University of Nevada, Reno

Correntropy: Answer to non-(Gaussian noise in modern

SLAM applications?

A dissertation submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy in

Computer Science and Engineering

by
Ashutosh Singandhupe

Dr. Hung La/Dissertation Advisor

May 2022

THE GRADUATE SCHOOL

We recommend that the dissertation
prepared under our supervision by

Ashutosh Singandhupe

entitled

Correntropy: Answer to non-Gaussian noise in modern SLAM
applications?

be accepted in partial fulfillment of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

Hung La, Ph.D.
Advisor

Sushil Louis, Ph.D.
Committee Member

Alireza Tavakkoli, Ph.D.
Committee Member

Tin Nguyen, Ph.D.

Committee Member

Hao Xu, Ph.D.
Graduate School Representative

David W. Zeh, Ph.D., Dean
Graduate School

May, 2022

Abstract

by Ashutosh Singandhupe

The problem of non-Gaussian noise/outliers has been intrinsic in modern Simultane-
ous Localization and Mapping (SLAM) applications. Despite numerous algorithms in
SLAM, it has become crucial to address this problem in the realm of modern robotics
applications. This work focuses on addressing the above-mentioned problem by in-
corporating the usage of correntropy in SLAM. Before correntropy, multiple attempts
of dealing with non-Gaussian noise have been proposed with significant progress over
time but the underlying assumption of Gaussianity might not be enough in real-life

applications in robotics.

Most of the modern SLAM algorithms propose the ‘best’ estimates given a set of
sensor measurements. Apart from addressing the non-Gaussian problems in a SLAM
system, our work attempts to address the more complex part concerning SLAM: (a)
If one of the sensors gives faulty measurements over time (‘Faulty’ measurements can
be non-Gaussian in nature), how should a SLAM framework adapt to such scenarios?
(b) In situations where there is a manual intervention or a 3rd party attacker tries to
change the measurements and affect the overall estimate of the SLAM system, how
can a SLAM system handle such situations?(addressing the Self Security aspect of
SLAM). Given these serious situations how should a modern SLAM system handle

the issue of the previously mentioned problems in (a) and (b)?

We explore the idea of correntropy in addressing the above-mentioned problems in

asingandhupe@nevada.unr.edu

ii
popular filtering-based approaches like Kalman Filters(KF) and Extended Kalman
Filters(EKF), which highlights the ‘Localization’ part in SLAM. Later on, we propose
a framework of fusing the odometeries computed individually from a stereo sensor and
Lidar sensor (Iterative Closest point Algorithm (ICP) based odometry). We describe
the effectiveness of using correntropy in this framework, especially in situations where
a 3rd party attacker attempts to corrupt the Lidar computed odometry. We extend
the usage of correntropy in the ‘Mapping’ part of the SLAM (Registration), which is
the highlight of our work. Although registration is a well-established problem, earlier
approaches to registration are very inefficient with large rotations and translation. In
addition, when the 3D datasets used for alignment are corrupted with non-Gaussian
noise (shot/impulse noise), prior state-of-the-art approaches fail. Our work has given
birth to another variant of ICP, which we name as Correntropy Similarity Matrix
ICP (CoSM-ICP), which is robust to large translation and rotations as well as to
shot/impulse noise. We verify through results how well our variant of ICP outper-
forms the other variants under large rotations and translations as well as under large
outliers/non-Gaussian noise. In addition, we deploy our CoSM algorithm in applica-
tions where we compute the extrinsic calibration of the Lidar-Stereo sensor as well as
Lidar-Camera calibration using a planar checkerboard in a single frame. In general,
through results, we verify how efficiently our approach of using correntropy can be

used in tackling non-Gaussian noise/shot noise/impulse noise in robotics applications.

Acknowledgements

I would like to thank Dr. Hung La, Dr. Sushil Louis, Dr. Alireza Tavakkoli, Dr.
Tin Nguyen, and Dr. Hao Xu for being on my committee, with special thanks to
Dr. Hung La for giving me the opportunity to complete this research as part of the
Advanced Robotics and Automation (ARA) Laboratory. I would also like to thank
my lab-mates for their help with this research: Habib Ahmed, Cadence Motley, Son
Nguyen and Andrew Washburn . Lastly, I would like to thank my friends and family

for helping to support me through this hectic time in my life.

This work is partially supported by the U.S. National Science Foundation (NSF) under
grants NSF-CAREER: 1846513 and NSF-PFI-TT: 1919127, and the U.S. Department
of Transportation, Office of the Assistant Secretary for Research and Technology
(USDOT/OST-R) under Grant No. 69A3551747126 through INSPIRE University
Transportation Center (http://inspire-utc.mst.edu) at Missouri University of Science
and Technology, and the National Aeronautics and Space Administration (NASA)
Grant No. NNX15AI02H issued through the NVSGC-RI program under sub-award
No. 19-21, the RID program under sub-award No. 19-29, and the NVSGC-CD

program under sub-award No. 18-54.

The views, opinions, findings and conclusions reflected in this publication are solely
those of the authors and do not represent the official policy or position of the NSF,

USDOT/OST-R, and NASA.

Contents

Abstract

Acknowledgements

List of Figures

1

Introduction

1.1 Simultaneous Localization and Mapping
1.2 Correntropyo
1.3 Contributions of Proposed Approach
1.4 Summary

Literature Review

2.1 Lidar based odometry
2.2 Stereo Based Odometry L.
2.3 Security in Autonomous Systems
24 Conclusion

Correntropy: Concepts
3.1 Basics of Correntropyo
3.2 Summary ...

