− ĤWV

+
D2

1

2
∆φV,j,1(xj,1, m̂j,1, x̂j,2)


Ψm,j(xj,1, V̂j,1, x̂j,2)) =

∂φm,j,1(xj,1,t)

∂t
− D2

1

2
∆φm,j,1(xj,1, t)

− div(φm,j,1(xj,1, t) Dp Ĥj)


Φ̃ =ΦQ1(xj,1,m1)− ΦQ1(xj,1, m̂j,1) + ΦQ2(xj,1,E{m∗2})− x̂j,2

The neural networks’ estimation errors (3.17), (3.18), (3.19), (3.20) can be written

as:

eHJI,j =ΦQ1(xj,1, m̂j,1) + x̂j,2 + Ŵ T
V,j,1(t)ΨV,j(xj,1, m̂j,1, x̂j,2) (3.21)

eFPK,j = Ŵ T
m,j,1(t)Ψm,j(xj,1, V̂j,1, x̂j,2) (3.22)
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Finally, the update law for the four neural networks can be derived by applying

gradient descent at the error functions (3.17), (3.18), (3.19), and (3.20) as,

˙̂
WV,j,1 = −αh,j

ΨV,j(xj,1, m̂j,1, x̂j,2)eTHJI,j
1 + ‖ΨV,j(xj,1, m̂j,1, x̂j,2)‖2

(3.23)

˙̂
Wu,j,1 = −αu,j

φu,j(xj,1, m̂j,1, x̂j,2)eTu,j
1 + ‖φu,j(xj,1, m̂j,1, x̂j,2)‖2

(3.24)

˙̂
Wm,j,1 = −αm,j

Ψm,j(xj,1, V̂j,1, x̂j,2)eTFPK,j

1 + ‖Ψm,j(xj,1, V̂j,1, x̂j,2)‖2
(3.25)

˙̂
Wm,j,2 = −αm2,j

φm,j,2(xj,1, m̂j,1)eTm2,j

1 + ‖φm,j,2(xj,1, V̂j,1, x̂j,2)‖2
(3.26)

where αh,j , αu,j , αm,j , αm2,j are learning rates.

3.3.3 The ACMO Neural Networks’ Performance Analysis

According to the weight update laws (3.23), (3.24), (3.25), and (3.26), we obtain

the first derivative of neuron networks’ estimation errors as:

˙̃WV,j,1 = − ˙̂
WV,j,1 = αh,j

ΨV,j(xj,1, m̂j,1, x̂j,2)eTHJI,j
1 + ‖ΨV,j(xj,1, m̂j,1, x̂j,2)‖2

(3.27)

˙̃Wu,j,1 = − ˙̂
Wu,j,1 = αu,j

φu,j(xj,1, m̂j,1, x̂j,2)eTu,j
1 + ‖φu,j(xj,1, m̂j,1, x̂j,2)‖2

(3.28)

˙̃Wm,j,1 = − ˙̂
Wm,j,1 = αm,j

Ψm,j(xj,1, V̂j,1, x̂j,2)eTFPK,j

1 + ‖Ψm,j(xj,1, V̂j,1, x̂j,2)‖2
(3.29)

˙̃Wm,j,2 = − ˙̂
Wm,j,2 = αm2,j

φm,j,2(xj,1, m̂j,1)eTm2,j

1 + ‖φm,j,2(xj,1, V̂j,1, x̂j,2)‖2
(3.30)

Next, the performance of all neural networks is given in the following theo-

rems.

Theorem 6. (Critic NN’s convergence) Let ŴV,j,1(t) be updated as (3.23) shows and

assume the learning rate αh,j > 0, then the critic NN’s weights estimation error
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W̃V,j,1, and the optimal cost function approximation error, i.e., Ṽj,1 = Vj,1 − V̂j,1

are uniformly ultimately bounded (UUB). The corresponding bounds bWV,j
, bV,j

are trivial when the reconstruction error is sufficiently small [91]. Moreover, W̃V,j,1

and Ṽj,1 are also asymptotically stable if the neuron network structure is selected

perfectly.

Proof. Because all agents are homogeneous in the same group, we drop the sub-

script of the agent number i and make the following simplifications on the nota-

tions:

xj,1 → x1, f1 (xj,1)→ f1(x1), g1 (xgj,1)→ g1(x1), uj,1 → u,WV,j,1 → WV 1,Wm,j,1 →

Wm1, Wu,j,1 → Wu1, αh,j → αh, m̂j,1 → m̂1, V̂j,1 → V̂1, Vj,1 → V1, ûj,1 → û1, uj,1 → u1,

eHJI,j → eHJI1, eu,j → eu1, eFPK,j → eFPK1, εV,j,1 → εHJI1, εu,j,1 → εu1, εm,j,1 →

εFPK1, D1 → σ1, dwj,1 → dw1,

The following notation simplifications are similar to above but for the evaders’

approximators. These simplifications are valid through all proofs in this chapter.

f2 (xi,2) → f2(x2), g2 (xi,2) → g2(x2), ui,2 → u, xi,2 → x2, WV,i,2 → WV 2, Wm,i,2 →

Wm2, Wu,i,2 → Wu2, αh,i → αh, m̂i,2 → m̂2, mi,2 → m2, V̂i,2 → V̂2, Vi,2 → V2, ûi,2 → û2,

ui,2 → u2, eHJI2,i → eHJI2, eu2,i → eu2, eFPK2,i → eFPK2, εV,i,2 → εHJI2, εu,i,2 → εu2,

εm,i,2 → εFPK2, D2 → σ2, dwi,2 → dw2.

The above notations are also valid through the rest of proofs in this chapter.

Consider the following Lyapunov function candidate as:

LV 1(t) =
1

2
tr
{
W̃ T
V 1(t)W̃V 1(t)

}
(3.31)
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Take the first derivative on the Lyapunov function candidate, one obtains:

L̇V 1(t) =
1

2
tr
{
W̃ T
V 1(t) ˙̃WV 1(t)

}
+

1

2
tr
{

˙̃W T
V 1(t)W̃V 1(t)

}
= tr

{
W̃ T
V 1(t) ˙̃WV 1(t)

}
(3.32)

Substitute the critic NN weights update law into (3.32), we get

L̇V 1(t) = αh tr

{
W̃ T
V 1(t)

Ψ̂V 1 (x1, m̂1, m̂2) eTHJI1

1 + Ψ̂T
V 1 (x1, m̂1, m̂2) Ψ̂V 1 (x1, m̂1, m̂2)

}
(3.33)

Let

Φ(x1, m̂1, m̂2) = ΦQ1 (m̂1, x1) + x̂2

Φ̃(x1,m1,m2, m̂1, m̂2) = Φ̂(x1, m̂1, m̂2)− Φ(x1,m1,m2)

Substitute Φ̃(x1,m1,m2, m̂1, m̂2) into critic NN’s error function (3.17), we get

Φ(x1,m1,m2) + Φ̃(x1,m1,m2, m̂1, m̂2) + Ŵ T
V 1(t)Ψ̂V 1 (x1, m̂1, m̂2) = eHJI1 (3.34)

Since the correct estimated optimal cost function leads to the HJI equation

equals zero, we have

Φ(x1,m1,m2) +W T
V (t)ΨV 1 (x1,m1,m2) = 0 (3.35)

Substitute (3.35) into (3.34), we have

eHJI1 =−W T
V (t)ΨV 1 (x1,m1,m2)− εHJI1

+ Φ̃(x1,m1,m2, m̂1, m̂2)− Ŵ T
V 1(t)Ψ̂V 1 (x1, m̂1, m̂2) (3.36)

Let W̃V 1(t) = WV (t) − ŴV 1(t), and Ψ̃V 1(x1,m1,m2, m̂1, m̂2) = ΨV (x1,m1,m2) −

Ψ̂V 1(x1, m̂1, m̂2). After manipulating terms in (3.36), we obtain

eHJI1 =−W T
V (t)

(
Ψ̂V 1 (x1, m̂1, m̂2) + Ψ̃V 1(x1,m1,m2, m̂1, m̂2)

)
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− εHJI1 + Φ̃(x1,m1,m2, m̂1, m̂2) + Ŵ T
V 1(t)Ψ̂V 1 (x1, m̂1, m̂2)

where εHJI1 is the error resulted from the reconstruction error. Next, the error can

be written as

eHJI1 =Φ̃(x1,m1,m2, m̂1, m̂2)− W̃ T
V Ψ̂V 1 (x1, m̂1, m̂2)

−W T
V Ψ̃V 1(x1,m1,m2, m̂1, m̂2)− εHJI1 (3.37)

Let’s further simplify the notations as: Ψ̂V 1 (x1, m̂1, m̂2)→ Ψ̂V 1,

Ψ̃V 1(x1,m1,m2, m̂1, m̂2)→ Ψ̃V 1, ΨV 1 (x1,m1,m2)→ ΨV 1, Φ̃(x1,m1,m2, m̂1, m̂2)→ Φ̃

Substitute (3.37) into (3.33),

L̇V 1(t) = αh tr

W̃ T
V 1(t)

Ψ̂V 1

[
Φ̃− W̃ T

V Ψ̂V 1 −W T
V Ψ̃V 1 − εHJI1

]T
1 + Ψ̂T

V 1Ψ̂V 1


= αh tr

{
W̃ T
V 1(t)

Ψ̂V 1Φ̃T

1 + Ψ̂T
V 1Ψ̂V 1

}
− αh tr

{
W̃ T
V 1(t)

Ψ̂V 1Ψ̂T
V 1

1 + Ψ̂T
V 1Ψ̂V 1

W̃V 1(t)

}

− αh tr

{
W̃ T
V 1(t)

Ψ̂V 1Ψ̃T
V 1

1 + Ψ̂T
V 1Ψ̂V 1

W T
V 1(t)

}
− αh tr

{
W̃ T
V 1(t)

Ψ̂V 1ε
T
HJI1

1 + Ψ̂T
V 1Ψ̂V 1

}
(3.38)

Apply Cauchy-Schwarz inequality on (3.38),

L̇V 1(t) = αh tr

{
W̃ T
V 1(t)

Ψ̂V 1Φ̃T

1 + Ψ̂T
V 1Ψ̂V 1

}
− αh tr

{
W̃ T
V 1(t)

Ψ̂V 1Ψ̂T
V 1

1 + Ψ̂T
V 1Ψ̂V 1

W̃V 1(t)

}

− αh tr

{
W̃ T
V 1(t)

Ψ̂V 1Ψ̃T
V 1

1 + Ψ̂T
V 1Ψ̂V 1

WV 1(t)

}
− αh tr

{
W̃ T
V 1(t)

Ψ̂V 1ε
T
HJI1

1 + Ψ̂T
V 1Ψ̂V 1

}

≤ −αh
4

∥∥∥Ψ̂V 1

∥∥∥2

1 +
∥∥∥Ψ̂V 1

∥∥∥2

∥∥∥W̃V 1(t)
∥∥∥2

− αh
4

∥∥∥Ψ̂V 1

∥∥∥2

1 +
∥∥∥Ψ̂V 1

∥∥∥2

∥∥∥W̃V 1(t)
∥∥∥2

+ αh tr

{
W̃ T
V 1(t)

Ψ̂V 1Φ̃T

1 + Ψ̂T
V 1Ψ̂V 1

}
− αh

∥∥∥Φ̃
∥∥∥2

1 +
∥∥∥Ψ̂V 1

∥∥∥2 + αh

∥∥∥Φ̃
∥∥∥2

1 +
∥∥∥Ψ̂V 1

∥∥∥2
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− αh
4

∥∥∥Ψ̂V 1

∥∥∥2

1 +
∥∥∥Ψ̂V 1

∥∥∥2

∥∥∥W̃V 1(t)
∥∥∥2

− αh tr

{
W̃ T
V 1(t)

Ψ̂V 1Ψ̃T
V 1

1 + Ψ̂T
V 1Ψ̂V 1

WV 1(t)

}

− αh

∥∥∥W T
V (t)Ψ̃V 1

∥∥∥
1 +

∥∥∥Ψ̂V 1

∥∥∥ + αh

∥∥∥W T
V (t)Ψ̃V 1

∥∥∥
1 +

∥∥∥Ψ̂V 1

∥∥∥ − αh
4

∥∥∥Ψ̂V 1

∥∥∥2

1 +
∥∥∥Ψ̂V 1

∥∥∥2

∥∥∥W̃V 1(t)
∥∥∥2

− αh tr

{
W̃ T
V 1(t)

Ψ̂V 1ε
T
HJI1

1 + Ψ̂T
V 1Ψ̂V 1

}
− αh

‖εHJI1‖2

1 +
∥∥∥Ψ̂V 1

∥∥∥2 + αh
‖εHJI1‖2

1 +
∥∥∥Ψ̂V 1

∥∥∥2 (3.39)

Combining terms in (3.39),

L̇V 1(t) ≤ −αh
4

∥∥∥Ψ̂V 1

∥∥∥2

1 +
∥∥∥Ψ̂V 1

∥∥∥2

∥∥∥W̃V 1(t)
∥∥∥2

− αh

1 +
∥∥∥Ψ̂V 1

∥∥∥2

∥∥∥∥∥W̃V 1(t)Ψ̂V 1

2
− Φ̃

∥∥∥∥∥
2

− αh

1 +
∥∥∥Ψ̂V 1

∥∥∥2

∥∥∥∥∥W̃V 1(t)Ψ̂V 1

2
−W T

V (t)Ψ̃V 1

∥∥∥∥∥
2

− αh

1 +
∥∥∥Ψ̂V 1

∥∥∥2

∥∥∥∥∥W̃V 1(t)Ψ̂V 1

2
− εHJI1

∥∥∥∥∥
2

+ αh

∥∥∥Φ̃
∥∥∥2

1 +
∥∥∥Ψ̂V 1

∥∥∥2 + αh

∥∥∥Ψ̃V 1

∥∥∥2

1 +
∥∥∥Ψ̂V 1

∥∥∥2 + αh
‖εHJI1‖2

1 +
∥∥∥Ψ̂V 1

∥∥∥2

︸ ︷︷ ︸
εV HJI

(3.40)

Drop the negative terms in the right side of the inequality yields,

L̇V 1(t) ≤ −αh
4

∥∥∥Ψ̂V 1

∥∥∥2

1 +
∥∥∥Ψ̂V 1

∥∥∥2

∥∥∥W̃V 1(t)
∥∥∥2

+ αh

∥∥∥Φ̃
∥∥∥2

1 +
∥∥∥Ψ̂V 1

∥∥∥2 + αh

∥∥∥Ψ̃V 1

∥∥∥2

1 +
∥∥∥Ψ̂V 1

∥∥∥2 + εV HJI

(3.41)

Assume that the coupling function φ(x1,m1,m2), and the function ΨV (x1,m1,m2)

are Lipschitz and the Lipschitz constant are LΦ, LΨV . (3.41) can be simplified as

L̇V 1(t) ≤ −αh
4

∥∥∥Ψ̂V 1

∥∥∥2

1 +
∥∥∥Ψ̂V 1

∥∥∥2

∥∥∥W̃V 1(t)
∥∥∥2

+ αh
[LΦ + LΨV ‖WV ‖2] ‖m̃1m̃2‖2

1 +
∥∥∥Ψ̂V 1

∥∥∥2 + εV HJI
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≤ −αh
4

∥∥∥Ψ̂V 1

∥∥∥2

1 +
∥∥∥Ψ̂V 1

∥∥∥2

∥∥∥W̃V 1(t)
∥∥∥2

+BV (t) (3.42)

According to the Lyapunov stability analysis, the critic NN weight estimation

error will be Uniformly Ultimately Bounded (UUB) with the bound given as

‖W̃V 1‖ ≤

√
4(1 + ‖Ψ̂V 1‖2)

αh‖Ψ̂V 1‖2
BV (t) ≡ bWV (t) (3.43)

We also derive the bound of estimated optimal cost function as follows:

Let Ṽ1 = V1 − V̂1, and substitute (3.15), one obtains,

Ṽ1(t) = W T
V 1(t)φV 1 − Ŵ T

V 1(t)φ̂V 1 + εHJI1

= W T
V 1(t)(φ̃V 1 + φ̂V 1)− ŴV 1(t)T φ̂V 1 + εHJI1

= W̃ T
V 1(t)φ̂V 1 +W T

V 1(t)φ̃V 1 + εHJI1 (3.44)

Assume the critic NN activation function is Lipschitz, and the Lipschitz con-

stant is denoted as Lφv. The value function estimation error can be represented

as:

‖Ṽ1(t)‖ = ‖W̃ T
V 1(t)φ̂V 1 +W T

V 1(t)φ̃V 1 + εHJI1‖

≤ ‖W̃V 1(t)‖‖φ̂V 1‖+ Lφv‖WV 1(t)‖‖m̃1m̃2‖+ ‖εHJI1‖

≤ bWV (t)‖φ̂V 1‖+ Lφv‖WV 1(t)‖‖m̃1m̃2‖+ ‖εHJI1‖ ≡ bV 1(t) (3.45)

Theorem 7. (Mass NN’s convergence): Let Ŵm,j,1(t) be updated as (3.25) shows and

assume the learning rate αm,j > 0, then the mass NN’s weights estimation error

W̃m,j,1, the mass function approximation error, i.e., m̃j,1 = m1 − m̂j,1 are uniformly
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ultimately bounded (UUB). The corresponding bound bWm,j
, bm,j is trivial when

the reconstruction error is sufficiently small [91]. Moreover, W̃m,j,1 and m̃j,1 are

also asymptotically stable if the neuron network structure is selected perfectly.

Proof. Consider the following Lyapunov function

Lm1(t) =
1

2
tr
{
W̃ T
m1(t)W̃m1(t)

}
(3.46)

Take the first derivative on the Lyapunov function candidate, one obtains:

L̇m1(t) =
1

2
tr
{
W̃ T
m1(t) ˙̃Wm1(t)

}
+

1

2
tr
{

˙̃W T
m1(t)W̃m1(t)

}
= tr

{
W̃ T
m1(t) ˙̃Wm1(t)

}
(3.47)

Since the correct estimated optimal cost function leads to the FPK equation

equals zero, we have

W T
m1(t)Ψm1 (x1, V1) + εFPK1 = 0 (3.48)

Combine (3.48) and (3.18), we have

−W T
m1(t)Ψm1 (x1, V1)− εFPK1 − Ŵ T

m1(t)Ψ̂m1

(
x1, V̂1

)
= eFPK1 (3.49)

Let W̃m1(t) = Wm1(t)− Ŵm1(t), and Ψ̃m1(x1, V1, V̂1) = Ψm1(x1, V1)− Ψ̂m1(x1, V̂1).

After manipulating terms in (3.49), we obtain

−W T
m1(t)

(
Ψ̂m1

(
x1, V̂1

)
+ Ψ̃m1(x1, V1, V̂1)

)
− εFPK1 + Ŵ T

m1(t)Ψ̂m1

(
x1, V̂1

)
= eFPK1

− W̃ T
m1Ψ̂m1

(
x1, V̂1

)
−W T

m1Ψ̃m1(x1, V1, V̂1)− εFPK1 = eFPK1 (3.50)

where εFPK1 is the error resulted from the reconstruction error.

