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ABSTRACT

Maneuvering autonomous agents to accomplish complex tasks is a difficult and
typically NP-hard optimization problem with many real-world applications. In
this thesis, we use potential fields based on task and agent properties to control
the movement of groups of agents and use a genetic algorithm (GA) to optimize
potential field parameter values to lead to complex task achieving behaviors. More
specifically, we control autonomous unmanned aerial vehicles (UAVs) in search
and rescue scenarios to find and help people in need, in wildfire coverage scenar-
ios to monitor a wildfire’s perimeter, and game agents in real-time strategy (RTS)
games to win skirmishes. In all three applications, potential fields control agent
movement, genetic algorithms optimize potential field parameters, and a simula-
tion evaluates task performance to guide genetic optimization.

Experimental results show that our potential field representation and problem
formulation works well across the three problems. We used UAVs as flying access
points and controlled their movement using genetic algorithms optimized poten-
tial fields to generate wireless networks. These ad-hoc wireless networks outper-
formed the current state of the art ad-hoc network deployment algorithm. The
same representation with a different set of potential fields was used for successful
deployment of UAVs to track the spread of wildfire boundaries and results show
that with enough UAVs, complete fire boundary coverage was achieved. Lastly,
we used two different RTS game platforms to evolve tactics for a team of heteroge-
neous game agents by formulating the problem as a multi objective optimization
problem. Again using potential fields, a genetic algorithm evolved a diverse set
of high quality skirmish tactics ranging from attacking to fleeing against test op-
ponents. Results show that with aggressive attacking tactics, a team of friendly

agents was able to eliminate the majority of opponents but suffered significant



ii

damage. On the other hand, fleeing tactics resulted in less damage to friendlies
but also inflicted less damage to opponents. We also observed the emergence of
cooperation between friendly game agents. These results indicate that genetic al-
gorithms optimized potential fields are a viable approach to decentralized group

tasking.
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CHAPTER 1
INTRODUCTION

Controlling autonomous agents has many real-world applications but presents
multiple challenges. These challenges arise because of the large search space of
control parameter values and the dynamic nature of environments. Searching for
solutions in large search spaces in real-time is difficult, and if the environment
state changes then the previously obtained solutions may not be valid. In this the-
sis, we present a new representation and problem formulation to control a large
number of autonomous agents for group tasking. Our representation uses task-
specific potential fields to guide autonomous agents to complete group tasks. Po-
tential fields based autonomous agent control was first introduced by Khatib [1] in
1986. Owing to their simplicity, many researchers in robotics and in games have
used distance based potential fields to control the movement of agents for obstacle
avoidance and navigation. However, in this thesis, we augment distance based po-
tential fields with more complex, task specific, and agent properties driven poten-
tial fields to guide agents to perform group tasks. Since these potential fields can
be highly non-linear, tuning their parameters is a difficult optimization problem

and we therefore use genetic algorithms to optimize potential field parameters.

Genetic Algorithms (GAs) have been used extensively to solve poorly under-
stood non-linear optimization problems [2, 3, 4, 5, 6]. The genetic algorithm op-
timizes potential field parameters offline and we use these optimized potential
field parameters to control agents for group tasking in this thesis. Computing po-
tential fields is not computationally expensive and thus our task specific potential
tields based approach enables agents to make real-time decisions. Many real world

applications require real-time decision making and this makes our approach and
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Figure 1.1: Offline optimization of potential field parameters using genetic algo-
rithms.

representation applicable to a wide range of problems. We show the applicabil-
ity and effectiveness of our approach on three different challenging problems: 1)
wireless mesh network deployment (WMND) using UAVs for search and rescue,
2) dynamic fire boundary tracking using UAVs to fight forest fires, and 3) game
agent control in real-time strategy games to win skirmishes. In all three problems

we use genetic algorithms to optimize potential fields that guide agents.

For WMND, the genetic algorithm optimizes potential fields based on wireless
bandwidth coverage and distances. Similarly, we use potential fields based on fire
intensity and distances to control the movement of UAVs to track the perimeter
of a fire. In these two problems we control only one type of UAV, but in RTS
games we control multiple types of game agents using potential fields based on
distance, health, and weapons properties to win skirmishes. In all three problems
we identify the specific potential fields to use and the GA optimizes this set of

potential fields so that agents perform well on the group task.