Correntropy Kalman Filter

4.1 Motivation
4.2 Kalman Filter Based on WLS method
4.3 Maximum Correntropy Criterion.
4.4 Simulation Results
4.5 Conclusion

MCC-EKF for Autonomous Car Security

5.1 Motivation
5.2 Proposed Methodology
5.3 Results
5.4 Conclusions

v

6 Correntropy Registration 63
6.1 Motivation 63
6.2 Correntropy Criterion 67
6.3 Proposed Method 71

6.3.1 Correntropy Similarity Matrix with Iterative Closest Point Al-
gorithmo 71
6.3.2 Properties of the Similarity Matrix 75
6.3.2.1 SM Matrix is a sparse Matrix 75
6.3.2.2 The rows and columns are linearly independent . . . 76
6.3.2.3 Similarity Matrix is a Mirror-Symmetric Matrix. . . 77
6.4 Results. 7
6.4.1 Evaluation on Datasets with no outliers. 7
6.4.2 Evaluation on datasets with outliers. 86
6.43 Effectofo. 90
6.5 Discussion 93
6.6 Conclusions 96

7 Single Frame Lidar Stereo Camera Calibration Using Registration
of 3D planes 98
7.1 Motivation 98
7.2 Background 99
7.3 Proposed Methodology 104

7.3.1 Lidar data processing 106
7.3.2 Stereo camera data processing 107
7.3.3 Transformation estimation 108
74 Results. 109
7.4.1 Evaluation on Simulated data 110
742 FEffectofo 112
7.5 Discussion 113
7.6 Conclusions 113

8 Single Frame Lidar-Camera Calibration Using Registration of 3D
planes 115
8.1 Motivationo 115
8.2 Background 117
8.3 Proposed Methodology L. 121

8.3.1 Lidar data processing 122
8.3.2 Camera data processing 123
8.3.3 Transformation estimation 124
84 Results. 125
8.4.1 Evaluation on Simulated data 127
85 Summary 128

9 Conclusions and Future Work 130

9.1 Conclusions
9.2 Future Work

Bibliography

vi

List of Figures

3.1
3.2

4.1
4.2

4.3
4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

5.1
5.2
5.3

5.4

5.9
5.6

Joint space representation of the MSE.
Joint space representation of Correntropy/Cross-correntropy.

Correntropy Criterion.
(a) Lidar Measurements with shot noises. (b) KF response to shot
noises (labeled as state predictions)
Framework of our evaluation.
(a) Lidar Measurements with shot noises. (b) KF response to shot
noises (labeled as state predictions)
(a) Lidar Measurements with shot noises. (b) KF response to shot
noises (labeled as state predictions)
(a) Lidar Measurements with shot noises. (b) KF response to shot
noises (labeled as state predictions)
(a) Lidar Measurements with shot noises. (b) KF response to shot
noises (labeled as state predictions)
(a) Lidar Measurements with shot noises. (b) MCC-KF response to
shot noises (labeled as state predictions)
(a) Lidar Measurements with shot noises. (b) MCC-KF response to
shot noises (labeled as state predictions)
(a) Lidar Measurements with shot noises. (b) MCC-KF response to
shot noises (labeled as state predictions)
(a) Lidar Measurements with shot noises. (b) MCC-KF response to
shot noises (labeled as state predictions)
(a) Lidar Measurements with shot noises. (b) MCC-KF response to
shot noises (labeled as state predictions)

System Architecture. Lo
Gazebo Simulation Environment.
KITTI dataset data (SEQ 11): (a)- Environment, and (b) its 3D Lidar

(a, ¢) Lidar odometry, and (b, d) Stereo odometry (dotted path shows
the ground truth.)o Lo o

(a) Odometry trajectory of each method. (b) Zoom-in at one location.

MCC-EKF response to attacks on Lidar data.

vii

39
40

44

44

45

45

47

47

48

48

49

54
56

o6

S7
57

5.7

5.8

5.9

6.1

6.2

6.3
6.4

6.5

6.6

Evaluation on KITTI sequence number 27. Here, (a) Normal EKF re-
sponse to attacks in Lidar data, RMSE: 10.406; (b) MCC-EKF reponse
to attacks, RMSE: 1.85.
EKF response on KITTI dataset SEQ 01 when attack vector is intro-
duced.
MCC-EKF response on KITTI dataset SEQ 01 when attack vector is
introduced.

