
University of Nevada, Reno

GENETIC ALGORITHMS OPTIMIZED POTENTIAL FIELDS FOR
DECENTRALIZED GROUP TASKING

A Dissertation Submitted in Partial Fulfillment

of the Requirements for the Degree of Doctor of Philosophy in

Computer Science and Engineering

by

Rahul Dubey

Dr. Sushil J. Louis / Dissertation Advisor

August 2021

© 2021 Rahul Dubey

ALL RIGHTS RESERVED

UNIVERSITY
OF NEVADA THE GRADUATE SCHOOL
RENO

We recommend that the dissertation prepared
under our supervision by

RAHUL DUBEY

entitled

GENETIC ALGORITHMS OPTIMIZED POTENTIAL FIELDS FOR

DECENTRALIZED GROUP TASKING

be accepted in partial fulfillment of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

Sushil J. Louis, Ph. D. – Advisor

Shamik Sengupta, Ph. D. – Committee Member

Monica Nicolescu, Ph. D. – Committee Member

Hung La (Jim), Ph. D. – Committee Member

Ramona Houmanfar, Ph. D. – Graduate School Representative

David Zeh, Ph. D. – Dean, Graduate School

August 2021

i

ABSTRACT

Maneuvering autonomous agents to accomplish complex tasks is a difficult and

typically NP-hard optimization problem with many real-world applications. In

this thesis, we use potential fields based on task and agent properties to control

the movement of groups of agents and use a genetic algorithm (GA) to optimize

potential field parameter values to lead to complex task achieving behaviors. More

specifically, we control autonomous unmanned aerial vehicles (UAVs) in search

and rescue scenarios to find and help people in need, in wildfire coverage scenar-

ios to monitor a wildfire’s perimeter, and game agents in real-time strategy (RTS)

games to win skirmishes. In all three applications, potential fields control agent

movement, genetic algorithms optimize potential field parameters, and a simula-

tion evaluates task performance to guide genetic optimization.

Experimental results show that our potential field representation and problem

formulation works well across the three problems. We used UAVs as flying access

points and controlled their movement using genetic algorithms optimized poten-

tial fields to generate wireless networks. These ad-hoc wireless networks outper-

formed the current state of the art ad-hoc network deployment algorithm. The

same representation with a different set of potential fields was used for successful

deployment of UAVs to track the spread of wildfire boundaries and results show

that with enough UAVs, complete fire boundary coverage was achieved. Lastly,

we used two different RTS game platforms to evolve tactics for a team of heteroge-

neous game agents by formulating the problem as a multi objective optimization

problem. Again using potential fields, a genetic algorithm evolved a diverse set

of high quality skirmish tactics ranging from attacking to fleeing against test op-

ponents. Results show that with aggressive attacking tactics, a team of friendly

agents was able to eliminate the majority of opponents but suffered significant

ii

damage. On the other hand, fleeing tactics resulted in less damage to friendlies

but also inflicted less damage to opponents. We also observed the emergence of

cooperation between friendly game agents. These results indicate that genetic al-

gorithms optimized potential fields are a viable approach to decentralized group

tasking.

iii

ACKNOWLEDGEMENTS

I would like to sincerely thank my advisor, Dr. Sushil J. Louis, for the patience

and support throughout this journey. I could not have imagined having a better

advisor and mentor, who has guided and helped me to not just think critically to

do research but also taught me the importance of professional communication. I

would also like to thank my dissertation committee members: Dr. Shamik Sen-

gupta, Dr. Hung La, Dr. Monica Nicolescu, and Dr. Ramona Houmanfar for their

valuable feedback, suggestions, and support at various stages of my dissertation. I

thank my lab members, especially, Dr. Siming Liu for all the technical discussions

and support he provided during my initial days at UNR.

This work was supported by grant number N000141712558 from the Office of

Naval Research and in part by the U.S. Department of Transportation, Office of the

Assistant Secretary for Research and Technology (USDOT/OSTR) under Grant No.

69A3551747126 through INSPIRE University Transportation Center (http://inspire-

utc.mst.edu) at Missouri University of Science and Technology. The views, opin-

ions, findings and conclusions reflected in this dissertation are solely those of the

authors and do not represent the official policy or position of the either the Office

of Naval Research, USDOT/OSTR, or any State or other entity.

Last, but definitely not the least, I would especially like to thank my wife and

family members for their immense support throughout this time period. Without

their unconditional support I would not have achieved this.

iv

TABLE OF CONTENTS

Abstract . i
Acknowledgements . iii
Table of Contents . iv
List of Tables . vi
List of Figures . vii

1 Introduction 1
1.1 Structure of this Thesis . 3

2 Background 6
2.1 Genetic Algorithms . 6

2.1.1 Elitist Genetic Algorithms . 9
2.2 UAV Wireless Mesh Network Deployment 10
2.3 Dynamic Fire Boundary Coverage . 14
2.4 Real-Time Strategy Games . 18

3 Methodology 24
3.1 Potential Fields . 24

3.1.1 Potential Field Based Movement Control 26
3.1.2 Agent Motion Model . 28

3.2 Evaluation . 29
3.3 Parallel GAs . 30

4 Wireless Mesh Network Deployment 32
4.1 Problem Formulation . 33
4.2 Methodology . 35

4.2.1 Genetic Algorithms . 36
4.2.2 UAV Movement Modeling . 40
4.2.3 First Phase: Search . 41
4.2.4 Second Phase: Service . 44

4.3 Results and Discussion . 48
4.3.1 Experiments on A Simple Test Problem 48
4.3.2 Evolution on Training Scenarios 51
4.3.3 Experiments on Testing Scenarios 58
4.3.4 Maximizing The Minimum Objective 60

4.4 Conclusions . 61

5 Dynamic Fire Coverage 63
5.1 Problem Formulation . 63
5.2 Fire Simulator . 64
5.3 Fire Influence Map . 67
5.4 UAV Deployment . 67

v

5.4.1 Potential Field and Representation 68
5.5 Fitness Computation . 70
5.6 Results and Discussion . 72

5.6.1 Experiments on Training Scenarios 72
5.6.2 Experiments on Testing Scenarios 74
5.6.3 Performance With Reduced Number of UAVs 75

5.7 Conclusion . 75

6 Real-Time Strategy Game Micro 77
6.1 Problem Formulation . 77
6.2 Influence Map . 79
6.3 Potential Fields for Real-Time Strategy Game Micro 80
6.4 Experiments on FastEcslent . 83

6.4.1 FastEcslent Results and Discussion 85
6.5 Experiments on StarCraft-II . 91

6.5.1 StarCraft-II Results and Discussion 93
6.6 Conclusions . 105

7 Conclusions and Future Work 107
7.1 Conclusions . 107
7.2 Future Work . 109

Bibliography 111

vi

LIST OF TABLES

2.1 Genetic Algorithm Nomenclature . 9

4.1 Simulation Parameters . 49
4.2 Comparing three search algorithms 49
4.3 Comparing fitness of Best1h, Best2h, and ATRI with different number

of UAVs and users on training scenarios. 57
4.4 Comparing fitnesses of Best1h, Best2h, and ATRI with 156, 117, and

78 UAVs and different numbers of users on testing scenarios. 59

5.1 Simulation Parameters. 72

6.1 Game agent simulation properties in FastEcslent 85
6.2 Different agent combinations . 100
6.3 Attributes and characteristics of agents. Agent types and attributes

are taken from Starcraft 2. 100

vii

LIST OF FIGURES

1.1 Offline optimization of potential field parameters using genetic al-
gorithms. 2

2.1 Overview of the canonical genetic algorithm. 6
2.2 An individual represented by a binary chromosome and genes. . . . 7
2.3 Fitness proportional selection scheme with population size of 10. . . 7
2.4 One point crossover between two parents to create two children. . . 8
2.5 Bit-wise mutation, fourth bit form left changed from 0 to 1. 8
2.6 n + n elitism . 10
2.7 An example of UAVs network deployment with 8 UAVs, 12 users,

and a command center labelled ”CC.” UAVs are shown by black
boxes and red boxes represents users. 11

2.8 A wildfire outbreaks in California. Firefighting is really danger-
ous without continuous fire fronts growth information. Courtesy
of NBC News . 15

2.9 Typical RTS AI levels of abstraction[81] 19
2.10 NSGA-II Procedure. 23

3.1 The figure shows a goal by blue circular object and an obstacle by
red circular object. The goal exert an attractive potential field, the
obstacle exert a repulsive potential field, and arrows represent the
direction of resultant potential field. 25

3.2 Influence of repulsive potential field around an obstacle shown by
red and yellow pixels. The blue region shows that the magnitude
of attractive potential dominates repulsive potential. 26

3.3 Attractive and repulsive potential fields magnitude. 27
3.4 Individuals are evaluated on 4 different training scenarios and the

fitness is averaged over these 4 training scenarios. 29
3.5 Parallel GA . 30

4.1 The four training scenarios with different users’ distribution. Blue
colored dots show the locations of users, darker the dots more band-
width required and vice-versa. 38

4.2 The three testing scenarios distinct from training scenarios and never
seen during parameter evolution. 39

4.3 Networks deployed using DT and CPT in a square AOI. Dashed
circle shows the coverage of a UAV. 41

4.4 10 randomly distributed UAVs (a), and each UAV moves under the
influence of attractive and repulsive potential fields with parame-
ters (ca = 1, e1 = 1, cr = 3 ×

√
3 × 1003, er = −2). Figure (b) shows

that using potential fields, we can get network deployment similar
to networks inspired from DT. 42

viii

4.5 Deployment of UAVs at the end of the first phase on the third train-
ing scenario. Blue dots represent users, green circles represent UAVs’
coverage areas, and the red circle represents the location of the com-
mand center. A black circle shows an inactive UAV and the ma-
genta circle shows an inactive UAV. 44

4.6 Optimal UAV deployment within a small AOI with 10 users (blue
dots). Initial positions covering the area (a), final positions focusing
on user locations and bandwidth sharing (b). 50

4.7 Comparing GANet one-hop (green), two-hop (blue) versus ATRI
(magenta) on four training scenarios. The rightmost bars show av-
erages across the four scenarios. 52

4.8 Comparing network deployment on our first training scenario. ATRI
(a) versus GANet 1-hop (b) and 2-hop (c). GANet obtains better
performance by focusing more on areas with users and avoiding
areas with no users. 52

4.9 Comparing the average (a) bandwidth coverage, and (b) number
of AUs of Best1h and Best2h on training scenarios. There is a little
difference in the average bandwidth coverage, but a significant dif-
ference in the number of AUs. 54

4.10 Network deployments of Best1h and ATRI. 55
4.11 Comparing per AU data rate on four training scenarios. 56
4.12 GANet performance when maximizing the average performance

across four training scenarios (green) compared to maximizing the
minimum performance (blue). 60

5.1 A discretized fire influence map. (a) 33 initial fire heat sources at
t = 0., and (b) Propagation of fire from initial 33 heat sources at
time step t = 100. 65

5.2 Fire tracking over three training scenarios where red dots represent
the fire boundary in a given AOI. Green circles represent the cover-
age range of UAVs. In all three cases, 100% fire boundary coverage
is achieved. 73

5.3 Fire tracking over three testing scenarios. In all three cases, 100%
fire boundary coverage is achieved. 74

5.4 Fire tracking with 8 UAVs. 75

6.1 Potential fields needed for groups composed from two types of
agents. 82

6.2 Pareto front of 1000 random chromosome against BOM1 to BOM5 . 87
6.3 Micro evolution for friendly agents in final experiment against BOM4 88
6.4 Comparing evolved micro against 3750 random chromosomes . . . 88
6.5 Initial and final generation pareto front over ten runs for evolved

micro . 89

ix

6.6 Testing the robustness of evolved attacking, balanced, and fleeing
micro against BO4 on 50 random scenarios. 90

6.7 Four training scenarios to evolve RTS micro behaviors in SC2. 92
6.8 Last generation pareto fronts of MS, PPF, and NEAT for (a) 2v2 and

(b) 3v3 on training scenarios against SC2AI 94
6.9 Performance of M0 for (a) 2v2 and (b)3v3 on testing scenarios against

SC2AI . 95
6.10 Performance of (a) M0 and (b) M3 for 2v2 on testing scenarios against

SC2AI . 97
6.11 Performance of (a) M0 and (b) M3 for 3v3 on testing scenarios against

SC2AI . 97
6.12 Last generation pareto fronts of MS, PPF, NEAT, and MS+PPF for

(a) 2v2 and (b) 3v3 on training scenarios against SC2AI 98
6.13 Pareto fronts at every 10th generation. Each team is composed from

three different types of agents. 101
6.14 Pareto fronts at every 10th generation. Each team is composed from

four different types of agents. 102
6.15 Pareto fronts of every 10th generation. Each team composed from

five different types of agents. 103
6.16 Two types of testing scenarios with a group composed of different

types of agents against the same group of agents 104

1

CHAPTER 1

INTRODUCTION

Controlling autonomous agents has many real-world applications but presents

multiple challenges. These challenges arise because of the large search space of

control parameter values and the dynamic nature of environments. Searching for

solutions in large search spaces in real-time is difficult, and if the environment

state changes then the previously obtained solutions may not be valid. In this the-

sis, we present a new representation and problem formulation to control a large

number of autonomous agents for group tasking. Our representation uses task-

specific potential fields to guide autonomous agents to complete group tasks. Po-

tential fields based autonomous agent control was first introduced by Khatib [1] in

1986. Owing to their simplicity, many researchers in robotics and in games have

used distance based potential fields to control the movement of agents for obstacle

avoidance and navigation. However, in this thesis, we augment distance based po-

tential fields with more complex, task specific, and agent properties driven poten-

tial fields to guide agents to perform group tasks. Since these potential fields can

be highly non-linear, tuning their parameters is a difficult optimization problem

and we therefore use genetic algorithms to optimize potential field parameters.

Genetic Algorithms (GAs) have been used extensively to solve poorly under-

stood non-linear optimization problems [2, 3, 4, 5, 6]. The genetic algorithm op-

timizes potential field parameters offline and we use these optimized potential

field parameters to control agents for group tasking in this thesis. Computing po-

tential fields is not computationally expensive and thus our task specific potential

fields based approach enables agents to make real-time decisions. Many real world

applications require real-time decision making and this makes our approach and

2

Figure 1.1: Offline optimization of potential field parameters using genetic algo-
rithms.

representation applicable to a wide range of problems. We show the applicabil-

ity and effectiveness of our approach on three different challenging problems: 1)

wireless mesh network deployment (WMND) using UAVs for search and rescue,

2) dynamic fire boundary tracking using UAVs to fight forest fires, and 3) game

agent control in real-time strategy games to win skirmishes. In all three problems

we use genetic algorithms to optimize potential fields that guide agents.

For WMND, the genetic algorithm optimizes potential fields based on wireless

bandwidth coverage and distances. Similarly, we use potential fields based on fire

intensity and distances to control the movement of UAVs to track the perimeter

of a fire. In these two problems we control only one type of UAV, but in RTS

games we control multiple types of game agents using potential fields based on

distance, health, and weapons properties to win skirmishes. In all three problems

we identify the specific potential fields to use and the GA optimizes this set of

potential fields so that agents perform well on the group task.

Figure 1.1 shows a block diagram of our system’s architecture which has two

components: the genetic algorithm and the evaluator. The GA works with a pop-

ulation of candidates solutions each of which encodes possible potential field pa-

rameter values. To make progress towards high quality potential field parameters,

the GA needs to know the relative merit or utility (the fitness) of a set of param-

eters at the task. We use a simulation to evaluate this fitness and the GA moves

3

towards higher fitness using genetic operators. Chapter 2 provides more detail

about genetic algorithms. To use our approach on a new problem we only need

a task specific evaluator and the identification of potential fields that affect agent

behavior. Since the evaluator is problem specific, we next describe the three eval-

uators that evaluate the fitness of a candidate solution.

First, we created an evaluator that simulates a wireless mesh network and given

a set of potential field parameters returns the sum of bandwidth coverage and

longevity as the fitness of the candidate solution. The experimental results show

that our approach outperformed the state-of-the-art wireless network deployment

algorithm. The second evaluator simulates the spread of the wildfire and com-

putes the fire boundary coverage and energy consumption of UAVs and returns

these as the fitness. Results show that with enough UAVs, we achieved complete

fire boundary coverage. Lastly, the third evaluator simulates a real-time strategy

game where a friendly team plays against an enemy team and friendly agents are

controlled by the genetic algorithm optimized set of potential fields. The evaluator

returns the damage done and damage received by friendly agents as the fitness and

the results show that our approach evolved a diverse set of high quality solutions.

1.1 Structure of this Thesis

We organize this thesis based on problem complexity rather than chronology. We

start with the WMND, a single objective problem, that has a fixed evaluator, and

end with RTS micro, a multi objective problem with intelligent dynamic oppo-

nents.

The next chapter begins with an overview of genetic algorithms and how they

4

are used in my work. Next, we review prior work in UAV wireless network de-

ployment for search and rescue, dynamic fire boundary coverage, and RTS games.

Chapter 3 starts by mathematically modeling potential fields and how to use

potential fields for agent movement control. Subsequently, we describe an agent’s

motion model. We then describe some important aspects of our experimental

setup.

Chapter 4 specifies wireless mesh network deployment using our Genetic Al-

gorithm Network deployment algorithm (GANet). The chapter begins with the

problem statement followed by our methodology where we explain our GANet

algorithm and identify the set of potential fields to control UAVs. Next, we present

experimental results showing that GANet outperformed the state-of-the-art. This

was published in the Proceedings of the 2020 IEEE Congress on Evolutionary Computa-

tion [7]. More extensive experimental results will be published in the Proceedings of

the 2021 Genetic and Evolutionary Computation Conference (GECCO) [8] and are under

review in IEEE Access (a journal).

Chapter 5 describes tracking the spread of wildfire boundaries using UAVs and

is organized like the previous chapter. We define the problem, the fire simulation

model, and the set of potential fields. Results show that, given enough UAVs we

can achieve complete fire boundary coverage. These results will be published in

the Proceedings of the 2021 IEEE Congress on Evolutionary Computation [9].

Chapter 6 specifies the control of heterogeneous game agents in RTS games to

win skirmishes. This is a different problem compared to wireless network deploy-

ment and dynamic fire coverage in that we have opponents, but we use the same

approach to control the movement of game agents. Like in previous chapters, we

5

define the problem and the set of potential fields. We used two different game sim-

ulation platforms for experiments and results show that our approach generates a

diverse set of tactics. These results were published in the Proceedings of the 2018

IEEE Conference on Computational Intelligence and Games [10] and in the Proceedings

of the 2019 IEEE Congress on Evolutionary Computation [11]. We next increased prob-

lem complexity to investigate the scalability of our approach. These results will

be published as a workshop paper in the Proceedings of the 2021 Genetic and Evolu-

tionary Computation Conference (GECCO) [12]. Finally, the last chapter, Chapter 7,

provides the conclusions and presents possible future work.

6

CHAPTER 2

BACKGROUND

We start with an overview of genetic algorithms. We then review work done in

wireless mesh network deployment, fire boundary coverage, and RTS micro.

2.1 Genetic Algorithms

Genetic algorithms are inspired by the process of natural selection. Holland pro-

posed genetic algorithms in the early 1970s as computer programs that mimic evo-

lutionary processes in nature, and his canonical genetic algorithm (CGA) is shown

in Figure 2.1 [13, 14].

Figure 2.1: Overview of the canonical genetic algorithm.

Genetic algorithms attempt to solve problems with an iterative process starting

with a population of randomly initialized individuals. Each individual encodes

7

Figure 2.2: An individual represented by a binary chromosome and genes.

Figure 2.3: Fitness proportional selection scheme with population size of 10.

a candidate solution to the problem in its chromosome that represents a set of

parameters called genes, as shown in Figure 2.2. Each gene is in turn encoded into

a binary string.

The values interpreted from the genes are called alleles. Chromosomes are not

the actual solution to the given problem, they are a blueprint or a set of instruc-

tions that dictate how to create a solution. Each individual is evaluated and as-

signed a real value known as the fitness of the individual. Once all individuals

are evaluated, GAs create offspring from individuals of the current population

using three genetic operators; selection, crossover, and mutation. The selection

operator selects individuals for reproduction based on a fitness proportional selec-

tion scheme as shown in Figure 2.3. An individual with higher fitness has higher

8

Figure 2.4: One point crossover between two parents to create two children.

Figure 2.5: Bit-wise mutation, fourth bit form left changed from 0 to 1.

chances of being selected for reproduction and will have a larger representation in

subsequent generations. The recombination of individuals in genetic algorithms

is simulated through a crossover operator that exchanges portions between indi-

viduals as shown in Figure 2.4. The figure shows one point crossover that creates

two children by crossing over two individuals. Mutation causes probabilistic alter-

ation of the genes of newly created children. Figure 2.5 shows a bit-wise mutation

where the allele of a gene is flipped.

The newly generated offspring are evaluated and the process of selection and

recombination using genetic operators is continued until reaching a termination

criteria. Table 2.1 lists the common terms and their descriptions used in GAs.

In a canonical GA, individuals generated (good or bad) have a relatively short

life span since the population is constantly being replaced by new generations of

individuals. Hence, even if a global optimum is generated, it can disappear in a

9

Table 2.1: Genetic Algorithm Nomenclature

Term Description
Population A set of individuals
Individual A candidate solution to the problem
Chromosome A string of genes
Gene An element of chromosome
Allele The values which a gene can assume
Fitness A value indicating the quality of an individual as a solution to the

problem.
Selection A way to chose one individual from the population.
Crossover Operation that exchanges information of two selected parents to

yield two new children.
Mutation Operation that probabilistic changes one or more bits in a chromo-

some

generation or two for long periods of time. Thus it is also possible that despite hav-

ing higher fitness some good individuals may not be selected and may eventually

be lost.