Figure 1.1 shows a block diagram of our system’s architecture which has two
components: the genetic algorithm and the evaluator. The GA works with a pop-
ulation of candidates solutions each of which encodes possible potential field pa-
rameter values. To make progress towards high quality potential field parameters,
the GA needs to know the relative merit or utility (the fitness) of a set of param-

eters at the task. We use a simulation to evaluate this fithess and the GA moves



towards higher fitness using genetic operators. Chapter 2 provides more detail
about genetic algorithms. To use our approach on a new problem we only need
a task specific evaluator and the identification of potential fields that affect agent
behavior. Since the evaluator is problem specific, we next describe the three eval-

uators that evaluate the fitness of a candidate solution.

First, we created an evaluator that simulates a wireless mesh network and given
a set of potential field parameters returns the sum of bandwidth coverage and
longevity as the fitness of the candidate solution. The experimental results show
that our approach outperformed the state-of-the-art wireless network deployment
algorithm. The second evaluator simulates the spread of the wildfire and com-
putes the fire boundary coverage and energy consumption of UAVs and returns
these as the fitness. Results show that with enough UAVs, we achieved complete
tire boundary coverage. Lastly, the third evaluator simulates a real-time strategy
game where a friendly team plays against an enemy team and friendly agents are
controlled by the genetic algorithm optimized set of potential fields. The evaluator
returns the damage done and damage received by friendly agents as the fitness and

the results show that our approach evolved a diverse set of high quality solutions.

1.1 Structure of this Thesis

We organize this thesis based on problem complexity rather than chronology. We
start with the WMND, a single objective problem, that has a fixed evaluator, and
end with RTS micro, a multi objective problem with intelligent dynamic oppo-

nents.

The next chapter begins with an overview of genetic algorithms and how they



are used in my work. Next, we review prior work in UAV wireless network de-

ployment for search and rescue, dynamic fire boundary coverage, and RTS games.

Chapter 3 starts by mathematically modeling potential fields and how to use
potential fields for agent movement control. Subsequently, we describe an agent’s
motion model. We then describe some important aspects of our experimental

setup.

Chapter 4 specifies wireless mesh network deployment using our Genetic Al-
gorithm Network deployment algorithm (GANet). The chapter begins with the
problem statement followed by our methodology where we explain our GANet
algorithm and identify the set of potential fields to control UAVs. Next, we present
experimental results showing that GANet outperformed the state-of-the-art. This
was published in the Proceedings of the 2020 IEEE Congress on Evolutionary Computa-
tion [7]. More extensive experimental results will be published in the Proceedings of
the 2021 Genetic and Evolutionary Computation Conference (GECCO) [8] and are under

review in [EEE Access (a journal).

Chapter 5 describes tracking the spread of wildfire boundaries using UAVs and
is organized like the previous chapter. We define the problem, the fire simulation
model, and the set of potential fields. Results show that, given enough UAVs we
can achieve complete fire boundary coverage. These results will be published in

the Proceedings of the 2021 IEEE Congress on Evolutionary Computation [9].

Chapter 6 specifies the control of heterogeneous game agents in RTS games to
win skirmishes. This is a different problem compared to wireless network deploy-
ment and dynamic fire coverage in that we have opponents, but we use the same

approach to control the movement of game agents. Like in previous chapters, we



define the problem and the set of potential fields. We used two different game sim-
ulation platforms for experiments and results show that our approach generates a
diverse set of tactics. These results were published in the Proceedings of the 2018
IEEE Conference on Computational Intelligence and Games [10] and in the Proceedings
of the 2019 IEEE Congress on Evolutionary Computation [11]. We next increased prob-
lem complexity to investigate the scalability of our approach. These results will
be published as a workshop paper in the Proceedings of the 2021 Genetic and Evolu-
tionary Computation Conference (GECCO) [12]. Finally, the last chapter, Chapter 7,

provides the conclusions and presents possible future work.



CHAPTER 2
BACKGROUND

We start with an overview of genetic algorithms. We then review work done in

wireless mesh network deployment, fire boundary coverage, and RTS micro.

2.1 Genetic Algorithms
Genetic algorithms are inspired by the process of natural selection. Holland pro-

posed genetic algorithms in the early 1970s as computer programs that mimic evo-

lutionary processes in nature, and his canonical genetic algorithm (CGA) is shown

Main loop "~ Yes

in Figure 2.1 [13, 14].

Start - |nitialize > Evaluate gen < Max_gen
- T
|
g
- Xover
Genetic Operators

OffSpring

Figure 2.1: Overview of the canonical genetic algorithm.