(a) Red is the Source point cloud Py (bunny rabbit). Pg contains N
points p,; (j =1,..,N), each of which is a 3D representation z;,y;, 2;.
White is the Target point cloud Py. Py contains N points qx (k =
1,..,N), each of which is a 3D representation zy, yx, zx. Same goes for
the dragon dataset in (b). L.
Correntropy Criterion. Here, when the difference between the points
(p; —qx) is small, i..e., when they are similar, and the Gaussian kernel
function G, approaches to 1. On the contrary, when the difference is
large, the Gaussian kernel function approaches to 0.
Similarity Matrix.”*’ represent the Correntropy values.
As the iterations increases, the rank of the matrix approaches N. Here
N is 1360.
Rotated and translated point cloud (white is the original point cloud
(Target), and Red is the transformed point cloud (Source)) with rota-
tion of (r, p,y) = (0.314,0,0) and translation of 0.05 unit in the z-axis.
(a) shows the bunny rabbit point cloud down sampled using voxel grid
filtering of leaf size 0.005. (b) shows the dragon point cloud down sam-
pled using voxel grid filtering of leaf size 0.005. (c) shows the happy
buddha point cloud down sampled using voxel grid filtering of leaf size
0.005. . . .
Transformation from Source to Target: (r,p,y,x,y,z)=(0.314,0,0,0,0,0.05).
White point cloud: Original point cloud (7Target). Red point cloud:
Source point cloud and Green point cloud : Source transformed point
cloud after 10 iterations using (a) ICP Standard SVD (RMSE: 6.25494e-
06) (b) ICP Point to Plane (RMSE: 2.77175e-16) and (c¢) CoSM ICP
(RMSE: 3.34226e-06) on the Bunny Rabbit dataset. Similarly we per-
form 50 iterations on the Dragon dataset using (d) ICP Standard SVD
(RMSE: 2.86089¢-14) (e) ICP Point to Plane (RMSE: 3.93822¢-16) and
(f) CoSM ICP (RMSE: 2.72838e-15) and 35 iterations on the Happy
Buddha dataset using (g) ICP Standard SVD (RMSE: 1.72851e-13) (h)
ICP Point to Plane (RMSE: 3.91357e-16) and (i) CoSM ICP (RMSE:
2.463360-14). . . .

Viil

6.7

6.8

6.9

6.10

6.11

6.12

6.13

Convergence of different Registration Methods (ICP Standard SVD,
ICP point to plane, GICP and CoSM ICP) on different datasets on
the simple transformation ((r,p,y,z,y,2) = (pi/10,0,0,0,0,0.05)).
(a) Shows RMSE comparison on Bunny Rabbit dataset. (b) Shows
RMSE comparison on the Dragon dataset. (¢) RMSE comparison on
the Happy Buddha dataset.
RMSE comaprison of various methods on the Bunny Rabbit dataset.
(b) shows the zoomed in version of (a).,
White Point Cloud: Original Point Cloud (Target). Red Point Cloud:
Source point cloud. Green Point Cloud: Source transformed point
cloud after applying iterations. Source is transformed from the Target
as ((r,p.yx,y,2)=(-1.32811,-5.87854,2.12814,-0.874,-0.433,0.221)). (a)-
(c) shows the convergence of the Source point clouds after 5, 10 and 20
iterations using the standard ICP, respectively (RMSE after 20 itera-
tions is 0.000358474). (d)-(f) shows the same using ICP Point to Plane
(RMSE after 20 iterations is 0.00216325). (g)-(i) shows the same using
CoSM ICP (RMSE after 20 iterations is 4.76074e-06).
White point cloud: Original Point Cloud (Target). Red point cloud:
Source point cloud. Green point cloud: shows the Source transformed
point cloud after applying different registration methods. Source is
transformed from the Target as ((r,p,y,x,y,z)=(2.39,-5.025,-2.69,0.00,-
0.003,0.003)). (a)-(c) shows the convergence of the Source point clouds
after 5, 10 and 25 iterations using the standard ICP, respectively
(RMSE after 25 iterations is 0.000198014). (d)-(f) shows the same
using ICP Point to Plane (RMSE after 25 iterations is 0.000136451).
(g)-(i) shows the same using CoSM ICP (RMSE after 25 iterations is
8.66664e-08).
RMSE comparison of various methods on Dragon dataset. (b) shows
the zoomed in version of (a).
White point cloud: Original point cloud (Target). Red point cloud:
Source point cloud. Green: Source transformed point cloud after ap-
plying different registration methods. Source is transformed from the
Target as ((r,p,y,x,y,z)=(-4.50504,1.31677,4.83251,-0.023,-0.019,-0.008)).
(a)-(c) shows the convergence of the Source point clouds after 5, 10 and
25 iterations using the standard ICP, respectively (RMSE after 25 it-
erations is 0.000128905). (d)-(f) shows the same using ICP Point to
Plane (RMSE after 25 iterations is 0.000124717). (g)-(i) shows the
same using CoSM ICP (RMSE after 25 iterations is 2.26675e-06).
RMSE comparison of various methods on the Happy Buddha dataset.
(b) shows the zoomed in version of (a).,

1X

83

83

84

85

86

87

6.14 (From KITTI dataset) White point cloud: Original Point Cloud(Target).
Red point cloud: Source point cloud and Green point cloud: Source
transformed point cloud after applying different registration meth-
ods. Source is transformed from the Target as ((r,p,y,x,y,z)=(-4.2,-
0.5,0.098,10.9, -10.5, 17.8)). (a)-(c) shows the convergence of the Source
point clouds after 7, 15 and 33 iterations using the standard ICP, re-
spectively (RMSE after 33 iterations is 13.7695). (d)-(f) shows the
same using ICP Point to Plane (RMSE after 33 iterations is 12.6385).
(g)-(i) shows the same using CoSM ICP (RMSE after 25 iterations is
1.01689e-08).