Let’s further simplify the notations as: Ψ̂m1

(
x1, V̂1

)
→ Ψ̂m1, Ψ̃m1(x1, V1, V̂1) →

Ψ̃m1, Ψm1 (x1, V1)→ Ψm1
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Substitute (3.50) into (3.47),

L̇m1(t) = αm tr

W̃ T
m1(t)

Ψ̂m1

[
−W̃ T

m1Ψ̂m1 −W T
m1Ψ̃m1 − εFPK1

]T
1 + Ψ̂T

m1Ψ̂m1


=− αm tr

{
W̃ T
m1(t)

Ψ̂m1Ψ̂T
m1

1 + Ψ̂T
m1Ψ̂m1

W̃m1(t)

}
− αm tr

{
W̃ T
m1(t)

Ψ̂m1Ψ̃T
m1

1 + Ψ̂T
m1Ψ̂m1

Wm1(t)

}

− αm tr

{
W̃ T
m1(t)

Ψ̂m1ε
T
FPK1

1 + Ψ̂T
m1Ψ̂m1

}

Apply Cauchy-Schwarz inequality on the above equation,

L̇m1(t) (3.51)

=− αm tr

{
W̃ T
m1(t)

Ψ̂m1Ψ̂T
m1

1 + Ψ̂T
m1Ψ̂m1

W̃m1(t)

}
− αm tr

{
W̃ T
m1(t)

Ψ̂m1Ψ̃T
m1

1 + Ψ̂T
m1Ψ̂m1

Wm1(t)

}

− αm tr

{
W̃ T
m1(t)

Ψ̂m1ε
T
FPK1

1 + Ψ̂T
m1Ψ̂m1

}

≤− αm
2

∥∥∥Ψ̂m1

∥∥∥2

1 +
∥∥∥Ψ̂m1

∥∥∥2

∥∥∥W̃m1(t)
∥∥∥2

− αm
4

∥∥∥Ψ̂m1

∥∥∥2

1 +
∥∥∥Ψ̂m1

∥∥∥2

∥∥∥W̃m1(t)
∥∥∥2

− αm tr

{
W̃ T
m1(t)

Ψ̂m1Ψ̃T
m1

1 + Ψ̂T
m1Ψ̂m1

Wm1(t)

}
+ αm

∥∥∥W T
m1(t)Ψ̃m1

∥∥∥
1 +

∥∥∥Ψ̂m1

∥∥∥
− αm

4

∥∥∥Ψ̂m1

∥∥∥2

1 +
∥∥∥Ψ̂m1

∥∥∥2

∥∥∥W̃m1(t)
∥∥∥2

− αm tr

{
W̃ T
m1(t)

Ψ̂m1ε
T
FPK1

1 + Ψ̂T
m1Ψ̂m1

}

− αm
‖εFPK1‖2

1 +
∥∥∥Ψ̂m1

∥∥∥2 + αm
‖εFPK1‖2

1 +
∥∥∥Ψ̂m1

∥∥∥2 (3.52)

Combining terms in (3.51),

L̇m1(t) ≤− αm
2

∥∥∥Ψ̂m1

∥∥∥2

1 +
∥∥∥Ψ̂m1

∥∥∥2

∥∥∥W̃m1(t)
∥∥∥2

− αm

1 +
∥∥∥Ψ̂m1

∥∥∥2

∥∥∥∥∥W̃m1(t)Ψ̂m1

2
−W T

m1(t)Ψ̃m1

∥∥∥∥∥
2
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− αm

1 +
∥∥∥Ψ̂m1

∥∥∥2

∥∥∥∥∥W̃m1(t)Ψ̂m1

2
− εFPK1

∥∥∥∥∥
2

+ αm

∥∥∥Ψ̃m1

∥∥∥2

1 +
∥∥∥Ψ̂m1

∥∥∥2 + αm
‖εFPK1‖2

1 +
∥∥∥Ψ̂m1

∥∥∥2

︸ ︷︷ ︸
εNFPK1

(3.53)

Drop the negative terms in the right side of the inequality yields,

L̇m1(t) ≤ −αm
2

∥∥∥Ψ̂m1

∥∥∥2

1 +
∥∥∥Ψ̂m1

∥∥∥2

∥∥∥W̃m1(t)
∥∥∥2

+ αm

∥∥∥Ψ̃m1

∥∥∥2

1 +
∥∥∥Ψ̂m1

∥∥∥2 + εNFPK1 (3.54)

Assume that the function Ψm1(x1, V1) are Lipschitz and the Lipschitz constant

is LΨm. (3.54) can be simplified as

L̇m1(t) ≤ −αm
2

∥∥∥Ψ̂m1

∥∥∥2

1 +
∥∥∥Ψ̂m1

∥∥∥2

∥∥∥W̃m1(t)
∥∥∥2

+ αm
LΨm‖Wm1‖2‖Ṽ1‖2

1 +
∥∥∥Ψ̂m1

∥∥∥2 + εNFPK1

≤ −αm
2

∥∥∥Ψ̂m1

∥∥∥2

1 +
∥∥∥Ψ̂m1

∥∥∥2

∥∥∥W̃m1(t)
∥∥∥2

+Bm1(t) (3.55)

According to the Lyapunov stability analysis, the mass NN weight estimation

error will be Uniformly Ultimately Bounded (UUB) with the bound given as

‖W̃m1‖ ≤

√
2(1 + ‖Ψ̂m1‖2)

αm‖Ψ̂m1‖2
Bm1(t) ≡ bWm(t) (3.56)

We also derive the bound of estimated mass function as follows:

Let m̃1 = m1 − m̂1, and substitute (3.15), one obtains,

m̃1(t) = W T
m1(t)φm1 − Ŵ Tφm1 + εFPK1



74

= W̃ T
m1(t)φm1 + εFPK1 (3.57)

The PDF estimation error can be represented as:

‖m̃1(t)‖ = ‖W̃ T
m1(t)φm1 + εFPK1‖

≤ ‖W̃m1(t)‖‖φm1‖+ ‖εFPK1‖

≤ bWm(t)‖φ̂m1‖+ ‖εFPK1‖ ≡ bm1(t) (3.58)

Theorem 8. (Actor NN’s convergence): Let Ŵu,j,1(t) be updated as (3.24) shows and

assume the learning rate αu,j > 0, then the actor NN’s weights estimation error

W̃u,j,1, and the optimal control approximation error, i.e., ũj,1 = uj,1− ûj,1 are said to

be uniformly ultimately bounded (UUB). The corresponding bound bWu,j
, bu,j are

trivial when the reconstruction error is sufficiently small. Moreover, W̃u,j,1 and ũj,1

are also asymptotically stable if the neuron network structure is selected perfectly.

Proof. Consider the following Lyapunov function

Lu1(t) =
1

2
tr
{
W̃ T
u1(t)W̃u1(t)

}
(3.59)

Take the first derivative on the Lyapunov function candidate, one obtains:

L̇u1(t) =
1

2
tr
{
W̃ T
u1(t) ˙̃Wu1(t)

}
+

1

2
tr
{

˙̃W T
u1(t)W̃u1(t)

}
= tr

{
W̃ T
u1(t) ˙̃Wu1(t)

}
(3.60)

Since the correct estimated optimal cost function leads to the optimal control

equation equals zero, we have

W T
u1(t)φu1 (x1,m1,m2) +

1

2
R−1
g1 g1(x1)

∂V̂1(x1, m̂1, m̂2)

∂x1

+ εu1 = 0 (3.61)

Let W̃u1(t) = Wu1(t) − Ŵu1(t), and φ̃u1(x1,m1,m2, m̂1, m̂2) = φu1(x1,m1,m2) −

φ̂u1(x1, m̂1, m̂2). Similar to the critic and actor NNs, after manipulating terms, we
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obtain

eu1 =− W̃ T
u1φ̂u1 (x1, m̂1, m̂2)−W T

u1φ̃u1(x1,m1,m2, m̂1, m̂2)

− 1

2
R−1
g1 g1(x1)

∂V̂1(x1, m̂1, m̂2)

∂x1

− εu1 (3.62)

where εu1 is the error resulted from the reconstruction error.

Let’s further simplify the notations as:

φ̂u1 (x1, m̂1, m̂2)→ φ̂u1, φ̃u1(x1,m1,m2, m̂1, m̂2)→ φ̃u1, φu1 (x1,m1,m2)→ φu1

Substitute (3.62) into (3.60),

L̇u1(t) = αu tr

W̃ T
u1(t)

φ̂u1

[
−W̃ T

u1φ̂u1 −W T
u1φ̃u1 − 1

2
R−1
g1 g1(x1)∂V̂1

∂x1
− εu1

]T
1 + φ̂Tu1φ̂u1


= −αu tr

{
W̃ T
u1(t)

φ̂u1φ̂
T
u1

1 + φ̂Tu1φ̂u1

W̃u1(t)

}
− αu tr

{
W̃ T
u1(t)

φ̂u1φ̃
T
u1

1 + φ̂Tu1φ̂u1

Wu1(t)

}

− αu tr

W̃ T
u1(t)

φ̂u1

[
1
2
R−1
g1 g1(x1)∂V̂1

∂x1

]T
1 + φ̂Tu1φ̂u1

− αu tr

{
W̃ T
u1(t)

φ̂u1ε
T
u1

1 + φ̂Tu1φ̂u1

}
(3.63)

Apply Cauchy-Schwarz inequality on (3.63),

L̇u1(t) (3.64)

=− αu tr

{
W̃ T
u1(t)

φ̂u1φ̂
T
u1

1 + φ̂Tu1φ̂u1

W̃u1(t)

}
− αu tr

{
W̃ T
u1(t)

φ̂u1φ̃
T
u1

1 + φ̂Tu1φ̂u1

Wu1(t)

}

− αu tr

W̃ T
u1(t)

φ̂u1

[
1
2
R−1
g1 g1(x1)∂V̂1

∂x1

]T
1 + φ̂Tu1φ̂u1

− αu tr

{
W̃ T
u1(t)

φ̂u1ε
T
u1

1 + φ̂Tu1φ̂u1

} (3.65)
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≤− αu
4

∥∥∥φ̂u1

∥∥∥2

1 +
∥∥∥φ̂u1

∥∥∥2

∥∥∥W̃u1(t)
∥∥∥2

− αu
4

∥∥∥φ̂u1

∥∥∥2

1 +
∥∥∥φ̂u1

∥∥∥2

∥∥∥W̃u1(t)
∥∥∥2

− αu tr

W̃ T
u1(t)

φ̂u1

[
1
2
R−1
g1 g1(x1)∂V̂1

∂x1

]T
1 + φ̂Tu1φ̂u1

− αu
∥∥∥1

2
R−1
g1 g1(x1)∂V̂1

∂x1

∥∥∥2

1 +
∥∥∥φ̂u1

∥∥∥2

+ αu

∥∥∥1
2
R−1
g1 g1(x1)∂V̂1

∂x1

∥∥∥2

1 +
∥∥∥φ̂u1

∥∥∥2 − αu
4

∥∥∥φ̂u1

∥∥∥2

1 +
∥∥∥φ̂u1

∥∥∥2

∥∥∥W̃u1(t)
∥∥∥2

− αu tr

{
W̃ T
u1(t)

φ̂u1φ̃
T
u1

1 + φ̂Tu1φ̂u1

Wu1(t)

}
− αu

∥∥∥W T
u1(t)φ̃u1

∥∥∥
1 +

∥∥∥φ̂u1

∥∥∥ + αu

∥∥∥W T
u1(t)φ̃u1

∥∥∥
1 +

∥∥∥φ̂u1

∥∥∥
− αu

4

∥∥∥φ̂u1

∥∥∥2

1 +
∥∥∥φ̂u1

∥∥∥2

∥∥∥W̃u1(t)
∥∥∥2

− αu tr

{
W̃ T
u1(t)

φ̂u1ε
T
u1

1 + φ̂Tu1φ̂u1

}

− αu
‖εu1‖2

1 +
∥∥∥φ̂u1

∥∥∥2 + αu
‖εu1‖2

1 +
∥∥∥φ̂u1

∥∥∥2

(3.66)

Combining terms in (3.64),

L̇u1(t) ≤ −αu
4

∥∥∥φ̂u1

∥∥∥2

1 +
∥∥∥φ̂u1

∥∥∥2

∥∥∥W̃u1(t)
∥∥∥2

− αu

1 +
∥∥∥φ̂u1

∥∥∥2

∥∥∥∥∥W̃u1(t)φ̂u1

2
−W T

u1(t)φ̃u1

∥∥∥∥∥
2

− αu

1 +
∥∥∥φ̂u1

∥∥∥2

∥∥∥∥∥W̃u1(t)φ̂u1

2
− 1

2
R−1
g1 g1(x1)

∂V̂1

∂x1

∥∥∥∥∥
2

− αu

1 +
∥∥∥φ̂u1

∥∥∥2

∥∥∥∥∥W̃u1(t)φ̂u1

2
− εu1

∥∥∥∥∥
2

+
αu
4

∥∥∥R−1
g1 g1(x1)∂V̂1

∂x1

∥∥∥2

1 +
∥∥∥φ̂u1

∥∥∥2 + αu
‖εu1‖2

1 +
∥∥∥φ̂u1

∥∥∥2

︸ ︷︷ ︸
εNu1

(3.67)

Drop the negative terms in the right side of the inequality yields,

L̇u1(t) ≤ −αu
4

∥∥∥φ̂u1

∥∥∥2

1 +
∥∥∥φ̂u1

∥∥∥2

∥∥∥W̃u1(t)
∥∥∥2

+
αu
4

∥∥∥R−1
g1 g1(x1)∂V̂1

∂x1

∥∥∥2

1 +
∥∥∥φ̂u1

∥∥∥2 + εNu1
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≤ −αu
4

∥∥∥φ̂u1

∥∥∥2

1 +
∥∥∥φ̂u1

∥∥∥2

∥∥∥W̃u1(t)
∥∥∥2

+ αu
‖R−1

g1 g1(x1)‖2‖Ṽ1‖2

1 +
∥∥∥φ̂u1

∥∥∥2 + εNu1

≤ −αu
4

∥∥∥φ̂u1

∥∥∥2

1 +
∥∥∥φ̂u1

∥∥∥2

∥∥∥W̃u1(t)
∥∥∥2

+Bu1(t) (3.68)

According to the Lyapunov stability analysis, the actor NN weight estimation

error will be Uniformly Ultimately Bounded (UUB) with the bound given as

‖W̃u1‖ ≤

√
4(1 + ‖φ̂u1‖2)

αu‖φ̂u1‖2
Bu1(t) ≡ bWm(t) (3.69)

We also derive the bound of estimated optimal control function as follows:

Similarly, let ũ1 = m1 − û1, and substitute (3.15), (3.16), one obtains,

ũ1(t) = W̃ T
u1(t)φu1 +W T

u1(t)φ̃u1 + εu1 (3.70)

The optimal control estimation error can be represented as:

‖ũ1(t)‖ = ‖W̃ T
u1(t)φu1 +W T

u1(t)φ̃u1 + εu1‖

≤ ‖W̃u1(t)‖‖φ̂u1‖+ Lφu‖Wu1‖‖m̃1m̃2‖+ ‖εu1‖

≤ bWu(t)‖φ̂u1‖+ Lφu‖Wu1‖‖m̃1m̃2‖+ ‖εu1‖ ≡ bu1(t) (3.71)

where Lφu is the Lipschitz constant of the actor NN’s activation function.

Theorem 9. (Opponent NN’s convergence): Let Ŵm,j,2(t) be updated as (3.26) shows

and assume the learning rate αm2,j > 0, then the opponent NN’s weights estima-

tion error, W̃m,j,2, and the estimation error of the coupling cost x̃j,2 = ΦQ2(xj,1,E{m∗2})−

x̂j,2 are said to be uniformly ultimately bounded (UUB). The corresponding bound
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bWm2,j
, bm2,j are trivial when the reconstruction error is sufficiently small. More-

over, W̃m,j,2 and x̃j,2 are also asymptotically stable if the neuron network structure

is selected perfectly.

Proof. Similar to above.

Remark 2. While the actor, critic, mass, and opponent NNs are learning the opti-

mal control, evaluation function, and PDF of all agents’ tracking error respectively,

the bound will reduce significantly and only depends on the NNs’ reconstruction

error, which can be ignored when the perfect neuron numbers are selected [91, 2].

Eventually, we analyze the closed-loop stability. Before that, similar to , a nec-

essary lemma is introduced.

Lemma 2. Given the stochastic system dynamic equations in (3.1), (3.2), there exist

optimal control policies for pursuers u∗j,1 which satisfy

xTj,1

[
f1(xj,1) + g1(xj,1)u∗j,1 +

D2
1

2

dwj,1
dt

]
≤ −γ1 ‖xj‖2 (3.72)

where γ1 > 0.

Theorem 10. (Closed-loop Stability) Let the pursuers’ critic, actor, mass, and op-

ponent NNs’ synaptic weights being updates as (3.23), (3.24), (3.25), (3.26), and

assume the learning rates αh,j, αm,j, αu,j, αm2,j , then W̃V,j,1, W̃m,j,1, W̃u,j,1, W̃m,j,2,

x̃j,1, m̃j,1, ũj,1 are all UUB. Moreover, if all neuron networks’ structures are selected

perfectly, W̃V,j,1, W̃m,j,1, W̃u,j,1, W̃m,j,2, x̃j,1, m̃j,1, ũj,1 are all asymptotically stable. Mean-

while, if the evaders follow the ACMO algorithm, their neural networks and sys-

tem states are asymptotically stable as well.

Proof. Consider the Lyapunov function candidate as:

Lsysm(t) =
β1

2
tr
{
xT1 (t)x1(t)

}
+
β2

2
tr
{
W̃ T
V 1(t)W̃V 1(t)

}
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+
β3

2
tr
{
W̃ T
m1(t)W̃m1(t)

}
+
β4

2
tr
{
W̃ T
u1(t)W̃u1(t)

}
+
β5

2
tr
{
xT2 (t)x2(t)

}
+
β6

2
tr
{
W̃ T
V 2(t)W̃V 2(t)

}
+
β7

2
tr
{
W̃ T
m2(t)W̃m2(t)

}
+
β8

2
tr
{
W̃ T
u2(t)W̃u2(t)

}
(3.73)

According to the Lyapunov stability method, taking the first derivative of the se-

lected Lyapunov function candidate

L̇sysm(t) =
β1

2
tr
{
xT1 (t)ẋ1(t)

}
+
β1

2
tr
{
ẋT1 (t)x1(t)

}
+
β2

2
tr
{
W̃ T
V 1(t) ˙̃W V 1(t)

}
+
β2

2
tr
{

˙̃W T
V 1(t)W̃V 1(t)

}
+
β3

2
tr
{
W̃ T
m1(t) ˙̃Wm1(t)

}
+
β3

2
tr
{

˙̃W T
m1(t)W̃m1(t)

}
+
β4

2
tr
{
W̃ T
u1(t) ˙̃W u1(t)

}
+
β4

2
tr
{

˙̃W T
u1(t)W̃u1(t)

}
+
β5

2
tr
{
xT2 (t)ẋ2(t)

}
+
β5

2
tr
{
ẋT2 (t)x2(t)

}
+
β6

2
tr
{
W̃ T
V 2(t) ˙̃W V 2(t)

}
+
β6

2
tr
{

˙̃W T
V 2(t)W̃V 2(t)

}
+
β7

2
tr
{
W̃ T
m2(t) ˙̃Wm2(t)

}
+
β7

2
tr
{

˙̃W T
m2(t)W̃m2(t)

}
+
β8

2
tr
{
W̃ T
u2(t) ˙̃W u2(t)

}
+
β8

2
tr
{

˙̃W T
u2(t)W̃u2(t)

}
=β1tr

{
xT1 (t)ẋ1(t)

}
+ β2tr

{
W̃ T
V 1(t) ˙̃W V 1(t)

}
+ β3tr

{
W̃ T
m1(t) ˙̃Wm1(t)

}
+ β4tr

{
W̃ T
u1(t) ˙̃W u1(t)

}
+ β5tr

{
x̃T2 (t)x2(t)

}
+ β6tr

{
˙̃W T
V 2(t)W̃V 2(t)

}
+ β7tr

{
W̃ T
m2(t) ˙̃Wm2(t)

}
+ β8tr

{
W̃ T
u2(t) ˙̃W u2(t)

}
(3.74)

Recall to the Lemma 2, Theorems 6-8, and equations (3.42), (3.55), (3.68), (3.74)

can be represented as:

L̇sysm(t)

=β1tr
{
xT1 (t)ẋ1(t)

}
+ β2tr

{
W̃ T
V 1(t) ˙̃W V 1(t)

}
+ β3tr

{
W̃ T
m1(t) ˙̃Wm1(t)

}
+ β4tr

{
W̃ T
u1(t) ˙̃W u1(t)

}
+ β5tr

{
x̃T2 (t)x2(t)

}
+ β6tr

{
˙̃W T
V 2(t)W̃V 2(t)

}
+ β7tr

{
W̃ T
m2(t) ˙̃Wm2(t)

}
+ β8tr

{
W̃ T
u2(t) ˙̃W u2(t)

}
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≤β1 tr

{
xT1

[
f1 (x1) + g1 (x1)u∗1 + σ1

dw1

dt

]}
− β1 tr

{
xT1 g1 (x1) ũ1

}
− 2β1

γ1

‖g1 (x1) ũ1‖2 +
2β1

γ1

‖g1 (x1) ũ1‖2 − αhβ2

4

∥∥∥Ψ̂V 1

∥∥∥2

1 +
∥∥∥Ψ̂V 1

∥∥∥2

∥∥∥W̃V 1

∥∥∥2

+ αh
β2

[
LΦ + LΨV 1 ‖WV 1‖2] ‖m̃1m̃2‖2

1 +
∥∥∥Ψ̂V 1

∥∥∥2 + β2εV HJI1

− αmβ3

2

∥∥∥Ψ̂m1

∥∥∥2

1 +
∥∥∥Ψ̂m1

∥∥∥2

∥∥∥W̃m1

∥∥∥2

+ αm
β3LΨm1 ‖Wm1‖2

∥∥∥Ṽ1

∥∥∥2

1 +
∥∥∥Ψ̂m1

∥∥∥2 + β3εNFPK1

− αuβ4

4

∥∥∥φ̂u1

∥∥∥2

1 +
∥∥∥φ̂u1

∥∥∥2

∥∥∥W̃u1

∥∥∥2

+ αuβ4

∥∥R−1
1 gT1 (x1)

∥∥2
∥∥∥Ṽ1

∥∥∥2

1 +
∥∥∥φ̂u1

∥∥∥2 + β4εNu1

+ β5 tr

{
xT2

[
f2 (x2) + g2 (x2)u∗2 + σ2

dw2

dt

]}
− β5 tr

{
xT2 g2 (x2) ũ2

}
− 2β5

γ2

‖g2 (x2) ũ2‖2 +
2β5

γ2

‖g2 (x2) ũ2‖2 − αhβ6

4

∥∥∥Ψ̂V 2

∥∥∥2

1 +
∥∥∥Ψ̂V 2

∥∥∥2

∥∥∥W̃V 2

∥∥∥2

+ αh
β6

[
LΦ + LΨV 2 ‖WV 2‖2] ‖m̃1m̃2‖2

1 +
∥∥∥Ψ̂V 2

∥∥∥2 + β6εV HJI2

− αmβ7

2

∥∥∥Ψ̂m2

∥∥∥2

1 +
∥∥∥Ψ̂m2

∥∥∥2

∥∥∥W̃m2

∥∥∥2

+ αm
β7LΨm2 ‖Wm2‖2

∥∥∥Ṽ2

∥∥∥2

1 +
∥∥∥Ψ̂m2

∥∥∥2 + β7εNFPK2

− αuβ8

4

∥∥∥φ̂u2

∥∥∥2

1 +
∥∥∥φ̂u2

∥∥∥2

∥∥∥W̃u2

∥∥∥2

+ αuβ8

∥∥R−1
2 gT2 (x2)