2.1.1 Elitist Genetic Algorithms

To preserve good individuals generated in any generation to the next generation,

we use elitism. There are several ways of doing elitism in genetic algorithms [4, 15]

and we chose n + n elitism where n is the population size. The three GAs opera-

tors create offspring of size n from n parent individuals. As shown in Figure 2.6,

when using n + n we create a pool of individuals that is two times larger than the

population size (2n). In the case of a single objective problem, we sort individuals

based on their fitness value and pick the best n individuals. However, in the case

of a multi objective problem an individual’s fitness has multiple objective values.

Thus, to pick the best n individuals we sort 2n individuals into different pareto

10

Figure 2.6: n + n elitism

fronts and then choose the best n individuals. In the next section we begin with the

first problem, wireless mesh network deployment.

2.2 UAV Wireless Mesh Network Deployment

UAVs are gaining traction as a useful tool in many different domains including

search and rescue [16], surveillance [17], cargo transport [18], surveying and map-

ping [19], agriculture [20], disaster relief [21], IoT [22], and defense and secu-

rity [23, 24, 25] applications where there is a need to quickly deploy a wireless

communications network. A UAV can fly quickly to establish Line of Sight (LoS)

communication with users without being affected by different geographical ter-

rain [26]. During emergencies or in remote areas where existing communication

networks have failed or do not exist at all, a quickly deployed wireless communi-

cation network can help users safely exit the emergency area and can help emer-

gency personnel find and rescue users [27]. Figure 2.7 shows an example wireless

11

Figure 2.7: An example of UAVs network deployment with 8 UAVs, 12 users, and
a command center labelled ”CC.” UAVs are shown by black boxes and red boxes
represents users.

mesh network using eight UAVs to provide bandwidth coverage to twelve users.

In this figure, UAVs are shown inside black rectangular boxes and users are

shown by red rectangles. We assume that each UAV can communicate with users

within a certain range as shown by black-dashed circles and can communicate

with neighboring UAVs shown by green links. A command center is placed on the

right and is in direct communication with two UAVs. Each UAV can communicate

with the CC either directly or through neighboring UAVs to provide bandwidth

coverage to all twelve users. In this work, bandwidth coverage refers to data in

Megabits per second (Mbps) provided by UAVs to users. Different users, depend-

ing on their needs, may require different bandwidth coverage, and thus, band-

width requirements combined with users’ locations determine optimal collision

free UAV movement and positioning.

However, many challenges remain before a large number of UAVs can be effi-

12

ciently and effectively deployed [28]. For example, in a search and rescue scenario

we have to first distribute available UAVs over an area of interest to find all users

in the AOI, then dynamically continue re-positioning UAVs to serve found users.

Re-positioning should maintain connectivity to a fixed operations command cen-

ter while serving moving users and changing bandwidth needs [29].

This thesis focuses on the problem of controlling a large number of UAVs that

create and maintain a mesh network that connects all users to the command center

while serving their bandwidth needs for the maximum amount of time. UAV de-

ployment typically proceeds in two phases. In the first phase, UAVs are deployed

to cover the maximum possible area to find users in the given AOI [30, 31]. Once

we have found all users and know the distribution of users within the AOI, in the

second phase, we need to optimally re-deploy UAVs in order to serve users bet-

ter [32, 33, 34]. Many researchers have presented different control algorithms for

both phases of this wireless network deployment problem.

Historically, the research areas of networking and robotics have examined the

first phase. In the field of networking, Wang presented a mobile sensor placement

algorithm based on voronoi diagrams [35]. Circle Packing Theorem (CPT) is an-

other computational geometry model for wireless network deployment [36]. Lam

deployed a heterogeneous sensor network using circle packing by filling the given

AOI with circles of different radii corresponding to different UAV types [37]. In the

field of robotics, Howard used potential fields to deploy a mobile sensor network

to cover an area [38]. In this approach an agent experienced repelling potential

fields based on distance from other agents and obstacles and moved towards un-

explored areas. Poduri introduced a mobile network deployment algorithm with

the constraint that each agent has at least K neighbors where K is a user defined

13

number [39]. All these approaches only address the first phase and aim to provide

area coverage without adapting to distribution of users.

The second phase addresses the problem of deploying UAVs to serve users who

have been found in the first phase. In the networking field, Ming introduced an

adaptive mobile network deployment algorithm by taking inspiration from Delau-

nay Triangulation (DT) [40]. Bartolini proposed a voronoi polygon based adaptive

network deployment for heterogeneous agents [41]. In [42], the authors initially

deploy UAVs using CPT and then proposed an approach to adjust the altitude

of deployed UAVs to increase or decrease a UAV’s sensing area. Bandwidth area

coverage is increased by increasing the altitude of deployed UAVs, but the sig-

nal strength reduces as the inverse of distance squared resulting in poor coverage

quality. Zhao presented a centralized algorithm and a potential field based dis-

tributed algorithm for UAV deployment while maintaining connectivity among

UAVs [43]. However, they considered only two different types of user’s distribu-

tions - uniformly random and in three clusters spread around the AOI with a com-

mand center in the middle. All these approaches work well in relatively uniform

distributions of users but fail when users are in distinct clusters and distributed

non-uniformly.

Other than area coverage and re-positioning of deployed UAVs, mesh network

creation and maintenance presents multiple challenges when using UAVs as base

stations. Minimizing the number of UAVs to be deployed, minimizing deploy-

ment time, extending lifetime of deployed UAVs, routing, and channel allocation,

all present significant challenges. In 2016, Lyu proposed a placement optimization

technique to minimize the number of unmanned aerial vehicle-mounted mobile

base stations while providing wireless coverage to ground terminals [44]. The

14

algorithm works in polynomial time with successive mobile base station place-

ment. To minimize the deployment delay, Zhang presented a fast deployment

algorithm [45]. Amar [46] presented a dynamic algorithm to serve a sub-region

that requires more bandwidth. The study assumed an uniform distribution of user

positions while we look at non-uniform distribution of users.

Closer to our work, researchers have used genetic algorithms to deploy static

networks by optimally placing UAVs in the AOI. Reina [47] presented a multi-

layout multi-subpopulation genetic algorithm to deploy UAVs optimally to maxi-

mize a linear combination of coverage, fault-tolerance, and redundancy. Dina [48]

introduced a variable length genetic algorithm to maximize area coverage and

minimize deployment cost using non-homogeneous sensors. These papers pro-

vide UAV positions as their output. In contrast, we use a genetic algorithm to

evolve potential field parameters to guide UAVs. This not only gives us UAV po-

sitions, but also guides collision free UAV movement to these positions.

In this thesis, we use GANet to control UAVs movement to generate a wire-

less mesh network. Our approach uses four potential fields to guide UAVs in an

unknown environment and details are provided in Chapter 4.

2.3 Dynamic Fire Boundary Coverage

Wildfires are spontaneous events that cause massive destruction to structures and

wildlife. Figure 2.8 shows a wildfire scenario where a firefighter tries to suppress

the spreading of the fire. The Congressional Research Service reported that every

year since 2000, there has been an average of 70, 685 wildfires that burned an aver-

age of 7.1 million acres in the United States [49]. Although on average, there were

15

Figure 2.8: A wildfire outbreaks in California. Firefighting is really dangerous
without continuous fire fronts growth information. Courtesy of NBC News

78, 600 wildfires annually in the US in the 1990s, the total acres burned have more

than doubled. Fighting wildfires is dangerous as the behavior of wildfires can be

unpredictable and difficult to model. The National Fire Protection Association re-

ports that from 2014 to 2018 on average 65 firefighters’ lives were lost annually

while fighting wildfire [50] and these numbers do not even account for the num-

ber of non-firefighter civilian lives lost to wildfires. The loss of wildlife, human

life, and structures highlights the importance of the need to locate, observe and

track wildfires. This information is critical to making emergency plans to evacuate

civilians to safety and to fight the fires.

UAVs can and have been used to assist humans in emergency and disaster sit-

uations by providing situational awareness with imagery and maps [24, 51, 52].

By maintaining proper communication links between the UAVs and ground con-

trol stations, we can remotely and safely assess damage in a given region of in-

terest. Thus, UAVs are highly suitable for tackling the wildfire tracking problem

by providing imagery and maps while relaying information through each other to

firefighters/operators who are at a safe distance [53]. Teaming of UAVs and other

robots to collaborate on resolving multiple challenges has risen in popularity for

16

both research and application. Multiple UAVs have been used to collaborate as a

network of agents with sensors to build maps and gather information in their local

areas to get accurate information of the entire scope of the problem.

We focus on using UAVs for tracking the spread of wildfires in forests. Two

fundamental challenges when using UAVs in unknown regions for fire coverage

are fire detection and fire tracking, and this thesis focuses on the latter. However,

the two are related as we need detection for tracking, so we start with providing

an overview of work in detection.

Yuan [54] used Infrared (IR) imaging sensors installed on UAVs to detect the

presence of fire and presented techniques to process images gathered using dif-

ferent sensors mounted on UAVs, to study fire spreading behaviors. Afghah [55]

proposed a leader-follower formation to cluster a set of UAVs into multiple coali-

tions that collectively covered a particular area of interest. Merino [56] proposed

a cooperative perception system for multiple heterogeneous UAVs for automatic

detection of forest fires. They collected data using multiple sensors such as a visual

cameras, infrared sensors, and fire detectors mounted on UAV’s and fused them

together for detection, monitoring, and measurement of forest fires. Another fire

detection technique developed by Yuan [57] analyzes fire segmentation in different

color spaces. Henry [58] introduced a Forest Fire Detection Index (FFDI) to detect

fires through the use of a new color index. The index is based on a method for

vegetation classification and used to detect flames and smoke.

The work in fire detection has shown that several robust techniques exist for fire

detection and tracking as long as we have good observation platforms with suit-

able sensors. In this thesis, we assume that UAVs have a fire detection sensor and

our challenge is to find the fire boundary and move UAVs to track this boundary

17

as it grows in perimeter length over time. Coordinated control of multiple UAVs is

essential for dynamic fire coverage and control techniques are broadly categorized

as either distributed or centralized control. David [59] presented a path planning

algorithm to track fire using low altitude short endurance UAVs. This centralized

path planning computes waypoints for each UAV, with these waypoints being gen-

erated along the edge of a fire (along the fire boundary). Phan [60] worked on a

similar problem where he proposed a cooperative control framework for a team

of UAVs and unmanned ground vehicles (UGVs) to detect and track fires. In this

centralized framework, a mission controller monitors a dynamic environment, for-

mulates high level mission plans, and allocates tasks to each vehicle.

Using our potential field based representation, each agent acts independently

and thus works in a decentralized manner by collecting information about the

given AOI using mounted sensors and by communicating with neighbors. Many

researchers have studied decentralized control techniques for fire coverage using

UAVs. Manish [61] investigated the cooperative control of multiple UAVs for ac-

curate situational awareness and distribution of fire suppressant fluid at the edges

of fire. Maza [62] proposed a distributed decision making architectural framework

for multi-UAV configuration in disaster management. Multiple checkpoints in the

region of interest can be used to command UAVs to track down the boundary for

fire coverage. The authors of [63] presented a deep learning approach to deploy

UAVs to collect images for fire classification.

Open challenges still include the coverage of boundaries of a fire when the fire

spreads dynamically. Earlier approaches to resolve this problem include [59] and

[60] where UAV maneuvering decision making was centralized. Centralized ap-

proaches suffer from a single point of failure and may need more computation

18

and communication hardware than available. However, given enough computa-

tional and communication resources, these approaches can direct a team of UAVs

to continuously track the spread of fire along the boundary as long we have a good

fire spread model or external information about the fire boundary. Simultaneous

detection and tracking in a decentralized manner remains challenging. La used

a team of UAVs working together to track and follow a wildfire as it spreads by

tracking fire intensity and heat sources [64]. However, the only objective was to

maximize fire boundary coverage and there was no modeling of energy usage.

2.4 Real-Time Strategy Games

RTS games are an active area of research and contain a variety of interesting and

challenging problems. In RTS games, players gather resources, build infrastruc-

ture, build different game agents, expand control over the map, scout to gather op-

ponent’s activities, and ultimately try to destroy their opponent’s base while their

opponent also attempts to do all of the above [65]. Compared to board games,

RTS games are more complex. In most board games, each player has their turn,

player actions take effect immediately with deterministic results, and the board

state is fully observable. In contrast, RTS games are more complex because there

are no discrete player turns and players make moves simultaneously, actions are

durative, and the game state is only partially observable. To quantify the increase

in complexity, while Chess has 1050 board states and GO has 10170 board states,

RTS games are estimated to have over (1050)36000 states to play an entire game to

completion, more than the number of protons in the universe [65]. Therefore, tra-

ditional Artificial Intelligence (AI) techniques used for playing board games, such

as MINIMAX game tree search, cannot be directly applied to RTS games [66].

19

Figure 2.9: Typical RTS AI levels of abstraction[81]

In RTS games, players broadly decompose decision making during game play

into two categories; macro-management and micro-management shown in Fig-

ure 2.9. Macro-management or macro refers to long term planning in game play.

Long term planning involves coming up with an opening strategy, build order

planning, managing resources, and scouting to find out an opponent’s infrastruc-

ture and army composition to infer the opponent strategy. Micro-management or

micro deals with controlling a group of agents to win skirmishes against dynamic

and intelligent opponents who are also trying to win. We focus on micro because

good micro helps to win skirmishes and even games. Many different approaches

have been proposed for finding high performance micro in industry and academia.

Algorithms developed by industry RTS AI developers are not designed to beat op-

ponents rather these algorithms are designed to entertain players while focusing

on testability and repeatability [67]. Hard coded approaches have been extensively

used in commercial RTS games and most common hard coded approaches use fi-

nite state machines [68]. On the other hand, academic RTS AI research focuses on

20

using learning or reasoning techniques to win skirmishes and games. Our research

falls in the academic category.

The AI and Computational Intelligence (CI) research community have pre-

sented several techniques for micro. Game-tree search has been explored exten-

sively to search for a good micro in RTS games. Churchill presented an algorithm

called Alpha-Beta Considering Duration (ABCD) to control upto eight agents in

RTS games [69]. Chung applied a monte carlo planning technique to guide agents

in ORTS; a simplified version of StarCraft-Broodwar [70]. Balla used a monte carlo

tree search algorithm for tactical assault planning in Wargus, a RTS game [71].

Game-tree search algorithms work well for low complexity problems who’s search

space is tractable, but become unfeasible for large problems. To make game-tree

search applicable, abstractions or simplifications of game state representations and

possible actions for a given game state need to be used.

Researchers started focusing on Reinforcement Learning (RL) to solve compu-

tationally complex problems. RL achieved great success in playing and winning

different games. For example, AlphaGo, an agent trained using RL techniques de-

feated a human champion in a popular board game called GO [72]. AlphaStar,

a RTS game playing agent defeated grandmasters in StarCraft-II (SC2) [73]. A

team at DeepMind presented deep reinforcement learning techniques to achieve

human-level control and outperformed state of the art techniques in classic Atari

2600 games [74]. Specifically for RTS micro, Shao used a multi agents gradient de-

scent State-Action-Reward-Action-State (SARAS) algorithm to train a neural net-

work to control a group of agents composed from upto two different types of game

agents [75]. All these approaches use Deep Neural Networks (DNNs) and different

learning techniques to train DNNs. However, despite having the ability to solve

21

computationally complex problems, DNNs are opaque and its difficult to explain

why an action has been taken for a given state [76, 77].

Other than explainability, many hyper-parameters need to be tuned when work-

ing with DNNs to get better results, and tuning these hyper-parameters is difficult.

Taking these issues into account, researchers have tried to use evolutionary algo-

rithms to not only tune weights and biases but also to evolve the structure of neural

networks. Neuroevolution of augmenting topologies (NEAT) is a type of evolu-

tionary learning technique and has been used to generate RTS micro [78]. NEAT

evolves the topology, weights, and biases of neural networks and works on the

principle of natural selection [79]. Similar to DNNs, neural networks evolved by

NEAT are also opaque and do not provide insights into decision making.

This thesis presents a new approach and representation based on potential

fields and influence maps that is scalable to a large number of agents, works in

real time, and is explainable. Khatib in 1986 first used potential fields to navigate

robots while avoiding obstacles [1]. Later on, Hagelback presented preliminary

work on RTS micro using potential fields in combination with an A∗ path plan-

ning [80]. However, the work considers only distance dependent potential fields

for all agents. Our representation in this thesis considers a group composed from

upto three different types of agents and each different type of agent has a unique

set of potential field parameters. Louis and others have used potential fields for

2D and 3D distributed autonomy in games [81, 82, 83, 84]. Apart from using po-

tential fields, Sweetser used a cellular automata and influence map based decision

making approach in a three dimensional game environment called EmerGEnt [85].

In RTS games, huge losses can occur if agents move alone and battle separately. To

deal with this issue Preuss used evolutionary algorithms to generate flocking be-

22

havior and an influence map for path finding in the RTS game Glest [86]. Doherty

used an evolutionary computing technique to evolve tactical team behavior for

multiple agents, where each agent has different abilities that combine for effective

tactics [87]. Uriarte generated kiting behavior for multiple agents using influence

maps in an RTS game called Nova [88].

Good micro aims to eliminate opponents (first objective) while keeping friendly

agent safe (second objective), and thus we formulated this problem as a multi

objective problem to evolve Pareto front of micro behaviors. We use the Non-

dominated Sorting Genetic Algorithm (NSGA-II) [89] to optimize potential field

paramters and to generate a diverse set of micro behaviors. However, other multi

objective algorithms given in the literature [90] can also be used for optimiza-

tion. NSGA-II uses the same principle of natural selection as canonical genetic

algorithms. However, NSGA-II differs in two ways from a canonical genetic algo-

rithm. First, in the selection of individuals, and second in preserving good solu-

tions. The crossover and mutation operators in the NSGA-II function the same as

in the canonical genetic algorithm, but because of multiple objectives, the selection

of individuals for crossover and mutation is different from the canonical genetic

algorithm. Moreover, the canonical genetic algorithm may lose a good candidate

solution in the process of selection and reproduction. To mitigate this, NSGA-II

uses elitism to preserve good solutions found in each generation and carry them

to the next generation.

As shown in Figure 2.10, NSGA-II combines P parent candidate solutions and

Q child candidate solutions to choose the next P candidate solutions (in the next

generation) from the pool of P + Q candidate solutions. The selection of the next

P solutions happens in two steps. In the first step, all solutions are segregated

23

Figure 2.10: NSGA-II Procedure.

into different sets known as ranks such that rank 0 solutions are better than rank

1 solutions, and so on. After ranking solutions, different rank solutions starting

from rank 0 are copied directly into the next generation solutions provided the

number of solutions copied are less than the population size. In the second step,

if there are Pn candidate solutions in the next generation where P − Pn < m and

there are m solutions with ith rank then NSGA-II uses crowding distance to select

remaining P − Pn solution from m solutions in the next generation. To maintain

diversity, a candidate solution with the highest crowding distance is selected. Once

next generation candidate solutions are obtained, the entire process repeats until a

termination criterion satisfied.

24

CHAPTER 3

METHODOLOGY

We evolve solutions to control large numbers of autonomous agents in different

environments. Our representation uses task-specific potential fields to control the

movement of agents and uses genetic algorithms to optimize the potential field pa-

rameters. We describe potential fields in general and how we use potential fields

to control agents in this thesis. Subsequently, we explain the agent’s motion model,

and how we evaluate candidate solutions. Lastly, we describe parallel genetic al-

gorithms.

3.1 Potential Fields

Potential fields have been used to guide agents without collision [91]. In physics,

there are many potential fields and gravitation is one well-known potential field.

The gravitational potential field is usually defined as a distance dependent vector

field. Equation 3.1 represents the potential field generated by the force of gravity

(F) between two objects of mass m1 and m2 separated by a distance d, where G is

the gravitational constant.

F = G
m1m2

d2 (3.1)

We can rewrite Equation 3.1 as cde, where c = Gm1m2, and e = −2. Each po-

tential field of the form cde where d is distance has two tunable parameters (c, e)

that determine the field effect. Figure 3.1 shows the interaction of attractive and

repulsive potential fields, where an attractive potential field is generated by a goal

25

Figure 3.1: The figure shows a goal by blue circular object and an obstacle by red
circular object. The goal exert an attractive potential field, the obstacle exert a
repulsive potential field, and arrows represent the direction of resultant potential
field.

(blue circle), and a repulsive potential field is generated by an obstacle (red cir-

cle). The arrows show the resultant vector sum of these attractive and repulsive

potential fields. Figure 3.1 also shows three regions denoted by green, purple, and

yellow circles. The green circle shows a region where an attractive potential field

dominates, the purple circle shows a region where both attractive and repulsive

fields act in the same direction, and the yellow circle shows a region where attrac-

tive and repulsive fields act in opposite directions. An agent located anywhere on

the map moves in the direction of the arrow at that location. If we inspect closely,

we can see in the figure that arrows move away from the obstacle except when

the obstacle and the goal are aligned. This shows that if an agent moves in the

direction of the arrows, it will avoid the obstacle. Potential fields have been used

extensively in games [10, 11, 82] and robotics [92, 93, 94] for fast, real-time, col-

lision free movement. In this thesis, we will focus on problem specific potential

fields with a number of potential fields being used to control agent movement.