6.15 RMSE comparison of various methods on the KITTT Lidar dataset.

6.16 CoSM Results when Source is infected with noise. White point cloud:
Original Point Cloud (Target). Red point cloud: Infected Source point
cloud. Green point cloud: Source transformed point cloud after apply-

89
90

ing iterations. Transformation from Source to Target: ((r,p,y,x,y,z)=(1.658,

0.607, -1.204, 0.00, -0.003, 0.003)). (a),(b) and (c) show the result
of CoSM ICP on the Bunny dataset when 10%, 25% and 50%of the
data is affected with outliers. Their respective RMSE’s are 8.64002¢ —
05,0.000203088 and 0.000384025. (d),(e) and (f) show the result of
CoSM ICP on the Dragon dataset when 10%, 25% and 50%of the
data is affected with outliers. Their respective RMSE’s are 6.91792¢ —
05,0.000163833 and 0.000368516. (g),(h) and (i) show the result of
CoSM ICP on the Happy Buddha dataset when 10%, 25% and 50%of
the data is affected with outliers. Their respective RMSE’s are 9.29047e—
05,0.000205528 and 0.000386966. For each case, we performed around
30 iterations. L.
6.17 Average RMSE’s of various methods in 100 runs (Bunny Rabbit dataset).
Each run consists of random rotation and translation between the
Source and the Target.
6.18 Average RMSE’s of various methods in 100 runs (Dragon dataset).
Each run consist of random rotation and translation between the Source
and the Target.o
6.19 Average RMSE’s of different methods in 100 runs (Happy Buddha
dataset). Each run consist of random rotation and translation between
the Source and the Target.

7.1 Sample Lidar and stereo camera configuration setup. C, is the stereo
camera coordinate frame (here we consider the left camera center as
stereo camera’s coordinate frame), and L. is the Lidar coordinate
frame. The objective here is to compute the transformation 7" between

95

96

7.3

7.4

8.1

8.2

8.3

Simulation setup for evaluating Lidar-stereo calibration under multiple
configurations: (a) denotes a gazebo simulation of Prius car model
with Lidar and stereo camera; (b) denotes the TF-frames of the Lidar
and the stereo camera. The link ouster_link is the reference frame for
Lidar; (c) and (d) denote TF-frames of multiple configurations of Lidar-
stereo setup. t = [t;,%,,t,] denotes the translation component along
x,y,z. It essentially denotes how the stereo camera is transformed
with respect to the Lidar sensor along z,y,z. For (c) the translation
between the Lidar and the stereo sensor is t = [0, 0.5,0.0], and for (d)
itist=[-0.5,0.50].
Translation and Rotation errors of individual components(z,y, z and
roll,pitch and yaw) under various configurations.

Sample Lidar and camera configuration setup (It is a stereo camera
setup, however we use only the images from the left camera for our
work). C, is the camera coordinate frame (here we consider the left
camera center of the stereo camera’s coordinate frame), and L. is the
Lidar coordinate frame. The objective here is to compute the trans-
formation T between L., and C,.
Green is the Source point cloud Py (as computed from Lidar points).
Py contains N points p; (j = 1,.., N), each of which is a 3D represen-
tation x;, y;, z;. White is the Target point cloud Py (as computed from
camera data). Py contains N points qx (k =1, .., N), each of which is
a 3D representation Tg, i, Zk. - o o oo oo
Translation and Rotation errors of individual components (z,y, z and
roll,pitch and yaw) under various configurations compared to ground
truth.

x1

Chapter 1

Introduction

Autonomous navigation is a widely researched topic in robotics, augmented /virtual
reality and, more dominantly, in self-driving cars. Robotic autonomous navigation
has been there for more than 30 years and has contributed significantly to the in-
dustry targeting from small scale driven applications to large scale, which resulted
in the advent of this decade’s self-driving cars and other autonomous robots. The
ease with which most animals and human beings navigate in the environment can be
replicated in robots. However, this complex process of navigation, no wonder how
well we do, can not be easily represented mathematically. The only way that dumb
robots can be made to navigate in an environment is to represent the environment in
some simpler forms, which can be algorithmically justified. Simultaneous Localiza-
tion and Mapping (SLAM) is an algorithmic process of a robot/sensor system, which

involves perceiving the environment using sensors and estimating its position of itself

in the environment simultaneously [1]. For a robot, the environment is represented
as a culmination of different geometrical structures (landmarks, obstacles etc.), also
called a map. The term pose or robot state represents the position and orientation
of the robot. It is generally termed as the robot state. The map assists the hu-
man operator in visualizing an unknown environment and setting up the robot’s path
for navigation. Another significant advantage the map provides is that it helps in
minimizing the error while estimating the robot state (pose) during navigation. For
example, in keeping track of ‘visited landmarks’, the robot can detect a loop, minimiz-
ing localization error, which is quite similar to how we humans navigate. Research in
autonomous navigation has resulted in numerous algorithms such as Rapidly explor-
ing Random Trees (RRT), extended RRT (RRT*), Rapidly-exploring Random Graph
(RRG), Probabilistic Roadmap (PRM), etc., [2] [3]. These algorithms have directed
many researchers to explore and improve robot navigation in complex environments.
However, the current state of the art demands more improvement since it is yet to be

fully solved for real-time dynamic environments.