∥∥2
∥∥∥Ṽ2

∥∥∥2

1 +
∥∥∥φ̂u2

∥∥∥2 + β8εNu1

≤− γ1β1

2
‖x1‖2 − γ1β1

2
‖x1‖2 − β1 tr

{
xT1 g1 (x1) ũ1

}
− 2β1

γ1

‖g1 (x1) ũ1‖2

+
2β1

γ1

‖g1 (x1) ũ1‖2 − αhβ2

4

∥∥∥Ψ̂V 1

∥∥∥2

1 +
∥∥∥Ψ̂V 1

∥∥∥2

∥∥∥W̃V 1

∥∥∥2
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+ αh
β2

[
LΦ + LΨV 1 ‖WV 1‖2] ‖m̃1m̃2‖2

1 +
∥∥∥Ψ̂V 1

∥∥∥2 − αmβ3

2

∥∥∥Ψ̂m1

∥∥∥2

1 +
∥∥∥Ψ̂m1

∥∥∥2

∥∥∥W̃m1

∥∥∥2

+ αm
β3LΨm1 ‖Wm1‖2

∥∥∥Ṽ1

∥∥∥2

1 +
∥∥∥Ψ̂m1

∥∥∥2 − αuβ4

4

∥∥∥φ̂u1

∥∥∥2

1 +
∥∥∥φ̂u1

∥∥∥2

∥∥∥W̃u1

∥∥∥2

+ αuβ4

∥∥R−1
1 gT1 (x1)

∥∥2
∥∥∥Ṽ1

∥∥∥2

1 +
∥∥∥φ̂u1

∥∥∥2 + β4εNu1 + β3εNFPK1 + β2εV HJI1

− γ2β5

2
‖x2‖2 − γ2β5

2
‖x2‖2 − β5 tr

{
xT2 g2 (x2) ũ2

}
− 2β5

γ2

‖g2 (x2) ũ2‖2

+
2β5

γ2

‖g2 (x2) ũ2‖2 − αhβ6

4

∥∥∥Ψ̂V 2

∥∥∥2

1 +
∥∥∥Ψ̂V 2

∥∥∥2

∥∥∥W̃V 2

∥∥∥2

+ αh
β6

[
LΦ + LΨV 2 ‖WV 2‖2] ‖m̃1m̃2‖2

1 +
∥∥∥Ψ̂V 2

∥∥∥2 − αmβ7

2

∥∥∥Ψ̂m2

∥∥∥2

1 +
∥∥∥Ψ̂m2

∥∥∥2

∥∥∥W̃m2

∥∥∥2

+ αm
β7LΨm2 ‖Wm2‖2

∥∥∥Ṽ2

∥∥∥2

1 +
∥∥∥Ψ̂m2

∥∥∥2 − αuβ8

4

∥∥∥φ̂u2

∥∥∥2

1 +
∥∥∥φ̂u2

∥∥∥2

∥∥∥W̃u2

∥∥∥2

+ αuβ8

∥∥R−1
2 gT2 (x2)

∥∥2
∥∥∥Ṽ2

∥∥∥2

1 +
∥∥∥φ̂u2

∥∥∥2 + β8εNu2 + β7εNFPK2 + β6εV HJI2

≤− γ1β1

2
‖x1‖2 − β1

[√
γ1

2
‖x1‖+

√
2

γ1

‖g1(x1)ũ1

]2

+
2g2

M1β1

γ1

‖ũ1‖2

− αhβ2

4

∥∥∥Ψ̂V 1

∥∥∥2

1 +
∥∥∥Ψ̂V 1

∥∥∥2

∥∥∥W̃V 1

∥∥∥2

+ αh
β2

[
LΦ + LΨV 1 ‖WV 1‖2] ‖m̃1m̃2‖2

1 +
∥∥∥Ψ̂V 1

∥∥∥2

− αmβ3

2

∥∥∥Ψ̂m1

∥∥∥2

1 +
∥∥∥Ψ̂m1

∥∥∥2

∥∥∥W̃m1

∥∥∥2

+ αm
β3LΨm1 ‖Wm1‖2

∥∥∥Ṽ1

∥∥∥2

1 +
∥∥∥Ψ̂m1

∥∥∥2 + β2εV HJI1

− αuβ4

4

∥∥∥φ̂u1

∥∥∥2

1 +
∥∥∥φ̂u1

∥∥∥2

∥∥∥W̃u1

∥∥∥2

+ αuβ4

∥∥R−1
1 gT1 (x1)

∥∥2
∥∥∥Ṽ1

∥∥∥2

1 +
∥∥∥φ̂u1

∥∥∥2 + β4εNu1 + β3εNFPK1
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− γ2β5

2
‖x2‖2 − β5

[√
γ2

2
‖x2‖+

√
2

γ2

‖g2(x2)ũ2

]2

+
2g2

M2β5

γ2

‖ũ2‖2

− αhβ6

4

∥∥∥Ψ̂V 2

∥∥∥2

1 +
∥∥∥Ψ̂V 2

∥∥∥2

∥∥∥W̃V 2

∥∥∥2

+ αh
β6

[
LΦ + LΨV 2 ‖WV 2‖2] ‖m̃1m̃2‖2

1 +
∥∥∥Ψ̂V 2

∥∥∥2

− αmβ7

2

∥∥∥Ψ̂m2

∥∥∥2

1 +
∥∥∥Ψ̂m2

∥∥∥2

∥∥∥W̃m2

∥∥∥2

+ αm
β7LΨm2 ‖Wm2‖2

∥∥∥Ṽ2

∥∥∥2

1 +
∥∥∥Ψ̂m2

∥∥∥2 + β6εV HJI2

− αuβ8

8

∥∥∥φ̂u2

∥∥∥2

1 +
∥∥∥φ̂u2

∥∥∥2

∥∥∥W̃u2

∥∥∥2

+ αuβ8

∥∥R−1
2 gT2 (x2)

∥∥2
∥∥∥Ṽ2

∥∥∥2

1 +
∥∥∥φ̂u2

∥∥∥2 + β8εNu2 + β7εNFPK2

≤− γ1

2
β1‖x1‖2 +

2g2
M1β1

γ1

‖ũ1‖2 − αhβ2

4

∥∥∥Ψ̂V 1

∥∥∥2

1 +
∥∥∥Ψ̂V 1

∥∥∥2

∥∥∥W̃V 1

∥∥∥2

+ αh
β2

[
LΦ + LΨV 1 ‖WV 1‖2] ‖m̃1m̃2‖2

1 +
∥∥∥Ψ̂V 1

∥∥∥2 − αmβ3

2

∥∥∥Ψ̂m1

∥∥∥2

1 +
∥∥∥Ψ̂m1

∥∥∥2

∥∥∥W̃m1

∥∥∥2

− αuβ4

4

∥∥∥φ̂u1

∥∥∥2

1 +
∥∥∥φ̂u1

∥∥∥2

∥∥∥W̃u1

∥∥∥2

+ β4εNu1 + β3εNFPK1 + β2εV HJI1

+

αmβ3LΨm1 ‖Wm1‖2

1 +
∥∥∥Ψ̂m1

∥∥∥2 + αu1β4

∥∥R−1
1 gT1 (x1)

∥∥2

1 +
∥∥∥φ̂u1

∥∥∥2

∥∥∥Ṽ1

∥∥∥2

− γ2

2
β5‖x2‖2 +

2g2
M2β5

γ2

‖ũ2‖2 − αhβ6

4

∥∥∥Ψ̂V 2

∥∥∥2

1 +
∥∥∥Ψ̂V 2

∥∥∥2

∥∥∥W̃V 2

∥∥∥2

+ αh
β6

[
LΦ + LΨV 2 ‖WV 2‖2] ‖m̃1m̃2‖2

1 +
∥∥∥Ψ̂V 2

∥∥∥2 − αmβ7

2

∥∥∥Ψ̂m2

∥∥∥2

1 +
∥∥∥Ψ̂m2

∥∥∥2

∥∥∥W̃m2

∥∥∥2

− αuβ8

4

∥∥∥φ̂u2

∥∥∥2

1 +
∥∥∥φ̂u2

∥∥∥2

∥∥∥W̃u2

∥∥∥2

+ β8εNu2 + β7εNFPK2 + β6εV HJI2
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+

αmβ7LΨm2 ‖Wm2‖2

1 +
∥∥∥Ψ̂m2

∥∥∥2 + αuβ8

∥∥R−1
2 gT2 (x2)

∥∥2

1 +
∥∥∥φ̂u2

∥∥∥2

∥∥∥Ṽ2

∥∥∥2

(3.75)

where g2
M1 is the upper bound of g2

1(x1), g2
M2 is the upper bound of g2

2(x2)

Next, substituting (3.45) into (3.75), (3.75) can be represented as

L̇sys(t)

≤− γ1

2
β1‖x1‖2 +

2g2
M1β1

γ1

‖ũ1‖2 − αhβ2

4

∥∥∥Ψ̂V 1

∥∥∥2

1 +
∥∥∥Ψ̂V 1

∥∥∥2

∥∥∥W̃V 1

∥∥∥2

+ αh
β2

[
LΦ + LΨV 1 ‖WV 1‖2] ‖m̃1m̃2‖2

1 +
∥∥∥Ψ̂V 1

∥∥∥2 − αmβ3

2

∥∥∥Ψ̂m1

∥∥∥2

1 +
∥∥∥Ψ̂m1

∥∥∥2

∥∥∥W̃m1

∥∥∥2

− αuβ4

4

∥∥∥φ̂u1

∥∥∥2

1 +
∥∥∥φ̂u1

∥∥∥2

∥∥∥W̃u1

∥∥∥2

+ β4εNu1 + β3εNFPK1 + β2εV HJI1

+

 αm
β3LΨm1

‖Wm1‖2

1+‖Ψ̂m1‖2

+αuβ4
‖R−1

1 gT1 (x1)‖2

1+‖φ̂u1‖2


 ‖W̃V 1(t)‖‖φ̂V 1‖

+Lφv1‖WV 1‖‖m̃1m̃2‖+ ‖εHJI1‖


2

− γ2

2
β5‖x2‖2 +

2g2
M2β5

γ2

‖ũ2‖2 − αhβ6

4

∥∥∥Ψ̂V 2

∥∥∥2

1 +
∥∥∥Ψ̂V 2

∥∥∥2

∥∥∥W̃V 2

∥∥∥2

+ αh
β6

[
LΦ + LΨV 2 ‖WV 2‖2] ‖m̃1m̃2‖2

1 +
∥∥∥Ψ̂V 2

∥∥∥2 − αmβ7

2

∥∥∥Ψ̂m2

∥∥∥2

1 +
∥∥∥Ψ̂m2

∥∥∥2

∥∥∥W̃m2

∥∥∥2

− αuβ8

4

∥∥∥φ̂u2

∥∥∥2

1 +
∥∥∥φ̂u2

∥∥∥2

∥∥∥W̃u2

∥∥∥2

+ β8εNu2 + β7εNFPK2 + β6εV HJI2

+

 αm
β7LΨm2

‖Wm2‖2

1+‖Ψ̂m2‖2

+αuβ8
‖R−1

2 gT2 (x2)‖2

1+‖φ̂u2‖2


‖W̃V 2(t)‖‖φ̂V 2‖+ Lφv2‖WV 2‖‖m̃1m̃2‖

+‖εHJI2‖


2
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≤− γ1

2
β1‖x1‖2 +

2g2
M1β1

γ1

‖ũ1‖2 − αhβ2

4

∥∥∥Ψ̂V 1

∥∥∥2

1 +
∥∥∥Ψ̂V 1

∥∥∥2

∥∥∥W̃V 1

∥∥∥2

− αmβ3

2

∥∥∥Ψ̂m1

∥∥∥2

1 +
∥∥∥Ψ̂m1

∥∥∥2

∥∥∥W̃m1

∥∥∥2

− αuβ4

4

∥∥∥φ̂u1

∥∥∥2

1 +
∥∥∥φ̂u1

∥∥∥2

∥∥∥W̃u1

∥∥∥2

+ β4εNu1 + β3εNFPK1

+ β2εV HJI1 + 3

αmβ3LΨm1 ‖Wm1‖2

1 +
∥∥∥Ψ̂m1

∥∥∥2 + αuβ4

∥∥R−1
1 gT1 (x1)

∥∥2

1 +
∥∥∥φ̂u1

∥∥∥2

 ‖W̃V 1(t)‖2‖φ̂V 1‖2

+

3

[
αm

β3LΨm1
‖Wm1‖2

1+‖Ψ̂m1‖2 + αuβ4
‖R−1

1 gT1 (x1)‖2

1+‖φ̂u1‖2

]
L2
φv1‖WV 1‖2

+αh
β2[LΦ+LΨV 1‖WV 1‖2]

1+‖Ψ̂V 1‖2

 ‖m̃1m̃2‖2

+ 3

αmβ3LΨm1 ‖Wm1‖2

1 +
∥∥∥Ψ̂m1

∥∥∥2 + αuβ4

∥∥R−1
1 gT1 (x1)

∥∥2

1 +
∥∥∥φ̂u1

∥∥∥2

 ‖εHJI1‖2

− γ2

2
β5‖x2‖2 +

2g2
M2β5

γ2

‖ũ2‖2 − αhβ6

4

∥∥∥Ψ̂V 2

∥∥∥2

1 +
∥∥∥Ψ̂V 2

∥∥∥2

∥∥∥W̃V 2

∥∥∥2

+ β6εV HJI2

− αmβ7

2

∥∥∥Ψ̂m2

∥∥∥2

1 +
∥∥∥Ψ̂m2

∥∥∥2

∥∥∥W̃m2

∥∥∥2

− αuβ8

4

∥∥∥φ̂u2

∥∥∥2

1 +
∥∥∥φ̂u2

∥∥∥2

∥∥∥W̃u2

∥∥∥2

+ β8εNu2 + β7εNFPK2

+ 3

αmβ7LΨm2 ‖Wm2‖2

1 +
∥∥∥Ψ̂m2

∥∥∥2 + αuβ8

∥∥R−1
2 gT2 (x2)

∥∥2

1 +
∥∥∥φ̂u2

∥∥∥2

 ‖W̃V 2(t)‖2‖φ̂V 2‖2

+

3

[
αm

β7LΨm2
‖Wm2‖2

1+‖Ψ̂m2‖2 + αuβ8
‖R−1

2 gT2 (x2)‖2

1+‖φ̂u2‖2

]
L2
φv2‖WV 2‖2

+αh
β6[LΦ+LΨV 2‖WV 2‖2]

1+‖Ψ̂V 2‖2

 ‖m̃1m̃2‖2

+ 3

αmβ7LΨm2 ‖Wm2‖2

1 +
∥∥∥Ψ̂m2

∥∥∥2 + αuβ8

∥∥R−1
2 gT2 (x2)

∥∥2

1 +
∥∥∥φ̂u2

∥∥∥2

 ‖εHJI2‖2 (3.76)

Furthermore, substituting (3.58) into (3.76), (3.76) can be represented as
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L̇sys(t)

≤ −γ1

2
β1‖x1‖2 +

2g2
M1β1

γ1

‖ũ1‖2 − αhβ2

4

∥∥∥Ψ̂V 1

∥∥∥2

1 +
∥∥∥Ψ̂V 1

∥∥∥2

∥∥∥W̃V 1

∥∥∥2

+


3

 αm
β3LΨm1

‖Wm1‖2

1+‖Ψ̂m1‖2

+αuβ4
‖R−1

1 gT1 (x1)‖2

1+‖φ̂u1‖2

L2
φv1‖WV 1‖2

+ αh
β2

[
LΦ + LΨV 1 ‖WV 1‖2]

1 +
∥∥∥Ψ̂V 1

∥∥∥2


‖m̃2‖2

‖W̃m1(t)‖‖φm1‖

+‖εFPK1‖


2

− αmβ3

2

∥∥∥Ψ̂m1

∥∥∥2

1 +
∥∥∥Ψ̂m1

∥∥∥2

∥∥∥W̃m1

∥∥∥2

− αuβ4

4

∥∥∥φ̂u1

∥∥∥2

1 +
∥∥∥φ̂u1

∥∥∥2

∥∥∥W̃u1

∥∥∥2

+ β4εNu1 + β3εNFPK1

+ 3

αmβ3LΨm1 ‖Wm1‖2

1 +
∥∥∥Ψ̂m1

∥∥∥2 + αuβ4

∥∥R−1
1 gT1 (x1)

∥∥2

1 +
∥∥∥φ̂u1

∥∥∥2

 ‖W̃V 1(t)‖2‖φ̂V 1‖2 + β2εV HJI1

+ 3

αmβ3LΨm1 ‖Wm1‖2

1 +
∥∥∥Ψ̂m1

∥∥∥2 + αuβ4

∥∥R−1
1 gT1 (x1)

∥∥2

1 +
∥∥∥φ̂u1

∥∥∥2

 ‖εHJI1‖2

− γ2

2
β5‖x2‖2 +

2g2
M2β5

γ2

‖ũ2‖2 − αhβ6

4

∥∥∥Ψ̂V 2

∥∥∥2

1 +
∥∥∥Ψ̂V 2

∥∥∥2

∥∥∥W̃V 2

∥∥∥2

+


3

 αm
β7LΨm2

‖Wm2‖2

1+‖Ψ̂m2‖2

+αuβ8
‖R−1

2 gT2 (x2)‖2

1+‖φ̂u2‖2

L2
φv2‖WV 2‖2

+ αh
β6

[
LΦ + LΨV 2 ‖WV 2‖2]

1 +
∥∥∥Ψ̂V 2

∥∥∥2


‖m̃1‖2

[
‖W̃m2(t)‖‖φm2‖+ ‖εFPK2‖

]2

− αmβ7

2

∥∥∥Ψ̂m2

∥∥∥2

1 +
∥∥∥Ψ̂m2

∥∥∥2

∥∥∥W̃m2

∥∥∥2

− αuβ8

4

∥∥∥φ̂u2

∥∥∥2

1 +
∥∥∥φ̂u2

∥∥∥2

∥∥∥W̃u2

∥∥∥2

+ β8εNu2 + β7εNFPK2
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+ 3

αmβ7LΨm2 ‖Wm2‖2

1 +
∥∥∥Ψ̂m2

∥∥∥2 + αuβ8

∥∥R−1
2 gT2 (x2)

∥∥2

1 +
∥∥∥φ̂u2

∥∥∥2

 ‖W̃V 2(t)‖2‖φ̂V 2‖+β6εV HJI2

+ 3

αmβ7LΨm2 ‖Wm2‖2

1 +
∥∥∥Ψ̂m2

∥∥∥2 + αuβ8

∥∥R−1
2 gT2 (x2)

∥∥2

1 +
∥∥∥φ̂u2

∥∥∥2

 ‖εHJI2‖2

≤ −γ1

2
β1‖x1‖2 +

2g2
M1β1

γ1

‖ũ1‖2 − αhβ2

4

∥∥∥Ψ̂V 1

∥∥∥2

1 +
∥∥∥Ψ̂V 1

∥∥∥2

∥∥∥W̃V 1

∥∥∥2

+ 2


3

 αm
β3LΨm1

‖Wm1‖2

1+‖Ψ̂m1‖2

+αuβ4
‖R−1

1 gT1 (x1)‖2

1+‖φ̂u1‖2

L2
φv1‖WV 1‖2

+ αh
β2

[
LΦ + LΨV 1 ‖WV 1‖2]

1 +
∥∥∥Ψ̂V 1

∥∥∥2


‖m̃2‖2‖W̃m1(t)‖2‖φm1‖2

+ 2


3

 αm
β3LΨm1

‖Wm1‖2

1+‖Ψ̂m1‖2

+αuβ4
‖R−1

1 gT1 (x1)‖2

1+‖φ̂u1‖2

L2
φv1‖WV 1‖2

+ αh
β2

[
LΦ + LΨV 1 ‖WV 1‖2]

1 +
∥∥∥Ψ̂V 1

∥∥∥2


‖m̃2‖2‖εFPK‖2

− αmβ3

2

∥∥∥Ψ̂m1

∥∥∥2

1 +
∥∥∥Ψ̂m1

∥∥∥2

∥∥∥W̃m1

∥∥∥2

− αuβ4

4

∥∥∥φ̂u1

∥∥∥2

1 +
∥∥∥φ̂u1

∥∥∥2

∥∥∥W̃u1

∥∥∥2

+ β4εNu1 + β3εNFPK1

+ 3

αmβ3LΨm1 ‖Wm1‖2

1 +
∥∥∥Ψ̂m1

∥∥∥2 + αuβ4

∥∥R−1
1 gT1 (x1)

∥∥2

1 +
∥∥∥φ̂u1

∥∥∥2

 ‖W̃V 1(t)‖2‖φ̂V 1‖2 + β2εV HJI1

+ 3

αmβ3LΨm1 ‖Wm1‖2

1 +
∥∥∥Ψ̂m1

∥∥∥2 + αuβ4

∥∥R−1
1 gT1 (x1)

∥∥2

1 +
∥∥∥φ̂u1

∥∥∥2

 ‖εHJI1‖2

− γ2

2
β5‖x2‖2 +

2g2
M2β5

γ2

‖ũ2‖2 − αhβ6

4

∥∥∥Ψ̂V 2

∥∥∥2

1 +
∥∥∥Ψ̂V 2

∥∥∥2

∥∥∥W̃V 2

∥∥∥2
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+ 2


3

 αm
β7LΨm2

‖Wm2‖2

1+‖Ψ̂m2‖2

+αuβ8
‖R−1

2 gT2 (x2)‖2

1+‖φ̂u2‖2

L2
φv2‖WV 2‖2

+ αh
β6

[
LΦ + LΨV 2 ‖WV 2‖2]

1 +
∥∥∥Ψ̂V 2

∥∥∥2


‖m̃1‖2‖W̃m2(t)‖2‖φm2‖2

+ 2


3

αmβ7LΨm2 ‖Wm2‖2

1 +
∥∥∥Ψ̂m2

∥∥∥2 + αuβ8

∥∥R−1
2 gT2 (x2)

∥∥2

1 +
∥∥∥φ̂u2

∥∥∥2

L2
φv2‖WV 2‖2

+ αh
β6

[
LΦ + LΨV 2 ‖WV 2‖2]