26

Figure 3.2: Influence of repulsive potential field around an obstacle shown by red
and yellow pixels. The blue region shows that the magnitude of attractive potential
dominates repulsive potential.

Figure 3.2 shows repulsive potential field around the obstacle. The blue colored

region shows the dominance of the attractive potential field and as the agent goes

towards the obstacle, the magnitude of repulsive potential increases.

3.1.1 Potential Field Based Movement Control

Potential field based movement control of agents was first introduced by Khatib [1].

In this section, we show how we use potential fields to guide agents. Figure 3.1

shows arrows that represent the direction of the resultant of attractive and repul-

sive potential fields computed using Equation 3.2.

~P = ~atcadea
g + ~aocrd

er
o (3.2)

Here ~at and ~ao are unit vectors pointing towards the goal and away from the

obstacle, ca and cr are coefficients of attractive and repulsive fields respectively. ea

and er are exponents of attractive and repulsive fields, dg and do are distances from

27

Figure 3.3: Attractive and repulsive potential fields magnitude.

the goal and the obstacle. An agent moves in the direction of the resultant vector

~P. The first part of the equation accounts for the attractive potential towards the

goal and the second part takes care of repulsion from the obstacle. Since the agent

wants to avoid collision with the obstacle, we assume a negative value of exponent

er so that the repulsive potential field magnitude increases as distance decreases.

This make sure that as distance do decreases and the magnitude of repulsive poten-

tial field increases leading to collision avoidance. Figure 3.3 shows the magnitude

of attractive potential field corresponding to dg and repulsive potential fields corre-

sponding to do. The figure shows that the magnitude of the repulsive potential field

dominates the magnitude of the attractive potential field as distance decrease, and

thus the agent will be pushed away from the obstacle leading to collision avoid-

ance. Now we have shown that using potential fields we can guide UAVs without

collision, in the next subsection we specify the agent’s motion model used in our

simulation.

28

3.1.2 Agent Motion Model

In our simulation, agents move in 3D by setting a desired heading (dh), a desired

altitude (da), and a desired speed (ds). At each time step (δt), the desired heading

is computed using the potential field equation and an agent tries to move the direc-

tion of desire heading and achieve the desired speed by changing its current speed

(s) according to the acceleration (rs). The values of current speed (s), heading (h),

and acceleration (a) are calculated using Equations 3.3, 3.4, 3.5 respectively.

s = s ± rsδt (3.3)

h = h ± rtδt (3.4)

a = a ± rcδt (3.5)

Here ± depends on whether desired value is grater than or less than current value,

rt is turn rate. From speed, heading, and altitude, we compute 3D agent velocity

(vel) and position (pos) as follows:

~vel = (s ∗ cos(h), 0, s ∗ sin(h))

~pos = ~pos + ~vel ∗ δt

pos.y = a

Here, bold text indicates vector variables, the xz plane is the horizontal plane, the

y-coordinate is height, and the agent points along its heading. In this thesis, we

optimize potential field parameters using genetic algorithms and to evaluate the

fitness of individuals/candidate solutions, we ran our problem specific simulation

for a pre-defined number of steps. In the next section we describe fitness evalua-

tion of candidate solutions.

29

Figure 3.4: Individuals are evaluated on 4 different training scenarios and the fit-
ness is averaged over these 4 training scenarios.

3.2 Evaluation

To find the quality of an individual, we evaluate the individual in a given scenario.

However, earlier experience showed that solutions evolved in a scenario may not

produce similar performance on unseen scenarios. In other words, evolved solu-

tions may not be robust. In this thesis, different scenarios refer to different loca-

tions of users and their bandwidth requirements in the WMND problem, different

spreading of fire boundaries, and different locations of game agents in RTS micro.

To improve the robustness of evolved solutions, we evaluate individuals on mul-

tiple different scenarios. We call these scenarios training scenarios. Once we find a

good solution, we test the robustness on scenarios not seen during training which

we call testing scenarios.

Chapter 4, 5, and 6 specify training and testing scenarios for wireless mesh net-

work deployment, dynamic fire boundary coverage, and RTS micro respectively.

Figure 3.4 shows a block diagram of how to evaluate an individual through a sim-

ulator and return a fitness for the individual being evaluated. Each individual is

30

Figure 3.5: Parallel GA

evaluated on four different training scenarios. Each scenario returns a fitness and

the average of these finesses is assigned to the individual being evaluated. Run-

ning the simulation for a pre-defined number of steps is the most time consuming

process. Since we use 4 different training scenarios to evaluate the quality of an

individual, the total time needed for evaluation increases 4 fold. Thus, to reduce

the total running time for GA, we parallelize the evaluation of individuals.

3.3 Parallel GAs

One feasible way to run our GA faster is by parallelizing the evaluation since most

of the computational load comes from evaluation in the simulator. Most parallel

programs adopt the idea of a divide and conquer strategy to split a task into sub-

tasks and solve sub-tasks simultaneously using multiple processors. This divide

and conquer approach can be used in GAs too. There are three main types of Par-

allel GAs (PGAs): global single-population server-client GAs, single-population

fine-grained GAs, and multiple-population coarse-grained GAs [95]. We use a

31

global single-population server-client PGA to evaluate candidate solutions for all

problems. In a server-client PGA, there is a single population as in a canonical GA,

but the evaluation of fitness is distributed among several processors, as shown in

Figure 3.5. Since selection and crossover operate on the entire population, this type

of parallel GA is also called global single-population parallel GA.

32

CHAPTER 4

WIRELESS MESH NETWORK DEPLOYMENT

Deployment of UAV based ad-hoc networks in unknown environments is a chal-

lenging problem. In unknown environments, the users’ distribution is not known

and thus the first challenge is to find the users’ distribution. Once users are dis-

covered and their positions known, re-deploying UAVs in real-time to serve all

discovered users specifies the second challenge. In order to solve both problems

we divide the network deployment problem into two phases: search and service.

In the search phase, UAVs are deployed to cover the entire area of interest to find

all users’ locations and bandwidth requirements. The second phase utilizes this

information to move UAVs to optimize user service.

Given a sufficient number of UAVs, several existing algorithms can position

UAVs to cover the area of interest in the first search phase and we show how dis-

tance based potential fields may be used to mimic one of these algorithms. Once

found, we need to serve users by establishing communication between users and

the command center so that we can find out their rescue needs and help them

find their way out of the affected area or target rescue efforts to them. In this ser-

vice phase, we use another set of potential fields to guide UAVs, and we propose

a genetic optimization approach to optimize the sum of coverage and longevity

in order to optimally deploy UAVs acting as wireless access points providing an

ad-hoc wireless network to serve users in the area of interest. UAV based ad-hoc

network deployment during the second phase is an NP-hard problem [96] and

we call this the network deployment problem in this thesis. Network deployment

presents challenges in optimal positioning, routing, and fast deployment. We use

potential fields, which are highly non-linear, to guide UAVs, and thus we use a ge-

33

netic algorithm to search for and find potential field parameters leading to optimal

bandwidth coverage and longevity.

In this thesis, we present a new representation and use a genetic algorithm to

optimize UAV based wireless network deployment. Our work is different from

prior work in that not only do we provide for positioning information we also

provide collision free movement and use the same representation, potential fields,

for both search and serve phases. Before explaining how potential fields control

the movement of UAVs, we first formulate the problem.

4.1 Problem Formulation

We formulate network deployment as an optimization problem and describe how

each candidate solution is evaluated. Assume that we have a set of N homo-

geneous UAVs U = {u1, u2,, un} that need to be deployed in a given AOI of

2000× 2000 meters2 with the command center located in the middle at (1000, 1000).

All UAVs start at the center within a 10 × 10 meter2 area and fly at a constant alti-

tude of 100 meters. Each UAV is equipped with sensors to find users on the ground

within a ground sensing range (Ugr) of 100 meters and can communicate with its

neighbors within an air to air communication range (Uar) of 300 meters. A total of m

users each with a position and a bandwidth requirement (pi, bi) are distributed over

the AOI. Thus users can be denoted by the list of pairs: {(p1, b1), (p2, b2),, (pm, bm)}.

These simulation parameters can be easily changed.

Since users’ locations and their bandwidth requirements are not known prior

to finding them, UAVs first need to search and find all users and their bandwidth

requirements by covering the AOI and then second, move to serve users that have

34

been found and avoid areas devoid of users. Thus, we divided the network de-

ployment problem into two phases; search and service. We formulate the problem

of network deployment during the service phase as an optimization problem to

maximize bandwidth coverage and longevity of deployed networks. To maximize

bandwidth coverage, UAVs must be placed such that all users are covered, and to

maximize longevity the energy consumption of UAVs must be reduced.

Each UAV has a limited initial energy of 106 joules and consumes energy while

hovering/moving and providing data to users. Intuitively, if more UAVs share the

bandwidth demanded by users, the per UAV bandwidth service can be reduced

leading to less energy consumption and longer UAVs flight times. Thus the objec-

tive is to deploy UAVs to maximize bandwidth coverage while sharing bandwidth

demands. We classify each UAV either as an Active UAV (AU) or an Inactive UAV

(IU) based on whether or not the UAV is serving a user. More specifically, if a

UAV finds users within its ground sensing range, Ugr, the UAV is an active UAV,

otherwise we call it an inactive UAV. This is shown in Figure 4.5.

The number of active UAVs is proportional to network lifetime. The more AUs,

the more bandwidth can be distributed among AUs leading to less power con-

sumption per AU and thus longer battery life to stay aloft and keep the network

alive. A variable αi ∈ {0, 1} represents the status of UAVs where αi is 1 for active

and 0 for inactive UAVs. Equation 4.1 specifies the objective function where i sums

over N UAVs and ubi represents the bandwidth served by the ith UAV, b j is the

bandwidth requirement of the jth user, m is the number of users, and N is the total

number of (homogeneous) UAVs.

Maximize f =


N∑

i=1
ubi

m∑
j=1

b j

+

N∑
i=1
αi

N

 (4.1)

35

In Equation 4.1, the first term counts the fraction of bandwidth served over the

total demand and the second term counts the fraction of active UAVs. Each term

in the equation can have a maximum value of 1 and thus the maximum objective

function value (their sum) will be 2. When computing the objective funtion using

Equation 4.1, several constraints must be satisfied. Each UAV must be positioned

within the specified AOI, thus the UAV’s x and z coordinates must be ∈ (0, 2000)1.

A UAV can provide a maximum of ubmax to users, and thus ubi ≤ ubmax. UAVs can

either communicate with their direct neighbors (1-hop) or with neighbors of neigh-

bors (2-hop), and thus a UAV can communicate with other UAVs up to a distance

of 2 × Uar. We assume that deployed UAVs use the 2 MHz communications chan-

nel with spectral efficiency of 2.5 bps/Hz [97]. Each UAV can serve a data rate of

5 Mbps to users. Users’ bandwidth requirements can range from simple text mes-

sage communication to HD video streaming services during, for example, a health

emergency. We thus assume that a user’s maximum bandwidth requirement is 3

Mpbs which is enough for video communication. Table 4.1 lists the parameters

used to model a UAV.

4.2 Methodology

We start by providing some background on genetic algorithms2. We then describe

our training and testing scenarios, our model of UAV movement, and how we use

potential fields for each of the two phases of network deployment in our simula-

tion.
1Our simulation uses the xz plane for the horizontal plane.
2If you are familiar with genetic algorithms, you can skip this subsection

36

4.2.1 Genetic Algorithms

Our approach works in two phases and uses potential fields to control the move-

ment of UAVs in both phases. First, to find the users’ distribution, and second,

to re-deploy UAVs to serve found users better. Since potential fields are highly

non-linear, tuning the potential field parameters is difficult, and thus we used a

(µ+λ) elitist genetic algorithm [98] to optimize parameters. Note that we use a GA

only in the second phase of network deployment as the first phase of network de-

ployment is a relatively simpler problem. Computing fitness (performance) using

Equation 4.1, our elitist genetic algorithm shown in Algorithm 1 searches through

the space of potential field parameter values in order to maximize fitness.

Algorithm 1: An Elitist Genetic Algorithms
Input : Pop,Gen, Px, Pm, λ,H
Output: Best Solution

1 P0 ← Initialize(Pop);
2 Evaluate(P0,H);
3 t=0;
4 Pc = [];
5 while t ≤ Gen do
6 if i ≤ λ then
7 p1, p2 ← S electParents(Pt);
8 c1, c2 ← Crossover(p1, p2, Px);
9 c1 ← Mutate(c1, Pm);

10 c2 ← Mutate(c2, Pm);
11 Pc.add(c1, c2);
12 i = i + 2;
13 end
14 Evaluate(Pc,H);
15 Pt+1 ← NextGenIndividuals(Pt, Pc);
16 Pc.clear();
17 t=t+1;
18 end

Algorithm 1 describes a our genetic algorithm. Pop is the population size,

37

Gen is the maximum number of iteration for evolution, Px, Pm are probabilities of

crossover and mutation, and H is the number of hops for communication between

UAVs. We use (µ + λ) elitism where µ is the population size (Pop) and λ is number

of children generated through recombination. Our experiments set λ = µ. Ini-

tially, the GA randomly generates a parent population (P0) of candidate solutions

(CS) and evaluates the fitness of each CS using our UAV-based network deploy-

ment simulator. To generate the next population, we select two candidate solutions

(p1, p2) from the parent population tournament selection with tournament size of

two [11]. Next, these two parent candidate solutions (p1, p2) exchange information

with each other through a crossover operator with a probability of Px and produce

two children c1, c2. Using the mutation operator, each gene of c1, c2 is mutated

with a small probability of Pm. This process of producing children continues until

λ children are produced. Each child solution is then evaluated and assigned a fit-

ness using Equation 4.1. In (µ+λ) elitism, the µ best candidate solutions are selected

from the combined parent and offspring pool of (µ + λ) individuals in the popula-

tion. In Algorithm 1, NextGenIndividuals does this down selection operation

and the process of evolution goes on for Gen number of iterations. Table 4.1 shows

all the GA parameter values used in our experiments. In the next subsection we

discuss the scenarios used by our simulation to evaluate candidate solutions in the

genetic algorithm population.

Evolving Robust Solutions

We aim to evolve high quality and robust solutions for wireless network deploy-

ment. However, earlier work has shown that solutions evolved on one scenario

with a particular set of parameters may not be robust [7, 10, 47]. That is, in our

38

(a) Tr1 (b) Tr2

(c) Tr3 (d) Tr4

Figure 4.1: The four training scenarios with different users’ distribution. Blue col-
ored dots show the locations of users, darker the dots more bandwidth required
and vice-versa.

case, potential field parameters evolved on one scenario may over-fit and thus not

work well in other scenarios. We therefore created four training scenarios with dif-

ferent user distributions as shown in Figure 4.1. In these scenarios 200 users are

distributed uniformly (Tr1), in clusters (Tr2,Tr3), and in the right and center region

of a 2000 × 2000 meter2 AOI. With a UAV ground sensing range of 100 meters, we

need 156 UAVs to cover the entire AOI without coverage gaps in order to find all

users. The genetic algorithm then seeks to maximize the average objective func-

tion value, computed using Equation 4.1, over all four scenarios. Once the genetic

39

(a) Te1 (b) Te2

(c) Te3

Figure 4.2: The three testing scenarios distinct from training scenarios and never
seen during parameter evolution.

algorithm evolves good parameter values, we test the robustness of these potential

field parameters on 100 different unseen test scenarios. Three of these test scenarios

are shown in Figure 4.2 in order to see that the distribution of users in these sce-

narios is different from the distribution in training scenarios. The aim is to show

that the genetic algorithm evolved potential field parameters work across a wide

range of user distributions in the AOI and our results (Section 4.3) show that av-

erage performance over the four training scenarios translates robustly to testing

scenarios.

40

4.2.2 UAV Movement Modeling

Initially, each UAV starts near the center of the AOI and has zero speed. The speed

(s) increases, with a constant acceleration (rs) of 0.1 meter/sec2 until speed becomes

the max speed of 15 meter/sec, using Equation 4.2. Here ∆t is the simulation time

step interval.

s = s ± rs∆t (4.2)

Each UAV moves under the influence of a set of potential fields and the direction of

the vector sum of these potential fields provides the desired heading or direction

for the UAV. The kth UAV experiences attractive (~Pa) and repulsive (~Pr) potential

fields from neighboring UAVs within the range of Uar and given by Equation 4.3.

Each potential field is of the form cde where d is distance and has two optimizable

parameters (c, e) that determine field effect.

~Pk =
n∑

i=0
~Pa +

n∑
i=0

~Pr

~Pk =
n∑

i=0
~akicadea

ki +
n∑

i=0
~aikcrd

er
ki

(4.3)

Here ~aki is a unit vector pointing from the kth UAV to the ith neighbor and ~aik is the

unit vector pointing from ith neighboring UAV back to the kth UAV. n is the number

of h-hop neighbor UAVs, dki = dik is the distance between the kth and ith UAVs.

ca, cr are potential field coefficients and ea, er are potential field exponents. The

GA optimizes these coefficients and exponents to specify UAV movement. ~Pk’s

direction specifies the kth UAV’s heading. In our model, UAVs change their current

heading to this new desired heading instantaneously. Using speed and heading,

we compute a UAV’s velocity (
−→
vel) and position (−−→pos) as follows

−→
vel = (s × cos(heading), 100, s × sin(heading))

−−→pos = −−→pos +
−→
vel × ∆t

(4.4)

41

(a) DT (b) CPT

Figure 4.3: Networks deployed using DT and CPT in a square AOI. Dashed circle
shows the coverage of a UAV.

Having specified our movement model, we now describe how we set potential

field parameters for area coverage during the first phase.

4.2.3 First Phase: Search

UAVs move to cover the entire AOI during the first phase to find users’ distribu-

tion. This is also called static network deployment and we use potential fields to

deploy UAVs to maximize area coverage with minimal overlap. Since Delaunay

Triangulation maximizes area coverage with minimal overlap, we want to mimic

DT style network deployment with potential fields. Figure 4.3 shows static net-

works deployed using DT and CPT. We use Ming’s [40] Delaunay Triangulation

based result that shows that the distance between any two adjacent UAV must be
√

3 Ugr to cover the AOI with minimum coverage overlap. To model Delaunay Tri-

angulation with potential fields, we thus need to find values of ca, cr, ea, er such that

when dki =
√

3 Ugr the magnitude of the attractive potential field equals the mag-

42

(a) (b)

Figure 4.4: 10 randomly distributed UAVs (a), and each UAV moves under the
influence of attractive and repulsive potential fields with parameters (ca = 1, e1 =

1, cr = 3 ×
√

3 × 1003, er = −2). Figure (b) shows that using potential fields, we can
get network deployment similar to networks inspired from DT.

nitude of the repulsive potential field. This is shown by Equation 4.5. In the equa-

tion, the directions of unit vectors ~aki and ~aik are opposite to each other and thus we

substitute ~aik = - ~aki. In addition, earlier work in potential fields based movement

has shown that the attractive potential should be proportional to distance and the

repulsive potential field should be inversely proportional to distance squared to

provide collision free cohesive movement [81, 82, 99]. Thus we set ea = 1, er = −2,

and dik =
√

3Ugr and ignore the unit vectors in Equation 4.5 to find the relationship

between ca and cr.

~akicadea
ik = ~akicrd

er
ik

ca(
√

3Ugr)1 = cr(
√

3Ugr)−2

cr = ca(
√

3Ugr)3

(4.5)

We then tested this derived relationship in our simulation to see whether we can

mimic Delaunay Triangulation-like area coverage with potential fields. In our ex-

periment, we used Ugr = 100 meters and, for simplicity, assumed ca = 1 to derive

the value of cr to be 3
√

3 1003 by simplifying Equation 4.5. These parameter values

43

of ca = 1, e1 = 1, cr = 3
√

3 1003, and er = −2 were then used to control the move-

ment of 10 randomly distributed UAVs as shown in Figure 4.4(a) and the resulting

deployment covering the AOI is shown in Figure 4.4(b).

Noting the similarity to Figure 4.3, Figure 4.4 shows that with these parameter

values, UAVs moving under the influence of potential fields can be used to mimic

DT and cover the entire area with minimal overlap. Note that there exist multiple

sets of values of the coefficients and exponents that will result in similar coverage.

Assuming we can, in general, directly derive potential field parameter values for

the search phase we focus more on the service phase.

Using the same potential field parameter values, we moved to our main sce-

narios and deployed 156 UAVs in an AOI of 2000 × 2000 meter2. UAVs start within

an area of 10 × 10 meter2 near the center of the AOI and our simulation of the first

phase runs for 1500 time steps which is sufficient for the UAVs to move into posi-

tion. These positions at the end of the first phase are shown in Figure 4.5. In the

figure, users, represented with blue dots, are distributed in three clusters. Green

circles show UAV coverage areas and you may assume that there is a UAV at the

center of every green circle. The red circle represents the command center. A black

circle shows a UAV serving no users within its ground sensing range (Ugr) and is

an example of an inactive UAV. Similarly, the magenta circle shows a UAV serving

multiple users and is an example of an active UAV.