1.1 Simultaneous Localization and Mapping

SLAM is a heavy component in modern autonomous systems. The drive for SLAM
research was ignited with the inception of robot navigation in Global Positioning Sys-
tems (GPS) denied environments. Although GPS improves localization, numerous

SLAM techniques are targeted for localization with no GPS in the system. Initially,

probabilistic estimation techniques were introduced, like Kalman Filters (KF), which
were later extended to Extended Kalman Filters (EKF), and Unscented Kalman Fil-
ters (UKF) for non-linear systems [1]. Particle filters like Rao-Blackwellized and
Monte Carlo filters have also contributed significantly to the SLAM research [1]. An-
other approach that has grabbed attention is the graph-based SLAM, where the robot
pose is represented as a node/vertex in a graph, and the edges represent the errors
in measurements from various sensors. Subsequently, the process involves generating
a pose graph and minimizing the error using mathematical techniques like Gauss-
Newton/Levenberg-Marquardt [4]. SLAM techniques like Oriented fast and Rotated
Briefs-SLAM (ORB2-SLAM) [5, 6] are based on graph-based localization. Another
interesting approach has grabbed attention since the advent of deep learning with a
focus on Convolutional Neural Networks (CNN). Quite interesting results were ob-
served, especially with the work on CNN-SLAM [7]. Experiments show that robot
pose or localization could be achieved from a pair of images acquired by a mov-
ing robot through deep learning or CNN. Even though the CNN-SLAM approach
is promising, this approach has invited a few challenges that need to be addressed.
Deep learning requires high-end Graphics Processing Unit (GPU) systems, which is
still a challenge for robotic embedded systems. Moreover, SLAM systems are seen to
be directed on continuous open-world scenes where the environment keeps changing.
These changes need to be learned continuously for a deep learning system. To our best
knowledge, deep learning has not significantly evolved in the current state of SLAM to

learn the dynamic changes in the environment robustly. From the various techniques

introduced in SLAM, one can observe that SLAM is inclined to combine various fields

like signal processing, deep learning (CNN-SLAM), and computer vision.

The problem of estimation (or Localization in SLAM) is one of the most significant
components of robotics. If the system is linear, Kalman Filter (KF) is usually used
to solve the estimation problem. In the presence of Gaussian noise, the KF performs
well [8]. However, in the presence of non-Gaussian noise, the performance of the KF
deteriorates, especially in the presence of impulsive noises. KF is based on the known
Minimum Mean Square Error (MMSE) criterion, which is sensitive to significant
outliers and causes the deterioration of the robustness of the KF in non-Gaussian
noise environments [9]. Our work is focused on using Correntropy in various filtering

and SLAM applications.

Despite the tremendous progress made in SLAM in the past 30 years, one question
still bothers the robotics community, ‘Is SLAM solved’? [1]. Our understanding is
that SLAM is an estimation problem. Given the complexities of the environment and
uncertainties in sensor measurements, SLAM is yet to arrive at a complete solution.
As of our knowledge, SLAM is still unsolved. A good solution significantly relies on
the environment, the robot, the uncertainties in the sensor measurements and the

level of performance that we intend to achieve.

1.2 Correntropy

Different optimization criteria (for removing outliers) based on information learning
have gained significant attention in the past few years. Information-theoretic quanti-
ties can capture higher-order statistics and offer potentially significant performance
improvement in machine learning and signal processing applications. Correntropy as
a non-linear similarity measure in kernel space has its root in Renyi’s entropy [10] [11].
Prior to Correntropy, multiple methods were introduced to handle state estimation
in the presence of non-Gaussian noise. To the best of our knowledge, there are three

main approaches to improving the system’s robustness.

The first approach uses filters that assist in removing both outliers and non-Gaussian
noise. Noise distributions such as t-distribution and heavy-tailed distribution are
considered in [12] and [13], but it faces the problem of handling more than one-
dimensions. Computational cost and implementation difficulty are the other factors

that prohibit its use.

The second approach dictates the use of a Multiple-Model (MM) filter [14]. This
method assumes that any non-Gaussian distribution can be approximated as a finite
set of Gaussian distributions with different modes. The Probability Density Function
(PDF) that dictates the state posterior is considered the weighted sum of Gaussians.
The Gaussian Sum Filter (GSF), which uses a bank of KFs, is an excellent example
of this, but it is very computationally expensive since the number of modes increases

exponentially with the number of filters in the bank [15].

The third approach uses Monte Carlo (MC) sampling that allows approximate repre-
sentation of any probability distribution [16]. Particle filters are an excellent example
of this, where the state posterior is represented by a set of random samples with
associated weights. Ensemble KF (EnKF) is another example close to particle filters
where the state posterior is estimated using a finite set of random samples. Similar to
the Particle filter, another approach named Unscented KF (UKF') uses a deterministic
sampling approach that estimates the mean and the covariance matrix of the state
with a minimum set of points called sigma points [17]. Again, the computational cost

is a significant problem in all of the above methods.

In this work, we explore the idea of Correntropy in applications in SLAM for han-
dling outliers/non-Gaussian noise. We also incorporate Correntropy in addressing the
problems of registration/alignment of point clouds. The major contributions of our

work are given in the next subsection.

1.3 Contributions of Proposed Approach

This work aims to address the problem of non-Gaussian noises in modern SLAM
systems. More importantly, we use the idea of Correntropy to address this issue and
employ its usage in various algorithms applied in modern autonomous systems. The

major highlights of this issue are addressed as follows:

e We present the idea of Correntropy and highlight its importance in handling

non-Gaussian noise/outliers.

e We introduce a framework for using Correntropy in a KF and evaluate our

approach when the sensor measurements are affected by non-Gaussian noise.

e For all the experiments conducted, we add non-Gaussian noise along with the

original data coming from the sensor measurements. This serves two purposes:

— Since we manually add noise in the sensor measurements, we verify the
robustness of a system that incorporates Correntropy with Kalman Filter

compared to traditional methods.