1 +
∥∥∥Ψ̂V 2

∥∥∥2


‖m̃1‖2‖εFPK‖2

− αmβ7

2

∥∥∥Ψ̂m2

∥∥∥2

1 +
∥∥∥Ψ̂m2

∥∥∥2

∥∥∥W̃m2

∥∥∥2

− αuβ8

4

∥∥∥φ̂u2

∥∥∥2

1 +
∥∥∥φ̂u2

∥∥∥2

∥∥∥W̃u2

∥∥∥2

+ β8εNu2 + β7εNFPK2

+ 3

αmβ7LΨm2 ‖Wm2‖2

1 +
∥∥∥Ψ̂m2

∥∥∥2 + αuβ8

∥∥R−1
2 gT2 (x2)

∥∥2

1 +
∥∥∥φ̂u2

∥∥∥2

 ‖W̃V 2(t)‖2‖φ̂V 2‖2 + β6εV HJI2

+ 3

αmβ7LΨm2 ‖Wm2‖2

1 +
∥∥∥Ψ̂m2

∥∥∥2 + αuβ8

∥∥R−1
2 gT2 (x2)

∥∥2

1 +
∥∥∥φ̂u2

∥∥∥2

 ‖εHJI2‖2 (3.77)

Next, substitute (3.71) into (3.77), (3.77) can be represented as:

L̇sys(t)

≤ −γ1

2
β1‖x1‖2 +

2g2
M1β1

γ1

 ‖W̃u(t)‖‖φ̂u1‖

+Lφu‖Wu‖‖m̃1m̃2‖+ ‖εu1‖


2

− αhβ2

4

∥∥∥Ψ̂V 1

∥∥∥2

1 +
∥∥∥Ψ̂V 1

∥∥∥2

∥∥∥W̃V 1

∥∥∥2

+ β2εV HJI1
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+ 2


3

 αm
β3LΨm1

‖Wm1‖2

1+‖Ψ̂m1‖2

+αuβ4
‖R−1

1 gT1 (x1)‖2

1+‖φ̂u1‖2

L2
φv1‖WV 1‖2

+ αh
β2

[
LΦ + LΨV 1 ‖WV 1‖2]

1 +
∥∥∥Ψ̂V 1

∥∥∥2


‖m̃2‖2‖W̃m1(t)‖2‖φm1‖2

+ 2


3

 αm
β3LΨm1

‖Wm1‖2

1+‖Ψ̂m1‖2

+αuβ4
‖R−1

1 gT1 (x1)‖2

1+‖φ̂u1‖2

L2
φv1‖WV 1‖2

+ αh
β2

[
LΦ + LΨV 1 ‖WV 1‖2]

1 +
∥∥∥Ψ̂V 1

∥∥∥2


‖m̃2‖2‖εFPK‖2

− αmβ3

2

∥∥∥Ψ̂m1

∥∥∥2

1 +
∥∥∥Ψ̂m1

∥∥∥2

∥∥∥W̃m1

∥∥∥2

− αuβ4

4

∥∥∥φ̂u1

∥∥∥2

1 +
∥∥∥φ̂u1

∥∥∥2

∥∥∥W̃u1

∥∥∥2

+ β4εNu1 + β3εNFPK1

+ 3

αmβ3LΨm1 ‖Wm1‖2

1 +
∥∥∥Ψ̂m1

∥∥∥2 + αuβ4

∥∥R−1
1 gT1 (x1)

∥∥2

1 +
∥∥∥φ̂u1

∥∥∥2

 ‖W̃V 1(t)‖2‖φ̂V 1‖2

+ 3

αmβ3LΨm1 ‖Wm1‖2

1 +
∥∥∥Ψ̂m1

∥∥∥2 + αuβ4

∥∥R−1
1 gT1 (x1)

∥∥2

1 +
∥∥∥φ̂u1

∥∥∥2

 ‖εHJI1‖2

− γ2

2
β5‖x2‖2 +

2g2
M2β5

γ2

[
‖W̃u2(t)‖‖φ̂u2‖+ Lφu2‖Wu2‖‖m̃1m̃2‖+ ‖εu2‖

]2

− αhβ6

4

∥∥∥Ψ̂V 2

∥∥∥2

1 +
∥∥∥Ψ̂V 2

∥∥∥2

∥∥∥W̃V 2

∥∥∥2

+ 2


3

 αm
β7LΨm2

‖Wm2‖2

1+‖Ψ̂m2‖2

+αuβ8
‖R−1

2 gT2 (x2)‖2

1+‖φ̂u2‖2

L2
φv2‖WV 2‖2

+ αh
β6

[
LΦ + LΨV 2 ‖WV 2‖2]

1 +
∥∥∥Ψ̂V 2

∥∥∥2


‖m̃1‖2‖W̃m2(t)‖2‖φm2‖2
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+ 2


3

 αm
β7LΨm2

‖Wm2‖2

1+‖Ψ̂m2‖2

+αuβ8
‖R−1

2 gT2 (x2)‖2

1+‖φ̂u2‖2

L2
φv2‖WV 2‖2

+ αh
β6

[
LΦ + LΨV 2 ‖WV 2‖2]

1 +
∥∥∥Ψ̂V 2

∥∥∥2


‖m̃1‖2‖εFPK‖2

− αmβ7

2

∥∥∥Ψ̂m2

∥∥∥2

1 +
∥∥∥Ψ̂m2

∥∥∥2

∥∥∥W̃m2

∥∥∥2

− αuβ8

4

∥∥∥φ̂u2

∥∥∥2

1 +
∥∥∥φ̂u2

∥∥∥2

∥∥∥W̃u2

∥∥∥2

+ β8εNu2 + β7εNFPK2

+ 3

αmβ7LΨm2 ‖Wm2‖2

1 +
∥∥∥Ψ̂m2

∥∥∥2 + αuβ8

∥∥R−1
2 gT2 (x2)

∥∥2

1 +
∥∥∥φ̂u2

∥∥∥2

 ‖W̃V 2(t)‖2‖φ̂V 2‖2 + β6εV HJI2

+ 3

αmβ7LΨm2 ‖Wm2‖2

1 +
∥∥∥Ψ̂m2

∥∥∥2 + αuβ8

∥∥R−1
2 gT2 (x2)

∥∥2

1 +
∥∥∥φ̂u2

∥∥∥2

 ‖εHJI2‖2

≤ −γ1

2
β1‖x1‖2 +

6g2
M1β1

γ1

‖φ̂u1‖2‖W̃u(t)‖2 − αhβ2

4

∥∥∥Ψ̂V 1

∥∥∥2

1 +
∥∥∥Ψ̂V 1

∥∥∥2

∥∥∥W̃V 1

∥∥∥2

+ 2


3

 αm
β3LΨm1

‖Wm1‖2

1+‖Ψ̂m1‖2

+αuβ4
‖R−1

1 gT1 (x1)‖2

1+‖φ̂u1‖2

L2
φv1‖WV 1‖2

+ αh
β2

[
LΦ + LΨV 1 ‖WV 1‖2]

1 +
∥∥∥Ψ̂V 1

∥∥∥2 +
6g2

M1β1

γ
L2
φu‖Wu‖2


‖m̃2‖2‖W̃m1(t)‖2‖φm1‖2

+ 2


3

 αm
β3LΨm1

‖Wm1‖2

1+‖Ψ̂m1‖2

+αuβ4
‖R−1

1 gT1 (x1)‖2

1+‖φ̂u1‖2

L2
φv1‖WV 1‖2

+ αh
β2

[
LΦ + LΨV 1 ‖WV 1‖2]

1 +
∥∥∥Ψ̂V 1

∥∥∥2 +
6g2

M1β1

γ
L2
φu‖Wu‖2


‖m̃2‖2‖εFPK‖2

+
6g2

M1β1

γ
‖εu1‖2 + β3εNFPK1 + β2εV HJI1
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− αmβ3

2

∥∥∥Ψ̂m1

∥∥∥2

1 +
∥∥∥Ψ̂m1

∥∥∥2

∥∥∥W̃m1

∥∥∥2

− αuβ4

4

∥∥∥φ̂u1

∥∥∥2

1 +
∥∥∥φ̂u1

∥∥∥2

∥∥∥W̃u1

∥∥∥2

+ β4εNu1

+ 3

αmβ3LΨm1 ‖Wm1‖2

1 +
∥∥∥Ψ̂m1

∥∥∥2 + αuβ4

∥∥R−1
1 gT1 (x1)

∥∥2

1 +
∥∥∥φ̂u1

∥∥∥2

 ‖W̃V 1(t)‖2‖φ̂V 1‖2

+ 3

αmβ3LΨm1 ‖Wm1‖2

1 +
∥∥∥Ψ̂m1

∥∥∥2 + αuβ4

∥∥R−1
1 gT1 (x1)

∥∥2

1 +
∥∥∥φ̂u1

∥∥∥2

 ‖εHJI1‖2

− γ2

2
β5‖x2‖2 +

6g2
M2β5

γ2

‖φ̂u2‖2‖W̃u2(t)‖2 − αhβ6

4

∥∥∥Ψ̂V 2

∥∥∥2

1 +
∥∥∥Ψ̂V 2

∥∥∥2

∥∥∥W̃V 2

∥∥∥2

+ 2


3

 αm
β7LΨm2

‖Wm2‖2

1+‖Ψ̂m2‖2

+αuβ8
‖R−1

2 gT2 (x2)‖2

1+‖φ̂u2‖2

L2
φv2‖WV 2‖2

+ αh
β6

[
LΦ + LΨV 2 ‖WV 2‖2]

1 +
∥∥∥Ψ̂V 2

∥∥∥2 +
6g2

M2β5

γ
L2
φu2‖Wu2‖2


‖m̃1‖2‖W̃m2(t)‖2‖φm2‖2

+ 2



 αm
β7LΨm2

‖Wm2‖2

1+‖Ψ̂m2‖2

+αuβ8
‖R−1

2 gT2 (x2)‖2

1+‖φ̂u2‖2

L2
φv2‖WV 2‖2

+ αh
β6

[
LΦ + LΨV 2 ‖WV 2‖2]

1 +
∥∥∥Ψ̂V 2

∥∥∥2 +
6g2

M2β5

γ
L2
φu2‖Wu2‖2


‖m̃1‖2‖εFPK‖2

+
6g2

M2β5

γ
‖εu2‖2 + β8εNu2 + β7εNFPK2 + β6εV HJI2

− αmβ7

2

∥∥∥Ψ̂m2

∥∥∥2

1 +
∥∥∥Ψ̂m2

∥∥∥2

∥∥∥W̃m2

∥∥∥2

− αuβ8

4

∥∥∥φ̂u2

∥∥∥2

1 +
∥∥∥φ̂u2

∥∥∥2

∥∥∥W̃u2

∥∥∥2

+ 3

αmβ7LΨm2 ‖Wm2‖2

1 +
∥∥∥Ψ̂m2

∥∥∥2 + αuβ8

∥∥R−1
2 gT2 (x2)

∥∥2

1 +
∥∥∥φ̂u2

∥∥∥2

 ‖W̃V 2(t)‖2‖φ̂V 2‖2

+ 3

αmβ7LΨm2 ‖Wm2‖2

1 +
∥∥∥Ψ̂m2

∥∥∥2 + αuβ8

∥∥R−1
2 gT2 (x2)

∥∥2

1 +
∥∥∥φ̂u2

∥∥∥2

 ‖εHJI2‖2 (3.78)
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Combine the terms in (3.78) yields:

L̇sys(t) ≤ −
γ1

2
β1‖x1‖2 −

αuβ4

4

∥∥∥φ̂u1

∥∥∥2

1 +
∥∥∥φ̂u1

∥∥∥2 −
6g2

M1β1

γ1

‖φ̂u1‖2

 ‖W̃u(t)‖2

−

αhβ2

4

∥∥∥Ψ̂V 1

∥∥∥2

1 +
∥∥∥Ψ̂V 1

∥∥∥2 − 3

 αm
β3LΨm1

‖Wm1‖2

1+‖Ψ̂m1‖2

+αuβ4
‖R−1

1 gT1 (x1)‖2

1+‖φ̂u1‖2

 ‖φ̂V 1‖2

 ‖W̃V 1(t)‖2

−



αmβ3

2

‖Ψ̂m1‖2

1+‖Ψ̂m1‖2

−2



3

 αm
β3LΨm1

‖Wm1‖2

1+‖Ψ̂m1‖2

+αuβ4
‖R−1

1 gT1 (x1)‖2

1+‖φ̂u1‖2

L2
φv1‖WV 1‖2

+ αh
β2

[
LΦ + LΨV 1 ‖WV 1‖2]

1 +
∥∥∥Ψ̂V 1

∥∥∥2

+
6g2

M1β1

γ1

L2
φu‖Wu1‖2


‖m̃2‖2‖φm1‖2



∥∥∥W̃m1

∥∥∥2

+ 2



3

 αm
β3LΨm1

‖Wm1‖2

1+‖Ψ̂m1‖2

+αuβ4
‖R−1

1 gT1 (x1)‖2

1+‖φ̂u1‖2

L2
φv1‖WV 1‖2

+ αh
β2

[
LΦ + LΨV 1 ‖WV 1‖2]

1 +
∥∥∥Ψ̂V 1

∥∥∥2

+
6g2

M1β1

γ1

L2
φu‖Wu‖2


‖m̃2‖2‖εFPK‖2 +

6g2
M1β1

γ1

‖εu1‖2

+

αmβ3LΨm1 ‖Wm1‖2

1 +
∥∥∥Ψ̂m1

∥∥∥2 + αuβ4

∥∥R−1
1 gT1 (x1)

∥∥2

1 +
∥∥∥φ̂u1

∥∥∥2

 ‖εHJI1‖2 + β4εNu1 + β3εNFPK1

− γ2

2
β5‖x2‖2 −

αuβ8

4

∥∥∥φ̂u2

∥∥∥2

1 +
∥∥∥φ̂u2

∥∥∥2 −
6g2

M2β5

γ2

‖φ̂u2‖2

 ‖W̃u2(t)‖2 + β2εV HJI1

−


αhβ6

4

‖Ψ̂V 2‖2

1+‖Ψ̂V 2‖2

−3

[
αm

β7LΨm2
‖Wm2‖2

1+‖Ψ̂m2‖2 + αuβ8
‖R−1

2 gT2 (x2)‖2

1+‖φ̂u2‖2

]
‖φ̂V 2‖2

 ‖W̃V 2(t)‖2
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−



αmβ7

2

‖Ψ̂m2‖2

1+‖Ψ̂m2‖2

−2



3

 αm
β7LΨm2

‖Wm2‖2

1+‖Ψ̂m2‖2

+αuβ8
‖R−1

2 gT2 (x2)‖2

1+‖φ̂u2‖2

L2
φv2‖WV 2‖

+ αh
β6

[
LΦ + LΨV 2 ‖WV 2‖2]

1 +
∥∥∥Ψ̂V 2

∥∥∥2

+
6g2

M2β5

γ2

L2
φu2‖Wu2‖2


‖m̃1‖2‖φm2‖2



∥∥∥W̃m2

∥∥∥2

+ 2



3

 αm
β7LΨm2

‖Wm2‖2

1+‖Ψ̂m2‖2

+αuβ8
‖R−1

2 gT2 (x2)‖2

1+‖φ̂u2‖2

L2
φv2‖WV 2‖

+ αh
β6

[
LΦ + LΨV 2 ‖WV 2‖2]

1 +
∥∥∥Ψ̂V 2

∥∥∥2

+
6g2

M2β5

γ2

L2
φu2‖Wu2‖2


‖m̃1‖2‖εFPK2‖2 +

6g2
M2β5

γ2

‖εu2‖2

+

αmβ7LΨm2 ‖Wm2‖2

1 +
∥∥∥Ψ̂m2

∥∥∥2 + αuβ8

∥∥R−1
2 gT2 (x2)

∥∥2

1 +
∥∥∥φ̂u2

∥∥∥2

 ‖εHJI2‖2

+ β8εNu2 + β7εNFPK2 + β6εV HJI2

≤ −γ1β1

2
− γ2β5

2
− κu1‖W̃u1‖2 − κm1‖W̃m1‖2 − κV 1‖W̃V 1‖2

− κu2‖W̃u2‖2 − κm2‖W̃m2‖2 − κV 2‖W̃V 2‖2 + εCLS1 + εCLS2 (3.79)

with κ and ε parameters defined as

κu1 =

αuβ4

4

∥∥∥φ̂u1

∥∥∥2

1 +
∥∥∥φ̂u1

∥∥∥2 −
6g2

M1β1

γ1

‖φ̂u1‖2


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κm1 =



αmβ3

2

‖Ψ̂m1‖2

1+‖Ψ̂m1‖2

−2



3

 αm
β3LΨm1

‖Wm1‖2

1+‖Ψ̂m1‖2

+αuβ4
‖R−1

1 gT1 (x1)‖2

1+‖φ̂u1‖2

L2
φv1‖WV 1‖2

+ αh
β2

[
LΦ + LΨV 1 ‖WV 1‖2]

1 +
∥∥∥Ψ̂V 1

∥∥∥2

+
6g2

M1β1

γ1

L2
φu‖Wu1‖2


‖m̃2‖2‖φm1‖2



κV 1 =

αhβ2

4

∥∥∥Ψ̂V 1

∥∥∥2

1 +
∥∥∥Ψ̂V 1

∥∥∥2 − 3

 αm
β3LΨm1

‖Wm1‖2

1+‖Ψ̂m1‖2

+αuβ4
‖R−1

1 gT1 (x1)‖2

1+‖φ̂u1‖2

 ‖φ̂V 1‖2


κu2 =

αuβ8

4

∥∥∥φ̂u2

∥∥∥2

1 +
∥∥∥φ̂u2

∥∥∥2 −
6g2

M2β5

γ2

‖φ̂u2‖2



κm2 =


αmβ7

2

∥∥∥Ψ̂m2

∥∥∥2

1 +
∥∥∥Ψ̂m2

∥∥∥2 − 2



3

 αm
β7LΨm2

‖Wm2‖2

1+‖Ψ̂m2‖2

+αuβ8
‖R−1

2 gT2 (x2)‖2

1+‖φ̂u2‖2

L2
φv2‖WV 2‖

+ αh
β6

[
LΦ + LΨV 2 ‖WV 2‖2]

1 +
∥∥∥Ψ̂V 2

∥∥∥2

+
6g2

M2β5

γ2

L2
φu2‖Wu2‖2


‖m̃1‖2‖φm2‖2


κV 2 =

αhβ6

4

∥∥∥Ψ̂V 2

∥∥∥2

1 +
∥∥∥Ψ̂V 2

∥∥∥2 − 3

αmβ7LΨm2 ‖Wm2‖2

1 +
∥∥∥Ψ̂m2

∥∥∥2 + αuβ8

∥∥R−1
2 gT2 (x2)

∥∥2

1 +
∥∥∥φ̂u2

∥∥∥2

 ‖φ̂V 2‖2


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εCLS1 = 2



3

 αm
β3LΨm1

‖Wm1‖2

1+‖Ψ̂m1‖2

+αuβ4
‖R−1

1 gT1 (x1)‖2

1+‖φ̂u1‖2

L2
φv1‖WV 1‖

+ αh
β2

[
LΦ + LΨV 1 ‖WV 1‖2]

1 +
∥∥∥Ψ̂V 1

∥∥∥2

+
6g2

M1β1

γ1

L2
φu‖Wu‖2


‖m̃2‖2‖εFPK‖2 +

6g2
M1β1

γ1

‖εu1‖2

+

 αm
β3LΨm1

‖Wm1‖2

1+‖Ψ̂m1‖2

+αuβ4
‖R−1

1 gT1 (x1)‖2

1+‖φ̂u1‖2

 ‖εHJI1‖2 + β4εNu1 + β3εNFPK1 + β2εV HJI1

εCLS2 = 2



3

 αm
β7LΨm2

‖Wm2‖2

1+‖Ψ̂m2‖2

+αuβ8
‖R−1

2 gT2 (x2)‖2

1+‖φ̂u2‖2

L2
φv2‖WV 2‖

+ αh
β6

[
LΦ + LΨV 2 ‖WV 2‖2]

1 +
∥∥∥Ψ̂V 2

∥∥∥2

+
6g2

M2β5

γ2

L2
φu2‖Wu2‖2


‖m̃1‖2‖εFPK2‖2 +

6g2
M2β5

γ2

‖εu2‖2

+

 αm
β7LΨm2

‖Wm2‖2

1+‖Ψ̂m2‖2

+αuβ8
‖R−1

2 gT2 (x2)‖2

1+‖φ̂u2‖2

 ‖εHJI2‖2 + β8εNu2 + β7εNFPK2 + β6εV HJI2

Note that the coefficient functions κu1, κm1, κV 1, κu2, κm2, and κV 2 are all positive

definite, and the terms εCLS1 and εCLS2 go to zero if the reconstruction errors εHJI1,

εFPK1, εu1, εHJI2, εFPK2, εu2 go to zero. The meaning of reconstruction error goes to

zero means that the neural network structure and activation functions are perfectly

selected. In that case, the first derivative of the Lyapunov function is negative

definite which means the closed loop system is asymptotically stable. In the case

where the reconstruction error is not zero, the closed loop system is Uniformly

Ultimately Bounded (UUB).
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3.4 Numerical Simulations

In the numerical simulations, a pursuit-evasion game with very large scale pur-

suers and evaders are constructed. The evaders aim to get to a target while dodg-

ing the pursuers. The pursuers, on the other hand, focus on catching the evaders

by mass capture. In the designed game, the pursuers and the evaders have hetero-

geneous stochastic nonlinear dynamics. Note that during the game, the evaders

and pursuers are considered “blind”, i.e., they will not have information from any

other agents. Two tests are conducted to demonstrate the effectiveness of the pro-

posed mean-field type of ACMO algorithm. Firstly, the pursuers use the devel-

oped algorithm while the evaders follow the traditional optimal control design.