Since increasing the number of UAVs that serve the same users and thus share

bandwidth decreases UAV energy consumption and thus increases network longevity,

the second phase seeks to also increase the number of active UAVs by moving

UAVs from areas with lower bandwidth requirements (fewer users) to areas with

higher bandwidth requirements (more users) while maintaining network connec-

44

Figure 4.5: Deployment of UAVs at the end of the first phase on the third training
scenario. Blue dots represent users, green circles represent UAVs’ coverage areas,
and the red circle represents the location of the command center. A black circle
shows an inactive UAV and the magenta circle shows an inactive UAV.

tivity with the command center.

4.2.4 Second Phase: Service

In this phase, a different set of potential fields optimized by a genetic algorithm

re-deploys UAVs to serve found users better. Algorithm 2 specifies the Genetic

Adaptive Network Deployment Algorithm (GANet) that runs the simulation to

compute the fitness of candidate solutions. That is, the Evaluate function of Al-

gorithm 1 runs Algorithm 2 to evaluate each candidate solution’s fitness. Once

computed, this fitness drives evolutionary optimization.

45

Algorithm 2: Evaluation and fitness computation
Input : UAV s,Users,CS ,MS ,MT,H
Output: fit

1 fit = 0;
2 for scenario in MS do
3 t, bwc, AUs = 0;
4 while t < MT do
5 AssociateUsers(UAV s,Users);
6 FindNeighbors(UAV s);
7 ActivePotentials(H,CS);
8 Dir = ComputeDir();
9 MoveAll(Dir);

10 t=t+1;
11 end
12 for i in UAV do
13 bwc += ubi;
14 AUs += αi;
15 end
16 fit += bwc / MaxBW + AUs / UAVs;
17 end
18 fit = fit / MS;
19 return(fit);

Simulation and Evaluation

In Algorithm 2, UAVs and Users are lists of available UAVs and users respectively.

The simulation runs for a maximum number of time steps (MT = 1500) on each

training scenario. As mentioned earlier, we use four training scenarios and thus

MaxScenarios (MS) is four. At each time-step (t), AssociateUsers scans users

within Ugr for each UAV in the list and computes these users’ bandwidth consump-

tion. FindNeighbors finds other UAVs within Uar and records them as neigh-

bors. ActivePotentials uses the number of hops and potential field parameter

values supplied by a candidate solution from the genetic algorithm’s population,

to compute potential field values. Now that the potential field information needed

is available, ComputeDir computes potential field directions at each UAV by sum-

46

ming all potential fields acting on a UAV using Equation 4.6 and stores this in Dir.

Next, MoveAll(Dir) moves each UAV in the direction computed. After MT time

steps, the algorithm computes the fitness for each training scenario by summing

the bandwidth coverage fraction and active AU fraction. Finally, once the evalua-

tion on all four scenarios is over, the algorithm returns the average of these fitness

values as the fitness of this candidate solution to the genetic algorithm.

~Pk = ~Pb +

h∑
i=1

(~Pui + δr ~Pri) + δc ~Pc (4.6)

Note that in Equation 4.6, h refers to the number of hops for communication be-

tween UAVs. The vector sum of the potential fields for UAV k given by Pk provides

a desired heading for the kth UAV to turn towards.

Each term in the equation describes a potential field whose parameters need

to be optimized (or tuned). Since we want UAVs to be attracted towards users

based on their bandwidth requirements, we use an attractive potential field, (~Pb),

to model this attraction. To reduce per UAV bandwidth coverage and save energy,

the kth UAV uses an attractive potential field towards neighboring UAVs whose

magnitude depends on the neighbors bandwidth load (~Pu). At the same time, to

avoid collisions, a repulsive potential field, ~Pr, ensures that UAVs do not collide

with each other. This potential field only applies to UAVs that are less than d∗ dis-

tance away and we use the Dirac delta function, δr to model this. δr has value 1

when UAV j is less than d∗ distance away and 0 otherwise. When a UAV has no

users within its user sensing range and no UAVs within Uar, that is, the UAV is in-

active, we want it to move towards the command center as a default behavior. We

model this with an attractive potential field, ~Pc, based on distance to the command

center. δc is another Dirac delta function to ensure that this potential field only acts

47

on inactive UAVs.

Assuming UAVs communicate only with one-hop neighbors, Equation 4.6 can

be rewritten as Equation 4.7 below.

~Pk =
mk∑
i=0

c1~b
e1
i +

nk∑
j=0

(c2~u
e2
k j + c3~r

e3
k j) + c4~s

e4
k (4.7)

Here c1, c2, c3, c4 are the coefficients and e1, e2, e3, e4 the exponents of the poten-

tial fields in Equation 4.6. The first summation is over mk which is the number of

users within UAV sensing range while the second summation is over nk which is

the number of one hop neighbors. ~b is the bandwidth required by the ith user and

points towards the user. ~u is the bandwidth being served by the jth 1-hop neighbor

of k and points towards this neighbor. ~r is the vector difference between the posi-

tions of UAV k and UAV j and points from j to k. In the last term, ~s is the vector

difference between the command center position and UAV k pointing from k to

the command center. Including four coefficients, four exponents, and d∗, we have

a total of nine parameters to optimize. When UAVs are allowed to communicate

with upto two-hop neighbors, Equation 4.6 can be re-written as Equation 4.8.

~Pk =
mk∑
i=0

c1~b
e1
i +

nk∑
j=0

(c2~u
e2
k j + c3~r

e3
k j) +

nk′∑
j′=0

(c2~u
e2
k j′ + c3~r

e3
k j′) + c4~s

e4
k (4.8)

Here nk′ is the number of two hop neighbors, that is, the number of one-hop

neighbors’ neighbors. Note that for h = 1 and h = 2, the kth UAV experience 4 and

6 different potential fields respectively. In general for h-hop communication, the

kth UAV will experience 2(h + 1) different potential fields. Since each potential field

has two tunable parameters (c, e), a total of 2 × 2(h + 1) potential field parameters

48

will need to be optimized. Due to the non-linearity of these potential fields, op-

timizing these parameters is difficult and we thus use a genetic algorithm. Each

coefficient and exponent is encoded in a chromosome, where c′s ∈ (−8192, 8192)

with a precision of 1, e′s ∈ (−5.12, 5.12) with precision 0.01, and d∗ ranges between

0 ≤ d∗ ≤ 28. We then compared deployed network performance using GANet

against the performance of the current state-of-the-art ATRI algorithm.

4.3 Results and Discussion

We start by evaluating genetic algorithm parameter tuning performance on a sim-

ple tractable problem by comparing genetic algorithm performance against a ran-

dom exhaustive search and a hill climber (gradient ascent). Once we show that

the genetic algorithm finds the optimum significantly more quickly than either of

the other algorithms, we run the GA on the larger, more realistic problem as in

the four training scenarios. Table 4.1 show all simulation parameter values used

during experiments.

4.3.1 Experiments on A Simple Test Problem

We begin with a test problem to deploy 10 UAVs in a small AOI of 450× 450 meter2

where the command center is located at (0, 0). We want to provide bandwidth

coverage to 10 users as shown in Figure 4.6(a). Using one-hop information, each

UAV moves in a direction computed using Equation 4.7. On this simple problem

we applied three search techniques for finding optimal potential field parameters

that result in the optimum fitness of 2; an exhaustive search, a hill climber (gradient

49

Table 4.1: Simulation Parameters

Parameters Value
UAV

Area of Interest 2000m2

Height of UAVs 100m
Coverage Radius of UAVs 100m

A-2-A communication Range 300m
Max Speed of UAV 15 m/s

Initial energy of UAV 1000 × 103 J
Hovering energy 98 J/s

Energy loss per 1 Mbps data served 5 J
Genetic Algorithm

Population Size 20
Max Iteration 20

Crossover Rate 0.95
Mutation Rate 0.05

Lambda 20

Table 4.2: Comparing three search algorithms

Techniques Evaluations
Hill Climber 105
Exhaustive Search 92
Genetic Algorithm 39

assent) based search technique, and our genetic algorithm.

Exhaustive search randomly samples points in the search space of parameter

values and computes their fitness until it finds a point with fitness 2. We run this

randomized exhaustive search algorithm with 10 different random seeds and store

the number of evaluations (fitness computations). We also run the hill climber and

genetic algorithm 10 different times with 10 different random seeds and store the

number of evaluations needed by each of them to find the optimum of 2. Table 4.2

compares the performance of the three algorithms and shows that the genetic al-

gorithm finds the optimum in significantly fewer evaluations than the others. The

50

(a) Initial positions (b) Optimal positions

Figure 4.6: Optimal UAV deployment within a small AOI with 10 users (blue dots).
Initial positions covering the area (a), final positions focusing on user locations and
bandwidth sharing (b).

genetic algorithm (39) is more than twice as fast as its nearest competitor (92).

The results suggest that this simple problem is multi-modal with multiple dif-

ferent optimal solutions. Starting with UAV positions (center of green circles) at

the end of the search phase shown in Figure 4.6(a) the following parameter values

found by the genetic algorithm, c1 = 50, e1 = 0.5, c2 = 0.1, e2 = 0.1, c3 = 7000, e3 =

−5, c4 = 0.1, e4 = 0.1, resulted in the optimal UAV deployment (with fitness 2)

shown in Figure 4.6(b). Note that with changes in UAV’s attributes, users’ require-

ments, or size of AOI, the complexity and scale of the problem changes and we will

need to run the genetic algorithm again. However, the GA optimized parameter

values are robust to numbers of UAVs and the number and distribution of users.

Having shown that genetic algorithms are good for tuning potential field pa-

rameters in our problem domain, we move to a larger more realistic problem and

compare performance against the ATRI algorithm of Ming [40].

51

4.3.2 Evolution on Training Scenarios

We started with 200 users distributed as shown in Figure 4.1, 156 UAVs, and one

hop communications. We assume that UAVs start within an area of 10× 10 m2 near

the command center. During the first phase each UAV moves for 1500 time steps to

maximize area coverage and find users. Figure 4.5 shows UAV positions at the end

of the first phase on the third training scenario. The figure shows that a few UAVs

(who found users within their coverage range) have started providing bandwidth

coverage demanded by users while many other UAVs hover idle throughout the

coverage area. In the second phase of network deployment we aim to move UAVs

towards different sub-regions in the AOI that demand wireless bandwidth. The

simulation runs for 1500 time steps for UAVs to move towards users under the

influence of a GA optimized set of potential fields.

The potential field parameters were encoded in a population of 20 individuals

and the GA evolved solutions on the four training scenarios for 20 generations. As

is common practice in the GA community when dealing with very long run time

fitness computations, we ran the GA 10 times with different random seeds. The

best solution over these 10 runs, (Best1h, best one hop fitness) achieved a fitness of

1.64 out of 2. We observed that the network deployed using Best1h contains a num-

ber of inactive UAVs which contribute to the reduced fitness. Thus, to improve

performance, we next tested with two hop communication. Results shows that the

fitness of the best solution obtained with two hop UAVs (Best2h) was 1.95 which is

significantly better than one hop and is near-optimal. For comparison, the same ex-

periments were conducted using ATRI and the ATRI deployed network achieved a

performance of 1.38. Figure 4.7 shows the fitness obtained using Best1h, Best2h, and

ATRI on the four training scenarios as well as the average performance across the

52

Figure 4.7: Comparing GANet one-hop (green), two-hop (blue) versus ATRI (ma-
genta) on four training scenarios. The rightmost bars show averages across the
four scenarios.

(a) ATRI (fitness=1.60) (b) Best1h (fitness=1.69) (c) Best2h (fitness=1.93)

Figure 4.8: Comparing network deployment on our first training scenario. ATRI
(a) versus GANet 1-hop (b) and 2-hop (c). GANet obtains better performance by
focusing more on areas with users and avoiding areas with no users.

four scenarios. The green and blue bars in Figure 4.7 show Best1h and Best2h per-

formance while magenta shows ATRI performance. The figure shows that GANet

network deployment performs better than ATRI across all four training scenarios

with two hop GANet providing more significant gains.

The visualizations in Figure 4.8 help explain the differences in performance on

the first training scenario. Figure 4.8 (a) shows a network deployed using ATRI

53

with a fitness of 1.60 and we can see that although the UAVs cover the area well,

they do not adapt well to the current user distribution. Many users are not covered

by any UAV and out of 156 UAVs, only 120 are active, and the rest (36) are inac-

tive. These 120 active UAVs collectively provide a 245.7 Mbps data rate to users.

On average therefore, the per UAV data rate is 245.7/120 ≈ 2.04 Mbps. Figure 4.8

(b) shows the network deployed using Best1h with fitness of 1.69 and has 132 ac-

tive UAVs and 24 inactive UAVs. The figure shows that GANet deployed UAVs

more closely follow the user distribution and thus result in more active UAVs and

fewer inactive UAVs. These 132 active UAVs provide a data rate of 250 Mbps to

users. On average, each active UAV thus provides a data rate of 250/132 ≈ 1.89

Mbps. Finally, Figure 4.8 (c) shows the network deployed using Best2h with a fit-

ness of 1.93. UAVs cluster around users and the number of active UAVs has now

increased to 152, so there are only 4 inactive UAVs, and the active UAVs collec-

tively serve a data rate of 282.7 Mbps with each active UAV serving a data rate

of 282.7/152 ≈ 1.85 Mbps. These figures provide evidence that GANet with one

hop or two hop communication performs better than ATRI on Tr1. On this sce-

nario, Best2h’s fitness is approximately 14.2% higher than Best1h’s fitness and 20.6%

higher than ATRI where as Best1h’s fitness is 5.6% higher than ATRI. Similar visu-

alizations on the remaining three training scenarios continue to show that GANet

more closely adapts to user distributions and thus performs significantly better

than ATRI.

To tease out whether bandwidth coverage or longevity is the key factor for

the performance difference between 1-hop and 2-hop UAV communication, we

plotted the graph of the average bandwidth coverage and the averaged number of

active UAVs on training scenarios with 156, 117, 78 UAVs and different numbers

of users. Figure 4.9(a) shows average bandwidth coverage for Best1h and Best2h

54

(a) Average bandwidth coverage (b) Average number of AUs

Figure 4.9: Comparing the average (a) bandwidth coverage, and (b) number of
AUs of Best1h and Best2h on training scenarios. There is a little difference in the
average bandwidth coverage, but a significant difference in the number of AUs.

for 50, 100, 150, and 200 users on the four scenarios and we see that there is no

significant difference in bandwidth coverage. Figure 4.9(b) shows the number of

active UAVs. Here we see significantly larger numbers of active UAVs with Best2h

compared to Best1h thus providing evidence that the difference in the performance

must be caused by the difference in the number of active UAVs. This makes sense

as more information from more distant (2-hop) neighbors is used to direct UAVs to

share more bandwidth increasing the number active UAVs and thus the network’s

longevity.

ARTI on the other hand tries to minimize movement away from the Delaunay

Triangulated locations and works well with more uniform user distributions. Fig-

ure 4.10 shows networks deployed using ATRI and Best1h on our second and third

training scenarios from Figure 4.1 (b,c). Tr2 has two user clusters and ATRI’s per-

formance is 1.12 which is 28.2% lower than Best1h’s and 42.5% lower than Best2h’s

performance. Similar behavior can be seen for Tr3 as well. We can visually see

well the differences when comparing the left hand side versus right hand side

55

(a) ATRI on Tr2 (b) Best1h on Tr2

(c) ATRI on Tr3 (d) Best1h on Tr3

Figure 4.10: Network deployments of Best1h and ATRI.

plots. ATRI UAVs are more uniformly distributed across the AOI while GANet

UAVs have learned parameter values that enable them to cluster around users

while maintaining connectivity to the command center. On Tr2 and Tr3 per AU

data rates with ATRI are 4.54 and 3.76 Mbps respectively. Whereas per AU data

rate with Best1h are lower at 3.09 and 2.86 Mbps respectively, and with Best2h, still

lower with 1.99 and 1.88 Mbps respectively. Lower data rates correspond to less

energy consumption and longer network lifetimes. Figure 4.11 shows the per AU

data on the training scenarios where ATRI per AU data rate is highest and GANet

56

Figure 4.11: Comparing per AU data rate on four training scenarios.

2-hop is lowest. Note also that on the first training scenario where users are dis-

tributed more uniformly, ATRI’s performance is comparable to GANet.

Note that Best1h and Best2h were evolved with 156 UAVs and 200 users on the

four training scenarios but an earlier plot, Figure 4.9 depicted their performance

with different numbers of users. This shows that GANet finds parameter values

that work on scenarios that have not been used for training and provides early ev-

idence that evolved solutions may be robust. To further investigate robustness, we

systematically varied the numbers of UAVs, the numbers of users and computed

performance on the four training scenarios. Table 4.3 shows performance obtained

using Best1h, Best2h, and ATRI with 156, 117, 78 UAVs and 200, 150, 100, 50 users on

the four training scenarios. We thus compare a total of 3 × 4 × 4 = 48 different

combination of UAVs, users, and scenarios. Table 4.3 shows that fitness obtained

with Best2h is better in all 48 combinations of UAVs, users, and different scenarios

compared to both Best1h and ATRI.

57

Table 4.3: Comparing fitness of Best1h, Best2h, and ATRI with different number of
UAVs and users on training scenarios.

Users Methods Tr1Tr1Tr1 Tr2Tr2Tr2 Tr3Tr3Tr3 Tr4Tr4Tr4 Average

156 UAVs
200 ATRI 1.60 1.12 1.34 1.47 1.38
200 1 hop 1.69 1.56 1.59 1.71 1.64
200 2 hop 1.93 1.95 1.97 1.94 1.95
150 ATRI 1.52 1.11 1.29 1.43 1.34
150 1 hop 1.58 1.44 1.53 1.62 1.54
150 2 hop 1.97 1.96 1.95 1.93 1.96
100 ATRI 1.34 1.13 1.24 1.42 1.28
100 1 hop 1.58 1.29 1.39 1.55 1.46
100 2 hop 1.84 1.98 1.93 1.98 1.93
50 ATRI 1.18 1.13 1.16 1.20 1.16
50 1 hop 1.23 1.20 1.29 1.38 1.27
50 2 hop 1.32 1.92 1.29 1.64 1.54

117 UAVs
200 ATRI 1.50 1.02 1.29 1.40 1.30
200 1 hop 1.52 1.53 1.61 1.62 1.57
200 2 hop 1.64 1.88 1.90 1.84 1.86
150 ATRI 1.38 1.09 1.28 1.33 1.27
150 1 hop 1.52 1.52 1.62 1.71 1.59
150 2 hop 1.69 1.88 1.80 1.91 1.82
100 ATRI 1.26 1.40 1.28 1.34 1.25
100 1 hop 1.42 1.33 1.48 1.57 1.45
100 2 hop 1.78 1.86 1.78 1.91 1.84
50 ATRI 1.05 1.06 1.12 1.06 1.07
50 1 hop 1.22 1.27 1.36 1.25 1.27
50 2 hop 1.51 1.77 1.85 1.60 1.68

78 UAVs
200 ATRI 1.32 0.76 1.13 1.26 1.11
200 1 hop 1.47 1.25 0.98 1.57 1.30
200 2 hop 1.65 1.53 1.59 1.69 1.62
150 ATRI 1.20 0.71 1.14 1.28 1.08
150 1 hop 1.36 1.38 0.93 1.60 1.32
150 2 hop 1.63 1.66 1.64 1.66 1.65
100 ATRI 1.10 0.81 0.93 1.23 1.02
100 1 hop 1.24 1.31 1.50 1.58 1.41
100 2 hop 1.61 1.49 1.66 1.78 1.64
50 ATRI 0.81 0.37 0.71 0.84 0.69
50 1 hop 1.08 1.34 1.27 1.15 1.20
50 2 hop 1.21 1.70 1.67 1.55 1.53

58

The last column provides their average performance. Best2h performed statisti-

cally significantly better than Best1h with p-value less than < 0.00002 while Best1h

outperformed ATRI with p < 0.008. This provides evidence that even with dif-

ferent numbers of users and UAVs, our approach works well on scenarios with

similar user distributions. In the next subsection we provide details on experi-

ments on testing scenarios that vary the distributions of users to better investigate

robustness.

4.3.3 Experiments on Testing Scenarios

To measure the robustness of Best1h and Best2h, we evaluated and compared per-

formance on 100 testing scenarios with different user distributions, three of which

are shown in Figure 4.2 and the rest, randomly generated. Table 4.4 compares

GANet 1-hop and 2-hop versus ATRI performance with 156, 117, and 78 UAVs

and different numbers of users on these testing scenarios. The table is segmented

by the number of UAVs. The first two columns list the number of users and the

deployment algorithm. The next three columns provide performance on the test

scenarios from Figure 4.2 since we can see the non-uniform user distributions for

these scenarios in the figure. The last column provides the average performance

over all 100 test scenarios. The table shows that Best2h performed better on 95%

(34 of 36) combinations of UAVs, users, and three testing scenarios, compared to

Best1h and in all 36 compared to ATRI. These performance differences are also sta-

tistically significant with p < 0.008 for GANet 1-hop versus ATRI and p < 0.00002

for GANet 2-hop versus 1-hop. These results provide evidence of the robustness

of GANet deployment.

59

Table 4.4: Comparing fitnesses of Best1h, Best2h, and ATRI with 156, 117, and 78
UAVs and different numbers of users on testing scenarios.