Genetic algorithms attempt to solve problems with an iterative process starting

with a population of randomly initialized individuals. Each individual encodes
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Figure 2.2: An individual represented by a binary chromosome and genes.
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Figure 2.3: Fitness proportional selection scheme with population size of 10.

a candidate solution to the problem in its chromosome that represents a set of
parameters called genes, as shown in Figure 2.2. Each gene is in turn encoded into

a binary string.

The values interpreted from the genes are called alleles. Chromosomes are not
the actual solution to the given problem, they are a blueprint or a set of instruc-
tions that dictate how to create a solution. Each individual is evaluated and as-
signed a real value known as the fitness of the individual. Once all individuals
are evaluated, GAs create offspring from individuals of the current population
using three genetic operators; selection, crossover, and mutation. The selection
operator selects individuals for reproduction based on a fitness proportional selec-

tion scheme as shown in Figure 2.3. An individual with higher fitness has higher
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Figure 2.4: One point crossover between two parents to create two children.

Child 1 01

Child 1 01

Figure 2.5: Bit-wise mutation, fourth bit form left changed from 0 to 1.

chances of being selected for reproduction and will have a larger representation in
subsequent generations. The recombination of individuals in genetic algorithms
is simulated through a crossover operator that exchanges portions between indi-
viduals as shown in Figure 2.4. The figure shows one point crossover that creates
two children by crossing over two individuals. Mutation causes probabilistic alter-
ation of the genes of newly created children. Figure 2.5 shows a bit-wise mutation

where the allele of a gene is flipped.

The newly generated offspring are evaluated and the process of selection and
recombination using genetic operators is continued until reaching a termination

criteria. Table 2.1 lists the common terms and their descriptions used in GAs.

In a canonical GA, individuals generated (good or bad) have a relatively short
life span since the population is constantly being replaced by new generations of

individuals. Hence, even if a global optimum is generated, it can disappear in a



Table 2.1: Genetic Algorithm Nomenclature

Term Description

Population A set of individuals

Individual A candidate solution to the problem

Chromosome | A string of genes

Gene An element of chromosome

Allele The values which a gene can assume

Fitness A value indicating the quality of an individual as a solution to the
problem.

Selection A way to chose one individual from the population.

Crossover Operation that exchanges information of two selected parents to
yield two new children.

Mutation Operation that probabilistic changes one or more bits in a chromo-
some

generation or two for long periods of time. Thus it is also possible that despite hav-
ing higher fitness some good individuals may not be selected and may eventually

be lost.

2.1.1 Elitist Genetic Algorithms

To preserve good individuals generated in any generation to the next generation,
we use elitism. There are several ways of doing elitism in genetic algorithms [4, 15]
and we chose n + n elitism where 7 is the population size. The three GAs opera-
tors create offspring of size n from n parent individuals. As shown in Figure 2.6,
when using n + n we create a pool of individuals that is two times larger than the
population size (2n). In the case of a single objective problem, we sort individuals
based on their fitness value and pick the best n individuals. However, in the case
of a multi objective problem an individual’s fitness has multiple objective values.

Thus, to pick the best n individuals we sort 2n individuals into different pareto
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Figure 2.6: n + n elitism

fronts and then choose the best n individuals. In the next section we begin with the

tirst problem, wireless mesh network deployment.

2.2 UAV Wireless Mesh Network Deployment

UAVs are gaining traction as a useful tool in many different domains including
search and rescue [16], surveillance [17], cargo transport [18], surveying and map-
ping [19], agriculture [20], disaster relief [21], IoT [22], and defense and secu-
rity [23, 24, 25] applications where there is a need to quickly deploy a wireless
communications network. A UAV can fly quickly to establish Line of Sight (LoS)
communication with users without being affected by different geographical ter-
rain [26]. During emergencies or in remote areas where existing communication
networks have failed or do not exist at all, a quickly deployed wireless communi-
cation network can help users safely exit the emergency area and can help emer-

gency personnel find and rescue users [27]. Figure 2.7 shows an example wireless
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Figure 2.7: An example of UAVs network deployment with 8 UAVs, 12 users, and
a command center labelled “CC.” UAVs are shown by black boxes and red boxes
represents users.

mesh network using eight UAVs to provide bandwidth coverage to twelve users.

In this figure, UAVs are shown inside black rectangular boxes and users are
shown by red rectangles. We assume that each UAV can communicate with users
within a certain range as shown by black-dashed circles and can communicate
with neighboring UAVs shown by green links. A command center is placed on the
right and is in direct communication with two UAVs. Each UAV can communicate
with the CC either directly or through neighboring UAVs to provide bandwidth
coverage to all twelve users. In this work, bandwidth coverage refers to data in
Megabits per second (Mbps) provided by UAVs to users. Different users, depend-
ing on their needs, may require different bandwidth coverage, and thus, band-
width requirements combined with users’ locations determine optimal collision

free UAV movement and positioning.