Secondly, all of the pursuers and evaders play the computed mean-field type of

optimal control algorithm.

We employed 1000 pursuers as well as the same amount of evaders in total.

The initial positions of all agents are randomly selected with the pursuers’ initial

positions following a normal distribution (i.e., N (µ = [0, 3], σ = 0.1 × I2) and the

evaders follow N (µ = [3, 3], σ = 0.5 × I2). All agents’ initial velocities are set to

zero. Each pursuer agent’s system dynamics are defined as:

Pursuer group G1 agents:

dxj,1(t) =

 f1 (xj,1) + l1(xj,1)x̄2

+g1 (xj,1)uj,1(t)

 dt+D1dwj,1(t), 1 ≤ j ≤ N1

where

f1 (xj,1) =

−xj,1,1 + 0.5x2
j,1,2

−0.3x2
j,1,2

 , g1 (xj,1) =

xj,1,1
0


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l1(xj,1) =

0.1

0

 , D1 =

0.01 0

0 0.01


with xj,1 = [xj,1,1 xj,1,2]T . Similarly, the system dynamics for the evaders are given

as:

dxi,2(t) =

 f2 (xi,2) + l2(xi,2)x̄1

+g2 (xi,2)ui,2(t)

 dt+D2dwi,2(t), 1 ≤ i ≤ N2

where

f2 (xi,2) =

−x2
i,2,1 + xi,2,2

−0.2x2
i,2,2

 , g1 (xj,1) =

0

2


l2(xi,2) =

 0

0.2

 , D2 =

0.01 0

0 0.01


Furthermore, we consider that the target for the evaders being the point [0.5 0.5]T .

In the cost functions (3.7) and (3.8) R1 = R2 = 1, Q1 = Q2 = I2, I2 represents the

two-dimensional identity matrix. The learning rate of the neural networks are

given as αh,0 = αh,i = 2 × 10−6, αu,0 = αu,i = 2 × 10−4, and αm,i = 1 × 10−3. The

total simulation time is 70 seconds.

From a pursuer’s perspective, it needs to estimate the optimal cost function,

PDF of the pursuer group, the evaders’ worst actions, and its own optimal con-

trol. Therefore, each pursuer maintains four neural networks whose activation

functions are selected form the expansion terms of the polynomial
∑M

β=1(
∑n

j=1 zj)β

where n represents the input number of the neural network, and M stands for the

estimation error. For the critic and actor neural networks, we selected M = 4. For

the mass neural network, the constant M is set to 5.
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(a) t = 0s (b) t = 0.5s

(c) t = 1s (d) t = 1.5s

Figure 3.3: The trajectory of agents with respect to time. For this plot’s vis-
ibility, only 50 pursuers and 50 evaders are plotted (total 1000).

The evaders’ position is plotted as the blue star with the pursuers’ positions

plotted as the red circles. The trajectory of the pursuers and evaders are plotted as

red and blue curves, respectively. The green cross marks the target position for

the evaders.
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(a) 50 agents’ trajectory at the time of capture. (b) The average trajectory of two groups at the
time of capture.

Figure 3.4: The plot of the agents’ positions and trajectories at the time
of capture. Pursuers’ and evaders’ trajectories are marked
with red and blue curves, respectively. The left image shows
the time evolution of the trajectories for 50 pursuers and 20
evaders. The right plot demonstrates the average trajectory of
both pursuers’ team and evaders’ team.

Firstly, let the pursers follow the developed mean field type of ACMO algo-

rithm, but the evaders play regular mean field type of optimal control method in-

troduced in [119]. This game lasts 1.7 seconds when the pursuers catch the evaders.

Note that due to the stochastic term in system dynamics, we use a loose version

instead of the exact “mass capture” criteria, i.e., the evader group is said to be cap-

tured if the evader mass and the pursuer mass are bounded in a constant distance:

‖E{m∗1} − E{m∗2}‖ ≤ εc. The time evolution of all agents’ overall positions is plot-

ted in Fig. 3.3 which includes all agents’ positions at initial status, 0.5s, 1s, and

1.5s. For a better visibility, only 50 pursuers and 20 evaders instead of 2000 agents

are plotted. Since the evaders compute the optimal trajectory without considering

the pursuers, they are captured after 1.7 seconds. The final captured trajectories
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Figure 3.5: The distance between the pursuers and evaders. The red
curves show the distances between all agents and the green
curve shows the average distance.

and the mean positions for both groups are plotted in Figs. 3.4(a) and 3.4(b). We

can see that the evader group is seized without reaching the target. Moreover, we

plotted the distances between the pursuers and evaders in Fig. 3.5. Note that in

this plot, we only plotted the distance dij = ‖xj,1 − xi,2‖ with i = j. Fig. 3.5 also

confirms that the pursuers’ group successfully intercepts the evaders’ group. To

further verify the interception performance, an additional experiment, where the

evaders have a moving target, is designed. In this simulation, we set the target for

all evaders as a time-varying function, i.e.,

xd(t) =

 t

2 sin(8t) + 2


The resulting average trajectories of both evader group and pursuer group is plot-

ted in Fig. 3.8, where the pursuers successfully capture the evaders at 2.8s.
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(a) t = 0s (b) t = 5s

(c) t = 25s (d) t = 43s

Figure 3.6: The trajectory of agents with respect to time. For the visibility
of this plot, only 50 pursuers as well as 50 evaders are plot-
ted (total 1000). The evaders’ positions are plotted as the blue
star while the pursuers’ positions are plotted as the red circles.
The trajectories of the pursuers and evaders are plotted as red
and blue curves respectively. The green cross marks the target
position for the evaders.
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(a) 50 agents’ trajectory at the end of simula-
tion.

(b) The average trajectory of two groups at the
end of simulation.

Figure 3.7: The plot of the agents’ positions and trajectories at the end of
the simulation. Pursuers’ and evaders’ trajectories are marked
with red and blue curves, respectively. The left image shows
the time evolution of the trajectories for 50 pursuers and 20
evaders. The right plot demonstrates the average trajectory of
both pursuers’ team and evaders’ team.

Figure 3.8: Average trajectory of pursuers and evaders when the evader
follows a sine trajectory.
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Next, the proposed ACMO algorithm is used by not only the pursuers but also

the evaders. Similar to the above analysis, we first plot the time evolution of all

agents in Fig. 3.6. With the same initial positions’ distribution, the second exper-

iment shows a great difference. Compared with Fig. 3.3 in the first experiment,

the evaders are aware of the pursuers and start to escape from the formal opti-

mal path. At 5s, the evader group makes a detour to avoid being captured by the

pursuers directly. Meanwhile, the pursuers estimate the evaders’ worst actions

instead of simply following the evaders. At time 25s, the pursuers move directly

toward the evader groups’ possible locations. Finally, at 43s, the evaders and the

pursuers reach an equilibrium near the target. The overall trajectories for all agents

at the end of the simulation, i.e., the 70s, are plotted in Fig. 3.7(a). Furthermore,

the average trajectories are demonstrated in Fig. 3.7(b). Fig. 3.7(b) confirms that

all agents form an equilibrium from 43s to 70s. This equilibrium is known as the

Nash Equilibrium, which is shown in the following plots.

To demonstrate more details, we also plot the distances between the pursuers

and evaders in Fig. 3.9(a). Similar to Fig. 3.5, the individual distances are plotted

using the light red curve, and the average distance is shown in the green curve.

The results reveal that the pursuers cannot capture the evaders, and the evaders

can neither reach the target position. An equilibrium is reached after the 60s when

the pursers and evaders maintain the same distance. Meanwhile, the PDF of the

distances is also given in Fig. 3.9(b) which confirms the equilibrium in another

aspect. It is worth noting that the stochastic terms cause the variance of the dis-

tance after 60 seconds, i.e., D1dwj,1 and D2dwi,2. The variance goes to zero when

the coefficient matrices D1 and D2 go to zero.

After the controller’s effectiveness is proved, we will demonstrate the optimal-
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(a) The distances between pursuers and evaders.

(b) The PDF plot of the distances

Figure 3.9: The distances between the pursuers and evaders. In the upper
image, the red curves show the distances between all agents,
and the green curve shows the average distance. In the lower
figure, the tracking error with higher probability shows yellow
color.
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Figure 3.10: The error plot of pursuer 1’s HJI equation (critic NN). The re-
sults at 60-70s are enlarged.

Figure 3.11: The error plot of evader 1’s HJI equation (critic NN). The re-
sults at 60-70s are enlarged.
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ity and the NNs’ learning performance through the HJI equation error, i.e., critic

NN’s estimation error. To investigate more details, we show a single pursuer’s

and an individual evader’s HJI equation error in Figs. 3.10 and 3.11. We can ob-

viously see that both pursuer’s and evader’s HJI equation error is bounded near

zero after the 60s. The HJI equation convergence confirms that the MFG equations

are successfully estimated, and the Nash Equilibrium, which is considered as the

optimal strategy for large scale multi-player pursuit-evasion game in this paper, is

reached. Provided by the trajectories, distances, and the HJI equation’s estimation

error, the results demonstrate that the optimal strategy is reached for the very large

scale multi-player pursuit-evasion game.

Finally, the developed ACMO algorithm’s performance is compared with a

traditional reinforcement learning method for multi-agent stochastic differential

games [62]. In the comparison simulation, multiple pursuers and one evader are

considered for simplicity. Therefore, the mass of the evaders’ team is replaced by

the position of the single evader. The dynamics of pursuers and the evader are

selected as:

Pursuers’ dynamics dxj,1 =


−3 2

1 1

x+

0

1

u
 dt+D1dwj,1

Evader’s dynamics dx2 =


−3 5

−1 1

x+

2

1

u
 dt+D2dw2

The evader follows the traditional optimal control strategy [52] to track a given

target, i.e., [0, 0] while the pursuers’ controls are calculated using the ACMO al-

gorithm and traditional reinforcement learning (RL) algorithm. The results are

plotted in Figs. 3.12, 3.13. In Fig. 3.12, the average distance between pursuers and
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Figure 3.12: Average pursuer and evader distance. The red and yellow
curves represent the average distance between pursers and
the evader using the developed ACMO algorithm and the re-
inforcement learning (RL) algorithm [2] respectively.

the evader is plotted for both algorithms. The RL pursuers can capture the evader

faster than the ACMO pursuers as illustrated in Fig. 3.12. The RL method devel-

oped in [62] is known as a centralized solution and guarantee the optima while

the ACMO algorithm requires a longer time to tune the neural networks and ap-

proximate the εN optimal control, which is worse than the actual optimal control.

However, despite the RL [62] method can capture the evader faster, the cost of

communication between all agents cannot be ignored.

Next, the comprehensive cost, which contains the communication cost, is cal-

culated to provide a complete comparison of the performance. Specifically, the

comprehensive cost is defined as the summation of the running cost from the cost
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Figure 3.13: Average pursuer and evader running cost. The red and yel-
low curves represent the average running cost between purs-
ers and the evader using the developed ACMO algorithm and
the reinforcement learning (RL) algorithm [2] respectively

function and the communication cost, i.e.,

Cj,1 = ‖xj,1 − x̄1‖2
Q1

+ ‖xj,1 − x2‖2
Q2

+ ‖uj,1‖2
R1 + αN1

where α is the communication cost weight, N1 is the agent number of the pursuers,

and the term αN1 denotes the communication cost. The costs of both algorithms

are plotted in 3.13.

It is evident in Fig. 3.13 that the initial cost of the RL pursuers are lower be-

cause they’re executing the centralized optimal solution. The initial cost of the

ACMO pursuers is higher because of the NNs’ convergence speed. The neural

networks (NNs) of the ACMO algorithm are more complicated than the RL algo-

rithm due to the mass NN. And thus, the ACMO algorithm’s convergence speed

is slower than the RL algorithm, which results in non-optimal controls. However,
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after 0.2s, the cost of the RL pursuers are higher than the ACMO pursuers. The

main reason is that the approximated optimal control using ACMO is becoming

closer to the actual optima. In contrast, the RL pursuers, which are already at op-

tima, is penalized for high communication demands. In summary, the traditional

reinforcement algorithms [102, 62] can find the optimal solution faster and more

accurate. However, the developed ACMO algorithm is a decentralized algorithm

that is especially suitable for tasks that have large scale number of agents, but no

communications are allowed.

3.5 Conclusions

In this paper, a novel actor-critic-mass-opponent (ACMO) method has been de-

veloped to solve the pursuit-evasion game with large-scale pursuers and evaders

in a decentralized fashion. The developed decentralized algorithm can effectively

tackle the notorious “Curse of Dimensionality” challenge and unrealistic assumption

of the real-time reliable communication network for extremely massive agents in

the traditional distributed pursuers’ as well as the evaders’ control designs. The

mean field game (MFG) is utilized such that the pursuer and evader groups are for-

mulated into two stochastic virtual mass players with a time-varying probability

density function (PDF) computed by solving the coupled HJI-FPK equation sys-

tems. To solve the coupled equations, four neural networks are employed, i.e., the

actor neural network (NN) to learn optimal control, the critic NN to estimate the

optimal cost function, the mass NN for estimating the own group’s PDF, and the

opponent NN for approximating the influence from the opponent group. More-

over, we analyze the closed-loop system’s stability and convergence of the pro-

posed NNs systematically through Lyapunov techniques. The simulation results
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also demonstrated that the developed mean-field type of ACMO algorithm could

effectively approximate the optimal solution.
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CHAPTER 4

LARGE-SCALE MULTI-AGENT REINFORCEMENT LEARNING WITH

APPLICATIONS IN ELECTRICAL VEHICLE CHARGING [116]

4.1 Introduction

Electric vehicles (EVs) have gained increasing attention since EVs can reduce

gas emission and increase the practical usage of renewable energy [63]. On the

other hand, EVs are also capable of being potentially transformed into autonomous

vehicles, which are one of the essential applications for future smart cities [82]. As

the most common EVs applications, the electric buses have some distinct charac-

teristics from other EVs. Firstly, most electric buses in the same city are owned by

a handful of companies, which means the battery designs and models can be sim-

ilar. Secondly, unlike the residential EVs, the electric buses have a stable routine,

indicating a collective charging schedule. The power usage pattern often coincides

with the electricity usage pattern for the residential load. With the more and more

electrical buses employed in the city, the concurrent charging behavior during the

evening, along with the surge of residential load, would inevitably cause severe

supply imbalance to the power grid (see fig. 4.1). Therefore, an effective charge

schedule system for a large scale of electric buses is urgently needed.

The time-of-use (TOU) price [104, 42], which has been successfully applied by

many utility companies to adjust the users’ energy consumption pattern [89], is

introduced to coordinate the electric buses’ charging schedule along with the res-

idential load. In the TOU price pattern, the utility company raise the electricity

price when the demand is high and reduce the rate while the need is low. Under

such a scheme, the charging stations are encouraged to purchase electricity when
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Figure 4.1: The problem of large scale electric buses charging problem.

the residential load demand is not significant. As such, the total power consump-

tion becomes smooth. Due to the similarity to economic problems, game theory

has been used broadly to solve the optimal TOU strategy, such as dynamic price

adjustment [105, 46]. By integrating electric buses charging into the TOU games ef-

fectively, the charging schedule can automatically adapt to the dynamically chang-

ing residential power consumption. When considering the electric buses’ total

charging consumption and the residential load demand in the energy market, each

bus needs to find the optimal charging strategy such that its electricity price can

be minimized. This price competition exists not only between the buses and the

residential load but also inside the electric buses group. For example, at midnight,

the residential load demand is low, which results in lower TOU price. However,
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if all electric buses are charging simultaneously, the concurrent power demand

would quickly inflate the TOU price. Hence, it is necessary to design a charging

control based on game theory to coordinate the charging schedule. In previous re-

searches, the charging problem is formulated into a large scale multi-agent system

(MAS) optimization problem. For instance, [44, 56] proposed centralized charg-

ing controller to compute optimal charging schedule for all agents at a centralized

dispatch center. [75] studied the problem under a distributed system. These ap-

proaches mainly suffer from two stringent requirements, i.e., 1) The increment of

vehicles’ number drastically increases the computational complexity while solving

the decentralized optimal charging control, which is also known as the notorious

“Curse of Dimensionality”; 2) The limited communication resource cannot ensure

the reliable data exchange among a large number of electric buses during charging

[19, 112, 3]. To overcome these difficulties, the Mean Field Game (MFG) theory

[34, 48] can be adopted and further modified to apply to address the very large

scale of electric buses decentralized optimal charging problem.

Compared to traditional multi-agent systems optimization algorithms such as

[88, 26, 101] where the states of all the agents are required in the objective function,

the MFG theory tackles the “Curse of Dimensionality” by replacing high-dimension

augmented states from all the agents with a fix-dimension Probability Density

Function (PDF). Specifically, while applying the mean field game theory, each elec-

tric bus will encode the state-of-charge (SOC) and the charging rate of all other

electric buses into a form of probability density function (PDF) to avoid the di-

mension explosion even when the total number of electric buses is enormous.

More importantly, the new form of PDF does not need to be acquired through

data communication. It can be obtained by solving a new type of partial differ-

ential equation (PDE) named the Fokker-Planck-Kolmogorov (FPK) equation [34]
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with local information only. In the large scale of the electric bus charging process,

we assume that all buses have homogeneous charging dynamics because they are

often purchased in bulk (e.g., New York City [1]). Thus, every individual elec-

tric bus can estimate the group charging rate by substituting the SOC of all other

electric buses, representing in the form of PDF, into corresponding policy. As a re-

sult, the estimated group charging rates can be utilized to update the time-varying

PDF via the FPK equation. Since all electric buses’ SOC distribution are calcu-

lated locally (except the initial distribution [34]), the communication burden can

be released significantly. In our previous work [120], the general mean field game

theory was applied to form a decentralized online algorithm to optimize the track-

ing performance of large scale multi-agent systems. Similar approaches that ap-

plied the mean field games into the electric vehicle charging problem can be found

in [18, 121]. In [121], the authors used the mean field game theory to reduce the

charging time but did not consider the TOU price. In [18], a similar technique

is discussed, but the solution is off-line, which is not practical in realistic appli-

cations. None of these works develop a specific algorithm that can online solve

the generalized mean field game-based charging problem for large-scale electric

buses. The mean field game features two coupled PDEs that need to be solved

simultaneously, i.e., the backward HJB equation and the forward FPK equation.

Due to those two coupled PDEs’ nonlinearity, it is nearly impossible to obtain the

exact analytical solution [119, 35]. Therefore, we proposed the Actor-Critic-Mass

(ACM) algorithm along with adaptive learning methods [51, 52] to approximate

the optimal charging control by learning the solution of two coupled PDEs online.

In this chapter, the very large scale electric bus charging problem has been stud-

ied considering the TOU price. Specifically, an algorithm named the Actor-Critic-

Mass (ACM) has been proposed to employ three neural networks to approximate
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the solution to the HJB and FPK equations numerically.

The contribution of this chapter can be summarized as:

1. The very large scale of the electric bus charging problem has been formulated

as a mean field game to obtain an optimal solution considering the time-of-

use (TOU) problem in decentralized fashion.

2. A novel online Actor-Critic-Mass (ACM) algorithm for a very large scale of

electric bus charging control has been proposed to break the notorious “Curse

of Dimensionality” and release the communication burden through integrat-

ing the Mean Field Games (MFG) theory with adaptive learning techniques.

The structure of this chapter is given as follows. Section II provides the back-

ground as well as a very large scale of electric vehicle charging control problem

formulation. In Section III, the Mean Field Game formulation and the mean field

equilibrium are given, and further, the Actor-Critic-Mass algorithm and adaptive

learning are developed. Then, the numerical simulation is shown in Section IV to

demonstrate the effectiveness of the proposed design.

4.2 Background and Problem Formulation

4.2.1 Single Electric Bus Charging Control Model

Consider a finite set V = {1, 2, · · · , N} that represents the set of all electric buses

in the city. With the assumption that the daily routine of those electric buses are



115

predefined and their operating power are similar since all those buses are man-

ufactured under the same standard, the power consumption per unit time in an

individual electric bus can be defined as a time-dependent deterministic function

c(t) that is homogeneous. Moreover, the electric buses need to be charged at the

charge stations by considering the time-of-use (TOU) price. Let si(t) ∈ [0, i] denotes

the state of charge (SOC) at time t, si = 0 represents the battery being completely

empty and si = 1 indicates fully charged. Next, each charger’s power delivery

rate, which is its output power, is represented as a function with respect to the

SOC, i.e., α(si(t)). The actual power acceptance rate of the bus, which denotes

the received power, is ηα(si(t)) with η ∈ (0, 1) being a discount factor. Then, the

following stochastic differential equation for SOC can be obtained as

ṡi(t) = ηαi(si(t))− c(t) (4.1)

where i is the index for an individual electric bus. Because all electric buses have

predefined fixed routes, we admit the electric buses’ power consumption c(t) pe-

riodic. Thus, similar to Couillet et al. [18], we study the charging schedule in

a statistical sense instead of a single period since the power consumption can be

somewhat different at every period and the charging process αi in a single period

is discrete if the period is long (i.e., three days in [18]). In terms of game theory,

the charging process is modeled as a repeated game, and c(t), αi are averaged over

infinite trials in a fixed period, i.e., t ∈ [0, T ]. Note that such a definition is empir-

ical and has statistical significance. In practical applications, c(t) can be obtained

through a relatively large dataset, and αi provides necessary guidelines on when

to charge. Suggested by [18], we shall now call αi the provisioning rate, which

denotes the purchase of electricity in unit time in the statistical sense.
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Next, the remaining power level in a battery can be defined in terms of SOC as,

xi(t) = 1− si(t), xi(t) ∈ [0, 1], i ∈ (0, N ] (4.2)

Substituting (4.2) into the SOC dynamics (4.1), one obtains the evolution for the

remaining power level as,

ẋi(t) = −ṡi(t)

= −ηαi(si(t)) + c(t)

= −ηαi(1− xi(t)) + c(t)

= −ηβi(t) + c(t) (4.3)

with i being the index of individual electric bus.