Users Methods Te1Te1Te1 Te2Te2Te2 Te3Te3Te3 Average

156 UAVs
200 ATRI 1.54 1.47 1.43 1.6
200 1 hop 1.69 1.71 1.64 1.69
200 2 hop 1.97 1.97 1.94 1.96
150 ATRI 1.47 1.33 1.38 1.51
150 1 hop 1.61 1.69 1.54 1.63
150 2 hop 1.98 1.99 1.97 1.97
100 ATRI 1.41 1.31 1.31 1.39
100 1 hop 1.53 1.56 1.48 1.52
100 2 hop 1.99 1.76 1.98 1.92
50 ATRI 1.28 1.20 1.26 1.16
50 1 hop 1.33 1.35 1.39 1.33
50 2 hop 1.96 1.87 1.91 1.59

117 UAVs
200 ATRI 1.69 1.37 1.57 1.48
200 1 hop 1.80 1.72 1.63 1.56
200 2 hop 1.97 1.83 1.92 1.84
150 ATRI 1.58 1.31 1.47 1.33
150 1 hop 1.73 1.71 1.66 1.49
150 2 hop 1.98 1.84 1.96 1.85
100 ATRI 1.50 1.09 1.40 1.23
100 1 hop 1.67 1.60 1.58 1.4
100 2 hop 2 1.84 2 1.77
50 ATRI 1.27 1.12 1.31 1.09
50 1 hop 1.47 1.34 1.43 1.3
50 2 hop 1.59 1.56 1.97 1.52

78 UAVs
200 ATRI 1.48 1.28 1.32 1.19
200 1 hop 1.74 1.67 1.75 1.35
200 2 hop 1.91 1.65 1.83 1.59
150 ATRI 1.48 1.22 1.34 1.16
150 1 hop 1.83 1.67 1.72 1.30
150 2 hop 1.9 1.64 1.86 1.58
100 ATRI 1.50 1.05 1.40 1.1
100 1 hop 1.71 1.55 1.72 1.17
100 2 hop 1.91 1.59 1.91 1.53
50 ATRI 1.32 1.02 1.17 0.78
50 1 hop 1.62 1.32 1.56 1.01
50 2 hop 1.84 1.36 1.78 1.37

60

Once GANet optimizes potential field values for a set of UAVs as specified

by the parameters in Table 4.1, on a set of training scenarios, the results indicate

that we should expect similar network performance on new unseen scenarios with

different numbers of users, UAVs, and user distributions.

Figure 4.12: GANet performance when maximizing the average performance
across four training scenarios (green) compared to maximizing the minimum per-
formance (blue).

4.3.4 Maximizing The Minimum Objective

In all previous experiments, we want to maximize fitness computed as the average

performance (Equation 4.1) over four training scenarios. A common alternative is

to maximize the minimum performance [100]. In experiments, comparing GANet

one-hop performance with maximizing the minimum (maximin) versus maximiz-

ing the average, we found that maximizing the average performs significantly bet-

ter. Figure 4.12 shows that the best solution evolved using averaged fitness, green

bar, performed better than the best solution evolved with maximin fitness, blue

bar, on all four scenarios. On average, averaged fitness performed 45.13% better

than maximin fitness. We conjecture that averaging performance better maintains

61

diversity in small population (20) genetic algorithms and thus leads to better per-

formance.

4.4 Conclusions

This thesis uses genetic algorithm optimized potential fields to optimize UAV-

based ad-hoc wireless network deployment. Unlike prior work, potential fields

serve to unify representation across both search and service phases of network de-

ployment and GANet optimizes potential field parameters that work robustly for

different user distributions. We showed how to derive potential field parameters

for the search phase and designed an elitist genetic algorithm to optimize these

non-linear potential field parameters for the service phase. We then formulated

the service phase network deployment problem as an optimization problem that

maximizes the sum of bandwidth coverage and longevity of the deployed net-

work. Performance is computed from running a simulation of UAVs moving un-

der the influence of GANet optimized potential fields and provides a fitness met-

ric for the genetic algorithm’s search for optimal potential field parameter values.

We showed that GANet is significantly better than gradient ascent and exhaustive

search by finding a global optimum on a tractable problem more than twice as

quickly as the nearest competitor. We then attacked larger, more realistic problems

using four training scenarios with 156 UAVs and 200 users distributed uniformly

and non-uniformly over an area of interest.

Results showed that GANet network deployment is significantly better than

the state of the art ATRI deployment and that GANet with two-hop UAV commu-

nications beats one-hop UAV performance. These results carry over to 100 test sce-

62

narios with never before seen user distributions, numbers, and to different num-

bers of UAVs. This provides evidence for GANet’s robustness and our potential

fields based representation. GANet adapts better when users are non uniformly

distributed and matches or exceeds ATRI performance with more uniform user

distributions. Since with sufficient numbers of UAVs we get to optimal or near-

optimal performance with two-hop UAV communication, we believe that going to

higher hop counts for communications will not significantly improve performance.

63

CHAPTER 5

DYNAMIC FIRE COVERAGE

We choose wildfire boundary tracking using UAVs as the second domain specific

problem and control the movement of UAVs using the same potential field based

approach. Note that we are interested in tracking fire boundaries and not the entire

area covered by a fire and we therefore wish to position UAVs along fire bound-

aries. We start with the problem formulation and then describe the fire simulation

model, fire boundary extraction. Next, we identify the set of potential fields that

control the movement of UAVs and lastly discuss experimental results.

5.1 Problem Formulation

We aim to deploy a set of UAVs to track wildfire spread in unknown environ-

ments. Let us assume that we have a set of n homogeneous UAVs u = {u1, u2...., un}

and a rectangular Area of Interest (AOI). We assume that the fire is non-uniformly

distributed over the area of interest and that each UAV is equipped with GPS de-

vices and downward-facing cameras capable of detecting fire. Each camera has a

circular Field of View (FOV) and can capture the area under its FOV. Images cap-

tured by each UAV can be sent back to a Command Center (CC) for analysis so we

can locate the areas of fire. For experimentation, we simulate a fire model called

Fire Area Simulator (FARSITE) [64] and used different FARSITE parameters to get

different behaviors of fire spread. Our objective is to track fire spread for as long

as possible, and we thus use minimizing energy consumption as an optimization

objective in our multi objective optimization problem formulation.

64

Let us assume that the kth UAV observes Ik fire intensity under the UAV and

has Ek remaining energy at the end of a simulation. Since we want to maximize

both fire boundary coverage and the amount of time we maintain coverage, the

problem can be formulated as a two-objective optimization problem described by

Equation 5.1.

Maximize f =


n∑

k=1
Ik

Imax
,

n∑
k=1

Ek

Emax

 (5.1)

Here Imax is maximum intensity at the boundary and Emax is the sum of energy

over all UAVs at the start of simulation. n is the number of UAVs and dividing

by Imax and Emax normalizes objective values to lie between 0 and 1. We use a

set of potential fields to govern the movement of UAVs to track a fire’s boundary

generated using fire simulator. In the next section we describe the fire simulator.

5.2 Fire Simulator

We use the Fire Area Simulator, FARSITE, model [101], a well-known core model

of existing fire simulation systems. Apart from FARSITE, other fire simulation

models [102] can be used to simulate fire propagation but FARSITE seems the most

popular, reliable model and is widely used by federal land management agencies

such as the US Department of Agriculture [101]. FARSITE estimates fire fronts

based on an elliptical model introduced by Richards [103] and requires and uses

information on terrain, geography, topography, fuel, and weather to model the

spatial distribution and spread of a fire. Since accurate fire simulation is not in the

scope of this work, we use simplified fire propagation in FARSITE to calculate fire

65

front growth [64].

480 500 520 540 560

480

500

520

540

560

(a)

460 480 500 520 540 560 580 600

460

480

500

520

540

560

580

600

(b)

Figure 5.1: A discretized fire influence map. (a) 33 initial fire heat sources at t = 0.,
and (b) Propagation of fire from initial 33 heat sources at time step t = 100.

We assume that fire initially starts with 33 heat sources on the xz plane, H =

{(x1, z1), (x2, z2), ..., (x33, z33)} where x1, z1 are the x and z coordinates of the 1st heat

source location. Figure 5.1(a) shows the initial heat source locations on a grid with

axes units in meters. Each heat source propagates in the direction of the wind

using Equation 5.2 where xt and zt are the differentials of the fire on the xz plane

and θ, (0 ≤ θ ≤ 2π), is the direction of the wind. c is the distance from the heat

source to the center of the ellipse which can be empirically calculated [101].

xt = c ∗ cos(θ), zt = c ∗ sin(θ)

c =
R− R

HB
2

HB =
(LB+(LB2−1)0.5)
(LB−(LB2−1)0.5)

LB = 0.936e0.2566U + 0.461e−0.1548U − 0.397

(5.2)

Equation 5.2 computes c which depends on two variables, R, the rate of fire

spreading and U, the wind speed. For experiments, we used 25m/s for the rate of

fire spread, and 5m/s for wind speed. The intensity of the fire point location is ini-

66

tially set to random values of a normal distribution ranging from 2−10 kW/m which

remains constant throughout the propagation of fire. We compute the location of

the new fire front after every ∆t and Equation 5.3 computes the next propagation

location of the ith heat source.

xi(t + ∆t) = xi(t) + ∆tXt(t)

zi(t + ∆t) = zi(t) + ∆tZt(t)
(5.3)

We ran FARSITE for 6000 time steps for one evaluation. Since we are inter-

ested in covering the fire boundary, not in locations covered by fire, we extract the

boundary using a fire influence map.

Algorithm 3: Fire Influence Map
Input : Initial heat source locations H = {(x1, z1), (x2, z2), ..., (xh, zh)}
Output: Grid

1 for t in maxtimeSteps do
2 for h in H do
3 xh(t + ∆t) =xh(t) + ∆txh(t)
4 zh(t + ∆t) =zh(t) + ∆tzh(t)
5 Intensityh = random(2,10)
6 for i in Gridx do
7 for j in Gridz do
8 D = Distance(Grid[i][j], (xh(t), zh(t)))
9 if D == 0 then

10 Grid[i][j] += Intensityh

11 end
12 end
13 end
14 H.append((xh(t + ∆t), zh(t + ∆t)))
15 end
16 end
17 return(Grid)

67

5.3 Fire Influence Map

A Fire Influence Map (FIM) is a grid defining fire spatial information in a given

AOI with values assigned to each grid-cell based on fire intensity. Algorithm 3

computes these values for each grid cell. Algorithm 3 tracks the fire starting with

initial heat source locations and runs for 6000 time-steps. At each time step, we

calculate fire intensities and the spread of the fire using Equation 5.3 Figure 5.1(a)

shows the initial 33 heat sources and Figure 5.1(b) shows the fire spread at time step

100. We extract the fire boundary using grid values at the end of each time step,

and a team of UAVs maneuver to cover this extracted boundary. The boundary

is a set of tuples B = {(x1, z1, i1), (x2, z2, i2), ..., (xk, zk, ik)} where xk, zk are the x and z

coordinates of kth fire location with fire intensity of ik on the boundary.

In the literature many boundary extraction techniques such as square tracking,

moore-neighbor tracing, and radial sweep [104, 105]. For simplicity, we imple-

mented our own version of radial sweep to extract fire fronts. We scan the FIM

grid, first, from left to right, and second, from top to bottom, storing the first and

last grid locations with positive fire intensity values as the boundary. This gives us

the fire boundary that UAVs need to track. In the next section we describe how we

deploy UAVs using potential fields.

5.4 UAV Deployment

We use a CPT based algorithm for initial positioning of UAVs at positions given

by the CPT and at a starting elevation of 100 meters [36]. Althought there are

other techniques such as DT [40] and Voronoi Diagram [35] that can be used to

68

deploy UAVs in the first phase, we use CPT because it is a fast, simple technique

and ensures no overlapping between UAVs’ coverage radii while maximizing area

covered. During this first phase, each UAV identifies locations on fire within its

sensor range and communicates this information to neighbors. Only in the sec-

ond phase do UAVs start moving under the influence of different attractive and

repulsive potential fields.

5.4.1 Potential Field and Representation

We augment distance based potential fields with potential fields based on fire in-

tensity to control the movement of UAVs. Equation 5.4 shows the resultant poten-

tial fields equation comprised of three distance dependent potential fields and two

fire intensity dependent potential fields that govern the heading of the kth UAV. We

explain each term in the Equation 5.4 shown below.

~Pk = ~Pnd + ~PnI + ~P f b + ~P f I + ~Palt (5.4)

~Pnd denotes potential fields based on inter UAV distance so that UAVs do not clus-

ter too close to each other, ~PnI based on neighbors fire coverage. ~P f b denotes one

attractive and one repulsive potential field dependent on the distance from the

kth UAV to the nearest fire boundary location so UAVs are attracted towards the

boundary but do not get too close to the fire itself. ~P f I similarly defines the two

potential fields associated with fire intensity and also helps influence coverage.

Finally, PFk
alt mediates altitude and coverage since height correlates with energy

usage and with coverage FOV.

Each term in Equation 5.4 denotes two potential fields with each potential field

69

having two parameters. The full set of equations with all potential fields and their

parameters are show in in Equations 5.5 to 5.9 respectively.

~Pnd =
∑
j∈p

(c1~d
e1
k j − c2~d

e2
k j) (5.5)

~PnI =
∑
j∈p

(c3~nIe3
k j − c4~nIe4

k j) (5.6)

~P f b =
∑
j∈m

(c5~d
e5
k j − c6~d

e6
k j) (5.7)

~P f I =
∑
j∈m

(c7 ~f Ie7
k j − c8 ~f Ie8

k j) (5.8)

~Palt = c9~d
e9
k − c10~d

e10
k (5.9)

Equation 5.5 shows the attractive and repulsive potential fields based on distance

between the kth UAV and its p neighbors within air-to-air communication range.

Equation 5.6 computes potential fields similar to equation 5.5 except potential

fields are dependent on neighbors fire intensity coverage. Equation 5.7 and 5.8

compute attractive and repulsive potential fields based on distance and fire inten-

sity of m nearest fire points on the boundary of the fire. The coverage radius of

UAV is directly proportional to its altitude and thus with more altitude, the cov-

erage radius and area increase. However, a UAV expends more energy to change

altitude compared to moving at constant altitude or hovering in place. Thus we

generate an attractive and a repulsive potential fields using Equation 5.9 to con-

trol the altitude of UAVs and find a good trade-off between altitude and energy

consumption.

Since each potential field has two parameters, a coefficient (c) and an exponent

(e) to tune, we thus have 20 total parameters needing to be tuned. We encode

these parameters in a real-value chromosomes with upper and lower bounds of

70

coefficients c ∈ [−500000, 500000] and exponents e ∈ [−2, 2]. These values were

experimentally determined to work well and led to high fitness solutions.

Algorithm 4: Fitness Computation
Input : B, CS, MS, MT, UAVs
Output: fitness

1 ob j1 = ob j2 = 0;
2 for scenario in MS do
3 timeSteps = 0;
4 while timeSteps<MT do
5 AssociateBoundary(B,UAV s);
6 FindNeighbors(UAV s);
7 Headings = ComputePotentialFields(CS , B,UAV s);
8 MoveAll(Headings);
9 timeSteps++;

10 end
11 ob j1 += FireCoverage();
12 ob j2 += RemainingEnergy();
13 end
14 ob j1 = ob j1 / MS;
15 ob j2 = ob j2 / MS;
16 fitness = [ob j1, ob j2];
17 return(fitness);

5.5 Fitness Computation

The fitness of each chromosome or candidate solution is evaluated in three steps.

First, we send potential field parameters to our simulator running one fire sce-

nario. We then load these parameters to the UAV controller to control UAV move-

ment and run the simulation for 6000 time steps. When finished, we compute the

two objective values, boundary coverage and energy consumption, for this sce-

nario. We have three training scenarios so we repeat these steps for the remaining

scenarios and return the average objective values over these three scenarios as the

candidate solution’s evaluation. Algorithm 4 specifies this fitness computation.

71

Note that prior work indicates that solutions evolved on just one scenario may not

produce similar results on other unseen scenarios [7, 10]. To evolve more robust

parameter values, we used three different scenarios to evaluate each candidate so-

lution and averaged results.

Algorithm 4 takes fire boundary (B), a candidate solution (CS), the number of

scenarios (MS), a number of time steps (MT), and a set of UAVs, and returns the

averaged fitness assigned to the CS. AssociateBoundary allocate a region of

fire boundary to the closest UAV based on distance and FindNeighbors assigns

neighboring UAVs based on air-to-air communication range. Using this bound-

ary and neighbor information, ComputePotentialFields computes the vector

sum of potential fields acting on this UAV. These vector sum directions are used by

MoveAll to move each in the direction indicated by the vector sum of potential

fields acting on the UAV. At the end of the 6000 time steps for each scenario, two

objective values are computed using Equations 5.1. The first objective, Fire Cover-

age (FC) is the sum of the fire intensity covered by the UAVs divided by the sum of

the total fire intensity at the fire boundary at the end of the simulation. We do this

to normalize the objective value to be between zero to one. If there is an overlap of

coverage by two or more UAVs where they cover the same segment of boundary,

the intensity will only be counted towards this objective once. The second objec-

tive, Remaining Energy (RE) is the sum of the remaining battery life of the UAVs

divided by the total number of UAVs. UAV battery life ranges between zero and

one with one representing a full charge and zero representing an empty battery.

The two objective values are averaged over the three scenarios and assigned as

fitness. Table 5.1 provides UAV, the genetic algorithm, and fire simulation param-

eters.

72

Table 5.1: Simulation Parameters.

Parameters Symbol Value

UAV

Area of Interest AOI 2000m2

Coverage Radius Ugr h
A-2-A Range Uar 300m
Max Speed Us 5 m/s

Initial energy Et 106 J
Hovering Energy Eh 138.24 J/t
Altitude Energy Eh 164.16 J/t
Linear Energy Eh 109.44 J/t

NSGA-II

Population size Popm 20
Max generation Genm 20
Crossover rate Px 0.95
Mutation rate Pm 0.05

FARSITE

Wind Direction θ 0 ≤ θ ≤ 2π
Wind Speed U 5 m/sec

Fire Spread Rate R 25 m/min
Intensity Values I jt (1 − 10) kW/m

5.6 Results and Discussion

We consider an area of interest of 2000 meters2 and assume an initial 33 heat

sources from which the fire starts and spreads. Each heat source starts near lo-

cation (1000, 0, 1000) in the xz plane. We used 15 UAVs with a circular field of view.

The coverage radius of each UAV is directly proportional to its altitude where min-

imum and maximum altitudes are restricted to be between 100 to 150 meters. Ini-

tially each UAVs starts at an altitude of 100 meters.

5.6.1 Experiments on Training Scenarios

As mentioned earlier, solutions evolved on only one scenario may not produce

good results on other unseen scenarios. In other words, evolved solutions may not

73

be robust. Thus we evaluate each candidate solution on three different fire scenar-

ios as shown in Figure 5.2. We obtained these different fire scenarios by changing

variables in our FARSITE fire model. At the end of evaluation, objective values av-

eraged over these three training scenarios are assigned as two objective values of

a given candidate solution. The NSGA-II evolves the population and quickly pro-

duces good potential field parameter values. The Figures 5.2, and 5.3 show UAV

positions at the end of the simulation for one of the more balanced solutions on

the pareto front. Specifically, we picked a solution from the last generation pareto

front with objective values of (1, 0.71) and Figure 5.2 shows the locations of the

the fire boundary and the locations of UAVs at the end of simulation for the three

training scenarios. Figure 5.2 shows that UAVs are able to cover 100% of the fire

boundary in all three training scenarios, with 77.6%, 69.9%, 66.8% energy remain-

ing respectively. Circles indicate coverage and the overlapping circles show that

we have more than enough UAVs to cover the entire boundary within our altitude

(and energy) constraints. Even with a relatively small population of size 20, the

NSGA is able to quickly evolve good solutions.

(a) Tr1 (b) Tr2 (c) Tr3

Figure 5.2: Fire tracking over three training scenarios where red dots represent the
fire boundary in a given AOI. Green circles represent the coverage range of UAVs.
In all three cases, 100% fire boundary coverage is achieved.

74

5.6.2 Experiments on Testing Scenarios

In order to evaluate the robustness of evolved solutions, we picked the same solu-

tion with objective values of (1, 0.71) from the last generation pareto front and ran

this solution on three unseen fire scenarios as shown in Figure 5.3. On the first test-

ing scenario Te1, at the end of 6000 time steps simulation we achieve 100% percent-

age fire coverage at the boundary with 79.7% energy still remaining. Similar run-

ning on the second and third testing scenarios achieved 100% fire boundary cov-

erage and 77.5%, 79.7% remaining energy respectively. On average we achieved

78.1% remaining energy. These preliminary results indicate the viability of our po-

tential fields based approach towards a decentralized control of UAVs performing

a fire tracking task. However, much work remains in scaling our results and in

establishing a firm theoretical foundation to provide performance and reliability

limits.

(a) Te1 (b) Te2 (c) Te3

Figure 5.3: Fire tracking over three testing scenarios. In all three cases, 100% fire
boundary coverage is achieved.

75

5.6.3 Performance With Reduced Number of UAVs

We started with scaling by considering fewer UAVS since given enough UAVs, it

is not surprising that we are able to achieve 100% coverage with significant energy

to spare. We reduced the total number of available UAVs by 50% (7.5 ≈ 8) and

using the same parameters from earlier (1, 0.71) evaluated performance on all six

training and testing scenarios. On average we get only about 88% fire coverage,

76.3% remaining energy, and Figure 5.4 shows that we still have some overlap.

We need to better tune potential fields to minimize overlap and we may need to

modify altitude limits. Evolving on training scenarios with different numbers of

UAVs and explicitly including overlap in the objective function seem promising

avenues for future research.

Figure 5.4: Fire tracking with 8 UAVs.