— Handling ‘manually added non-Gaussian noise’ also addresses how an au-
tonomous system, when attacked by a third party, can safely estimate it’s

state.

e We also propose a technique to incorporate Correntropy in addressing the prob-
lem of registration which is the highlight of this work. Concerning the problem

of registration, we highlight the following observations:

— Through results, we see how well the Correntropy can be used to address
the registration problem. We also see that in comparison to the previous
approaches, our approach outclasses other state-of-the-art approaches un-
der various rotations and translations between the ‘Source’ and the ‘ Target’

datasets.

— We also show the efficiency of our approach when the point cloud data
is affected with manually injected non-Gaussian noise and how well our

approach can benefit in addressing the problem of registration.

e Using our proposed registration algorithm, we calibrate the Lidar and the Stereo
sensor using a planar checkerboard. The entire process requires only a single

frame of data acquired from both sensors.

1.4 Summary

This work is based on incorporating Correntropy in various applications in SLAM.
This chapter began by describing the scope and the importance of SLAM in various
robotics applications. Alongside, we also present Correntropy, and it’s importance
in removing non-Gaussian noise/outliers. Next, we touch upon the background of

correntropy and SLAM techniques in modern robotics applications.

The remaining portion of the work is described in multiple chapters, where Chapter
2 describes the Literature review of concepts relating to SLAM and Correntropy.
Chapter 3 describes the concepts relating to the idea of Correntropy, and it’s scope
and applicability in SLAM. Chapter 4 describes the idea of fusing Kalman Filter
with the idea of Correntropy, and we see the importance of Correntropy in handling
non-Gaussian noise in the basic Kalman filtering framework. Chapter 5 describes
a framework for introducing the Maximum Corentropy criterion in the Extended

Kalman Filter for handling non-Gaussian noise. Chapter 6 describes the idea of

using Correntropy in addressing the problem of registration which is the highlight of
this work. We evaluate our approach in multiple datasets and compare the RMSE to
most of the other state-of-the-art approaches. Chapter 7 and Chapter 8 describe an
application of using Correntropy Similarity Matrix Iterative Closest Point Algorithm

(CoSM-ICP) in performing Lidar-Stereo and Lidar -Camera Calibration respectively.

10

Chapter 2

Literature Review

The whole approach of SLAM is based on a robot localizing itself, given the sen-
sor measurements. However, the traditional SLAM algorithms do not extend to
performing the task of a robot driving itself to collect more information about the
environment. In a more general sense, traditional SLAM algorithms only estimate
localization when it is navigated or assisted by an external source or through an ex-
ternal command. There is no ‘conscious’ effort from the robot to navigate itself and
collect the data from the environment. Active SLAM, exploration and localization
done at the same time, is an approach that attempts to solve this problem. Active
SLAM basically tries to solve it in 3 steps. The first step specifies the robot trying
to find possible actions (e.g., turn right, turn left, forward, backward, path selection,
etc.) that it could take given the map space; however it exposes the challenge of

increased computational complexity. The second step says that, even if an action is

11

confirmed to be taken, the logic behind performing that action needs to be justified
with respect to the goal of the task, as well as the complexity of the future action
that could be taken to achieve that goal. The final step indicates that even if the
action is performed, it is quite difficult to arrive at a conclusion about whether the
exploration task has been completed or not. Based on our knowledge, active SLAM

still requires mathematical proofs at various aspects [1].

This chapter primarily focuses on reviewing various SLAM techniques that were tried
and tested on various autonomous robots. We are risking an attempt to classify
various SLAM techniques, which are based on sensors used for localization and the
ability of the SLAM algorithms to detect a loop closure. Loop closure is a technique
for detecting a visited landmark or a scene in an environment. As of our knowledge,
very few of the state-of-the-art algorithms we have encountered have solved the loop

closure problem with respect to various autonomous systems.

The remainder of the chapter is organized as follows. It introduces techniques, which
are further divided into Light Detection and Ranging (Lidar) based techniques (in-
cluding Lidar and monocular camera) and Stereo-based SLAM techniques. We also
intend to explore the security aspects in relation to autonomous systems and explore
briefly the threats associated with them. Finally, conclusions are discussed at the end

of this chapter.

12

2.1 Lidar based odometry

There are numerous algorithms written for estimating odometry using Lidar. Implicit
Moving Least Squares SLAM (IMLS-SLAM) [18] is quite popular and uses a scan-to-
model matching framework. Initially, it uses an algorithm to sample the 3D scans and
uses IMLS for surface reconstruction, which is claimed to have an improved matching
quality. One key factor to note in this work is that it uses only 3D Lidar sensors for
odometry estimation. The work claims to perform better results than the state of
the art algorithm for odometry estimation, Lidar Odometry and Mapping (LOAM)
[19, 20]. However, the KITTI website[21] shows that LOAM outperforms every other

algorithm that has been tested on all the odometry datasets.

Another work by [22], also called as Lidar-Monocular Visual Odometry (LIMO),
have proposed a method which uses data from both Lidar and monocular camera.
It first calculates the camera features and estimates the depth using the Lidar data
corresponding to those features. Fusing the data together, it estimates the motion
using a technique called bundle adjustment. The system for this algorithm can be
better explained in steps/blocks. The first block relates to the camera, where it
extracts the features. It includes a feature tracking step and a feature association
step. Feature tracking is done using the Viso2 library. The feature association step is
mainly related to extracting the depth of the camera features using the highly precise
Lidar data. The Lidar point cloud is transformed into the camera frame and projected

into the image plane. Then, for each feature, the following steps are performed. (1)

13

From a projected set of Lidar points, the algorithm chooses a set of points that are
around a given feature. They use a rectangle to define the neighbourhood around
that point. (2) Then, it performs a plane estimation using histograms of depths
with fixed bandwidth. This helps in estimating the depth around corner features
as well. (3) Then, the algorithm estimates the plane that fits the feature using
the triangulation method. However, depth estimation for the features on the road
includes another preemptive processing, which includes RANSAC for plane fitting.
After performing the above steps, the next step includes a frame to frame odometry
estimation using the perspective-n-point problem. Besides the procedures described
above, specific steps need to be addressed, including strategies to select the data
to increase efficiency and robustness. It is essential to select only a few important
landmark features since there could be many in a dynamic environment that would
dramatically increase computation complexity. For these reasons, the landmarks are
classified into near, middle and far. Finally, it uses bundle adjustment on these
detected features to estimate the ego-motion (aka motion estimation of a camera
system). This approach was entirely evaluated on the KITTI dataset. The estimated
trajectories are precise with low drift, but it does not solve the loop closure problem.
On the KITTI datasets, LIMO has a translation error of 0.93% and a rotation error of
0.00026 deg/meter, which has proved to be a significant contribution to the robotics

community.

A different method proposed in [23, 24] deserves attention. Here, the authors put

forward a method that utilizes depth data to estimate the camera motion. It also uses

14

bundle adjustment to refine the motion estimation. At the time of the release of this
method, it was ranked as the first in the KITTI benchmark visual odometry methods.
As a first step or block, visual features are detected and tracked. Depth images, which
could be from the RGB-D camera or from the point clouds, are registered in the depth
registration block using the estimated motion. The final step is called the frame-to-
frame motion estimation, which uses features as input acquired using the sequence
of images, and then these features are fed to the bundle adjustment procedure. The
results were evaluated on the KITTI dataset, wherein in the urban environment, the

relative mean position error was 1.05%, and in the highway, it was 1.86%.

Another work by [25] offers a novel technique called Simultaneous Trajectory Estima-
tion and Mapping (STEAM). This technique trains a Gaussian process model using
the ground truth. The input to this system is a well-detected feature extracted from
the point clouds, and the output of the system is the predicted poses that are com-
puted using the estimator and the ground truth. On a deeper level, this algorithm
starts with Lidar point cloud downsampling, where the heavy data of point clouds is
reduced to sparse points called key points using normalized intensity values. A point
can be selected as a key point or not if it satisfies certain conditions based on the
proposed algorithm. Then these sparse point clouds are matched based on Euclidean
distance. For estimating the trajectory, they implement the STEAM framework in
which continuous-time trajectory is estimated as Gaussian process regression. The

authors have also mentioned a significant point that, for continuous-time trajectory

15

estimation, the Gaussian regression problem is quite different from predicting odom-
etry data. In order to reduce the errors in the odometry, the algorithm calculates
the pose change from frame to frame and then compares it against the ground truth
[26-31]. In Gaussian process modelling, the model is learned from noisy observations.
So it becomes significant to select the features to detect in order to build a correct
model. The results were evaluated on a KITTI dataset, and the overall error from all

the path segments was 1.16%.

A different approach to the SLAM problem is the Closest Probability, and Feature
Grid SLAM (CPFG-SLAM) [26], which has proposed a technique for localizing an
unmanned vehicle in the off-road environment. In essence, it combines the features
of the point cloud with probability and the occupancy probability of the grid map.
Expected Maximization (EM) is further used to build the optimization function to
match between the point cloud and grid map. This technique comprises three steps:
data pre-processing, pose estimation and updating the feature grid map. Data pre-
processing constitutes the filtering and classification of the point cloud. Pose esti-
mation comprises estimating the pose and the position by matching the point cloud
to the map. Finally, updating the point cloud features consists of extracting point
cloud features and updating the probability of the grid. Later on, the EM algorithm
is performed using the Levenberg-Marquardt algorithm. Despite high localization
accuracy, this algorithm is not robust against dynamic environments, and also it does

not solve the loop closure problem.

16

Another approach, by previously acclaimed authors [23]|, have proposed real-time
monocular odometry, which is enhanced by depth data. This method is worth men-
tioning since it estimates depth from camera motion using sparse depth data too. It
achieves this result by a method called triangulation that uses previously estimated
motion and features from the image for which depth data is unavailable. Later on,
it uses bundle adjustment to refine the estimated motion. Firstly, it tracks visual
features from the images. Visual features are computed using the Harris corner de-
tection algorithm and are tracked using Kanade Lucas Tomasi (KLT) method [32].
Next, it uses the depth data (either from an RGB-D camera or a Lidar) to register the
point clouds with the depth using the estimated motion. The frame to frame motion
estimation is done using bundle adjustment, whose inputs are the features extracted
from the sequence of images. One interesting thing to note in this algorithm is that it
uses both known and unknown depths of features in order to estimate the odometry

of the camera.

One of the novel techniques that demands attention is from [31], which uses a learn-
ing approach. This technique essentially trains a Gaussian process regression model
using data with ground truth. All the high-level features that are derived from the
Lidar point clouds are used as input, and the predicted biases between poses from
the estimator and the ground truth are the output of the system. However, the whole
process is divided into a number of steps. First, the point clouds are downsampled
to represent only the key points or the well-featured points in the point cloud. In

this step, it calculates the eigenvalues of the matrix, which represent the k-nearest

17

neighbours of the point on the point clouds and sets a threshold through some func-
tions to classify it as a key feature point. It uses the libpointmatcher library to do so
[33]. Secondly, for two such downsampled point clouds, the point clouds are matched
based on their Euclidean distance. It uses libnabo for matching [34]. Thirdly, it uses
the STEAM framework, as discussed previously by [25], for trajectory estimation.
However, only the odometry section of the STEAM framework is implemented here.
More information about how the error is predicted and corrected is derived from the
STEAM framework. On the KITTI datasets, it performs relatively better but not
as good as IMLS and LOAM algorithms, as discussed earlier. Based on the authors,
since this is strictly odometry, it does not solve the loop closure problem or reduce the
drift in the odometry. Our understanding is that this algorithm has the potential to
use a deep learning framework for better odometry estimation and correction rather

than using a Gaussian prediction model.

Another novel approach for localization was made by [35] where a Surfel based map is
used. The changes in the robot pose can be estimated by the data association between
the current scan of the Lidar and the model view from the surface map. This technique
is also called Surfel based Mapping (SuMa), which builds globally consistent maps.
In addition to that, Surfel allows us to represent large scale environments and also
maintains detailed geometric information of the point clouds. Based on the current
rapid development in computation, rendering surfels is relatively fast. Odometry is
computed using frame-to-model ICP with a point-to-plane error metric. The error is

minimized using the Gauss-Newton minimization algorithm. This algorithm has been

18

evaluated on the KITTI dataset, which shows an average rotational error of 0.00032

deg/m and a translational error of 1.4%.

2.2 Stereo Based Odometry

Perhaps the current state of the art algorithm for the stereo visual odometry is the
SOFT-SLAM [36] that relies on a feature tracking based algorithm. It builds a feature-
based pose graph and then optimizes it by running it in 2 separate threads. One is
the odometry thread, and the other is the mapping thread, which allows it to support
large loop closing and global consistency. It achieves good localization with the use
of featured visual odometry compared to the use of bundle adjustment, which is
computationally very expensive. Unlike other algorithms like ORB-SLAM2, SOFT-
SLAM algorithms are more deterministic (e.g., it results in the same output for the

same dataset.)

Among the popular ones, we would like to mention the contribution of Large Scale
Direct monocular SLAM (LSD-SLAM) [37]. LSD-SLAM has been one of the most
popular SLAM techniques. While most the visual SLAM algorithms are based on fea-
tures extracted from the images, the LSD-SLAM algorithm is a featureless algorithm,
which allows us to build consistent large-scale maps of the environment in addition to
tracking the motion of the camera. The reason behind this is that the features being
used in most SLAM algorithms are completely dependent on the type of features being

extracted, which in a larger complex environment can be different. In this algorithm,

19

the global map is represented as a pose graph, which consists of keyframes as vertices,
and the 3D similarity transforms as edges. The classic LSD-SLAM mainly has a 3-
step process: tracking, depth map estimation, and map optimization. The tracking
section tracks new image frames, which allows estimating the rigid body frame with
respect to the current keyframe. Depth estimation uses tracked frames to refine the
current keyframe. The depth map generated after the depth map estimation block is

fed into the global map using the map optimization component.

The above work of LSD-SLAM was also extended to stereo cameras [37]. It is based
on almost the same technique, but the authors have exploited the use of a stereo
camera setup as well. In essence, the depth estimation is done concurrently in 2
setups. One is from the stereo camera setup with a fixed baseline, and the other is
from the multi-view stereo established from the camera motion. The advantage of
having a stereo with a fixed baseline setup is that it avoids scale drift, which typically
occurs in monocular LSD-SLAM. It also handles sudden illumination changes in the
image frames using direct image alignment. This algorithm has been evaluated on the
KITTTI dataset, and it is still one of the most popular odometry estimation algorithms

with an overall Root Mean Square Error (RMSE) of 1.21%.

Another stereo approach, given by [38], is based on the Exactly Sparse Delayed State
Filter (ESDSF). This algorithm preserves the state space geometry by representing
it as an algebraic Lie group. Since the approach is based on ESDSF, which is de-

rived from the Extended Information Filter, the main advantage is that it uses a

20

sparse information matrix. One of the major features of this method is that it uses a
novel ESDSF on a Lie group, which not only presents all the advantages of classical
ESDSF but also holds the state space geometry using Lie groups. This algorithm
was evaluated on the KITTI dataset and has been compared to various other SLAM
algorithms like ORB-SLAM?2, Stereo-Parallel Tracking and Mapping (S-PTAM), and
Stereo LSD-SLAM (S-LSD SLAM). It has shown improvement in the odometry from

most of the popular stereo based SLAM algorithms.

An approach by [39] presents an iterative 2-stage process for frame-to-frame feature-
based odometry estimation. This algorithm attempts to analyze the characteristics
of optical flows and re-projection errors that are generated from the 6-DOF motion.
They have justified the re-projection error that we generated from the optical