To model the degradation of batteries that can affect the provisioning rate, a

random Brownian noise independent of the SOC is included in (4.3) and yields

dxi(t) = [−ηβi(t) + c(t)]dt+ σdWi (4.4)

where Wi denotes the independent Brownian noise [18], and σ is a coefficient con-

stant for the random noise. The function βi(t) is directly associated with the bat-

tery’s provisioning rate, and thus we will refer it as provisioning rate in this chap-

ter for simplicity. Each electric bus aims to let xi(t) goes to zero. Without proper

coordination, all electric buses will inevitably raise the power acceptance rate αi(t)

simultaneously that will lead to the increment of TOU. Therefore, a game-theoretic

formulation is needed.
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4.2.2 Game Formulation with Time-Of-Use and Prices

Let X = x1, · · · , xN be the set of all electric buses remaining power level, Ω =

β1, · · · , βN denote the set of the provisioning rates of electric buses. Then, the cost

to each electric bus includes three parts, i.e.,

1. The time-of-use (TOU) price is the cost of buying electricity at different times.

The utility companies use this dynamic pricing model to adjust customers’

power consumption. In this chapter, we model the TOU price in terms of the

provisioning rate of electric buses Ω, and the power consumed by residential

areas z(t), i.e., pi(Ω, z(t)).

2. The cost of current charge rate, i.e., Rβ2
i (t). This cost is defined to penalize

the high charge power which can cause battery degradation.

3. The cost of current SOC, i.e., Qx2
i (t). This cost encourages the bus to charge

their batteries.

4. The cost of SOC at terminal time, i.e., γ(xi(T )). This terminal cost penalizes

the charging strategy if the battery is still low at the terminal time.

Combining those factors yields the following cost function:

Vi(xi,Ω, βi) = E
{∫ T

0

[
pi(Ω, z) +Rβ2

i +Qx2
i

]
dt+ γ(xi(T ))

}
(4.5)

where Q > 0, R > 0 are constant weighting coefficients.

Consider the above cost function, the optimization of the total N players, i.e.

electric buses, at the charging station can be formulated as a non-cooperative game.

It is obvious that each electric bus tries to minimize the cost function given in

(4.5) by computing a dynamic routine of the provisioning rate βi. Upon the non-

cooperative game formulation, the Nash Equilibrium (NE) is introduced as the
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optimal strategy set for all players/electric buses. Let Ωf denote the set of all fea-

sible provisioning rates and defining a mapping Fi : (X ,Ω) → βi to represent the

choice of provisioning rate for player/electric bus iwhile considering the informa-

tion from all the players/electric buses. We can further denote Ω(i) = Ω \ βi as the

set of actions other than player i’s action.

Definition 1. (Nash Equilibrium (NE)) Given any SOC set X and provisioning rate

set Ω at any given time t, the Nash Equilibrium (NE) of theN players non-cooperative

game is the strategy set Ω∗ = {β∗1 , · · · , β∗N} that generated by Fi : (X ,Ω), and satis-

fies the following condition for all the players

Vi(xi,Ω
∗(−i), β∗i ) ≤ Vi(xi,Ω

∗(−i), βi), ∀βi ∈ Ωf

Definition 1 states that the NE action set Ω∗ are the optimal strategy where all

players have no intent to change their individual policies in order to obtain higher

individual costs. Recall differential games [93], the optimal control can be solved

backwards through the Bellman Principle of Optimality [52].

In addition, the optimal cost function for each player can be represented as

V ∗i (xi,Ω
∗(−i), β∗i ) = min

βi
E


pi(Ω, z) +Rβ2

i +Qx2
i

+V ∗i (xi,Ω
∗(−i), β∗i )

∣∣∣∣
t=t+∆t

 (4.6)

where ∆t→ 0 is an infinitesimal time duration.

Next, the corresponding optimal control can be derived as

β∗i = argmin
βi

E


pi(Ω, z) +Rβ2

i +Qx2
i

+V ∗i (xi,Ω
∗(−i), β∗i )

∣∣∣∣
t=t+∆t

 (4.7)

In the optimal control policy (4.7), all players’ information is required which

causes two major challenges when the number of players, i.e. N , goes to infinity.
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The first one is the difficulty of sharing real-time data in a communication network

with very large number of players. And the second one is the drastically increased

dimension of (4.7) which will cause severe computational complexity explosion.

To solve the potential difficulties, the Mean Field Games (MFG) theory is engaged.

4.3 The ACM Algorithm Based On MFG

4.3.1 Mean Field Games Formulation

Mean Field Game (MFG) theory [34] is an emerging technique that can effec-

tively solve stochastic decision-making problems with a large population of play-

ers in a decentralized manner. To formulate the mean field game, the following as-

sumptions are needed: 1) the electric buses group is sufficiently large, i.e., N →∞,

and 2) The charging dynamics of electric buses 4.4 are homogeneous. The second

assumption needs that the buses have a similar discount factor η and consumption

rate c(t). Such an assumption is reasonable since all the electric buses are manu-

factured under a unique standard.

The challenges of a large scale of electric buses charging problem is to include

control inputs from all the electric buses into the optimal cost function (4.5), which

can lead to the computation explosion and communication congestion as the num-

ber of electric buses goes to large and even close to infinity. In the MFG, the states

from all the players need to be encoded into a multi-variant PDF m(x, t) whose

dimension is identical to the state space for breaking the notorious “Curse of Di-

mensionality” and further solving computation explosion as well as communica-

tion congestion problem. Intuitively, the dimension is reduced by transforming
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the multi-player game into a two players’ game, i.e., the individual bus and the

entire team [13]. More importantly, such PDF can be computed by a partial differ-

ential equation (PDE) named the Fokker-Planck-Kolmogorov (FPK) equation with

local information only [34, 20].

Next, the TOU price, in the context of mean field games, can be derived as

the function with respect to the PDF m(x, t) by substituting the provisioning rate

dynamics (4.3) as

p(m, z) =
∑
βi∈Ωf

βi + z(t)

=
−N d

dt
Ex{m(x, t)}+ c(t)

η
+ z(t) (4.8)

Then, substituting the TOU price (4.8) into the coupling term in (4.5), one ob-

tains the Mean Field coupling cost function as

Vi(xi,m, βi) = E
{∫ T

0

[
pi(m, z) +Rβ2

i +Qx2
i ]dt+ γ(xi(T )

]}
(4.9)

Note that in (4.9), the provisioning rate information from all electric buses has been

replaced by the PDF m(x, t).

Recall optimal control theory [51], the optimal cost function can be obtained

through the Hamilton-Jacobi-Bellman (HJB) equation, i.e.,

− ∂

∂t
V ∗i (xi,m, β

∗
i )−

σ2

2

∂2

∂t2
V ∗i (xi,m, β

∗
i ) +Rβ2

i +Qx2
i

+ [−ηβ∗i (t) + c(t) + 1]
∂

∂xi
V ∗i (xi,m, βi) = p(m, z) (4.10)

Solving the optimal charging strategy, in the mean field form, is to approxi-

mates the solution to the HJB equation (4.6) and also gives the optimal provision-
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ing rate explicitly [34], i.e.,

β∗i =
−η
2R

∂

∂xi
V ∗i (xi,m, β

∗
i ) (4.11)

To solve the HJB equation (4.10) and optimal provisioning rate (4.11), the PDF

m(x, t) is needed. Recall the MFG [48], the PDF can be attained by solving the

Fokker-Planck-Kolmogorov (FPK) equation based on the “law of large numbers”,

i.e.,

∂

∂t
m(x, t) = − ∂

∂x

[
m(x, t)

−η
2R

∂

∂xi
V ∗i (xi,m, β

∗
i )

]
+
σ2

2

∂2

∂x2
m(x, t) (4.12)

Note that in (4.12), the required information can be obtained locally. Under the

assumption that the charging dynamics of electric buses are homogeneous, the

time evolution of the PDF is able to be approximated through the local optimal

provisioning rate. As such, the large scale of electric buses charging control is

able to follow a decentralized manner which greatly relieved the communication

burden.

At this point, it is clear that the optimal cost function V ∗i (xi,m, β
∗
i ) as well as the

state PDF m(x, t) has formed a solution pair that is subjecting to both HJB (4.10)

and FPK (4.12) equations. Upon the approximation of HJB equation, the optimal

provisioning rate yields a near Nash Equilibrium [13], i.e.,

Definition 2. (εN Nash Equilibrium) Given any SOC set X and provisioning rate set

Ω at any given time t, the Nash Equilibrium (NE) of theN players non-cooperative

game is a strategy set Ω∗ = {β∗1 , · · · , β∗N} that generated by Fi : (X ,Ω), and satisfies

the following condition for all agents

Vi(xi,Ω
∗(−i), β∗i ) ≤ Vi(xi,Ω

∗(−i), βi) + εN , ∀βi ∈ Ωf

And the solution PDE pair has the following property,
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Theorem 11. (Solution of the coupled HJB-FPK PDEs) [48] The solution of the cou-

pled HJB-FPK PDEs exists and is unique. The generated optimal control strategy

is an εN Nash Equilibrium such that lim
N→∞

εN = 0.

The proof can be found in numerous mean field games literature such as [34,

48, 70].

Different than conventional distributed control for EVs charging that needs ac-

curate information from all the EVs, the MFG-based method has shown that the

performance of individual EV relies on the combination of local information and

influence from the entire team of EVs. To describe the influence, the PDF of mas-

sive states from all the EVs m(x, t) has been introduced. It is important to note that

the PDF can be computed without knowing the other EVs’ real-time information.

To obtain the optimal provisioning rate, the coupled HJB-FPK PDEs need to be

solved simultaneously at each EV. However, the HJB equation (4.10) needs to be

solved backward-in-time [52] whereas the FPK equation (4.12) is solved forward-

in-time. This makes the Mean Field Type of control difficult to solve analytically.

Therefore, in this chapter, a novel reinforcement learning and approximate dy-

namic programming (ADP) technique has been developed to learn the coupled

HJB-FPK PDEs solution online and simultaneously.

4.3.2 Actor-Critic-Mass (ACM) based Adaptive Learning Algorithm

In this section, the proposed Actor-Critic-Mass (ACM) adaptive learning algo-

rithm is developed in detail. The structure of the ACM based adaptive learning

algorithm is shown in Fig. 4.2. In the proposed structure, each electrical bus main-

tains three neural networks, i.e., the actor neural network to approximate the op-
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Figure 4.2: An illustration of the proposed ACM based adaptive learning
structure. The actor, critic, and mass neural network estimated
the solution to the optimal control (i.e., provisioning rate), op-
timal cost function, and the SOC PDF of all agents.

timal control (i.e., provisioning rate), the critic neural network to approximate the

optimal cost function, and the mass neural network to approximate the SOC PDF.

With the mild assumptions that there exists constant neural network weights

WV,i, Wu,i, Wm,i such that the optimal provisioning rate, optimal cost function, the

SOC PDF for electric bus i can be represented as

Critic: V ∗i (xi,m) = W T
V,iφV,i(xi,m) + εV

Actor: β∗i (xi,m) = W T
u,iφu,i(xi,m) + εu

Mass: m(xi, t) = Ŵ T
m,iφm,i(xi, t) + εm

(4.13)

where the functions φV,i(xi,m), φu,i(xi,m), and φm(xi, t) are bounded and continu-

ous activation functions, εV , εu, and εm are the reconstruction errors of the neural

networks (NNs). The NN weights WV,i, Wu,i, Wm,i are unknown and expected to

be solved. Let the the approximated weights be denoted as ŴV,i, Ŵu,i, Ŵm,i, the

optimal provisioning rate, optimal cost function, and SOC PDF can be estimated
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as

Critic: V̂i(xi,m) = Ŵ T
V,i(t)φV,i(xi, m̂i)

Actor: β̂i(xi,m) = Ŵ T
u,i(t)φu,i(xi, m̂i)

Mass: m̂i(xi, t) = Ŵ T
m,i(t)φm,i(xi, t)

(4.14)

Substituting the (4.14) into the mean field equations, i.e. (4.10) and (4.12), they

will not hold. The approximated weights are then tuned by the residual errors,

i.e.,

eHJB,i = p(m̂i, z) + Ŵ T
V,i(t)

 ∂
∂t
φV,i(xi, m̂i) + σ2

2
∂2

∂t2
φV,i(xi, m̂i)(

−ηβ̂i(t) + c(t) + 1
)

∂
∂xi
φV,i(xi, m̂i)

 (4.15)

eFPK,i = Ŵ T
m,i(t)

− ∂
∂t
φm,i(xi, t) + σ2

2
∂2

∂x2φm,i(xi, t)

− ∂
∂x

(
φm,i(xi, t)

−η
2R

∂
∂xi
Vi(xi, m̂i)

)
 (4.16)

eu,i = Ŵ T
u,i(t)φu,i(xi, m̂i) +

η

2R

∂

∂xi
Vi(xi, m̂i) (4.17)

Next, let us denote

ΨV,i(xi, m̂i) =

 ∂
∂t
φV,i(xi, m̂i) + σ2

2
∂2

∂t2
φV,i(xi, m̂i)(

−ηβ̂i(t) + c(t) + 1
)

∂
∂xi
φV,i(xi, m̂i)


Ψm,i(xi, V̂i) =

− ∂
∂t
φm,i(xi, t) + σ2

2
∂2

∂x2φm,i(xi, t)

− ∂
∂x

(
φm,i(xi, t)

−η
2R

∂
∂xi
Vi(xi, m̂i)

)


p̃(m̃i, z) = p(m̂i, z)− p(m, z)

The estimation errors (4.15) and (4.16) can be represented as:

eHJB,i = p(m̃i, z) + p(m, z) + Ŵ T
V,i(t)ΨV,i(xi, m̂i) (4.18)

eFPK,i = Ŵ T
m,i(t)Ψm,i(xi, V̂i) (4.19)
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Then, we will consider the effect of the reconstruction errors to the approxi-

mation error and further derive their relationships. By substituting (4.13) into the

mean field equations (4.10) and (4.12), one obtains

p(m, z) + Ŵ T
V,i(t)ΨV,i(xi, m̂i) + εHJB,i = 0 (4.20)

W T
m,i(t)Ψm,i(xi, Vi) + εFPK,i = 0 (4.21)

where the errors εHJB,i and εFPK,i are caused by the reconstruction errors. They

will converge to zeros when the reconstruction errors go to zero.

Substituting (4.20) into (4.18), and (4.21) into (4.19), we derive

p(m̃i, z)− W̃ T
V,iΨV,i(xi, m̂i)−W T

V,iΨ̃V,i(xi, m̃i)− εHJBi = eHJBi (4.22)

−W̃ T
m,iΨm,i(xi, V̂i)−W T

m,iΨ̃m,i(xi, Ṽi)− εFPKi = eFPKi (4.23)

Similarly, we can obtain

−W̃ T
u,iφu,i(xi, m̂i)−W T

u,iφ̃u,i(xi, m̃i)−
η

2R

∂

∂xi
Vi(xi, m̂i)∂xṼi − εui = eui (4.24)

with

εui = εmi +
1

2
R−1gT (xi)∂xεHJBi

W̃V,i = WV,i − ŴV,i(t)

W̃m,i = Wm,i − Ŵm,i(t)

W̃u,i = Wu,i − Ŵu,i(t)

Ψ̃V,i(xi, m̃i) = ΨV,i(xi,m, t)−ΨV,i(xi, m̂i)

Ψ̃m,i(xi, Ṽi) = Ψm,i(xi,m, Vi, t)−Ψm,i(xi, V̂i)

φ̃u,i(xi, m̃i) = φu,i(xi,m, t)− φu,i(xi, m̂i)

According to the gradient descent algorithm [91], the NN update law for the ACM

can be derived as

Critic NN: ˙̂
WV,i(t) = −αh,i

ΨV,i(xi, m̂i)e
T
HJBi

1 + ΨT
V,i(xi, m̂i)ΨV,i(xi, m̂i)

(4.25)
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Mass NN: ˙̂
Wm,i(t) = −αm,i

Ψm,i(xi, V̂i)e
T
FPKi

1 + Ψm,i(xi, V̂i)Ψm,i(xi, V̂i)
(4.26)

Actor NN: ˙̂
Wu,i(t) = −αu,i

φu,i(xi, m̂i)e
T
ui

1 + φTu,i(xi, m̂i)φu,i(xi, m̂i)
(4.27)

with αh,i, αm,i, and αu,i being the learning rates.

4.3.3 The Performance Analysis of ACM-based Adaptive Learn-

ing Algorithm

According to the NN weight update laws, i.e. (4.25), (4.27), and (4.26), we ob-

tain the first derivatives of the NN estimation errors as

Critic NN: ˙̃WV,i(t) = − ˙̂
WV,i(t) = αh,i

ΨV,i(xi, m̂i)e
T
HJBi

1 + ΨT
V,i(xi, m̂i)ΨV,i(xi, m̂i)

(4.28)

Mass NN: ˙̃Wm,i(t) = − ˙̂
Wm,i(t) = αm,i

Ψm,i(xi, V̂i)e
T
FPKi

1 + Ψm,i(xi, V̂i)Ψm,i(xi, V̂i)
(4.29)

Actor NN: ˙̃Wu,i(t) = − ˙̂
Wu,i(t) = αu,i

φu,i(xi, m̂i)e
T
ui

1 + φTu,i(xi, m̂i)φu,i(xi, m̂i)
(4.30)

Next, the performance of three neural networks is analyzed through the fol-

lowing theorems.

Theorem 12. (Critic NNs’ convergence) Let ŴV,i(t) be updated as (4.25), assume the

learning rate αh,i > 0 then

1) the error between the actual and approximated critic NN’s weights, i.e., W̃V,i,

2) the optimal evaluation function approximation error, i.e., Ṽi = Vi − V̂i,

are uniformly ultimately bounded (UUB). The corresponding bounds bWV,i
, bV,i are

trivial when the reconstruction error is sufficiently small [96]. Similar to [91, 2],

W̃V,i and Ṽi will be asymptotically stable if the neuron network structure has been

selected perfectly.
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Proof. See Appendix A.

Theorem 13. (Mass NN’s convergence): Let Ŵm,i(t) be updated as (4.26) shows, as-

sume the learning rate αm,i > 0, then

1) the error between the actual and approximated critic NN’s weights, i.e., W̃m,i,

2) the FPK equation’s approximation error, i.e., m̃i = mi − m̂i,

are uniformly ultimately bounded (UUB). The corresponding bounds bWm,i
, bm,i

are trivial when the reconstruction error is sufficiently small [96]. Similar to [91, 2],

W̃m,i and m̃i will be asymptotically stable if the neuron network structures are se-

lected perfectly.

Proof. See Appendix B.

Theorem 14. (Actor NN’s convergence): Let Ŵu,i(t) be updated as (4.27) shows, as-

sume the learning rate αu,i > 0, then

1) the error between the actual and approximated critic NN’s weights, i.e., W̃u,i,

2) the optimal provisioning rate approximation error, i.e., β̃i = βi − β̂i,

are uniformly ultimately bounded (UUB). The corresponding bounds bWu,i
, bu,i are

trivial when the reconstruction error is sufficiently small [96]. Similar to [91, 2],

W̃u,i and β̃i will be asymptotically stable if the neuron network structures are se-

lected perfectly.

Proof. See Appendix C.

Remark 3. While the actor, critic, and mass NNs are learning the optimal provi-

sioning rate, evaluation function, and PDF of all electric buses’ SOC respectively,

the bounds will reduce significantly and only depend on the NNs’ reconstruction

errors, which can be ignored when the perfect neuron numbers are selected [96].
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Eventually, we analyze the closed-loop stability of proposed scheme. Before

that, a lemma, which has been widely used in adaptive learning [21], is given as

Lemma 3. Given the stochastic system dynamic equations of the optimal control

in (4.4), there exists optimal provisioning rate β∗i which satisfies

xi

[
−β∗i (t) + c(t) + σ

dWi

dt

]
≤ −γ ‖xi‖2 (4.31)

where γ > 0.

Theorem 15. (Closed-loop Stability) Let the critic, actor, and mass NNs’ weights be-

ing updates as (4.25), (4.27), (4.26), and assume the learning rates αh,i, αm,i, αu,i > 0,

then W̃V,i, W̃m,i, W̃u,i, Ṽi, m̃i, β̃i, xi are all UUB. Moreover, if all neuron networks’

structures are selected perfectly [91], W̃V,i, W̃m,i, W̃u,i, Ṽi, m̃i, β̃i, xi are all asymptot-

ically stable.

Proof. See Appendix D.

Additionally, the bounds of the approximation errors, i.e., Ṽi, m̃i, β̃i, can be cal-

culated below

‖Ṽi(t)‖ = ‖W̃ T
V,i(t)φV,i(xi, m̂i) +W T

V,iφ̃V,i(xi, m̃i) + εV,i‖

≤ ‖W̃ T
V,i(t)‖‖φ̂V,i‖+ lφV,i

‖WV,i‖‖m̃i‖+ ‖εV,i‖

≤ bWV,i
(t)‖φ̂V,i‖+ lφV,i

‖WV,i‖bm,i(t) + ‖εV,i‖

≡ bV,i(t)

(4.32)

where φ̃V,i(xi, m̃i) = φV,i(xi,mi) − φV,i(xi, m̂i), lφV,i
is the Lipschitz constant of the

critic activation function φV,i(·).
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‖m̃i(t)‖ = ‖W̃ T
m,i(t)φm.i(xi, t) + εm,i||

≤ ‖W̃m,i‖‖φm,i‖+ ‖εm,i‖ ≤ bWm,i
(t)‖φm,i‖+ ‖εm,i‖

≡ bm,i(t)

(4.33)

‖β̃i(t)‖ = ‖W̃ T
u,i(t)φ̂u,i +W T

u,i(t)φ̃u,i(xi, m̃i) + εu,i||

≤ ‖W̃u,i‖‖φ̂u,i‖+ ‖Wu,i‖‖φ̃u,i(xi, m̃i)‖+ ‖εu,i‖

≤ bWu,i
(t)‖φ̂u,i‖+ lφu,i‖Wu,i‖‖m̃i‖+ ‖εu,i‖

≡ bu,i(t)

(4.34)

where lφu,i is the Lipschitz constant of the actor activation function φu,i(·).