5.7 Conclusion

We again used a potential fields based representation and a multi objective prob-

lem formulation to control UAV movement for dynamic fire boundary tracking.

76

We formulated this problem as a multi-objective optimization problem that max-

imizes fire coverage while minimizing energy consumption. Using the same rep-

resentation as in the case of WMND but with a different set of potential fields that

govern the movement of UAVs, we optimized parameter values to achieve objec-

tives. Preliminary results indicated that potential fields based solutions show sig-

nificant promise on this task and that a genetic algorithm evolves robust solutions

that degrade gracefully in unseen environments. When trained with 15 UAVs, the

NSGA-II evolved solutions with 100% fire boundary coverage even on unseen sce-

narios but the same parameter values lead to lower coverage when using 8 UAVs.

More specifically, the evolved solution performance on different training and test-

ing scenarios show that given enough UAVs (15), we can get 100% fire boundary

coverage while having 74.5% remaining energy at the end of our simulation runs.

When we reduce the number of UAVs by half we still achieved an average of 88%

boundary coverage with 76.3% energy reserves.

77

CHAPTER 6

REAL-TIME STRATEGY GAME MICRO

We start by describing what is micro in RTS games. Good micro helps to win

skirmishes and even the game, but searching for good micro behaviors is a difficult

problem because of large search space. We use a set of potential fields to guide

game agents during skirmishes and will specify how we use potential fields. Our

aim is to guide a team of heterogeneous game agents such that during skirmishes,

agents receive less damage and inflict more damage to opponents. As mentioned

earlier, solutions evolved on one scenario may not work well on other scenarios,

thus we needed different scenarios to evolve micro and different scenarios to test

the robustness of evolved micro behaviors. We formulated this problem as a multi

objective optimization problem to maximize damage done to opponents and to

minimize damage received by friendly agents. We compared the performance of

two other techniques to generate micro in RTS games with our representation.

6.1 Problem Formulation

We evolved micro behaviors for a group of agents composed from 2 to 5 different

types of game agents against an identical group of agents on two different RTS

games simulation platforms. We use the same approach and representation as in

the wireless mesh network deployment problem and fire boundary coverage. We

identify a set of potential fields to control game agents.

Our objectives are maximizing damage done to the opponent and minimizing

the damage received by friendly agents for a group composed of heterogeneous

agents. Some of the earlier work, combined both objectives into one objective and

78

used a genetic algorithm to maximize the single objective problem. We keep the

objectives separated and use NSGA-II to evolve a diverse pareto front of micro

behavior. We normalize damage done and damage received to span the range

[0..1], and Equation 6.1 describes our multi objective optimization problem.

Max
e∑

i=0

Dei = Max
e∑

i=0

MaxHealth − EHi

MaxHealth

Max
f∑

j=0

(1 − D f j) = Max
f∑

j=0

FH j

MaxHealth

(6.1)

Here, De represents damage done to enemy agents and D f represents the dam-

age to friendly agents. Our objectives are to maximize De and minimize D f re-

spectively. MaxHealth is the sum total of the undamaged health of all agents on

a side, e and f represent the number of enemy and friendly agents alive at the

end of a skirmish. Dei and D f j represents damage done to the ith enemy agent and

damage received by the jth friendly agent respectively. EHi and FH j represent the

remaining health of the ith enemy agent and the jth friendly agent. The normal-

ization against maximum health ensures that damage done and damage received

stay within 0 and 1. To evaluate an individual in the NSGAII population, we play

the two groups on the different training scenarios and average the damage done

and damage received on these scenarios. This normalized two-objective fitness

function used within our NSGA-II implementation then produces the results de-

scribed later in this chapter. To make decisions in RTS games, spatial information

of opponent agents is necessary and thus we use Influence Maps (IMs) to gather

opponents information and to find a target location to attack.

79

6.2 Influence Map

Spatial information in RTS games plays a significant role in decision making. IMs

used for enemy and terrain spatial information. An IM is a grid virtually placed

over a game map, where each position in the game map is represented by a value.

Algorithm 5 calculates the grid cell values. Algorithm 5 takes 5 input arguments;

weight w1, w2, a constant w3, decay fraction I f , effect radius r and returns the grid

cell values G for entire map. For each agent, Algorithm 5 calculates a starting

IM (IMs) for each agent using StartingIM at the agent’s location depending on

the agent’s health and weapons cool-down state. The IMs of an agent reduces

linearly by a fraction I f to zero as range r increases. UpdateGrid calculates grid-

cell values by adding the influence of all agents within a range (r) from the cell

using Equation 6.2.

IMs = w1Ph + w2Pw + w3

Id = IMs ∗ I f

Gc =
∑

i∈r(IMs − diId)

(6.2)

In Equation 6.2 Ph, Pw are health and weapon cooldown time of a game agent, and

Algorithm 5: Influence Map
Input : w1, w2, w3, I f , r
Output: G

1 G = InitializeGrid();
2 for Agent in Agents do
3 IMs= StartingIM(w1, w2, w3, Agent);
4 UpdateGrid(IMs, I f , G, r, Agent);
5 end
6 return(G);

w1,w2, and w3 are weights. I f and r are fraction and range of the influence. We

choose to evolve w1, w2, w3, I f , and r to calculate the influence of each agent. Low

cell values represent locations with low health enemy agents indicating easy prey

80

and we choose the lowest cell as the target coordinate. Once the target selected a

set of potential fields guide agents towards the target location. In order to complete

any given task, agents need to cooperate based on their unique ability and different

types of agents have different roles to play during skirmishes. To fully utilize the

effect of different types of agents, we consider that each different type of agent

has a different perspective of the game world. Therefore, we evolve different sets

of IM parameters for each different types of agents, for one type of agents 5 IM

parameters and for n different types of agents 5n IM parameters.

6.3 Potential Fields for Real-Time Strategy Game Micro

We use potential fields to guide agent movement to the target location provided

by the IM. Once near the opponent, we would like our agents to maneuver well

based on the location of enemy agents, their health, and the state of their weapons.

We define potential field in the form of cde where c and e are evolvable parameters

and d can be distance, health, or weapons state. We thus define and use attractive

and repulsive potential fields for each of these factors. Since the fields for friendly

agents should be different from the fields for enemy agents, we use two such sets

of potential fields. Finally, the target location also exerts an attractive potential.

Equation 6.3 shows addition of 4 potential fields based on distance ~Pd, health ~Ph,

weapon state ~Pw, and target ~Pt. Ignoring the target location’s potential field, this

results in a total of 2 (attractive, repulsive) ×3 (location, health, weapons state) ×2

(friend, enemy) = 12 potential fields for guiding one type of agent’s movement

against an enemy also composed of only one type of agent. Equation 6.4 shows 4

potential fields each adding to total 12 potential fields. We use the same techniques

from [106] to convert the vector sum of these potential fields into a desired heading

81

and desired speed. Once we move to micro for groups composed of two types of

agents, the number of potentials fields increases.

~P = ~Pd + ~Ph + ~Pw + ~Pt (6.3)

~Pd =
∑
i∈F

(c1de1
i + c2de2

i) +
∑
i∈E

(c3de3
i + c4de4

i)

~Ph =
∑
i∈F

(c5he5
i + c6he6

i) +
∑
i∈E

(c7he7
i + c8he8

i)

~Pw =
∑
i∈F

(c9we9
i + c10we10

i) +
∑
i∈E

(c11we11
i + c12we12

i)

(6.4)

We need different potential fields for different types of agents because each

type of agent treats other types of agents differently. For example, a friendly melee

agent treats enemy melee agents differently from enemy ranged agents. In RTS

games, a melee agent has low firing range but has more health, and a ranged agent

has large firing range but comparatively low health. The friendly melee agent

should avoid enemy ranged agents and approach enemy melee agents. In contrast,

a friendly ranged agent can target any enemy agent during skirmishes. Thus we

need different potential fields and IM parameters for each type of agent.

Figure 6.1 shows the four sets of potential fields needed when dealing with

groups composed from two types of agents where F1 represents type one friendly

agents and F2 represents type two friendly agents. For now, we ignore potential

fields generated by the target location. Similarly E1 represents type one enemy

agents and E2 represents type two enemy agents. A total of 4 (two attractive and

two repulsive) fields are required corresponding to F1, F2, E1, and E2 for each of

the following properties: distance, health and weapon state. This results in a total

of 4 (attractive, repulsive) ×3 (distance, health, weapons state) ×2 (friend, enemy)

= 24 potential fields per agent type.

82

Figure 6.1: Potential fields needed for groups composed from two types of agents.

The above explanation calculated the number potential fields required for one

type of agent. If p represents the number of potential fields, then for one type

versus one type p = 12. For two types versus two types of agents, recall that we

needed 24 potential fields of each type of agent. Thus we will need 2 (types of

agents) ×24 = 48 potential fields required. Generalizing if we consider skirmishes

between n types of agents versus n types of agents, then the number of potential

fields required per type of agent is n× p and the total number of potential required

is n×n×p. Each potential field has two parameters, thus in total we need 2×n×n×p

parameters.

We now consider the potential field exerted by the target location. Each type

of agent has its own target location, and hence requires a fixed number of param-

eter for its target potential field (2 parameter) and influence map (5 parameter).

Let q = 7 be this fixed number of parameters. q grows linearly with n, thus q × n

parameters are required for n different types of agents on each side. We can see

that Equation 6.5 gives the total number of parameters required to deal with n dif-

ferent types of agents to a side where Pnum refers to total number of parameters.

Note that the distance potential field parameters are computed more than once,

83

as different types of agents are added to each side. We can therefore subtract the

additional potential field parameters from the total number of required parame-

ters. Thus for two types of agents on each side, we need a total of 106 parameters.

In real game play, we usually micro with four or five different types of agents re-

sulting in 388 or 595 parameters according to Equation 6.5. This seems feasible to

evolve with our micro representation.

Pnum = (q + 2pn)n −
∑
i∈n

4(i − 1) (6.5)

These parameters provide a target location and guide agent movement towards

the target. If enemy agents come within weapons range of a friendly agent, the

friendly agent targets the nearest enemy agent. In our game simulation all entities

can fire in any direction even while moving from one location to other. With a

good set of parameters the agents evolve effective micro that tries to maximize

damage done to enemy agents while minimizing damage taken. The c coefficients

have a range of [-1000, 1000] and e exponents range from [-7, 8]. The influence

map parameter r and w3 range between 0 to 8 cells while I f , and w1, w2 and range

between 0 and 1.

6.4 Experiments on FastEcslent

We ran our experiments in a game simulator called FastEcslent, developed in our

lab for evolutionary computing research in games[107]. Unlike other available

RTS-like engines, FastEcslent enables 3D movement, and can run without graphics

thus providing simpler integration with evolutionary computing approaches. As

84

mentioned earlier, we need more than one scenario to produce robust solutions

and thus we created multiple different scenarios for micro evolution.

We created two sides; player1 with 5 Vultures and 5 Zealots and player2 with

5 Vultures and 5 Zealots. A Vulture is a vulnerable agent with low hit-points but

high movement speed, a ranged weapon, and considered effective when outma-

neuvering slower melee agents. A Zealot is a melee agent with short attack range

and low movement speed but has high hit-points. Table 6.1 shows the details

of these properties for both Vultures and Zealots which are used in our experi-

ments. Scenarios are constructed from ”clumps” and ”clouds” of entities; defined

by a center and a radius. All agents in a clump are distributed randomly within a

sphere defined by radius of 400. Agents in a cloud are distributed randomly within

10 agents of the sphere boundary defined by the center and radius (also 400).

The training scenarios are as follows: (a) A clump of player1 versus a clump of

player2, (b) A clump of player1 agents surrounded by a cloud of player2 agents,

(c) A clump of player2 agents surrounded by a cloud of player1 agents, (d) A set of

player1 agents within range of 250 in all three dimension centered at the origin and

a set of player2 agents within 250 in all three dimension centered at 650, and (e)

the same distributions of agents but with the players swapping their centers. Our

evaluation function ran each of these five scenarios for every chromosome during

fitness evaluation and the value returned by the simulation for each objective is

averaged over these scenarios. This results in evolving more reliable micro that

can do well under different training scenarios.

We enabled 3D movement by adding maximum (1000) and minimum (0) al-

titudes, as well as a climb rate constant rc of 2. Agents move in 3D by setting a

desired heading, a desired altitude, and a desired speed. This type of set-up is im-

85

Table 6.1: Game agent simulation properties in FastEcslent

Property Vulture Zealot
Hit-points 80 160
MaxSpeed 64 40

MaxDamage 20 16*2
Weapon’s Range 256 224

Weapon’s Cooldown 1.1 1.24

portant because agents micro is governed by physics; that means micro depends

on agents turning rate, speed and acceleration. The effectiveness of an agent that

can turn quickly and attack in all directions is different compared to the effective-

ness of an agent that does not have the ability to turn quickly and can not attack

in all directions. Furthermore, an agent with high-speed and high acceleration has

the ability to flee quickly when outnumbered compared to an agent with less speed

and less acceleration.

6.4.1 FastEcslent Results and Discussion

In order to produce high quality micro behavior, finding a good opponent to play

against is crucial. Instead of hand-coding an opponent, we use a two step ap-

proach to find a good opponent. First, we generated 30 random chromosomes that

we used as opponents and ran NSGA-II against each one of them with population

size of 20 for 30 generations. The best opponent is the one that does most dam-

age to friendly agents. We thus choose this opponent chromosome that does the

most damage as the next opponent. Second, we then run our NSGA-II against this

chromosome. The last generation pareto front of NSGA-II provides a diverse set

of micro behaviors ranging from fleeing; less damage done and less damage re-

ceived (0, 1) to kiting; more damage done and more damage received (1, 0). We

86

choose the most balanced performance, closest to (0.5, 0.5), as the next opponent

micro and repeat this process five times (five steps). These five steps provide f ive

Balanced Opponent Micro (BOM) chromosomes (BOM1 - BOM5). Since we do not

use hand-coded opponent micro, we ran 1000 randomly generated chromosomes

against BOM1 through BOM5 to better understand their effectiveness.

Figure 6.2 shows the performance of 1000 randomly generated chromosomes

against BOM1 to BOM5. In the figure, the line marked BOi represents the pareto

front of these 1000 random chromosomes against BOMi. That is, the points on

the line represent the best performers from among these 1000 random individuals

against BOMi. The x-axis represents damage done, while the y-axis represents (1

- damage received). The point (1, 1) then represents micro that destroys all enemy

agents and receives no damage. (1, 0) is micro that does destroys all opponents

but also loses all friendly agents. (0, 1) usually indicates fleeing behavior, friendly

agents inflict no damage and receive no damage. (0, 0) is bad, friendly agents did

no damage and received maximal damage - micro to be avoided. From the fig-

ure, we can see that the line marked as BO4 did worse. This means that the 1000

chromosomes did worse against BOM4, the balanced individual from the last gen-

eration pareto front in step four above. Furthermore, this implies that BOM4 is the

most difficult balanced opponent to play against and thus, with high probability, a

good opponent to evolve against.

We use real-coded parameter with simulated binary crossover along with poly-

nomial mutation. After experimenting with different values, we set crossover and

mutation distribution indexes to 20. The probabilities of crossover and mutation

were set to (0.9) and (0.05) to drive diversity. We evolved micro for groups of 5 vul-

tures and 5 zealots versus an identical opponent also with 5 vultures and 5 zealots

87

Figure 6.2: Pareto front of 1000 random chromosome against BOM1 to BOM5

considering a population size of 50 for 75 generations. Figure 6.3 shows the evo-

lution of the pareto front at intervals of fifteen (15) generations for one run of our

parallelized-evaluation NSGA-II and in total we ran evolution 10 times. Broadly

speaking, the pareto front moves towards (1, 1) while maintaining representatives

along the tradeoff curve for maximizing damage done and minimizing damage re-

ceived. We can see the maintainence of a diverse set of micro making a diverse set

of tradeoffs between damage done and received. These results provide evidence

that we can evolve a diverse set of micro tactics that learns to perform well against

an existing opponent.

To test the effectiveness of our evolutionary multi-objective optimization ap-

proach, we played a balanced individual and a fleeing individual from the 75th

generation pareto front against 3750 randomly generated chromosomes. Figure 6.4

shows how these random chromosomes did against the evolved micro. For com-

parison, we also ran BOM4 and fleeing micro from last generation pareto front of

step four against these random individuals. The figure shows that our evolved bal-

88

Figure 6.3: Micro evolution for friendly agents in final experiment against BOM4

Figure 6.4: Comparing evolved micro against 3750 random chromosomes

89

Figure 6.5: Initial and final generation pareto front over ten runs for evolved micro

anced individual does better than fourth step balanced individual, and the evolved

fleer also does better than the step four fleer. Evolutionary multi-objective opti-

mization’s approach to producing a diverse set of solutions along the pareto front

leads seems to lead to robust micro.

Figure 6.5 plots the combined pareto front in the first generation over all ten

random seeds versus the combined pareto front in the last generation over the ten

random seeds. That is, we first did a set union of the pareto fronts in the ten initial

randomly generated populations. The points in this union over all ten runs are

displayed as purple + for the initial generation (generation 1) points and as green

× for the points in the final generation (generation 75). The figure then shows

progress between the first and last generation over all ten runs. We can see that the

last generation pareto front produces micro on one extreme on the left (0.02, 0.98)

representing a strong tendency to flee, to the other extreme on the right (1,0.25)

90

Figure 6.6: Testing the robustness of evolved attacking, balanced, and fleeing micro
against BO4 on 50 random scenarios.

denoting an aggressive attacking micro behavior. There are a number of solutions

near the middle with balanced micro behavior.

To further check the robustness of our evolved micro in the last generation

pareto front, we decided to select one balanced, one fleeing, and one attacking

example of micro from this last generation and play against BOM4 in a variety of

different randomly generated scenarios. In these 50 scenarios, we randomly varied

the numbers of zealots and vultures, both between 5− 10, and made sure that both

sides had identical agents. Figure 6.6 shows results, indicating that the evolved

attacking micro (green ×s) comes in on the lower right, generally dealing dam-

age while also receiving significant damage. Purple + indicates evolved balanced

micro distributed in the middle showing balanced behaviors. Similarly, Blue ∗ in-

dicates evolved fleeing micro and mostly found on the upper right corner of the

graph. This shows fleeing behavior of micro. On average over the 50 scenarios,

91

the attacking micro leads to objective function values of (0.812, 0.291), while the

balanced micro leads to an average of (0.39, 0.59) and the fleeing micro’s average

fitness comes to (0.21, 0.79).

Finally, we played the evolved attacking micro against larger numbers of op-

ponents where 5 vultures and 5 zealots controlled by our evolved attacking micro

plays against and defeats 5 vultures and 10 zealots controlled by BOM4. The at-

tacking micro manages to destroy all 15 opponent agents showing that better micro

can win even when outnumbered.

6.5 Experiments on StarCraft-II

We showed that our approach works well in a RTS game platform developed in

our lab for research purposes. Next we choose a popular RTS game, StarCraft-II,

to control agents using our approach. This will provide the evidence of generaliz-

ability of our approach in different RTS game platforms. Furthermore, in addition

we also compare different approaches to micro in RTS games in SC2. To evolve

micro behaviors in SC2, we generated 4 different training scenarios as shown in

Figure 6.7. Unlike in the FastEcslent RTS game platform where we first evolved a

good opponent to play against, in SC2 there is a default AI player and we evolved

micro against this default AI. We call this default AI as SC2 AI.

Since SC2 is a commercial game platform, we do not have the level of control

on game agents as compared to game agents in FastEcslent. For example, in SC2

different types of agents have different speed and they always move at their re-

spective fixed speed. We can only change the heading of agents, also if agent is

a flying agent then the flying altitude for that agent is fixed. We created identi-

92

(a) (b)

(c) (d)

Figure 6.7: Four training scenarios to evolve RTS micro behaviors in SC2.

cal teams where each team is composed from upto three different types of agents.

We compare three different approaches to generating micro in SC2. These three

approaches are based on Meta Search (MS) [81], Neuroevolution of Augmenting

Topologies (NEAT) [78], and our approach. In RTS game micro, we call our ap-

proach, a Pure Potential Field (PPF) approach.

93

6.5.1 StarCraft-II Results and Discussion

We evolve micro over four training scenarios using the three different approaches

for teams composed of two different types of agents against an identical group

controlled by the SC2 AI. We then repeat the same experiments with groups com-

posed from three different types of agents as well. Due to time constraints, all

experiments used a population size of 20, run for 20 generations, with a simulated

binary crossover rate of 0.95, and mutation rate of 0.05.

Evolution Against SC2 AI

Figure 6.8 (a) shows the last generation pareto fronts evolved using MS, PPF and

NEAT for groups composed of two types of agents on each side. In our experiment,

for 2v2, we considered a group composed of 5 Stalkers (ranged) and 15 Zealots

(melee), playing against an identical opponent group (5 Stalkers and 15 Zealots)

on the training scenarios. Results indicate that all three approaches quickly evolve

micro that beats the SC2 AI on the training scenarios. The pareto front stays above

(0.5, 0.5). Since MS is hard-coded for kiting we see that MS produces a smaller

spread (one point on the far right) on the pareto front compared to PPF. Kiting is

a hit and run strategy. Meta search, in addition to kiting, was also designed to be

aggressive, so the MS micro tends to eliminate all opponents. Whereas, PPF was

not designed for any specific type of agent and does not have a target selection

mechanism. This leads PPF to produce diverse micro ranging from fleeing; low

damage done and low damage received, to aggressive; high damage done and

high damage received. NEAT also generates aggressive micro behaviors in the last

generation pareto front on training scenarios.