However, many challenges remain before a large number of UAVs can be effi-
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ciently and effectively deployed [28]. For example, in a search and rescue scenario
we have to first distribute available UAVs over an area of interest to find all users
in the AOI, then dynamically continue re-positioning UAVs to serve found users.
Re-positioning should maintain connectivity to a fixed operations command cen-

ter while serving moving users and changing bandwidth needs [29].

This thesis focuses on the problem of controlling a large number of UAVs that
create and maintain a mesh network that connects all users to the command center
while serving their bandwidth needs for the maximum amount of time. UAV de-
ployment typically proceeds in two phases. In the first phase, UAVs are deployed
to cover the maximum possible area to find users in the given AOI [30, 31]. Once
we have found all users and know the distribution of users within the AQI, in the
second phase, we need to optimally re-deploy UAVs in order to serve users bet-
ter [32, 33, 34]. Many researchers have presented different control algorithms for

both phases of this wireless network deployment problem.

Historically, the research areas of networking and robotics have examined the
tirst phase. In the field of networking, Wang presented a mobile sensor placement
algorithm based on voronoi diagrams [35]. Circle Packing Theorem (CPT) is an-
other computational geometry model for wireless network deployment [36]. Lam
deployed a heterogeneous sensor network using circle packing by filling the given
AOQI with circles of different radii corresponding to different UAV types [37]. In the
tield of robotics, Howard used potential fields to deploy a mobile sensor network
to cover an area [38]. In this approach an agent experienced repelling potential
tields based on distance from other agents and obstacles and moved towards un-
explored areas. Poduri introduced a mobile network deployment algorithm with

the constraint that each agent has at least K neighbors where K is a user defined
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number [39]. All these approaches only address the first phase and aim to provide

area coverage without adapting to distribution of users.

The second phase addresses the problem of deploying UAVs to serve users who
have been found in the first phase. In the networking field, Ming introduced an
adaptive mobile network deployment algorithm by taking inspiration from Delau-
nay Triangulation (DT) [40]. Bartolini proposed a voronoi polygon based adaptive
network deployment for heterogeneous agents [41]. In [42], the authors initially
deploy UAVs using CPT and then proposed an approach to adjust the altitude
of deployed UAVs to increase or decrease a UAV’s sensing area. Bandwidth area
coverage is increased by increasing the altitude of deployed UAVs, but the sig-
nal strength reduces as the inverse of distance squared resulting in poor coverage
quality. Zhao presented a centralized algorithm and a potential field based dis-
tributed algorithm for UAV deployment while maintaining connectivity among
UAVs [43]. However, they considered only two different types of user’s distribu-
tions - uniformly random and in three clusters spread around the AOI with a com-
mand center in the middle. All these approaches work well in relatively uniform
distributions of users but fail when users are in distinct clusters and distributed

non-uniformly.

Other than area coverage and re-positioning of deployed UAVs, mesh network
creation and maintenance presents multiple challenges when using UAVs as base
stations. Minimizing the number of UAVs to be deployed, minimizing deploy-
ment time, extending lifetime of deployed UAVs, routing, and channel allocation,
all present significant challenges. In 2016, Lyu proposed a placement optimization
technique to minimize the number of unmanned aerial vehicle-mounted mobile

base stations while providing wireless coverage to ground terminals [44]. The
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algorithm works in polynomial time with successive mobile base station place-
ment. To minimize the deployment delay, Zhang presented a fast deployment
algorithm [45]. Amar [46] presented a dynamic algorithm to serve a sub-region
that requires more bandwidth. The study assumed an uniform distribution of user

positions while we look at non-uniform distribution of users.

Closer to our work, researchers have used genetic algorithms to deploy static
networks by optimally placing UAVs in the AOIL Reina [47] presented a multi-
layout multi-subpopulation genetic algorithm to deploy UAVs optimally to maxi-
mize a linear combination of coverage, fault-tolerance, and redundancy. Dina [48]
introduced a variable length genetic algorithm to maximize area coverage and
minimize deployment cost using non-homogeneous sensors. These papers pro-
vide UAV positions as their output. In contrast, we use a genetic algorithm to
evolve potential field parameters to guide UAVs. This not only gives us UAV po-

sitions, but also guides collision free UAV movement to these positions.

In this thesis, we use GANet to control UAVs movement to generate a wire-
less mesh network. Our approach uses four potential fields to guide UAVs in an

unknown environment and details are provided in Chapter 4.

2.3 Dynamic Fire Boundary Coverage

Wildfires are spontaneous events that cause massive destruction to structures and
wildlife. Figure 2.8 shows a wildfire scenario where a firefighter tries to suppress
the spreading of the fire. The Congressional Research Service reported that every
year since 2000, there has been an average of 70, 685 wildfires that burned an aver-

age of 7.1 million acres in the United States [49]. Although on average, there were
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Figure 2.8: A wildfire outbreaks in California. Firefighting is really dangerous
without continuous fire fronts growth information. Courtesy of NBC News

78, 600 wildfires annually in the US in the 1990s, the total acres burned have more
than doubled. Fighting wildfires is dangerous as the behavior of wildfires can be
unpredictable and difficult to model. The National Fire Protection Association re-
ports that from 2014 to 2018 on average 65 firefighters’ lives were lost annually
while fighting wildfire [50] and these numbers do not even account for the num-
ber of non-firefighter civilian lives lost to wildfires. The loss of wildlife, human
life, and structures highlights the importance of the need to locate, observe and
track wildfires. This information is critical to making emergency plans to evacuate

civilians to safety and to fight the fires.

UAVs can and have been used to assist humans in emergency and disaster sit-
uations by providing situational awareness with imagery and maps [24, 51, 52].
By maintaining proper communication links between the UAVs and ground con-
trol stations, we can remotely and safely assess damage in a given region of in-
terest. Thus, UAVs are highly suitable for tackling the wildfire tracking problem
by providing imagery and maps while relaying information through each other to
tirefighters/operators who are at a safe distance [53]. Teaming of UAVs and other

robots to collaborate on resolving multiple challenges has risen in popularity for
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both research and application. Multiple UAVs have been used to collaborate as a
network of agents with sensors to build maps and gather information in their local

areas to get accurate information of the entire scope of the problem.

We focus on using UAVs for tracking the spread of wildfires in forests. Two
fundamental challenges when using UAVs in unknown regions for fire coverage
are fire detection and fire tracking, and this thesis focuses on the latter. However,
the two are related as we need detection for tracking, so we start with providing

an overview of work in detection.

Yuan [54] used Infrared (IR) imaging sensors installed on UAVs to detect the
presence of fire and presented techniques to process images gathered using dif-
ferent sensors mounted on UAVs, to study fire spreading behaviors. Afghah [55]
proposed a leader-follower formation to cluster a set of UAVs into multiple coali-
tions that collectively covered a particular area of interest. Merino [56] proposed
a cooperative perception system for multiple heterogeneous UAVs for automatic
detection of forest fires. They collected data using multiple sensors such as a visual
cameras, infrared sensors, and fire detectors mounted on UAV’s and fused them
together for detection, monitoring, and measurement of forest fires. Another fire
detection technique developed by Yuan [57] analyzes fire segmentation in different
color spaces. Henry [58] introduced a Forest Fire Detection Index (FFDI) to detect
tires through the use of a new color index. The index is based on a method for

vegetation classification and used to detect flames and smoke.

The work in fire detection has shown that several robust techniques exist for fire
detection and tracking as long as we have good observation platforms with suit-
able sensors. In this thesis, we assume that UAVs have a fire detection sensor and

our challenge is to find the fire boundary and move UAVs to track this boundary
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as it grows in perimeter length over time. Coordinated control of multiple UAVs is
essential for dynamic fire coverage and control techniques are broadly categorized
as either distributed or centralized control. David [59] presented a path planning
algorithm to track fire using low altitude short endurance UAVs. This centralized
path planning computes waypoints for each UAV, with these waypoints being gen-
erated along the edge of a fire (along the fire boundary). Phan [60] worked on a
similar problem where he proposed a cooperative control framework for a team
of UAVs and unmanned ground vehicles (UGVs) to detect and track fires. In this
centralized framework, a mission controller monitors a dynamic environment, for-

mulates high level mission plans, and allocates tasks to each vehicle.

Using our potential field based representation, each agent acts independently
and thus works in a decentralized manner by collecting information about the
given AQI using mounted sensors and by communicating with neighbors. Many
researchers have studied decentralized control techniques for fire coverage using
UAVs. Manish [61] investigated the cooperative control of multiple UAVs for ac-
curate situational awareness and distribution of fire suppressant fluid at the edges
of fire. Maza [62] proposed a distributed decision making architectural framework
for multi-UAV configuration in disaster management. Multiple checkpoints in the
region of interest can be used to command UAVs to track down the boundary for