The complete ACM adaptive learning algorithm is summarised as a pseudo-

code shown in Algorithm 1.

4.4 Simulation

In this section, we validate the effectiveness of the developed Actor-Critic-Mass

(ACM) algorithm under a realistic simulation setup. Consider a city with 1000

electric buses that are operated on a fixed schedule. They are running during the

day-time and going to various charging stations across the city when necessary. To

reduce the impacts from increment charging power to the city’s power grid, the

time-of-use (TOU) price is enforced by the utility company. That is, the electricity

price goes up as the total consumption (electric bus provisioning rate and resi-

dential energy consumption) goes up. In this chapter, we assume that there is no

centralized monitoring and communication center for all individual vehicles due
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Figure 4.3: The plot of electricity consumption rate. The red curve rep-
resents the total consumption of all buses and the blue curve
marks the residential electricity consumption. Both are aver-
aged over 5 minutes.

to the budget limit. In other words, the charging strategy is purely self-controlled

based on TOU (4.8), i.e.,

p(m, , z) =
−N d

dt
Ex{m(x, t)}+ c(t)

η
+ z(t)

It is clear in (4.8) that the TOU price also depends on two other factors, i.e.,

the eclectic buses’ charging consumption rate c(t) and the residential electricity

consumption in the city. We define these consumption terms as periodic functions

for a more realistic setup, which are plotted in fig. 4.3. In fig. 4.3, the red curve

represent the empirical mean of all buses’ power consumption’s summation, i.e.,

c(t) =
N∑
i=1

1

M

M∑
k=1

c
(k)
i (t), t ∈ [0, T ], i = 1, 2, · · · , N

where T is the period duration, and c
(k)
i (t) represents i-th bus’s consumption at
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time t in the k-th data instance with the assumption that M consumption data

instances are given. The blue curve similarly indicates the empirical mean of the

residential consumption rate. Consider the practical operation of electric buses

and most peoples’ schedules, we selected one day (24 hours) as a period. The first

peak appears at around 6:30 when the first batch residences are awake, and the

electric buses start normal operation. The second peak is reached at 15:00 when

the major appliances (e.g., AC and fridge) consume more electricity due to high

temperatures. Therefore, to lower the TOU price, all electric buses are encouraged

to purchase the electricity at the times that satisfy the two requirements, i.e., 1) the

residential usage is low, 2) the electric buses are charged asynchronously to avoid

creating a charging peak.

According to [76], the percentage of remaining power in the battery after a fixed

distance can be modeled by a normal distribution. Therefore, we set the initial state

of charge (SOC) as a normal distribution, i.e., x(0) ∼ N (µ = 0.2, δ = 0.2). Note that

the negative initials are replaced by their absolute value. To consider the power

degradation, the discount factor in (4.3) is selected as η = 0.8 in this simulation.

The parameters in the cost function (4.9) are selected as R = 1, Q = 1, and the

terminal cost encourage to maximize the battery level, i.e.,

γ(x) =
2

(1− x(T ))2

The total simulation time is 80 hours.

Each electric bus maintains three neural networks, i.e., the critic neural network

to approximate the optimal cost function, the mass neural network to approximate

the SOC PDF, the actor neural network to estimate the optimal control (energy

provisioning rate). The activation functions are selected from the expansion terms

of polynomial
∑M

k=1(
∑n

j=1 zj)k where n represents the input number of the neural
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Figure 4.4: All buses’ state of charge (SOC). The blue curves represent all
individual bus’s SOC trajectory. The magenta curve marks the
average SOC.

Figure 4.5: All buses’ state of charge (SOC) in the first day. The blue curves
represent all individual bus’s SOC trajectory. The magenta
curve marks the average SOC.
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Figure 4.6: The plot of SOC PDF in first day.

network and M stands for the estimation error. For the critic and actor neural

networks, we selected M = 4. For the mass neural network, the constant M is set

to 5.

Firstly, the plot of the time evolution of all buses’ SOC, i.e., 1 − x, in fig. 4.4. It

is clear that the batteries are full when the residential consumption is high, which

indicates that all buses will not purchase electricity when the residences’ demand

is rising. To demonstrate the evolution process in detail, the SOC on the first day

is depicted in fig. 4.5. It is interesting to observe that all buses tend to charge

collectively when the residential electricity demand is low. However, when the

residential consumption is high, all buses’ SOC varies (see 10-20 h), which means

that they are coordinated to avoid inflating the TOU price by purchasing asyn-

chronously. Figure 4.6 shows the time evolution of the PDF m(1 − x, t) which

reveals the same conclusion.
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Figure 4.7: Summation of all buses’ energy provisioning rate.

Figure 4.8: Summation of all buses and residential load
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Next, we compare buses’ energy purchase behavior of the developed ACM

algorithm with two different non-optimal cases: 1) all buses purchase electricity

without coordination but considering the TOU price, 2) all buses purchase without

considering the TOU price. In fig. 4.7, the summation of the energy provisioning

rate of all buses is plotted. It is clear to observe that the ACM algorithm’s con-

trol is smooth, while the other two algorithms have caused undesirable surges to

the power grid (e.g., 28h for case 1 and 40h for case 2. If TOU price is not con-

sidered (blue dashed curve), all buses charge at similar times, which will cause a

more significant impact on the power grid. This can be further verified in fig. 4.8

where the charging power and the residential power usage are summed. In fig.

4.8, the developed ACM algorithm lower the peak demand and compensates the

lowest point, which would significantly benefit the grid. The other two methods,

however, have all caused surges.

Finally, we will demonstrate the optimality and the NNs’ learning performance

through the HJB equation error, i.e., critic NN’s estimation error. To investigate

more details, we show a single bus’s HJB equation error in Figs. 4.9. We can see

that the HJB equation error is bounded near zero after 25h. The HJB equation

convergence confirms that the MFG equations are successfully estimated, and the

ε Nash Equilibrium, which is considered optimal strategy for large scale electric

bus charging game in this chapter, is reached. Provided by the SOC, TOU price,

and the HJB equation’s estimation error, the results demonstrate that the optimal

strategy is reached for the very large scale electric bus charging problem.
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Figure 4.9: Bus 1’s HJB error.

4.5 Conclusions

In this chapter, a novel Actor-Critic-Mass (ACM) based adaptive learning struc-

ture has been developed to solve the large scale of electric bus charging control

problems by considering the TOU price. The developed decentralized algorithm

can effectively obtain the optimal charging control strategy for each individual bus

without communication. Specifically, the optimal εN Nash Equilibrium strategy is

solved online by combining Mean Field Games (MFG) with optimal control the-

ory. Moreover, a novel ACM algorithm which contains three neural networks has

been developed to solve the coupled mean field equations online. The three neu-

ral networks include 1) the critic neural network to approximate the solution of

Hamilton-Jacobi-Bellman (HJB), 2) the mass neural network to estimate the SOC

PDF via Fokker-Planck-Kolmogorov (FPK) equation, and 3) the actor neural net-

work to approximate the optimal provisioning rate. Finally, a series of numerical
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simulations have been conducted to demonstrate the effectiveness and efficiency

of the developed ACM based adaptive learning scheme.
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Algorithm 1: ACM online optimal charging control

1: Initialize NN weights ŴV,i,Ŵm,i,Ŵu,i randomly

2: Initialize eFPKi, eHJBi, eui to be∞

3: while True do

4: while eFPKi > δFPKi or eHJBi > δHJBi or eui > δui do

5: Update mass NN weights by solving Eq. 4.26, i.e.,

˙̂
Wm,i = −αm,i

Ψ̂m,ie
T
FPKi

1 + Ψ̂T
m,iΨ̂m,i

6: Update critic NN weights by solving Eq. 4.25, i.e.,

˙̂
WV,i = −αh,i

Ψ̂V,ie
T
HJBi

1 + Ψ̂T
V,iΨ̂V,i

7: Update actor NN weights by solving Eq. 4.27, i.e.,

˙̂
Wu,i = −αu,i

φ̂u,ie
T
ui

1 + φ̂Tu,iφ̂u,i

8: Update NNs’ approximation errors by Eq. 4.15, 4.16, and 4.17, i.e.,

eHJBi ← Φ(m,xi) + Ŵ T
V,iΨ̂V,i

eFPKi ← Ŵ T
m,iΨ̂m,i

eui ← Ŵ T
m,i(t)φ̂u,i +

η

2R

∂

∂xi
Vi∂xṼi

9: end while

10: ûi ← Ŵ T
u,iφ̂u,i + η

2R
∂
∂xi
Vi∂xṼi

11: Execute ûi and observe new state xi

12: Update NNs’ approximation errors by Eq. 4.15, 4.16, and 4.17, i.e.,

eHJBi ← Φ(m,xi) + Ŵ T
V,iΨ̂V,i

eFPKi ← Ŵ T
m,iΨ̂m,i

eui ← Ŵ T
m,i(t)φ̂u,i +

η

2R

∂

∂xi
Vi∂xṼi

13: end while
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CHAPTER 5

LARGE-SCALE MULTI-AGENT REINFORCEMENT LEARNING WITH

APPLICATIONS IN OPTIMAL COMMUNICATION POWER CONTROL [115]

5.1 Introduction

The next generation wireless networks aim to support massive number of users

with faster data rate and higher data quality. In order to achieve this vision, power

allocation in next-generation wireless networks is one of the critical issues. How-

ever, it is challenging to adjust the wireless transmitter’s power for satisfying in-

dividual communication connection’s Quality of Service (QoS) under uncertain

channel fading, user mobility, and large number of wireless connections. A bal-

ance must be achieved for the trade-off between the desire for users maximizing

their individual QoS and the need for minimizing interference to other users. Fur-

thermore, because of the mobility and features in mobile ad hoc network (MANET)

at tactical edge and environmental uncertainties in the battlefield, many existing

optimal power allocation algorithms are neither efficient nor practical. Therefore,

a new type of decentralized intelligent dynamic power allocation is needed.

Early works on wireless communication power allocation focused on balanc-

ing the Signal-to-interference-plus-noise ratio (SINR) for all users by distributed

control or centralized control. For example, the author in [109] developed dis-

tributed power allocation algorithms to maintain the QoS of limited number of

users. Huang, Caines, and Malhame [38] proposed a centralized optimal power

allocation algorithm by formulating the SINR requirement as resource allocation

cost. However, at tactical edge, the communication environment is dynamic and

the wireless network with massive users is often , also known as “ad hoc” [81],
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Figure 5.1: Proposed design for MANET in IoBT at tactical edge

which needs to be designed in a decentralized fashion. It is also worth noting

that the efficiency of centralized algorithm would decrease significantly when the

users’ population is extremely large.

To overcome these challenges, a novel decentralized intelligent dynamic power

allocation is developed in this chapter (see Fig. 5.1). Recently, a new type of de-

centralized multi-agent decision-making theory for non-cooperative games named

the Mean Field Game has been developed by Gueant, Lasry and Lions [48]. It has

been implemented in different areas successfully such as for electric vehicle charg-

ing power control [121], and for formation control [85]. The key idea of Mean Field

control theory is to design a decentralized controller based only on local informa-

tion and the impact from the whole population, i.e., mass. The mass is a global

state averaged across all agents that is essentially the probability distribution func-

tion of all agent’s states. Individual agent can focus on interacting with the global
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state distribution instead of every other single agents to reduce the computational

cost as well as communication cost. As a result, to obtain the Mean Field optimal

control, each agent needs to minimize cost function under the mass effect. In opti-

mal control [52], the optimal cost function can be attained by solving the Hamilton-

Jacobian-Bellman (HJB) equation. Note that the HJB equation can only be solved

backward-in-time due to the nature of the Bellman equation [52]. Moreover, the

mass distribution can be obtained by solving the Fokker-Plank-Kolmogorov (FPK)

equation under the assumption that the initial mass distribution is known. Thus,

the solution of the HJB and FPK equation system is the decentralized optimal con-

trol for massive multi-agent system. It is shown in [48] that the coupled solution

of HJB and FPK equations is the Nash equilibrium.

Although the Mean Field control theory is promising, solving the two coupled

partial differential equations (PDEs), i.e. HJB and FPK, symbolically is computa-

tionally intensive. Especially, the FPK equation is solved forward-in-time whereas

the HJB is solved backward-in-time. Meanwhile, Reinforcement learning and ap-

proximate dynamic programming (ADP) has been proved as an effective approach

to numerically solve nonlinear HJB equations forward-in-time [2]. Specifically,

Abu-Khalaf et.al have developed the actor-critic algorithm along with stability

analysis to approximate the solution of HJB equation [2].

Inspired by those works, the decentralized dynamic power allocation problem

for massive users has been formulated as an optimal control problem for massive

multi-agent system in this study. Furthermore, a novel mean-field game theory

based intelligent decentralized dynamic power allocation is proposed which can

solve the coupled HJB and FPK equations through a novel actor-critic-mass algo-

rithm including three neural networks (NN), denoted as the Mass NN, Critic NN,
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and Mass NN, respectively. Through approximating optimal power allocation pol-

icy, optimal cost function, and power mass distribution by the three neural net-

works, a decentralized power allocation can be obtained in real-time that not only

optimize the communication performance but also handle the uncertainties from

harsh environment at tactical edge. The main contributions of this chapter can be

summarized as,

• The proposed actor-critic-mass power allocation algorithm for wireless net-

works is designed in a decentralized fashion to handle extremely large scale

users by integrating Mean Field Games with optimal control;

• The proposed actor-critic-mass algorithm is a new type of reinforcement learn-

ing and ADP framework that can solve the adaptive optimal design for wire-

less systems with large population through approximating the solution of

FPK and HJB equation system simultaneously;

• The proposed actor-critic-mass algorithm can handle the uncertainties from

harsh environment at tactical edge by dynamically adjust its tuning laws.

5.2 Problem formulation

5.2.1 System Model

In this chapter, we consider the channel model for wireless networks as lognor-

mal fading. The stochastic channel power attenuation dynamics from the trans-

mitter of the j-th link to the receiver of i-th link can therefore be modeled as

dxij(t) = −A (xij(t) +B) dt+ σ1dwi, 1 ≤ i ≤ N (5.1)
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where xij(t) = −Dij with Dij being defined as the distance between transmitter j

and receiver i, A,B ∈ R are the system parameters related to the users’ mobility

and other losses [16], wi denotes the independent Wiener processes, andN denotes

the number of agents. Additionally, σ1 is related to the volatility of the underlying

lognormal shadowing effects.

Thus, the dynamics of power gain (loss) gij can be obtained by substituting

gij = exij into Eq. 5.1 and get

dgij = gij [−A (ln gij +B)] dt+ gijσ1dwi (5.2)

and the received power can be represented as gijpi.

Based on [38], the dynamics for transmitter power adjustment for the i-th user

can be modeled as

dpi(t) = uidt+ σ2dw
′
i, |ui| ≤ uimax, 1 ≤ i ≤ N (5.3)

where pi ∈ [0, pmax] represents the transmitted power with pmax being maximum

transmission power, ui represents the power adjustment rate, and σ2dw
′
i provides

the random noise from the transmitter. The actual power attenuation loss (gain)

can thus be computed by gij(t) = exij ∈ (0, 1] and the actual transmitted power is

gijpi.

According to [40], the Signal-to-interference-plus-noise ratio (SINR) in large

population users scenario is preferred to be defined as

ξi(t) =
gii(t)pi(t)

Ii(t) + ηi
=

giipi∑N
j 6=i βNgijpj + ηi

(5.4)

where Ii is the interference, ηi ≥ 0 denotes the variance power of the noise at its

receiver node, and βN ≈ 1/N . The objective of communication QoS requires that

the SINR is higher than or equal to a desired threshold, i.e., ξi ≥ µi. Meanwhile,
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the power allocation objective is to minimize the total power consumption for all

users, i.e., min
∑N

j=1 pj . Based on [38], the solution of the total power minimization

subject to the QoS constraint is defined as

giipi∑N
j 6=i βNgijpj + ηi

= µi > 0 (5.5)

which is equivalent to

lim
N→∞

giipi∑N
j=1 βNgijpj + ηi

= lim
N→∞

µi
1 + βNµi

= µi (5.6)

Therefore, we can define the cost function as

Vi(p, gi, ui) = E
∫ ∞

0

{[
giipi − µi

(
βN

n∑
j=1

gijpj + ηi

)]2

+Qip
2
i +Riu

2
i

}
dt

where p and gi represent the sets of all users’ power and power loss of the ith

agent respectively, Riu
2
i represents the penalty of abrupt power adjustment and

Qip
2
i represents the additional penalty of high power. The optimal policy’s objec-

tive for each user is to minimize Eq. 5.7.

5.2.2 Mean Field optimal control representation

Mean Field Game (MFG) theory [48] is an emerging technique that can effec-

tively solve stochastic decision-making problem with a large population of agents

in a decentralized manner.

Consider the given wireless channel and power allocation models, we can use

the Probability Density Function (PDF) of the power gain and transmitter power

for all users, i.e., mg,i(g, t) and mp(p, t) to compute the PDF of received power of

i-th user, i.e. mgp(gp, t) with gp ∈ Θ = {gp
∣∣0 ≤ gp ≤ pmax}. While mg,i(g, t)

for the i-th user is fixed since the dynamics of gij for all agents are independent
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of power adjustment, mp(p, t) is changing according to power adjustment policy.

Let fi denote the power adjustment policy for the i-th user, i.e., fi = {ui(t)
∣∣t ∈

[0,∞)}. Then the set of power adjustment policy for all users can be defined as

f = {fi

∣∣i ∈ [1, N ]}. Given a f, the summation in the QoS constraint (i.e., Eq. 5.6)

can be replaced by the expected value as

µi(t) =
gii(t)pi(t)

Ef(g(t)p(t)) + ηi
(5.7)

where

Ef(g(t)p(t)) =

∫
Θ

gpmg,i(g, t)mp,f(p, t)d(gp) (5.8)

with the assumption that g is independent of p for massive users.

Then the cost function can be changed accordingly as

Vi(pi, gii, ui,mg,i,mp,f) = E
∫ ∞

0

{
Φ(pi, gii,mg,i,mp,f) +Ru2

i

}
dt (5.9)

with

Φ(pi, gii,mg,i,mp,f) = [giipi − µi (Ef(gp) + ηi)]
2 (5.10)

According to Bellman’s principle of optimality [52], the optimal cost for each

agent from t onward is defined as

V ∗i (t) = min
ui
{L(t) + V ∗i (t+ dt)} (5.11)

where L(t) = Φ(pi, gii,mg,i,mp,f) + Ru2
i is the current running cost, and V ∗i (t) =

Vi(pi(t), ui(t),mp(t)). The optimal power adjustment policy f∗i that minimize Eq.

5.9 is the solution to Eq. 5.11. Because the power gain g is independent of the

power adjustment rate (i.e., ui), we will write the cost function Vi(pi, gii, ui,mg,i,mp,f)

as Vi(pi, ui,mp,f) in the rest of the paper.
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Next, the Hamiltonian can be defined as

H [pi, ∂pVi(pi, ui,mp,f)] = Li(pi, ui,mp,f) + ∂pVi(pi, ui,mp,f)ui (5.12)

By substituting optimal cost function V ∗i (pi, ui,mp) into Hamiltonian, Hamiltonian-

Jacobian-Bellman (HJB) equation can be obtained as

−∂tV ∗i (pi, ui,mp)−
(σ2)2

2
∂ppV

∗
i (pi, ui,mp) +H [pi, ∂pV

∗
i (pi, ui,mp)] = 0 (5.13)

where mp represents the power mass distribution under the optimal power adjust-

ment policy set (i.e., f∗).

The optimal power allocation for individual agent can be solved by

u∗i (pi, ui,mp) = −1

2
R−1∂pV

∗
i (pi, ui,mp) (5.14)

Since each individual user is minimizing its own cost to attain decentralized

optimal power allocation u∗i , it can be considered as a nonzero-sum stochastic dif-

ferential game. Therefore, there exists a Nash equilibrium (NE) point set such that

the individual agent’s cost is optimal [8].

To solve the HJB given in Eq. 5.13, the attenuation mass distribution mg,i(gij, t)

and the transmitter power mass distribution mp(pi, t) is needed. Recall the MFG

and Eq. 5.2, the mg,i(gij, t) can be attained by solving the FPK equation based on

the “Law of large numbers”, i.e.,

∂tmg,i(gij, t) = ∂gg

[
(gijσ1)2

2
mg,i(gij, t)

]
− ∂g {gij [−A (ln gij +B)]} (5.15)

Similarly, themp(pi, t) can be calculated by solving the following FPK equation,

∂tmp(pi, t) =
(σ2)2

2
∂ppmp(pi, t)− ∂puimp(pi, t) (5.16)
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According to relevant studies (see [48]), the existence and uniqueness of cou-

pled HJB-FPK equation’s solution can be guaranteed. Moreover, the optimal strat-

egy given by the solution of the coupled HJB-FPK equation can be implemented

into the game with finitely many players to have εN -Nash equilibrium, namely,

Vi(ui;u−i) ≥ Vi(u
∗
i ;u−i)− εN (5.17)

where εN is a bounded constant related to the population size N , ui can be any

feasible control, and u−i represents power adjustment rate of all users other than i.

See [48] for the detailed proofs.

Remark 4. To obtain the optimal design, one has to solve the coupled HJB-FPK

equation simultaneously. However, the HJB equation (Eq. 5.13) is a Partial Dif-

ferential Equation (PDE) that is solved backward-in-time whereas the FPK equa-

tion (Eq. 5.16) is solved forward-in-time. It makes the Mean Field type of design

complicated and even impossible to solve directly in real-time. Therefore, in this

chapter, a novel reinforcement learning and approximate dynamic programming

(ADP) technique has been developed to learn the coupled HJB-FPK equation solu-

tion online.

5.3 Actor-critc-Mass Based Optimal Decentralized Power Alloca-

tion Design

In this section, a novel Actor-Critic-Mass (ACM) framework along with the re-

inforcement learning ADP technique is developed.Three Neural Networks (NNs)

have been used not only to estimate the cost function and optimal power adjust-

ment rate, but also to approximate the mass distribution of all users’ power, i.e.
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Figure 5.2: Structure of Actor-Critic-Mass system

mp(pi, t). Specifically, three NNs in ACM are used to approximate the solutions of

Eqs. 5.13, 5.14 and 5.15. The optimal cost function, design and mass distribution

can be expressed as 
V ∗i (pi,mp, t) = W T

V,iφV,i(pi,mp, t) + εV,i

u∗i (pi,mp, t) = W T
u,iφu,i(pi,mp, t) + εu,i

mp(pi, t) = W T
m,iφm,i(pi, m̄p, t) + εm,i

(5.18)

where with m̄i being the historical average power adjustment rate defined as m̄p(t) =

1
t̂

∫ t
[t−t̂]+ p̄i(τ)dτ , and t̂ is a constant historical window, φ(·) is a bounded and con-

tinues activation function, and ε is the reconstruction error. Next, the optimal

cost function, decentralized design and mass distribution function can be approx-

imated as 
V̂i(pi, m̂p,i, t) = Ŵ T

V,i(t)φV,i(pi, m̂p,i, t)

ûi(pi, m̂p,i, t) = Ŵ T
u,i(t)φu,i(pi, m̂p,i, t)

m̂p,i(pi, m̄p,i, t) = Ŵ T
m,i(t)φm,i(pi, m̄p,i, t)

(5.19)

Substituting Eq. 5.19 into Eqs. 5.13, 5.14 and 5.15, equations will not hold. The

residual errors will be introduced and used to tune the actor, critic, and mass NNs

along with time, i.e.

eHJBi = Ŵ T
V,i(t)

[
∂tφ̂V,i +

(σ2)2

2
∂ppφ̂V,i − ĤWV,i

]
(5.20)
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eFPKi = Ŵ T
m,i(t)

[
∂tφm,i −

(σ2)2

2
∂ppφm,i + ∂p(ûiφm,i)

]
(5.21)

eui = Ŵ T
u,i(t)φ̂u,i +

1

2
R−1
i (pi)∂pφ̂V,i (5.22)

where φ̂V,i = φV,i(pi, m̂p,i, t), φ̂u,i = φu,i(pi, m̂p,i, V̂i, t), and ĤWV,i = HWV

[
pi, ∂pφ̂V,i (pi, m̂p,i, t)

]
is the left term such that Ŵ T

V,i(t)ĤWV,i = H (pi, ∂pVi (pi, m̂p,i, t)).

According to the the gradient descent algorithm, the ACM NNs’ update laws

can be derived as

Critic NN: ˙̂
WV,i(t) = −αh,i

ΨV,i(pi, m̂p,i, t)e
T
HJBi

1 + ΨT
V,i(pi, m̂p,i, t)ΨV,i(pi, m̂p,i, t)

(5.23)

Mass NN: ˙̂
Wm,i(t) = −αm,i

Ψm,i(pi, m̄p,i, V̂i, t)e
T
FPKi

1 + ΨT
m,i(pi, m̄p,i, V̂i, t)Ψm,i(pi, m̄p,i, V̂i, t)

(5.24)

Actor NN: ˙̂
Wu,i(t) = −αu,i

φu,i(pi, m̂p,i, t)e
T
ui

1 + φTu,i(pi, m̂p,i, t)φu,i(pi, m̂p,i, t)
(5.25)

where αh,i, αm,i, and αu,i are the learning rates, and

ΨV,i (pi, m̂p,i, t) = ∂tφ̂V,i +
σ2
i

2
∂ppφ̂V,i − ĤWV,i

Ψm,i (pi, m̄p,i, ûi, t) = ∂tφm,i −
σ2
i

2
∂ppφm,i + ∂p (ûiφm,i)

Note that the Critic NN and the Actor NN are updated continuously while the

Mass NN is only updated between a fixed interval (i.e., ∆t) to reduce computation.

The complete ACM algorithm is summarized as a pseudo-code shown in Algo-

rithm 1. Moreover, the structure of Actor-Critic-Mass framework is given in Fig.

5.2.

5.4 Simulation

In this section, the proposed intelligent decentralized dynamic power alloca-

tion algorithm has been evaluated under an Internet of Battlefield Things (IoBT)
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Algorithm 2: Actor-Critic-Mass online optimal power allocation

1: Acquire agent number i

2: Initialize NN weights ŴV,i,Ŵm,i,Ŵu,i randomly

3: Initialize eFPKi, eHJBi, eui to be∞

4: while True do

5: Update NNs’ approximation errors by Eq. 5.20, 5.21, and 5.22, i.e.,

eHJBi ← Φ(mi, xi) + Ŵ T
V,iΨ̂V,i

eFPKi ← Ŵ T
m,iΨ̂m,i

eui ← Ŵ T
m,i(t)φ̂u,i +

1

2
R−1
i (xi)∂pφ̂V,i

6: Update critic NN weights by solving Eq. 5.23, i.e.,

˙̂
WV,i = −αh,i

Ψ̂V,ie
T
HJBi

1 + Ψ̂T
V,iΨ̂V,i

7: Update actor NN weights by solving Eq. 5.25, i.e.,

˙̂
Wu,i = −αu,i

φ̂u,ie
T
ui

1 + φ̂Tu,iφ̂u,i

8: if Current time t = k∆t, k = 1, 2, 3, ... then

9: Update mass NN weights by solving Eq. 5.24, i.e.,

˙̂
Wm,i = −αm,i

Ψ̂m,ie
T
FPKi

1 + Ψ̂T
m,iΨ̂m,i

10: end if

11: ûi ← Ŵ T
u,iφ̂u,i

12: Execute ûi and observe new transmitter power pi

13: end while
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wireless network with 10,000 agents. All agents in the network are expected to

achieve a desired SINR value at µ = 0.6. We selected the total transmitter power,

power adjustment rate, and SINR as the metric to compare the performance be-

tween the proposed Actor-Critic-Mass algorithm and other algorithms.

The attenuation model and power adjustment model are given in Eq. 5.1 and

Eq. 5.3 with A = 4, B = 0.3, σ1 = 0.3, and σ2 = 0.01. The noise variance in

SINR (i.e., Eq. 5.4) is set to η = 0.1. The coefficient in the cost function Eq. 5.9

is selected as R = 1, S = 1000, and Q = 1. All agents’ transmitters’ power are

set to zero at the beginning of the experiment. The channel attenuation of all ten

agents are randomly initialized from a normal distribution with mean value of 0.2,

variance value of 0.01 and can be varying due to the environment uncertainties,

i.e., m0 ∼ N (−0.2, 0.01).

To estimate the solution of the HJB equation (i.e., Eq. 5.13), the FPK equa-

tion (i.e., Eq. 5.15), and the optimal power adjustment rate ui, the Critic NN,

Mass NN, and Actor NN are designed. The elements in activation functions for

all NNs are constructed from the logsig of the expansion of the polynomial, i.e.,

logsig(qk(z))(z−E(p))+z, where qk(z) is the element of the expansion of
∑M

β=1(
∑n

j=1 zj)
β .

M = 5 is the order of approximation, and n = 2 is the dimension of the input for

actor and critic NNs, n = 3 for Mass NN. The weights of all neural networks are

initialized randomly.

Firstly, the FPK equation (i.e., Eq. 5.15) has been solved for the power atten-

uation’s PDF mg,i(g, t) with the boundary condition given above. Next, the Critic

NNs and Actor NNs of all agents start to update continuously while the Mass NNs

are updated every 10 seconds. Fig. 5.3 depicts the time evolution of agents’ aver-

age NNs’ estimation error. The red curves in Fig. 5.3 show that the Critic NN and
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(a) Critic NN error (b) Actor NN error

Figure 5.3: The time evolution of agents’ average NNs estimation error.
The mp is updated every 10 seconds and blue dash line shows
the time evolution of E(p). The red curve in (a) and (b) depicts
the Critic NN’s and Actor NN’s error evolution with respect to
time.

Actor NN errors converge to zero after 50 seconds. In other words, the Critic NN

and Actor NN correctly approximate the solution of the HJB equation, particularly

the optimal cost function and optimal power adjustment rate. The blue dash line

in Fig. 5.3 is the plot of the expected value of power (i.e., E(p)). The stability of E(p)

proves that the Mass NN can approximate the density function of all agents’ trans-

mitter power distribution mp effectively, which is the solution of FPK equation. It

is worth noting that the Actor NN and Critic NN had significant error increases at

10s which is caused by the update of the Mass NN and environment uncertainties.

However, the level of increase in error decreases over time, i.e. the increase level

at 20s is less than 10s. This also verifies that all three NNs are converging to the

solution of Mean Field equation system.

We also plot the average SINR of agents along with channel attenuation x for

a randomly picked link, and the average transmitter power of agents in Fig. 5.4.

It’s easy to observe that the target SINR was reached after 40s despite of the uncer-

tainty from channel attenuation. After the target SINR was reached, the transmitter



153

(a) SINR and x (b) Transmitter power p

Figure 5.4: (a) The average SINR of agents is shown as the red curve. The
blue curve represents the channel attenuation x of one link.
(b) Average transmitter power p of agent is represented in red
curve

power remains stable as the result of the Nash equilibrium being satisfied.

Finally, the performance of proposed ACM algorithm is compared with an-

other game theoretical algorithm which is the Parallel Update Algorithm (PUA)

introduced in [5]. The parameters for PUA algorithm are picked as L = u = 1,

σ2 = 0.1, and λ = 1.89 in order to achieve SINR at 0.6. The two algorithms are

evaluated by the total power and total cost, which are defined as P (t) =
∑N

i=1 pi(t)

and

J(t) =

∫ T

t

[
N∑
i=1

(µ̂i(τ)− µ) +
N∑
i=1

pi(τ) +
N∑
i=1

ui(τ)

]
dτ (5.26)

where µ̂i is the actual SINR of i-th user, and T = 60s is the end time of simulation.

From Fig. 5.5(a), we can observe that both proposed algorithm and the PUA al-

gorithm reached the same power level, which is the Nash Equilibrium. Note that

although the PUA algorithm has a significant slower update rate compared to the

ACM algorithm (5 seconds vs. continuously update), it reached the Nash Equilib-

rium in a shorter time. However, Fig. 5.5(b) demonstrates that the total cost of PUA
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(a) Total power P (b) Total cost J

Figure 5.5: (a) All transmitters’ total power with respect to time. The PUA
algorithm is updated every 5s. (b) Total cost. The blue curve
shows the performance of the PUA algorithm while the red
curve shows the performance of proposed algorithm

is higher than ACM’s. This verifies that the ACM algorithm’s power adjustment

policy outperforms PUA’s policy in the sense of the summation of total power,

QoS, and power adjustment rate (i.e. Eq. 5.26). Instead of an aggressive control

policy in 5s of Fig. 5.5 from PUA, the ACM algorithm estimated the power mass

distribution to avoid overshoot in total power. The Mean Field game provides nec-

essary theoretic basis for an agent to estimate other agents’ behavior (mass) so that

all agents can avoid competing with each other by constantly increasing the trans-

mitters’ power. However in other decentralized game theory based algorithms,

all agents can only adjust the power with delayed information about other agents

which will often lead to destructive competition (see PUA’s 5s in Fig. 5.5(a)). Intu-

itively, the Mean Field game serves as coordination in non-cooperative games so

that all agents can reach Nash equilibrium with lower cost dynamic power allo-

cation problems. It is also important to note that there’s no information exchange

between agents therefore the ACM algorithm consumes significantly less energy

and channel usage compared to traditional distribute and centralized algorithm
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especially with large scale agent population.

5.5 Conclusions

In this chapter, a novel Mean Field game theory based intelligent decentralized

dynamic power allocation algorithm named the Actor-Critic-Mass (ACM) algo-

rithm has been developed for massive users in MANET with application to IoBT

at tactical edge. A cost function which can satisfy the SINR constraint as well

as representing total wireless communication power consumption is constructed.

The coupled HJB-FPK equation system is then derived and the solution represents

the optimal cost function, the density function of massive agents’ power, and the

optimal power adjustment rate in the sense of Nash equilibrium. The Actor NN, the

Critic NN, and the Mass NN are designed to effectively approximate the solution

of the HJB-FPK equation system online. Compared with conventional centralized

and distribute power allocation algorithm, the developed technique can signifi-

cantly reduce the communication traffic as well as computational complexity for

practical real-time MANET with massive number of users. A series of numeri-

cal simulations has been conducted to show the effectiveness and efficiency of the

proposed design.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

In this dissertation, a decentralized reinforcement learning algorithm has been

developed to solve the previously unsolvable large-scale multi-agent systems (MAS)

optimal control problem. The traditional MAS optimal control algorithms suffer

from the well-known “Curse of Dimensional” problem and communication prob-

lem. In the developed ACM algorithm, the mean field games are introduced to

deal with the problems caused by the increasing agent number.

The general framework and theoretical foundations of the ACM algorithm are

described in Chapter 2. The large-scale MAS optimal control problem is first de-

signed and reformulated into the mean field type optimal control. By replacing all

agents’ states with the probability density function (PDF), the algorithm’s compu-

tational complexity is decoupled with the agent number. Moreover, the PDF can

be obtained by locally solve the Fokker-Planck-Kolmogorov (FPK) equation. As a

result, communication between all agents is not necessary. Following the state-of-

art reinforcement learning algorithm, a learning-based framework is designed to

approximate the optimal solution set. Specifically, the actor, critic, and mass neural

networks are proposed to approximate the optimal control, optimal cost function,

PDF, respectively. In Chapter 2, the numerical simulations on both linear and non-

linear systems are conducted to show the effectiveness of the ACM algorithm. The

Lyapunov stability analysis is also provided to demonstrate the stability.

In Chapter 3, the mean field type optimal control with heterogeneous agents
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is discussed in the pursuit-evasion game setup. The original mean field game

theory is designed based on particles that have homogeneous physical dynam-

ics. However, in practical applications, the agents often have different dynamics.

To leverage that, the ACM-Opponent algorithm has been designed to deal with a

large-scale MAS with two different types of agents, i.e., the pursuers and evaders.

Provided by the theoretical support in the past two chapters. Two case-studies

from the practical large-scale MAS optimal control problems has been provided in

Chapter 4 and 5. In Chapter 4, the optimal schedule of the electrical buses’ charg-

ing problem is considered. As electrical buses are getting popular in smart cities,

the charging time of the buses has become critical to the stability of the city’s power

grid. The ACM algorithm can effectively coordinate the buses so that the power

consumption of the charging schedule compensates for the valley time of the res-

idential and industrial power consumption. Chapter 5 demonstrates another ap-

plication example of applying the ACM algorithm to optimize the transmission

power of devices in a wireless network. It is proved in the experiment section that

the targeted Quality of Service (QoS) can be achieved with the minimum transmis-

sion power.

6.2 Future Work

Although effective in some cases, the ACM algorithm still suffers from unreal-

istic assumptions due to the limit of its core theory, i.e., the mean field game theory.

For example, the current ACM algorithm cannot deal with constrained control or

state space. Moreover, the neural networks used in this dissertation are naive. It

is more desired to try a deeper neural network to enhance the approximation per-
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formance. Finally, since the Kolmogorov equation has the ability to leverage the

uncertainties in the physical dynamics, it is also possible to expand the domain

of a stochastic policy space by noise. Therefore, it is promising to explore mean

field-based transfer learning methods.
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In Tamer Basar and Georges Zaccour, editors, Handbook of Dynamic Game
Theory, pages 1–28. Springer International Publishing, Cham, 2017.

[14] Efe Camci and Erdal Kayacan. Game of drones: UAV pursuit-evasion game
with type-2 fuzzy logic controllers tuned by reinforcement learning. In 2016
IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pages 618–625,
July 2016.

[15] Pierre Cardaliaguet and Saeed Hadikhanloo. Learning in mean field games:
the fictitious play. ESAIM: Control, Optimisation and Calculus of Variations,
23(2):569–591, 2017.

[16] Charalambos D Charalambous and Nickie Menemenlis. Stochastic mod-
els for long-term multipath fading channels and their statistical properties.
In Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.
99CH36304), volume 5, pages 4947–4952. IEEE, 1999.

[17] Jiejie Chen, Boshan Chen, and Zhigang Zeng. Synchronization and Con-
sensus in Networks of Linear Fractional-Order Multi-Agent Systems via
Sampled-Data Control. IEEE Transactions on Neural Networks and Learning
Systems, 31(8):2955–2964, August 2020. Conference Name: IEEE Transac-
tions on Neural Networks and Learning Systems.

[18] Romain Couillet, Samir M. Perlaza, Hamidou Tembine, and Mérouane Deb-
bah. Electrical vehicles in the smart grid: A mean field game analysis. IEEE
Journal on Selected Areas in Communications, 30(6):1086–1096, 2012. arXiv:
1110.1732.

[19] Hong-Ning Dai, Raymond Chi-Wing Wong, Hao Wang, Zibin Zheng, and
Athanasios V. Vasilakos. Big Data Analytics for Large-scale Wireless Net-
works: Challenges and Opportunities. ACM Computing Surveys, 52(5):99:1–
99:36, September 2019.

[20] Antonio De Paola, Vincenzo Trovato, David Angeli, and Goran Strbac. A
Mean Field Game Approach for Distributed Control of Thermostatic Loads
Acting in Simultaneous Energy-Frequency Response Markets. IEEE Trans-



161

actions on Smart Grid, 10(6):5987–5999, November 2019. Conference Name:
IEEE Transactions on Smart Grid.

[21] T. Dierks and S. Jagannathan. Optimal control of affine nonlinear
continuous-time systems using an online Hamilton-Jacobi-Isaacs formula-
tion. In 49th IEEE Conference on Decision and Control (CDC), pages 3048–3053,
December 2010. ISSN: 0191-2216.

[22] L. Ding, S. Li, H. Gao, Y. Liu, L. Huang, and Z. Deng. Adaptive neural
network-based finite-time online optimal tracking control of the nonlinear
system with dead zone. IEEE Transactions on Cybernetics, pages 1–11, 2019.

[23] Boualem Djehiche, Alain Tcheukam, and Hamidou Tembine. A mean-field
game of evacuation in multilevel building. IEEE Transactions on Automatic
Control, 62(10):5154–5169, 2017.

[24] Khac Duc Do. Flocking for multiple elliptical agents with limited communi-
cation ranges. IEEE transactions on robotics, 27(5):931–942, 2011.

[25] A. Dorri, S. S. Kanhere, and R. Jurdak. Multi-Agent Systems: A Survey. IEEE
Access, 6:28573–28593, 2018. Conference Name: IEEE Access.

[26] Chun-Xia Dou and Bin Liu. Multi-Agent Based Hierarchical Hybrid Control
for Smart Microgrid. IEEE Transactions on Smart Grid, 4(2):771–778, June 2013.
Conference Name: IEEE Transactions on Smart Grid.

[27] Y. Feng, W. Zhang, J. Xiong, H. Li, and L. Rutkowski. Event-triggering inter-
action scheme for discrete-time decentralized optimization with nonuniform
step sizes. IEEE Transactions on Cybernetics, pages 1–10, 2020.

[28] E. Garcia, D. W. Casbeer, A. Von Moll, and M. Pachter. Multiple Pursuer
Multiple Evader Differential Games. IEEE Transactions on Automatic Control,
pages 1–1, 2020. Conference Name: IEEE Transactions on Automatic Con-
trol.

[29] Xiaohu Ge, Song Tu, Guoqiang Mao, Cheng-Xiang Wang, and Tao Han. 5g
ultra-dense cellular networks. IEEE Wireless Communications, 23(1):72–79,
2016.

[30] Diogo A. Gomes and João Saúde. Mean Field Games Models—A Brief Sur-
vey. Dynamic Games and Applications, 4(2):110–154, June 2014.



162

[31] Ivo Grondman, Lucian Busoniu, Gabriel AD Lopes, and Robert Babuska. A
survey of actor-critic reinforcement learning: Standard and natural policy
gradients. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Appli-
cations and Reviews), 42(6):1291–1307, 2012.

[32] Nallappan Gunasekaran, Guisheng Zhai, and Qiang Yu. Sampled-data syn-
chronization of delayed multi-agent networks and its application to coupled
circuit. Neurocomputing, 413:499–511, November 2020.

[33] Jayesh K. Gupta, Maxim Egorov, and Mykel Kochenderfer. Cooperative
Multi-agent Control Using Deep Reinforcement Learning. In Gita Suk-
thankar and Juan A. Rodriguez-Aguilar, editors, Autonomous Agents and
Multiagent Systems, Lecture Notes in Computer Science, pages 66–83, Cham,
2017. Springer International Publishing.

[34] Olivier Guéant, Jean-Michel Lasry, and Pierre-Louis Lions. Mean Field
Games and Applications. In Areski Cousin, Stéphane Crépey, Olivier
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