94

(a) (b)

Figure 6.8: Last generation pareto fronts of MS, PPF, and NEAT for (a) 2v2 and (b)
3v3 on training scenarios against SC2AI

Figure 6.8 (b) shows the last generation pareto fronts evolved using MS, PPF

and NEAT when there are three types of agents on each side (3v3). In these ex-

periments, we considered a group composed of 10 Marines (ranged), 6 Maraud-

ers (ranged), and 4 Medivacs (non-ranged) playing against an identical opponents

group (10 marines, 6 marauders and 4 medivacs) on our training scenarios. Re-

sults shows that all three approaches work well against the SC2 AI. MS and NEAT

generate aggressive micro behaviors whereas PPF generates a more diverse set of

micro.

To evaluate the performance and robustness of evolved micro behaviors using

three different approaches, we test our evolved micro M0 over two different test

scenarios against SC2 AI for 100 games where agent initial positions are randomly

generated in each of the two scenarios. In the first test scenario, friendly agents are

randomly generated in the lower half of the flat map while enemy agents are ran-

domly generated to occupy the upper half of this map in the 100 different games.

The second testing scenario randomly generates all agents across the entire map

for each of the 100 different games.

95

(a) (b)

Figure 6.9: Performance of M0 for (a) 2v2 and (b)3v3 on testing scenarios against
SC2AI

Figure 6.9 (a) shows results obtained on test scenarios with two types of agents

on each side. We generated a total of 300 points, 100 points for each MS, PPF, and

NEAT based approaches where each point is a pair of two objective values. As

expected, MS produces aggressive behavior but PPF and NEAT did not perform

well. The average of Ob jective1 and Ob jective2 over 100 games for MS found to be

0.789, and 0.068. Similarly for PPF the averaged objectives are 0.425 and 0.022, and

for NEAT averaged objectives are 0.23 and 0.126. We believe this is due to MS hav-

ing an explicit target selection component. In the absence of such a target selection

mechanism randomly dispersed agents find it difficulty to gather in a group to in-

flict more damage to opponents. NEAT did not perform well and the opaqueness

of neural nets does not permit a good understanding of this performance deficit.

Furthermore, a 20 population size run for 20 generations also may not have been

sufficient for NEAT to evolve the structure and weights of a neural network, or

for PPF, to fine tune coefficients and exponent parameters in order to evolve good

micro behaviors. The combination of human written algorithm tuned by a genetic

algorithm seems to combine human subject matter expertise with algorithm tuning

96

to quickly achieve high performance.

Figure 6.9 (b) shows the results obtained while testing performance and ro-

bustness over unseen test scenarios with three different types of agents on each

side. Again, MS outperformed both PPF and NEAT. The average of Ob jective1 and

Ob jective2 over 100 games for MS found to be 0.769, and 0.456. Similarly for PPF,

the averaged objectives are 0.17 and 0.334, and for NEAT, the averaged objectives

are 0.229 and 0.122.

Evolution Against Evolved Micro

The previous experimental results show that all three approaches work well against

the SC2 AI but SC2’s micro AI is not considered very good1. Thus, to improve

the quality of evolved micro and to test co-evolution’s viability to improve mi-

cro performance, we choose a member from the last generation pareto front as an

opponent (M0) and evolve against M0. The last generation pareto front may con-

tain members with fleeing, balanced, and aggressive micro behaviors, we choose

a member with aggressive micro to evolve against. As explained earlier, we re-

peated this cycle three times resulting in better and better micro. We then examine

M3’s performance on our two testing scenarios for a 100 different randomly initial-

ized agent positions. Figure 6.10(b) shows the performance of M3 for two different

types of agents. Compared to M0, M3 improves both objectives for PPF from 0.425

(damage done) and 0.022 (1-damage received) to 0.635 and 0.048 where all objec-

tive values are averaged over 100 games. PPF controlled agents were able to inflict

more damage as they learned to move in groups (flocking). M3 from meta search

achieves average objective values of 0.717 and 0.0824 which are similar to the re-

1For example, SC2’s AI does not implement kiting.

97

(a) (b)

Figure 6.10: Performance of (a) M0 and (b) M3 for 2v2 on testing scenarios against
SC2AI

(a) (b)

Figure 6.11: Performance of (a) M0 and (b) M3 for 3v3 on testing scenarios against
SC2AI

sults produced by M0 - 0.789 and 0.068. NEAT obtained average objective values

of 0.23 and 0.126 with M0 and 0.867 and 0.382 with M3.

Figure 6.11(b) shows the performance of M3 for three different types of agents.

For 3v3 with PPF, M0 produces damage done and 1- damage received of 0.17 and

0.334 respectively, compared to M3’s fitness of 0.377 and 0.175. However, MS did

not improve significantly from M0 to M3. NEAT improves both objectives with

98

(a) (b)

Figure 6.12: Last generation pareto fronts of MS, PPF, NEAT, and MS+PPF for (a)
2v2 and (b) 3v3 on training scenarios against SC2AI

M3 from 0.229 and 0.122 to 0.589 and 0.28. This shows that NEAT evolved a bet-

ter neural network structure and tuned it’s weights by playing against a stronger

opponent compared to SC2 AI.

Evolution with Combination of Approaches

In our last set of experiments we investigated combining meta search with pure

potential fields. MS was designed for ranged agents not melee agents, so com-

bining MS with PPF enables us to take advantage of MS to control ranged agents

and PPF to control all other agent types. We evolve micro behaviors with this hy-

brid approach on our four training scenarios. Figure 6.12 (a) and Figure 6.12 (b)

show the last generation pareto fronts evolved using MS, PPF, NEAT, and com-

bined MS+PPF for two type versus two type and three type versus three type

agent groups respectively. Combining MS and PPF leads to higher performance

compared to any of the three approaches alone and produces a higher performing

pareto front of micro for our 2v2 groups. However, this difference is not present

99

on the 3v3 scenarios. We believe this is because Medivacs are neither ranged nor

melee agents and their control has not yet had time to evolve in the 20 × 20 = 400

evaluations available.

These results show that all three approaches MS, PPF, and NEAT work well.

However, potential fields based game agent control provides a trade-off between

explainability and complexity. MS is a hard coded approach and works for ranged

game agents and not for melee. However, MS is understandable, explainable but

not scalable. Whereas NEAT evolves neural networks to control the movement

of game agents and can be scaled to control a large number of different types of

game agents. But NEAT is not understandable and explainable because of the large

numbers of weights in the neural network. Different from these two, our genetic

optimized potential field approach is both understandable and explainable. Unlike

NEAT we know the property (such as distance) that each potential field is based

on and we can do a sensitivity analysis for each of these properties to understand

and explain their effect on agent behavior. Thus our approach is more flexible than

meta search and can be easily extended to more types of agents and more types

of micro while being more understandable and explainable than neural network

based approaches. This is a significant advantage of our approach.

Evolving Micro With Many Different Types of Agents

We created identical teams to eliminate the issue of bias and evolved pareto fronts

of micro behaviors on four different training scenarios. The NSGA-II ran for 50

generations with a population size of 50, a probability of crossover of 0.95, and

a probability of mutation of 0.05. The experiments were conducted considering

different agent combinations as shown in Table 6.2 and the attributes of each of the

100

Table 6.2: Different agent combinations

XvsX Combinations
PvsP 10 Ze, 6 S t, 4 S e, 3 Vt, 4 Ad

TvsT 10 Mr, 6 Md, 4 Me, 3 Bn

ZvsZ 10 Zr, 6 Be, 4 Mu

Table 6.3: Attributes and characteristics of agents. Agent types and attributes are
taken from Starcraft 2.

Agent Type Health Range Attack Type
Marine(Mr) 45 5 A/G R

Marauder(Md) 125 6 G R
Medivac(Me) 150 11 heal, carrier R
Banshee(Bn) 140 6 G R
Zealot(Ze) 100 0.1 G M
S talker(S t) 80 6 A/G R
Adept(Ad) 70 4 G R

VoidRay(Vr) 150 6 A/G R
S entry(S t) 40 5 A/G, force field R

Zergling(Zr) 35 0.1 G M
Baneling(Bl) 30 0.25 G M
Mutalisk(Ms) 120 3 A/G R

agents is shown in Table 6.3. We next discuss the evolved micro behaviors for each

of our three configurations.

Three Different Types of Agents

When considering three different types of agents, we created teams composed of

20 agents composed of these three types. Specifically, we used 10 Zr, 6 Bl, and 4

Mu for both sides of the skirmish in our training and testing scenarios. Here, Zr

and Bl are melee agents and Mu is a ranged agent. Using our potential field based

representation, the NSGA-II evolved a diverse set of micro behaviors. Figure 6.13

shows the evolution of micro behavior for every 10th generation and we observed

101

Figure 6.13: Pareto fronts at every 10th generation. Each team is composed from
three different types of agents.

a significant difference between the first (0th) and the last (50th) generation pareto

front solutions. A fitness (1, 0.81) specifies that all enemy agents died and friendly

agents had 81% remaining health at the end of skirmish. In Figure 6.13, the last

generation pareto front solutions shows a range of behaviors from fleeing to ag-

gressive. Friendly team agents were able to eliminate all enemy team agents while

receiving little damage (1, 0.81).

Four Different Types of Agents

Figure 6.14 shows pareto fronts when playing with friendly terran agents against

identical enemy terran agents controlled through SC2AI. The terran agents com-

bination has many different unique abilities. For example, Marine Mr is a ranged

agent with ability to attack ground and air targets but low on health. Whereas

Marauder Md is a ranged, strong agent (high health), attacks only ground targets

and can also protect Mr from receiving damage thus both form a good combination

together. Additionally, Medivacs Me have the ability to heal both Mr and Md. Me is

102

Figure 6.14: Pareto fronts at every 10th generation. Each team is composed from
four different types of agents.

a healer not attacker thus to add more fire power Banshees Bn are added into 4v4

terran team configuration. Bn is a strong flying agent and can only attack ground

targets. As shown in Figure 6.14, terran agents improved their performance sig-

nificantly from initial generation to last generation in terms of damage done and

damage received. Friendly terran agents learned effective strategies to counter the

swarm of enemy terran agents by figuring out weakness in their strategy. Bn of

friendly team eliminates the Mr of enemy team and remember in this team setting,

Mr is the only agent that can attack aerial targets.

Five Different Types of Agents

Table 6.2 shows the team combination with 27 agents from five different types of

protoss race agents. Figure 6.15 shows the pareto fronts at every 10th generation

when friendly protoss agents play against an identical enemy protoss agents con-

trolled through SC2AI. The agents in such combination includes agents with va-

riety abilities.For example, zealots Ze are strong ground attack melee agents. The

103

Figure 6.15: Pareto fronts of every 10th generation. Each team composed from five
different types of agents.

melee nature of Ze makes them more vulnerable against agents with large firing

range. On the other hand, Stalkers S t are fast moving, ranged agents and have the

ability to attack both ground and air targets. Ze and S t together make a formidable

combination against any enemy. The 5v5 protoss agents combination includes an

agent called ”Sentry” S e, an agent with a unique ability to create force fields (for

a time) that block movement of any ground agents. These force fields are used

extensively to defend own agents or infrastructure. In addition to these agents, the

combination also includes Void Ray Vr and Adept Ad. Vr is a flying agent with the

ability to attack both ground and air targets, and Ad is a ground attack agent. The

five types, Ze, S t, S e, Vt, and Ad make a strong combination of agents with high de-

fense and attack capability. As shown in Figure 6.15, initially, in the 0th generation

our agents performed poorly but gradually improve over a period of 50 genera-

tions. The last generation pareto front (50th) shows a variety of micro including

fleeing, balanced, and aggressive.

104

(a) (b)

Figure 6.16: Two types of testing scenarios with a group composed of different
types of agents against the same group of agents

Experiments on Testing Scenarios

To measure the robustness of evolved solution, we picked an aggressive micro

from the last generation pareto front and tested the performance on two unseen

scenarios as shown in Figure 6.16. We ran 25 simulation with different starting po-

sition on each of the two testing scenario. For 5v5, the averaged fitness obtained on

the first scenario (a) is (0.88, 0.27), and the averaged fitness on the second scenario

(b) is (0.83, 0.11). On the first testing scenario, agents get the chance to quickly

gather to attack opponents and this leads to better fitness compared to the second

scenario. Similar experiments were conducted with different teams as well and the

results indicate that evolved solutions performed well on unseen scenarios. This

provides evidence of the generalizability and scalability of our approach to evolve

high performing diverse micro against opponents.

105

6.6 Conclusions

We evolved micro behavior in two different RTS game simulation platforms us-

ing the same approach. The influence map provided a target location and game

agents were controlled using a set of potential fields towards the target location.

In FastEcslent, we first evolved the opponent’s AI and used that as a final oppo-

nent. Next, we considered a different and popular RTS game, StarCraft-II to evolve

micro against the default SC2 AI. In SC2, we compared three different approaches

with different levels of explainability; meta-search, our approach (pure potential

fields) and NEAT, to generate micro behaviors for groups composed from multi-

ple different types of agents in RTS games. First, we evolved micro against the

SC2 AI over four training scenarios and subsequently tested their performance

and robustness over two unseen testing scenarios. Results showed that all three

approaches generated micro that can defeat SC2 AI over our training scenarios.

Meta search, based on a human coded algorithm and tuned by a GA, turned out

to be more robust and outperformed both PPF and NEAT on our 200 randomized

testing scenarios.

To improve the quality of evolved micro and to test self-play or co-evolution’s

viability to improve micro, we manually co-evolved better micro over three cycles.

The resulting micro improved performance for all three approaches for skirmishes

composed of two types of agents on each side. For three types of agents on each

side, PPF and NEAT improved their micro performance but MS did not show sig-

nificant improvement. Lastly, we combined MS to control ranged agents and PPF

to control melee/non-ranged agents. This combination improved the quality of

evolved micro for groups composed from ranged and melee agents. These results

encourage us to focus on more hybrid approaches to improve performance.

106

Lastly we evolved micro for groups composed of three to five different types

of game agents and up to 27 total numbers of agents using NSGA-II. As the num-

ber of different types of agents increases, the complexity of the problem increases.

The results showed that our approach evolved different micro by tuning IMs and

potential field parameters. These results show that our approach is generalizable,

scalable, and because the coefficients and exponents of known potential fields con-

trol the movement agent, our approach is also understandable.

107

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

We used genetic algorithms optimized potential fields to control the movement of

agents for group tasking. Our approach used task specific potential fields to guide

agents. Since potential fields are highly non-linear and tuning their parameters is

difficult, we used genetic algorithms to tune tasks specific potential field parame-

ters. We choose three different challenging problems to show the applicability and

effectiveness of our approach. Each agent acted independently under the influence

of potential fields on all three problems and worked in a decentralized manner.

We proposed GANet to deploy wireless mesh networks using UAVs for search

and rescue. Potential fields based on bandwidth and distances controlled the

movement of UAVs to generate mesh networks where each UAV acted indepen-

dently. We formulated the problem as a single objective optimization problem and

a genetic algorithm optimized the potential field parameters to maximize the sum

of bandwidth coverage and longevity. Results on a sample test problem showed

that the genetic algorithm is faster compared to the random exhaustive search and

a hill climber (gradient ascent based technique) when searching for optimal so-

lutions in the search space of potential field parameters. This justified use of the

genetic algorithm to tune potential field parameters. Results on complex problems

showed that GANet outperformed ATRI with one hop communication between

UAVs. Furthermore, experimental results showed that with two hops UAVs com-

munication the performance improved significantly compared to one hop commu-

nication.

108

We used the same approach as in the case of wireless mesh network deploy-

ment, to control the movement of UAVs for fire perimeter coverage. Potential fields

based on fire intensity and distances controlled the movement of UAVs. We for-

mulated the problem as a multi objective problem to maximize fire coverage while

minimizing energy consumption of UAVs. Here, fire coverage refers to only the

fire perimeter, not the entire region covered by the fire. Results showed that we

achieved complete fire coverage with enough UAVs. In both the problems: wire-

less mesh network deployment and fire boundary coverage, we assumed a single

type of UAV.

The third and last problem was to control multiple types of game agents to

win skirmishes in RTS games. We used potential fields based on distance, health,

and weapon properties to control game agents and formulated the problem as a

multi objective optimization problem that maximizes damage done to opponents

and minimizes damage received by friendly agents. We conducted experiments

on two different RTS game simulation platforms: FastEcslent and SC2. Results on

FastEcslent, showed that our approach generated a pareto front of good quality

micro behaviors. We also compared our approach performance with two other

techniques for generating micro behaviors on SC2 and the results showed that the

all three approaches performed well. However, our approach provides a trade-off

between explainability and complexity. Lastly, we increased the complexity of the

problem by adding different types of game agents to friendly and enemy teams

and the results showed that our approach was able to evolve a diverse set of good

quality micro. This showed the scalability of our approach to large numbers of

heterogeneous agents for group tasking.

These results show that our approach is generalizable to different domain spe-

109

cific problems and scalable to a large number of different types of agents. Our

potential field based approach is simple to implement and since we know what

potential fields are based on we can better understand and explain agent’s behav-

ior.

7.2 Future Work

We plan to extend the work on wireless mesh network deployment in three ways

in the future. Results show that a few users are not covered by any UAVs, we plan

to modify our potential field based representation to ensure all users are covered

and follow users as they move. Second, we assumed only one type of UAV for

network deployment but in the future we aim to deploy wireless mesh networks

that use different types of UAVs. Lastly, we assumed that enough UAVs were

available for deployment. In reality, this might not be the case, thus we plan to

modify our approach to work with a lower number of UAVs for both search and

service phases.

In RTS game micro, we plan to investigate cooperation between different types

of agents and design a performance metric to measure cooperation. Furthermore,

we aim to conduct experiments to measure an individual game agent’s contribu-

tion to achieve the objectives of given tasks. Finally, we also plan to investigate

other machine learning techniques for decision making in dynamic environments.

Earlier, we had planned to use our potential fields based approach to con-

trol the movement of autonomous surface vehicles (ASVs) for safe navigation in

compliance with the collision regulations (COLREGs). This work is currently in

progress and some of the experimental results on generating safe and COLREGs

110

complained paths have been accepted for publication in the Proceedings of the IEEE/MTS

Oceans 2021 Conference. In the future, we plan to investigate the scope of our ap-

proach to navigate ASVs.

111

BIBLIOGRAPHY

[1] Oussama Khatib. Real-time obstacle avoidance for manipulators and mobile
robots. In Autonomous robot vehicles, pages 396–404. Springer, 1986.

[2] John H Holland. Genetic algorithms. Scientific american, 267(1):66–73, 1992.

[3] Mandavilli Srinivas and Lalit M Patnaik. Genetic algorithms: A survey. com-
puter, 27(6):17–26, 1994.

[4] Robin C Purshouse and Peter J Fleming. Why use elitism and sharing in a
multi-objective genetic algorithm? In Proceedings of the 4th Annual Conference
on Genetic and Evolutionary Computation, pages 520–527, 2002.

[5] J. Schmitt and H. Kostler. A multi-objective genetic algorithm for simulating
optimal fights in starcraft II. IEEE Conference on Computational Intelligence and
Games, 2016.

[6] Ridong Zhang and Jili Tao. A nonlinear fuzzy neural network modeling ap-
proach using an improved genetic algorithm. IEEE Transactions on Industrial
Electronics, 65(7):5882–5892, 2017.

[7] Rahul Dubey, Sushil J Louis, and Shamik Sengupta. Evolving dynamically
reconfiguring uav-hosted mesh networks. In 2020 IEEE Congress on Evolu-
tionary Computation (CEC), pages 1–8, 2020.

[8] Rahul Dubey and Sushil J Louis. Evolving potential field parameters for
deploying uav-based two-hop wireless mesh networks. In Proceedings of the
Genetic and Evolutionary Computation Conference Companion, 2021.

[9] Kripash Shrestha, Rahul Dubey, Ashutosh Singandhupe, Sushil J Louis, and
Hung La. Multi objective uav network deployment for dynamic fire cov-
erage. In 2021 IEEE Congress on Evolutionary Computation (CEC), pages 1–8,
2021.

[10] Rahul Dubey, Joseph Ghantous, Sushil Louis, and Siming Liu. Evolution-
ary multi-objective optimization of real-time strategy micro. In 2018 IEEE
Conference on Computational Intelligence and Games (CIG), pages 1–8, 2018.

[11] Rahul Dubey, Sushil Louis, Aavaas Gajurel, and Siming Liu. Comparing
three approaches to micro in rts games. In 2019 IEEE Congress on Evolutionary
Computation (CEC), pages 777–784, 2019.

112

[12] Rahul Dubey and Sushil J Louis. Multi-objective evolutionary algorithms
for distributed tactical control of heterogeneous agents. In Proceedings of the
Genetic and Evolutionary Computation Conference Companion, 2021.

[13] John H Holland. Adaptation in natural and artificial systems: An introductory
analysis with applications to biology, control, and artificial intelligence. U Michi-
gan Press, 1975.

[14] Darrell Whitley. A genetic algorithm tutorial. Statistics and computing,
4(2):65–85, 1994.

[15] Chang Wook Ahn and Rudrapatna S Ramakrishna. Elitism-based compact
genetic algorithms. IEEE Transactions on Evolutionary Computation, 7(4):367–
385, 2003.

[16] T. Tomic, K. Schmid, P. Lutz, A. Domel, M. Kassecker, E. Mair, I. L. Grixa,
F. Ruess, M. Suppa, and D. Burschka. Toward a fully autonomous uav:
Research platform for indoor and outdoor urban search and rescue. IEEE
Robotics Automation Magazine, 19(3):46–56, 2012.

[17] E. Semsch, M. Jakob, D. Pavlicek, and M. Pechoucek. Autonomous uav
surveillance in complex urban environments. In 2009 IEEE/WIC/ACM In-
ternational Joint Conference on Web Intelligence and Intelligent Agent Technology,
volume 2, pages 82–85, 2009.

[18] S. J. Lee, D. Lee, and H. J. Kim. Cargo transportation strategy using t3-
multirotor uav. In 2019 International Conference on Robotics and Automation
(ICRA), pages 4168–4173, 2019.

[19] Francesco Nex and Fabio Remondino. Uav for 3d mapping applications: a
review. Applied geomatics, 6(1):1–15, 2014.

[20] P. Tokekar, J. V. Hook, D. Mulla, and V. Isler. Sensor planning for a symbiotic
uav and ugv system for precision agriculture. IEEE Transactions on Robotics,
32(6):1498–1511, 2016.

[21] Milan Erdelj, Michał Król, and Enrico Natalizio. Wireless sensor networks
and multi-uav systems for natural disaster management. Computer Networks,
124:72–86, 2017.

[22] N. H. Motlagh, M. Bagaa, and T. Taleb. Uav-based iot platform: A crowd
surveillance use case. IEEE Communications Magazine, 55(2):128–134, 2017.

113

[23] Qingqing Wu, Jie Xu, and Rui Zhang. Capacity characterization of uav-
enabled two-user broadcast channel. IEEE Journal on Selected Areas in Com-
munications, 36(9):1955–1971, 2018.

[24] Mohammad Mozaffari, Walid Saad, Mehdi Bennis, Young-Han Nam, and
Mérouane Debbah. A tutorial on uavs for wireless networks: Applications,
challenges, and open problems. IEEE Communications Surveys & Tutorials,
2019.

[25] Samira Hayat, Evşen Yanmaz, and Raheeb Muzaffar. Survey on unmanned
aerial vehicle networks for civil applications: A communications viewpoint.
IEEE Communications Surveys & Tutorials, 18(4):2624–2661, 2016.

[26] Qixing Feng, Eustace K Tameh, Andrew R Nix, and Joe McGeehan. Wlcp2-
06: Modelling the likelihood of line-of-sight for air-to-ground radio propa-
gation in urban environments. In IEEE Globecom 2006, pages 1–5. IEEE, 2006.

[27] Isabelle Bucaille, Serge Héthuin, Andrea Munari, Romain Hermenier, Tinku
Rasheed, and Sandy Allsopp. Rapidly deployable network for tactical ap-
plications: Aerial base station with opportunistic links for unattended and
temporary events absolute example. In MILCOM 2013-2013 IEEE military
communications conference, pages 1116–1120. IEEE, 2013.

[28] Yong Zeng, Rui Zhang, and Teng Joon Lim. Wireless communications with
unmanned aerial vehicles: Opportunities and challenges. IEEE Communica-
tions Magazine, 54(5):36–42, 2016.

[29] Dalimir Orfanus, Edison Pignaton de Freitas, and Frank Eliassen. Self-
organization as a supporting paradigm for military uav relay networks. IEEE
Communications Letters, 20(4):804–807, 2016.

[30] Akram Al-Hourani, Sithamparanathan Kandeepan, and Simon Lardner. Op-
timal lap altitude for maximum coverage. IEEE Wireless Communications Let-
ters, 3(6):569–572, 2014.

[31] Mohammad Mozaffari, Walid Saad, Mehdi Bennis, and Merouane Debbah.
Drone small cells in the clouds: Design, deployment and performance analy-
sis. In 2015 IEEE Global Communications Conference (GLOBECOM), pages 1–6.
IEEE, 2015.

[32] Rajdeep Dutta, Liang Sun, and Daniel Pack. A decentralized formation and

114

network connectivity tracking controller for multiple unmanned systems.
IEEE Transactions on Control Systems Technology, 26(6):2206–2213, 2017.

[33] Hao Fang, Yue Wei, Jie Chen, and Bin Xin. Flocking of second-order multia-
gent systems with connectivity preservation based on algebraic connectivity
estimation. IEEE transactions on cybernetics, 47(4):1067–1077, 2016.

[34] Haitao Zhao, Lingchu Mao, and Jibo Wei. Coverage on demand: A simple
motion control algorithm for autonomous robotic sensor networks. Computer
Networks, 135:190–200, 2018.

[35] Guiling Wang, Guohong Cao, and Thomas F La Porta. Movement-assisted
sensor deployment. IEEE Transactions on Mobile Computing, 5(6):640–652,
2006.

[36] Zsolt Gáspár and Tibor Tarnai. Upper bound of density for packing of equal
circles in special domains in the plane. Periodica Polytechnica Civil Engineer-
ing, 44(1):13–32, 2000.

[37] Miu-ling Lam and Yun-hui Liu. Heterogeneous sensor network deployment
using circle packings. In Proceedings 2007 IEEE International Conference on
Robotics and Automation, pages 4442–4447. IEEE, 2007.

[38] Andrew Howard, Maja J Matarić, and Gaurav S Sukhatme. Mobile sensor
network deployment using potential fields: A distributed, scalable solution
to the area coverage problem. In Distributed Autonomous Robotic Systems 5,
pages 299–308. Springer, 2002.

[39] Sameera Poduri and Gaurav S Sukhatme. Constrained coverage for mobile
sensor networks. In IEEE International Conference on Robotics and Automation,
2004. Proceedings. ICRA’04. 2004, volume 1, pages 165–171. IEEE, 2004.

[40] Ming Ma and Yuanyuan Yang. Adaptive triangular deployment algorithm
for unattended mobile sensor networks. IEEE Transactions on Computers,
56(7):946–847, 2007.

[41] Novella Bartolini, Tiziana Calamoneri, Tom F La Porta, and Simone Silvestri.
Autonomous deployment of heterogeneous mobile sensors. IEEE Transac-
tions on Mobile Computing, 10(6):753–766, 2010.

[42] Mohammad Mozaffari, Walid Saad, Mehdi Bennis, and Mérouane Debbah.

115

Efficient deployment of multiple unmanned aerial vehicles for optimal wire-
less coverage. IEEE Communications Letters, 20(8):1647–1650, 2016.

[43] Haitao Zhao, Haijun Wang, Weiyu Wu, and Jibo Wei. Deployment algo-
rithms for uav airborne networks toward on-demand coverage. IEEE Journal
on Selected Areas in Communications, 36(9):2015–2031, 2018.

[44] Jiangbin Lyu, Yong Zeng, Rui Zhang, and Teng Joon Lim. Placement opti-
mization of uav-mounted mobile base stations. IEEE Communications Letters,
21(3):604–607, 2016.

[45] Xiao Zhang and Lingjie Duan. Fast deployment of uav networks for opti-
mal wireless coverage. IEEE Transactions on Mobile Computing, 18(3):588–601,
2018.

[46] Amar Nath Patra, Paulo Alexandre Regis, and Shamik Sengupta. Dis-
tributed allocation and dynamic reassignment of channels in uav networks
for wireless coverage. Pervasive and Mobile Computing, 54:58–70, 2019.

[47] DG Reina, Hissam Tawfik, and SL Toral. Multi-subpopulation evolution-
ary algorithms for coverage deployment of uav-networks. Ad Hoc Networks,
68:16–32, 2018.

[48] Dina S. Deif and Yasser Gadallah. Wireless sensor network deployment us-
ing a variable-length genetic algorithm. In 2014 IEEE Wireless Communica-
tions and Networking Conference (WCNC), pages 2450–2455, 2014.

[49] Wildfire statistics- congressional research service. https://fas.org/
sgp/crs/misc/IF10244.pdf. last accessed: February 21, 2021.

[50] Firefighter fatalities in the united states.
https://www.nfpa.org/News-and-Research/
Data-research-and-tools/Emergency-Responders/
Firefighter-fatalities-in-the-United-States. last accessed:
February 21, 2021.

[51] Dalimir Orfanus, Edison Pignaton de Freitas, and Frank Eliassen. Self-
organization as a supporting paradigm for military uav relay networks. IEEE
Communications Letters, 20(4):804–807, 2016.

[52] Yazan Mualla, Amro Najjar, Alaa Daoud, Stephane Galland, Christophe
Nicolle, Elhadi Shakshuki, et al. Agent-based simulation of unmanned aerial

https://fas.org/sgp/crs/misc/IF10244.pdf
https://fas.org/sgp/crs/misc/IF10244.pdf
https://www.nfpa.org/News-and-Research/Data-research-and-tools/Emergency-Responders/Firefighter-fatalities-in-the-United-States
https://www.nfpa.org/News-and-Research/Data-research-and-tools/Emergency-Responders/Firefighter-fatalities-in-the-United-States
https://www.nfpa.org/News-and-Research/Data-research-and-tools/Emergency-Responders/Firefighter-fatalities-in-the-United-States

116

vehicles in civilian applications: A systematic literature review and research
directions. Future Generation Computer Systems, 100:344–364, 2019.

[53] H. X. Pham, H. M. La, D. Feil-Seifer, and M. Deans. A distributed control
framework for a team of unmanned aerial vehicles for dynamic wildfire
tracking. In 2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 6648–6653, 2017.

[54] C. Yuan, Z. Liu, and Y. Zhang. Fire detection using infrared images for uav-
based forest fire surveillance. In 2017 International Conference on Unmanned
Aircraft Systems (ICUAS), pages 567–572, 2017.

[55] F. Afghah, A. Razi, J. Chakareski, and J. Ashdown. Wildfire monitoring in re-
mote areas using autonomous unmanned aerial vehicles. In IEEE INFOCOM
2019 - IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS), pages 835–840, 2019.

[56] Luis Merino, Fernando Caballero, J. Ramiro Martinez-de Dios, J. Ferruz, and
Anibal Ollero. A cooperative perception system for multiple uavs: Appli-
cation to automatic detection of forest fires. J. Field Robotics, 23:165–184, 03
2006.

[57] C. Yuan, Z. Liu, and Y. Zhang. Uav-based forest fire detection and track-
ing using image processing techniques. In 2015 International Conference on
Unmanned Aircraft Systems (ICUAS), pages 639–643, 2015.

[58] Henry Cruz, Martina Eckert, J. Meneses, and J. Martı́nez. Efficient forest fire
detection index for application in unmanned aerial systems (uass). Sensors
(Basel, Switzerland), 16, 2016.

[59] D. Casbeer, R. W. Beard, T. Mclain, S. Li, and R. Mehra. Forest fire monitoring
with multiple small uavs. Proceedings of the 2005, American Control Conference,
2005., pages 3530–3535 vol. 5, 2005.

[60] C. Phan and H. H. T. Liu. A cooperative uav/ugv platform for wildfire de-
tection and fighting. In 2008 Asia Simulation Conference - 7th International Con-
ference on System Simulation and Scientific Computing, pages 494–498, 2008.

[61] Manish Kumar, Kelly Cohen, and Baisravan HomChaudhuri. Cooperative
control of multiple uninhabited aerial vehicles for monitoring and fighting
wildfires. Journal of Aerospace Computing, Information and Communication, 8:1–
16, 01 2011.

117

[62] Ivan Maza, Fernando Caballero, Jesus Capitan, J. Ramiro Martinez-de Dios,
and Anibal Ollero. Experimental results in multi-uav coordination for dis-
aster management and civil security applications. Journal of Intelligent and
Robotic Systems, 61:563–585, 01 2011.

[63] C. Kyrkou and T. Theocharides. Emergencynet: Efficient aerial image classi-
fication for drone-based emergency monitoring using atrous convolutional
feature fusion. IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing, 13:1687–1699, 2020.

[64] Huy Pham, Hung La, David Feil-Seifer, and Matthew Deans. A distributed
control framework for a team of unmanned aerial vehicles for dynamic wild-
fire tracking. 09 2017.

[65] S. Ontañon, G. Synnaeve, A. Uriarte, F. Richoux, D. Churchill, and M. Preuss.
A survey of real-time strategy game AI research and competition in Star-
Craft. IEEE Transactions on Computational Intelligence and AI in games, 5(4):1–
19, 2013.

[66] Stuart Russell and Peter Norvig. Artificial intelligence: a modern approach.
2002.

[67] Michael Buro and Timothy Furtak. Rts games as test-bed for real-time ai
research. In Proceedings of the 7th Joint Conference on Information Science (JCIS
2003), volume 2003, pages 481–484, 2003.

[68] Dan Fu and Ryan Houlette. The ultimate guide to fsms in games. AI game
programming Wisdom, 2:283–302, 2004.

[69] David Churchill and Michael Buro. Build order optimization in StarCraft. In
Artificial Intelligence and Interactive Digital Entertainment (AIIDE 2011), 2011.

[70] Michael Chung, Michael Buro, and Jonathan Schaeffer. Monte carlo planning
in rts games. In CIG. Citeseer, 2005.

[71] Radha-Krishna Balla and Alan Fern. Uct for tactical assault planning in real-
time strategy games. In Twenty-First International Joint Conference on Artificial
Intelligence, 2009.

[72] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre,
George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda

118

Panneershelvam, Marc Lanctot, et al. Mastering the game of go with deep
neural networks and tree search. nature, 529(7587):484, 2016.

[73] Google-DeepMind. Alphastar: Mastering the real-time strat-
egy game StarCraft II. https://deepmind.com/blog/
alphastar-mastering-real-time-strategy-game-starcraft-ii/.

[74] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep
reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

[75] Kun Shao, Yuanheng Zhu, and Dongbin Zhao. Starcraft micromanagement
with reinforcement learning and curriculum transfer learning. IEEE Transac-
tions on Emerging Topics in Computational Intelligence, 3(1):73–84, 2018.

[76] Maria Fox, Derek Long, and Daniele Magazzeni. Explainable planning.
arXiv preprint arXiv:1709.10256, 2017.

[77] Wojciech Samek and Klaus-Robert Müller. Towards explainable artificial
intelligence. In Explainable AI: Interpreting, Explaining and Visualizing Deep
Learning, pages 5–22. Springer, 2019.

[78] Aavaas Gajurel ; Sushil J Louis ; Daniel J Méndez ; Siming Liu. Neuroevo-
lution for rts micro. IEEE Conference on Computational Intelligence and Games,
pages 1–8, 2018.

[79] K. O. Stanley and R. Miikkulainen. Evolving neural networks through aug-
menting topologies. Evolutionary computation, 10(2):99–127, 2002.

[80] Johan Hagelbäck. Potential-field based navigation in starcraft. In 2012
IEEE Conference on Computational Intelligence and Games (CIG), pages 388–393.
IEEE, 2012.

[81] S. Liu, S. Louis, and C. Ballinger. Evolving effective micro behaviors in real-
time strategy games. IEEE Transactions on Computational Intelligence and AI in
Games, PP(99):1–1, 2016.

[82] Sushil J Louis and Siming Liu. Multi-objective evolution for 3d rts micro. In
2018 IEEE Congress on Evolutionary Computation (CEC), pages 1–8. IEEE, 2018.

[83] Siming Liu, Sushil J Louis, and Christopher Ballinger. Evolving effective

https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/

119

micro behaviors in rts game. In 2014 IEEE Conference on Computational Intel-
ligence and Games, pages 1–8. IEEE, 2014.

[84] Navin K Adhikari, Sushil J Louis, and Siming Liu. Multi-objective coopera-
tive co-evolution of micro for rts games. In 2019 IEEE Congress on Evolution-
ary Computation (CEC). IEEE, 2019.

[85] P. Sweetser and J. Wiles. Combining influence maps and cellular automata
for reactive game agents. Intelligent Data Engineering and Automated Learning-
IDEAL, pages 209–215, 2005.

[86] M. Preuss, N. Beume, H. Danielsiek, T. Hein, B. Naujoks, N. Piatkowski,
R. Stuer, A. Thom, , and S. Wessing. Towards intelligent team composition
and maneuvering in real-time strategy games. IEEE Transactions on Compu-
tational Intelligence and AI in Games, 2(2):82–98, 2010.

[87] D. Doherty and C. ORiordan. Evolving tactical behaviours for teams of
agents in single player action games. 9th International Conference on Computer
Games: AI, Animation, Mobile, Educational and Serious Games, pages 121–126,
2006.

[88] A. Uriarte and S. Ontañón. Kiting in RTS games using influence maps. Eighth
Artificial Intelligence and Interactive Digital Entertainment Conference, pages 31–
36, 2012.

[89] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A
fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE transactions
on evolutionary computation, 6(2):182–197, 2002.

[90] Kamal Taha. Methods that optimize multi-objective problems: A survey and
experimental evaluation. IEEE Access, 8:80855–80878, 2020.

[91] Yadollah Rasekhipour, Amir Khajepour, Shih-Ken Chen, and Bakhtiar Litk-
ouhi. A potential field-based model predictive path-planning controller for
autonomous road vehicles. IEEE Transactions on Intelligent Transportation Sys-
tems, 18(5):1255–1267, 2016.

[92] Ding Fu-guang, Jiao Peng, Bian Xin-qian, and Wang Hong-Jian. Auv local
path planning based on virtual potential field. In IEEE International Con-
ference Mechatronics and Automation, 2005, volume 4, pages 1711–1716. IEEE,
2005.

120

[93] Alexander C Woods and Hung M La. A novel potential field controller for
use on aerial robots. IEEE Transactions on Systems, Man, and Cybernetics: Sys-
tems, 49(4):665–676, 2017.

[94] Bence Kovács, Géza Szayer, Ferenc Tajti, Mauricio Burdelis, and Péter Ko-
rondi. A novel potential field method for path planning of mobile robots by
adapting animal motion attributes. Robotics and Autonomous Systems, 82:24–
34, 2016.

[95] Erick Cantú-Paz. A survey of parallel genetic algorithms. Calculateurs paral-
leles, reseaux et systems repartis, 10(2):141–171, 1998.

[96] DG Reina, Hissam Tawfik, and SL Toral. Multi-subpopulation evolution-
ary algorithms for coverage deployment of uav-networks. Ad Hoc Networks,
68:16–32, 2018.

[97] Raj Jain, Fred Templin, and Kwong-Sang Yin. Analysis of l-band digital aero-
nautical communication systems: L-dacs1 and l-dacs2. In 2011 Aerospace
Conference, pages 1–10. IEEE, 2011.

[98] Larry J Eshelman. The chc adaptive search algorithm: How to have safe
search when engaging in nontraditional genetic recombination. In Founda-
tions of genetic algorithms, volume 1, pages 265–283. Elsevier, 1991.

[99] Sushil J Louis, Tianyi Jiang, and Siming Liu. Real-time strategy game micro
for tactical training simulations. In Proceedings of the Genetic and Evolutionary
Computation Conference Companion, pages 1656–1663. ACM, 2018.

[100] Jeffrey W Herrmann. A genetic algorithm for minimax optimization prob-
lems. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99
(Cat. No. 99TH8406), volume 2, pages 1099–1103. IEEE, 1999.

[101] M. Finney. Farsite : Fire area simulator : model development and evaluation.
1998.

[102] Dorothy Albright and BN Meisner. Classification of fire simulation systems.
Fire management notes, 1999.

[103] G. D. Richards. An elliptical growth model of forest fire fronts and its nu-
merical solution. International Journal for Numerical Methods in Engineering,
30:1163–1179, 1990.

121

[104] Godfried Toussaint. Grids, connectivity, and contour-tracing. URL:¡
http://www-cgrl. cs. mcgill. ca/˜ godfried/teaching/pr-notes/contour. ps, 1988.

[105] Michael Alder. An introduction to pattern recognition. Mike Alder, 2001.

[106] S.J. Louis and S. Liu. Multi-objective evolution for 3D RTS micro. Neural and
Evolutionary Computing, arXiv:1803.02943, 2018.

[107] FastEcslent. (2016) Evolutionary computing systems lab, unr. [Online].
Available. http://ecsl.cse.unr.edu/.

http://ecsl.cse.unr.edu/

	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Structure of this Thesis

	Background
	Genetic Algorithms
	Elitist Genetic Algorithms

	UAV Wireless Mesh Network Deployment
	Dynamic Fire Boundary Coverage
	Real-Time Strategy Games

	Methodology
	Potential Fields
	Potential Field Based Movement Control
	Agent Motion Model

	Evaluation
	Parallel GAs

	Wireless Mesh Network Deployment
	Problem Formulation
	Methodology
	Genetic Algorithms
	UAV Movement Modeling
	First Phase: Search
	Second Phase: Service

	Results and Discussion
	Experiments on A Simple Test Problem
	Evolution on Training Scenarios
	Experiments on Testing Scenarios
	Maximizing The Minimum Objective

	Conclusions

	Dynamic Fire Coverage
	Problem Formulation
	Fire Simulator
	Fire Influence Map
	UAV Deployment
	Potential Field and Representation

	Fitness Computation
	Results and Discussion
	Experiments on Training Scenarios
	Experiments on Testing Scenarios
	Performance With Reduced Number of UAVs

	Conclusion

	Real-Time Strategy Game Micro
	Problem Formulation
	Influence Map
	Potential Fields for Real-Time Strategy Game Micro
	Experiments on FastEcslent
	FastEcslent Results and Discussion

	Experiments on StarCraft-II
	StarCraft-II Results and Discussion

	Conclusions

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography

