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Abstract
by Adarsh Sehgal

Research in robotics has frequently focused on artificial intelligence (AI). To increase

the effectiveness of the learning process for the robot, numerous studies have been

carried out. To be more effective, robots must be able to learn effectively in a shorter

amount of time and with fewer resources. It has been established that reinforce-

ment learning (RL) is efficient for aiding a robot’s learning. In this dissertation, we

proposed and optimized RL algorithms to ensure that our robots learn well. Re-

search into driverless or self-driving automobiles has exploded in the last few years.

A precise estimation of the vehicle’s motion is crucial for higher levels of autonomous

driving functionality. Recent research has been done on the development of sensors

to improve the localization accuracy of these vehicles. Recent sensor odometry re-

search suggests that Lidar Monocular Visual Odometry (LIMO) can be beneficial for

determining odometry. However, the LIMO algorithm has a considerable number of

errors when compared to ground truth, which motivates us to investigate ways to

make it far more accurate. We intend to use a Genetic Algorithm (GA) in our disser-

tation to improve LIMO’s performance. Robotic manipulator research has also been

popular and has room for development, which piqued our interest. As a result, we

researched robotic manipulators and applied GA to Deep Deterministic Policy Gradi-

ent (DDPG) and Hindsight Experience Replay (HER) (GA+DDPG+HER). Finally,

we kept researching DDPG and created an algorithm named AACHER. AACHER
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uses HER and many independent instances of actors and critics from the DDPG to

increase a robot’s learning effectiveness. AACHER is used to evaluate the results in

both custom and existing robot environments.

In the first part of our research, we discuss the LIMO algorithm, an odometry es-

timation technique that employs a camera and a Lidar for visual localization by

tracking features from their measurements. LIMO can estimate sensor motion via

Bundle Adjustment based on reliable keyframes. LIMO employs weights of the veg-

etative landmarks and semantic labeling to reject outliers. LIMO, like many other

odometry estimating methods, has the issue of having a lot of hyperparameters that

need to be manually modified in response to dynamic changes in the environment

to reduce translational errors. The GA has been proven to be useful in determin-

ing near-optimal values of learning hyperparameters. In our study, we present and

propose the application of the GA to maximize the performance of LIMO’s localiza-

tion and motion estimates by optimizing its hyperparameters. We test our approach

using the well-known KITTI dataset and demonstrate how the GA supports LIMO

to lower translation errors in various datasets. Our second contribution includes the

use of RL. Robots using RL can select actions based on a reward function. On

the other hand, the choice of values for the learning algorithm’s hyperparameters

could have a big impact on the entire learning process. We used GA to find the

hyperparameters for the Deep Deterministic Policy Gradient (DDPG) and Hindsight

Experience Replay (HER). We proposed the algorithm GA+DDPG+HER to opti-

mize learning hyperparameters and applied it to the robotic manipulation tasks of
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FetchReach, FetchSlide, FetchPush, FetchPick&Place, and DoorOpening. With only

a few modifications, our proposed GA+DDPG+HER was also used in the AuboReach

environment. Compared to the original algorithm (DDPG+HER), our experiments

show that our approach (GA+DDPG+HER) yields noticeably better results and

is substantially faster. In the final part of our dissertation, we were motivated to

use and improve DDPG. Many simulated continuous control problems have shown

promising results for the DDPG, a unique Deep Reinforcement Learning (DRL) tech-

nique. DDPG has two parts: Actor learning and Critic learning. The performance

of the DDPG technique is therefore relatively sensitive and unstable because actor

and critic learning is a considerable contributor to the robot’s total learning. Our

dissertation suggests a multi-actor-critic DDPG for reliable actor-critic learning as an

improved DDPG to further enhance the performance and stability of DDPG. This

multi-actor-critic DDPG is further combined with HER, called AACHER. The aver-

age value of numerous actors/critics is used to replace the single actor/critic in the

traditional DDPG approach for improved resistance when one actor/critic performs

poorly. Numerous independent actors and critics can also learn from the environment

in general. In all the actor/critic number combinations that are evaluated, AACHER

performs better than DDPG+HER.
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Chapter 1

Introduction

1.1 Motivation

Accuracy and efficiency are important in both emerging and current technology.

When it comes to accuracy, it matters in the case of self-driving cars [10] because

human lives are at stake. Because of a glitch in Tesla’s semi-autonomous driving

technology, a Model X smashed into a barrier in California while on adaptive cruise

control. Because high-accuracy GPS is pricey and difficult in areas where there is no

GPS signal, the self-driving car must rely on additional sensors to detect its exact lo-

cation on the road. To estimate the motion and odometry of self-driving automobiles,

various types of sensors have been used. While some studies [11] employed general-

ist cameras, others [12] demonstrated how diverse sensors are used. Furthermore,

it has been determined whether these types of vehicles can be trusted, as there are



2

numerous types of attacks that can compromise the sensor’s reliability. Recent sensor

odometry research has revealed that LIDAR combined with a monocular camera can

be utilized to estimate odometry. Lidar-Monocular Visual Odometry (LIMO) [4] is

one such approach. This algorithm has a significant amount of error when compared

to ground truth; thus there is room for improvement.

Intelligent robots [13] are one of the many fields of robotics where efficiency is impor-

tant. Teleoperated robots have been around for a while. Artificial intelligence (AI) is

already being implemented in robots around the world. Many technologies aid robot

decision-making. It is an issue of efficiency to determine how well the robot learns.

Let’s imagine it takes a robot a few months to learn how to open a door, which is

inefficient due to the length of time it would take to learn. As a result, self-learning

robots must be efficient. Robots should be able to learn more quickly, saving both

resources and time. In this research, we focus on Reinforcement Learning (RL) [14]

to improve the efficiency of learning robots (agents).

1.2 Background on Genetic Algorithm (GA)

Genetic algorithms (GAs) [15–17] were developed to investigate poorly known fields,

where it is impossible to conduct an exhaustive search and other search techniques

are ineffective. When GAs are used to optimize functions, they try to maximize

fitness that is related to the optimization goal. Evolutionary computing approaches
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in general, and GAs in particular, have achieved significant empirical success on a

variety of challenging design and optimization problems. They start with an initial

population of randomly initialized candidate solutions, which are frequently encoded

as a string (chromosome). While crossover and mutation operators offer fresh possible

answers, selection operators focus the search space on the most promising regions.

We used ranking selection [18] to pick parents for crossover and mutation. Through

rank selection, higher-ranked (fitter) individuals are probabilistically chosen. Ranking

selection, in contrast to fitness proportionate selection, is more concerned with the

existence of a fitness difference than with its magnitude. Children are generated

through uniform crossover [19], who then undergo flip mutation [17] to change them.

Chromosomes are encoded via concatenated hyperparameter binary coding. One such

instance of GA combined with Lidar-monocular visual odometry (LIMO) is seen in

[20].

1.3 Background on Lidar-Monocular Visual Odom-

etry (LIMO)

Motion estimation has long been a prominent study topic, with a plethora of tech-

niques produced over time [21]. Visual Simultaneous Localization and Mapping (VS-

LAM), also known as Visual Odometry [22], is a technique that estimates the camera’s

velocity as well as the 3D structure of the viewed environment at the same time. [23]
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provides a recent evaluation of SLAM techniques for autonomous car driving. Bundle

Adjustment is the most popular VSLAM approach. Bundle Adjustment is a process

that reduces the re-projection error between the observed and forecast locations (land-

marks concerning LIMO). Offline VSLAM is being used for mapping and localization

in recent advances [24–26].

The structure of the VSLAM pipeline is depicted in Figure 1.1 [4]. Pre-processing and

feature extraction are used in algorithms like Robust Outlier Criterion for Camera-

based Odometry (ROCC) [27] and Stereo Visual Odometry based on Feature Selection

and Tracking (SOFT) [28], in contrast to most of the methods that obtain scale in-

formation from a camera placed at a different viewpoint [28]. SOFT and ROCC have

achieved good performance on the KITTI Benchmark [29], even without Bundle Ad-

justment, by extracting robust and precise features and selecting them using specific

algorithms.

The reliance on external camera calibration is a key disadvantage of a stereo cam-

era. It was eventually shown that by learning a deformation field to compensate for

calibration bias, performance might be improved [30]. LIDAR-camera calibration us-

ing a Light Detection and Ranging sensor is also a growing area of research [31, 32].

VSLAM and LIDAR have been used in the past [33–36]. LIMO [4] combines the cam-

era’s feature tracking capability with depth readings from a LIDAR sensor, although

it suffers from translation and rotation inaccuracies. We’ll go over our strategy for

making LIMO more resilient to translation problems later on.
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Figure 1.1: VSLAM pipeline. The input is a temporal sequence of images, and
the system outputs a sparse reconstruction of the observed environment and the

camera poses [1–4]. In this work, LIMO does not perform loop closure [5].

LIMO makes use of LIDAR depth information for feature detection in the image. If

outliers do not meet local plane assumptions, they are eliminated, and points on the

ground plane are tested for robustness. In the VSLAM pipeline, depth information is

combined with monocular feature identification algorithms, as seen in figure 1.1. To

meet real-time constraints, a different approach is used for prior estimation, landmark

selection, and keyframe selection. LIMO, unlike, [34], does not employ any LIDAR-

SLAM techniques such as Iterative Closest Point (ICP). The main disadvantage of

LIMO is that it has a large number of settings that must be manually adjusted. Exist-

ing techniques such as Lidar Odometry and Mapping (LOAM) [36] and Vision-Lidar

Odometry and Mapping (V-LOAM) [37] suffer from more translation and rotation

errors than LIMO. Researchers typically modify settings (including those in LIMO)
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to reduce these mistakes. But there is always the possibility of finding better pa-

rameter sets that are suited for certain cameras and LIDAR technology for specific

scenarios. As a result, optimization procedures are required to improve LIMO’s per-

formance. We propose utilizing a genetic algorithm (GA) to efficiently search the

space of possible LIMO parameter values to identify precise settings that maximize

performance in this dissertation. Our tests with the novel GA-LIMO algorithm reveal

that GA-LIMO outperforms stock LIMO statistically considerably.

Many empirical studies suggest that evolutionary computing approaches like Genetic

Algorithms (GAs) operate well as function optimizers in non-linear, discontinuous

spaces [17, 38–41]. On a variety of challenges, GAs [15, 42] and the GA operators

of crossover and mutation [43] have been evaluated. GAs have been used in early

SLAM optimization issues [44], mobile localization utilizing ultrasonic sensors [45]

[46], deep reinforcement learning [47], and breast mass detection in mammograms

[48], all of which are relevant to our research. This provides strong support for the

effectiveness of GAs in solving localization difficulties, and our key contribution in

this dissertation is a demonstration of much lower translation error when using a GA

to tweak LIMO parameter values over the stock LIMO algorithm [4]. Our findings

reveal that translation errors are non-linearly related to LIMO parameters; i.e., a

translation error can change non-linearly depending on LIMO parameter values. The

LIMO, GA, and GA-LIMO algorithms are described in the following sections. The

outcomes of running LIMO on the KITTI odometry data sequences with GA-adjusted

parameters are then shown [49].
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1.4 Background on Deep Reinforcement Learning

(DRL)

Since its inception, significant research has been done in the field of Q-learning [50],

with some work focusing on continuous action spaces [51–54] and others on discrete

action spaces [55]. Autonomous robots use Q-learning approaches to perform a va-

riety of tasks [56]. Reinforcement Learning (RL) [14] has been utilized to enhance

manipulation [57, 58] and locomotion [59, 60]. Deep reinforcement learning (DRL)

has emerged as a powerful control technique in the realm of robotic research [61]. The

DRL’s thorough analysis of the environment is stronger than its understanding of con-

trol theory. This DRL capability results in more intelligent and human-like behavior

in robots when applied. When DRL approaches are combined with proper training

and reinforcement learning, robots can extensively evaluate their surroundings and

find solutions [62].

Off-policy and on-policy RL approaches are the two categories that exist. On-policy

methods, like SARSA learning [63], aim to evaluate or enhance the policy upon which

choices are based. Off-policy techniques [64] like the Deep Deterministic Policy Gradi-

ent algorithm (DDPG) [8], Proximal Policy Optimization [6], Advantage Actor-Critic

(A2C) [7], and Normalized Advantage Function algorithm (NAF) [65] are helpful for

real robot systems. Robotic manipulators have also received a lot of attention [66, 67].

To achieve its objectives, some of this work depended on fuzzy wavelet networks [68],
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while others relied on neural networks [69, 70]. A thorough summary of current deep

reinforcement learning (DRL) techniques for robot handling can be found in [71].

In theory, goal-conditioned reinforcement learning (RL) can teach a range of skills

[72] because it frames each activity in terms of the desired outcome. The use of

hindsight experience replay (HER) [9] is frequently used to increase the robustness

and sample efficacy of goal-achieving techniques. We are using DDPG in conjunction

with HER for our experiments. Recent work on using experience ranking to quicken

DDPG+HER’s learning is described in [73].

A single robot [74, 75] as well as a group of robots [76–80] have both undergone

intensive RL training. Model-based and model-free learning algorithms have both

been researched in the past. Deep network policies are trained in real-world scenarios

using model-based learning algorithms, which largely rely on a model-based teacher.

In a similar vein, a lot of work has been done on GA’s [15] [81] and the GA operators

of crossover and mutation [43], which have been used to solve a wide range of issues.

Numerous RL issues have been resolved using GA [43, 82–84].

1.5 Background on Proximal Policy Optimization

(PPO)

One of the RL strategies used to optimize the policy is the Policy Gradient (PG) [85]

approach. In these techniques, the incentives are used to generate an estimation of
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the policy gradient and insert it into a stochastic gradient ascending algorithm [86].

The Proximal Policy Optimization (PPO) [6] technique can be used in situations

with continuous or discrete action spaces [87]. PPO is a family of Policy Gradient

algorithms for reinforcement learning [88]. It is a model-free reinforcement learning

with no prior knowledge. A DRL agent is referred to as model-free if it hasn’t de-

veloped an explicit model of its environment. The core of the PPO algorithm is a

surrogate objective for computing policy updates. The surrogate objective controls

substantial policy updates in the spirit of a trust region approach so that each step

remains within proximity to the previous-iteration policy [89].

1.6 Background on Advantage Actor Critic (A2C)

Advantage actor-critic also referred to as A2C, is a synchronous version of the asyn-

chronous advantage actor-critic (A3C) models that are as effective as or more effective

than the asynchronous version [6]. Policy gradients are the foundation of the A2C

[7] method. It separates value estimates from action choices by predicting what ac-

tivities would be beneficial in the future. Using value estimate, the policy is only

modified in a useful way. To put it simply, it immediately increases the likelihood of

positive behaviors and decreases the likelihood of negative ones [90]. [91] An advan-

tage function can be estimated using the same methods used for policy estimation

and value function estimation in actor-critic-based DRL models. Instead of utilizing

a single learner neural network to estimate the Q-value function, the A2C approach
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estimates the policy function using a critic network and the Q-value function with an

actor network. Using A2C actor-critic models, actor and critic networks are updated

simultaneously. A3C models require more time to calculate since they simultaneously

and asynchronously estimate actor and critic networks. Since there is little perfor-

mance difference between synchronous and asynchronous actor-critic models, we will

be employing A2C in our studies.

1.7 GA on DRL and LIMO

As a function optimizer, GA can be employed to address a range of optimization

issues. This dissertation is focused on the DDPG+HER and LIMO, with background

information given earlier in this chapter. Based on their fitness levels, GAs can be

used to optimize the system’s parameters. GA aims to maximize the benefits of

fitness. An objective function can be changed into a fitness function using a variety

of mathematical techniques.

LIMO estimates sensor odometry using a fixed set of parameters. In this circum-

stance, our trials reveal that there is room to improve the system’s accuracy. When

GA is used in conjunction with LIMO, a better set of parameters is discovered, in-

creasing the accuracy of odometry estimates. In this GA implementation, the fitness

value is the inverse of a translation error. The GA-LIMO system has a better level

of precision.
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The parameters of the current DRL algorithms, on the other hand, are fixed. A better

set of parameters is discovered when GA is applied to DRL, which speeds up learning

for the learning agent. The inverse of the number of epochs is the fitness value for

this task. GA seems to be a method that might be used to increase the effectiveness

of the system.

1.8 Improved DRL

Two elements of the renowned and widely applied Deep Deterministic Policy Gradient

(DDPG) reinforcement learning method are actor learning and critic learning. As

a result of actor and critic learning is so important to the robot’s total learning,

the DDPG approach’s performance is quite sensitive and unstable. For trustworthy

actor-critic learning, we suggest a multi-actor-critic DDPG to further improve the

effectiveness and stability of DDPG. Then, we combined this multi-actor-critic DDPG

with Hindsight Experience Replay (HER) to create a new deep learning framework,

known as AACHER. When a single actor or critic performs poorly, AACHER replaces

them with the average value of several actors or critics to boost resistance. The

environment as a whole can also educate a lot of independent actors and critics.

We put our proposed AACHER into practice on goal-based settings, including Au-

boReach, FetchReach-v1, FetchPush-v1, FetchSlide-v1, and FetchPick&Place-v1. We
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used a variety of actor/critic pairings for our trials, with A10C10 and A20C20 demon-

strating the highest levels of performance. Overall results demonstrate that in all ac-

tor/critic number combinations used for assessment, AACHER outperforms the con-

ventional approach (DDPG+HER). The performance improvement for A20C20 on

FetchPick&Place-v1 is as much as about 3.8 times the success rate in DDPG+HER.

1.9 Content

The following are the chapters of this dissertation: The GA-LIMO algorithm, which

helps to reduce translation errors in sensor tracking when compared to ground truth,

is explored at length in Chapter 2. This chapter includes the corresponding exper-

imental results. Chapter 3 explains DRL algorithms, discusses the open problem,

provides a solution, and displays the experimental results. The details of the recently

developed algorithm AACHER, its experiments, and analysis are covered in Chapter

4. Finally, in the final chapter of this dissertation, the conclusion and future work

are discussed.
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Chapter 2

GA-LIMO: Genetic

Algorithm-Based Function

Optimizer in Lidar-Monocular

Visual Odometry

2.1 LIMO

We present previous work on our GA-LIMO algorithm in this part. The VSLAM

pipeline is described first, followed by the LIMO algorithm.
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2.1.1 Feature extraction and pre-processing

The pipeline’s feature extraction technique is depicted in Figure 1.1. Using the Viso2

library [92], feature extraction entails tracking features and associating them. It is

also utilized to implement feature tracking, which includes non-maximum suppression,

sub-pixel refining, and flow-based outlier rejection. To reject landmarks that are

moving objects, deep learning is applied. In a semantic image [93], the neighborhood

of the feature point is scanned, and if the majority of nearby pixels belong to a

dynamic class, such as a vehicle or pedestrian, the landmark is excluded.

2.1.2 Scale Estimation

The camera’s identified feature points are transferred to depth derived from LIDAR

for scale estimation. LIMO employs a single-shot depth estimate method. The LIDAR

point cloud is first projected onto the image plane before being translated into the

camera frame. For each feature point f , the following processes are carried out in

detail:

1. Around f , which is a set F of anticipated LIDAR points, a zone of interest is

chosen.

2. By segmenting the elements of F , a new set called the foreground set Fseg is

generated.



15

3. A plane p is fitted to the Fseg components. If f belongs to the ground plane, a

particular fitting algorithm is performed.

4. To calculate depth, the line of sight corresponding to f is intersected with p.

5. A test is carried out for the previously calculated depth. Estimates of depths of

more than 30 meters are ignored because they are prone to error. In addition,

the angle between the feature point’s line of sight and the plane’s normal must

be less than a threshold.

Neighborhoods for ordered point clouds can be selected straight from the point clouds.

If the point clouds are not ordered, projections of the LIDAR points on the picture

are employed, and the points within a rectangle in the image plane around f are

selected. The foreground Fseg is segmented before the plane estimation is done. The

next step is to generate a depth histogram with a set bin width of h = 0.3m and

interpolate it with entries in F . The adjacent bin’s LIDAR points are used to execute

segmentation utilizing all detected feature points. Fitting the plane to Fseg can aid

in correctly calculating the local surface near f . Three points are picked from the

Fseg points that traverse the triangle F∆ with the greatest area. To avoid improperly

estimated depth, depth estimation is avoided if the area of F∆ is too small.

However, because LIDAR has a worse resolution in a perpendicular direction than

in a level direction, the above approach cannot be utilized to estimate the depth of

points on the ground plane. To enable depth estimates for a relevant ground plane, a



16

separate approach is used. RANSAC with refinement is applied to the LIDAR point

cloud to extract the ground plane [25]. Points that correspond to the ground plane

are subdivided to estimate feature points along the route. Only local planes that are

near the ground plane are allowed; therefore outliers are eliminated.

2.1.3 Frame to Frame Odometry

The starting point for frame-to-frame motion estimate is the Perspective-n-Point-

Problem [25].

argmin
x,y,z,α,β,γ

∑
i

∥φi,3d→2d∥22 (2.1)

φ3d→2d = p̄i − π(pi, P (x, y, z, α, β, γ)), (2.2)

where p̄i is the observed feature point in the current frame, pi is the 3D-point corre-

sponding to p̄i, and freedom P (x, y, z, α, β, γ) denotes the transform from the previous

to the current frame, which has three translation and three rotation degrees of free-

dom. The projection function from the 3D to a 2D domain is π(...). In situations

with poor structure and high optical flux, recovered features with valid estimated

depth may be quite small. Epipolar error is introduced by LIMO as φ2d→2d [24].

φ2d→2d = p̄iF (
x

z
,
y

z
, α, β, γ)p̄i, (2.3)
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where F is the fundamental matrix, which may be determined using the camera’s

inherent calibration and frame-to-frame motion. The loss function, according to

LIMO, is a Cauchy function [24]: Where a(s) is the fixed outlier threshold, ρs(x) =

a(s)2.log(1 + x
a(s)2

) The optimization issue for frame-to-frame motion estimation can

be written as:

argmin
x,y,z,α,β,γ

∑
i

ρ3d→2d(∥φi,3d→2d∥22) + ρ2d→2d(∥φi,2d→2d∥22). (2.4)

2.1.4 Backend

LIMO provides a keyframe-based Bundle Adjustment system, including essential com-

ponents such as keyframe selection, landmark selection, cost functions, and robustifi-

cation measures. The advantage of this method is that it keeps the set of data that is

needed for accurate posture estimation while removing the measurements that aren’t

needed. Required, rejected, and sparsified keyframes are the three types of keyframes.

The dimensions of the required frames are extremely important. When the vehicle

does not move, the frame is rejected. The technique collects the remaining frames

and picks frames every 0.3s. Finally, the length of the optimization window is chosen

during keyframe selection.

A good group of landmarks is easily visible, small, free of outliers, and uniformly

distributed. Landmark selection separates all landmarks into three bins: near, middle,

and far, each with a predetermined number of landmarks for Bundle Adjustment.
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The semantic information is then used to determine the weights of the landmarks.

An extra cost function takes into account predicted landmark depth,

ξi,j(ii, Pj) =


0, if li has no depth estimate

d̂i,j −

[
0 0 1

]
τ(li, Pj), else,

(2.5)

where li stands for landmark; τ stands for mapping from world to camera frame; and

d̂ stands for depth estimate. The landmark-pose is denoted by the combination of

indices i, j. Deviations from the length of the translation vector are penalized by a

cost function ν,

ν(P1, P0) = ŝ(P1, P0)− s, (2.6)

where P0, P1 are the final two poses in the optimization window, and ŝ(P0, P1) =

∥translation(P−1P1)∥22, where s is a constant having the value ŝ(P1, P0) before opti-

mization.

Outliers must be deleted since they prevent Least-Square methods from converging

[94, 95], although semantics and chirality only do early outlier rejection. The challenge
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of LIMO optimization can now be stated as follows:

argmin
Pj∈P,li∈L,di∈D

w0∥ν(P1, P0∥22)+

∑
i

∑
j

w1ρϕ(∥ϕi,j(li, Pi)∥22) + w2ρξ(∥ξi,j(li, Pj)∥22), (2.7)

where the re-projection error is ϕi,j(li, Pj) = l̄i,j − π(li, Pj), and weights w0, w1, and

w2 are used to scale the cost functions to the same order of magnitude.

2.2 Open Problem Discussion

LIMO has a problem with accuracy. When LIMO is used in a variety of situations,

it encounters a problem with ground truth. This research introduces the GA-LIMO

algorithm to address this issue, which attempts to reduce translation errors in sensor

odometry estimates. This chapter goes on to show the proposed algorithm as well as

the experimental findings.

2.3 GA-LIMO

This section highlights one of the chapter’s most important contributions. Open

source code is available at https://github.com/aralab-unr/LIMOWithGA. [20] pro-

vides a more detailed description. The specific GA searches the space of LIMO

hyperparameter values for the ones that maximize performance while minimizing

https://github.com/aralab-unr/LIMOWithGA
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translation error due to pose estimation. Outlier rejection quantile δ; the maximum

number of landmarks for a near bin ϵnear; the maximum number of landmarks for

middle bin ϵmiddle; the maximum number of landmarks for far bin ϵfar; and weight

for the vegetation landmarks µ are among the hyperparameters we’re aiming for.

As mentioned in the background section, rejecting outliers, δ, plays a crucial role in

reducing translation errors to a minimum. The weight of outlier rejection has a sig-

nificant impact on translation errors. The landmarks are divided into three groups,

each of which has a significant impact on the calculation of translation errors. Trees

with a complex structure produce feature points that are easy to follow but can shift.

As a result, determining the optimum weight for vegetation can reduce translation

errors dramatically. ϵnear, ϵmiddle, and ϵfar range from 0 to 999, whereas, δ and µ

range from 0 to 1. These ranges were established based on preliminary test findings.

Algorithm 1 GA-LIMO

1: Select an n-chromosome population.
2: Enter the hyperparameter values into the chromosome.
3: for all chromosome values do
4: Run LIMO on KITTI odometry data set sequence 01
5: Compare LIMO estimated poses with ground truth
6: Translation error σ1 is found
7: Run LIMO on KITTI odometry data set sequence 04
8: Compare LIMO estimated poses with ground truth
9: Translation error σ4 is found
10: Average error σavg =

σ1+σ4

2

11: return 1/σavg

12: end for
13: Perform Uniform Crossover
14: Perform Flip Mutation at rate 0.1
15: Repeat for the required number of generations for the optimal solution

Our results reveal that altering hyperparameter values did not result in a linear
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or immediately discernible decrease or increase in translation error. As a result, a

basic hill climber is unlikely to identify optimal hyperparameters. To improve these

settings, we use a GA.

The combination of LIMO with the GA, which utilizes a population size of 50 runs

for 50 generations, is explained in Algorithm 1. To choose the parents for crossover

and mutation, we employed ranking selection [18]. Higher ranking (fitter) individuals

are probabilistically selected through rank selection. Unlike fitness proportionate

selection, ranking selection is concerned with the existence of a fitness difference

rather than its magnitude. Uniform crossover [19] is used to create children, who

are subsequently altered by flip mutation [17]. Binary coding with concatenated

hyperparameters is used to encode chromosomes. Because changes in hyperparameter

values produce significant changes in translation error, δ and µ are considered up to

three decimal places, which is a step size of 0.001. Because all of the hyperparameters

require 11 bits to describe their range of values, we have a 55-bit chromosome with

hyperparameters organized in the following order: δ, ϵnear, ϵmiddle, ϵfar, µ.

The procedure begins by producing a population of n individuals at random. LIMO

is tasked with evaluating each chromosome. LIMO assesses each individual’s hyper-

parameter configuration by using those hyperparameters to run on the KITTI dataset

[29]. The KITTI benchmarks are well-known and are the most widely used Visual

Odometry and VSLAM benchmarks. This dataset includes grayscale photos, color

photographs, LIDAR point clouds, and their calibration, as well as rural and urban
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scenes and highway sequences. The majority of LIMO configurations are as shown

in [4]. For finding the values of hyperparameters, we concentrate our efforts on two

sequences in particular: sequence 01 and sequence 04. Sequence 01 is a highway

scenario, which is difficult because depth measurements can only be done on a road.

Sequence 04 is a city scenario with a huge number of landmarks to estimate depth.

For each GA evaluation, we consider both sequences since we want a common set of

hyperparameters that will operate with a variety of scenes.

The inverse of translation error is used to calculate the fitness of each chromosome.

As required for GA optimization, this turns the minimization of translation error

into the maximization of fitness. We use the GA because an exhaustive search of

the 255 size search area is not practicable. After all, each fitness evaluation takes a

significant amount of time. During a fitness examination, the GA starts with sequence

01 of the LIMO. It then compares the LIMO estimated poses to ground truth (also

found in [29]) and uses the official KITTI measure to determine the translation error.

Sequence 04 follows the same stages as sequence 03. The average of the inverse

translation mistakes from the two sequences is the fitness value of each chromosome.

σavg =
σ1 + σ4

2
. (2.8)

Selected chromosomes are then crossed over and altered to make new chromosomes,

resulting in the next population. The next phase of GA evaluation, selection, crossover,
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Figure 2.1: Camera data while GA-LIMO is in action.

and mutation begins now. Because we are conducting 50 ∗ 50 = 2500 LIMO assess-

ments to establish the ideal hyperparameters, the entire system takes a long time.

Our tests with individual and combined sequences, with and without the GA, are

shown in the next section. Our findings suggest that GA-LIMO outperforms LIMO

[4] outcomes.

2.4 Experimental Results

We show our studies with single KITTI sequences, a combination of sequences, and

overall outcomes in this section. First, we run sequences 01 and 04 of the GA-LIMO

independently. In comparison to ground truth (reference), we display the translation

error and the error projected onto the trajectory [49]. The results of the GA-LIMO

analyses on both sequences 01 and 04 are then shown. Finally, we compare the

hyperparameters found by GA-LIMO to those found by LIMO.

Figure 2.1 depicts camera data, while figure 2.2 depicts GA-LIMO calculating the

pose from that data. In sequence 04, Figure 2.3 compares LIMO and GA-LIMO’s
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Figure 2.2: GA-LIMO estimating the pose. The video for this visualization can
be found on: https : //www.youtube.com/watch?v = 4peUcY y6− g

Algorithm 2 GA-LIMO individual

1: Choose a population of n chromosomes
2: Set the values of hyperparameters into the chromosome
3: for all chromosome values do
4: Run LIMO on individual KITTI odometry dataset sequence
5: Compare LIMO estimated poses with ground truth
6: Translation error σ is found
7: return 1/σ
8: end for
9: Perform Uniform Crossover
10: Perform Flip Mutation at rate 0.1
11: Repeat for the required number of generations to find the optimal solution

performance. As in algorithm 2, GA was performed on each sequence individually

to identify the optimal hyperparameter values. One of the main measurements is

Absolute Pose Error (APE) and Root Mean Squared Error (RMSE) [96]. The RMSE

determined concerning ground truth is the translation error for each sequence. Fig-

ure 2.3a compares the translation error across poses, while figure 2.3b compares the

error mapped onto the trajectory to the zoomed-in trajectory. The values of hy-

perparameters for LIMO and GA-LIMO are compared in Table 2.1. The values of

LIMO and GA-LIMO are significantly different for µ. In comparison to LIMO, our

findings demonstrate that the GA- LIMO trajectory is closer to ground reality. In

https://www.youtube.com/watch?v=_4peUcYy6-g
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(a) Translation error comparison over the poses.

(b) Trajectory comparison for sequence 04, when GA-LIMO was run on this sequence individually
(algorithm 2).

Figure 2.3: Results comparison for sequence 04 (algorithm 2). LIMO has a 1.01%
translation error, while GA-LIMO has about half this error with 0.56%.

comparison to LIMO, GA-LIMO had a translation error of 0.56%, whereas LIMO

had a translation error of 1.01%.

When the system is run on only sequence 01, Figure 2.4 compares the performance

of LIMO with GA-LIMO. In this scenario, the GA was first applied to sequence

01 (Algorithm 2) before the GA-LIMO hyperparameters were applied to the same
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(a) Translation error comparison over the poses.

(b) Trajectory comparison.

Figure 2.4: Results comparison for sequence 01 (algorithm 2). LIMO has a 3.71%
translation error, while GA-LIMO has 3.8%.

Hyperparameters LIMO GA-LIMO

δ 0.95 0.986
ϵnear 400 999
ϵmiddle 400 960
ϵfar 400 859
µ 0.9 0.128

Table 2.1: When GA was run on LIMO with sequence 04 separately, the values
of hyperparameters were compared between LIMO and GA-LIMO.
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sequence. The original and GA-discovered hyperparameter values are compared in

Table 2.2. Figure 2.4a compares translation errors, while figure 2.4b displays the error

translated onto the LIMO and GA-LIMO trajectory. GA-LIMO is closer to ground

reality, as illustrated in the zoomed-in picture 2.4b. With sequence 01., the translation

error for LIMO is found to be around 3.71% and 3.8% percent for GA-LIMO. When

GA-LIMO was run on simple sequence 01, it discovered hyperparameters that did

not outperform the original values.

Hyperparameters LIMO GA-LIMO

δ 0.95 0.958
ϵnear 400 999
ϵmiddle 400 593
ϵfar 400 877
µ 0.9 0.813

Table 2.2: When GA was run on LIMO with sequence 01 separately, the values
of hyperparameters were compared between LIMO and GA-LIMO.

Hyperparameters LIMO GA-LIMO

δ 0.95 0.963
ϵnear 400 999
ϵmiddle 400 554
ϵfar 400 992
µ 0.9 0.971

Table 2.3: When GA is run on LIMO with combined sequence 01 and 04, the
values of hyperparameters are compared between LIMO and GA-LIMO.

Finally, as mentioned in Algorithm 1, we operated the system with both sequences

01 and 04 at the same time. The average of the sequences’ translation errors, when

executed with the input hyperparameters, is the fitness of each evaluation. The hy-

perparameters discovered in GA-LIMO, as indicated in Table 2.3, were then evaluated
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on sequences 00, 01, and 04, as depicted in figures 2.5 and 2.6. In each of the three

sequences, GA-LIMO outperformed LIMO. The zoomed-in figures provide a closer

look at a portion of the trajectories. GA-LIMO trajectories are more accurate and

have fewer translation errors than conventional trajectories. When utilizing original

hyperparameters, GA-LIMO has a translation error of 5.13% with sequence 00; 3.59%

with sequence 01, and 0.65% with sequence 04, compared to 5.77% with sequence 00;

3.71% with sequence 01, and 1.01% with sequence 04 when using LIMO.

Our strategy assisted in the discovery of a common set of GA-LIMO hyperparameters

that performs better and so leads to improved performance in a variety of settings.

2.5 Summary

The LIMO algorithm is presented in this chapter. The chapter also introduces the

GA-LIMO algorithm, analyzes the performance of LIMO [4] and GA-LIMO [20], and

concludes that GA-LIMO outperforms LIMO.
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(a) For sequence 00, a comparison of translation errors across poses was made. LIMO has a trans-
lation error of 5.77%, whereas GA-LIMO has a translation error of 5.13%.

(b) For sequence 01, a comparison of translation errors across the poses was made. LIMO has a
translation error of 3.71%, while GA-LIMO has a translation error of 3.59%.

(c) For sequence 04, a comparison of translation errors across the poses was made. LIMO has a
translation error of 1.01%, while GA-LIMO has a translation error of 0.65%.

Figure 2.5: GA-LIMO is used to find the hyperparameters, which are a mixture
of sequences 01 and 04 (Algorithm 1). These factors are subsequently put to the
test in three different ways. GA-LIMO outperforms LIMO in each of the three

sequences.
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(a) The trajectories in Sequence 00 show GA-LIMO getting closer to the ground truth.

(b) The trajectories in Sequence 01 show GA-LIMO getting closer to the ground truth.

(c) The trajectories in Sequence 04 show GA-LIMO getting closer to the ground truth.

Figure 2.6: When GA-LIMO was run in Algorithm 1, the trajectory was com-
pared. GA-LIMO outperforms LIMO in each of the three sequences.
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Chapter 3

GA+DDPG+HER: Genetic

Algorithm as Function Optimizer

in Reinforcement Learning

3.1 Reinforcement Learning

In typical reinforcement learning, a robot engages in discrete interactions with the en-

vironment to gather as many rewards from the environment as it can. A Markov Deci-

sion Process (MDP) [97] can be used to model the issue as a tuple of

〈
S,A, P,R, γ

〉
[98], [99]. S stands for the set of states, A for the set of actions, p(s0) for the distri-

bution of initial states, r : S × A −→ R for the reward function, p(st+1|st, at) for the
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transition probabilities, and γ ∈ [0, 1] for a discount factor that can be utilized to

represent the environment [9].

The relationship between states and actions is shown by a deterministic policy as

follows: π : S −→ A. The sampling of the initial state, s0, occurs at the start of every

episode. Based on the current state st: at = π(st), the robot acts at at each timestep

t. With rt = r(st, at), the action is deemed successful, and the distribution p(.|st, at)

helps sample the environment’s new state. The discounted sum of future rewards

is Rt =
∑∞

i=T γi−tri. The robot aims to increase its expected return E[Rt|st, at].

Any policy π∗ can be referred to as an ideal policy, Qπ∗
(s, a) ≥ Qπ(s, a) for each

s ∈ S, a ∈ A, and any policy π. A policy that satisfies the Bellman equation and has

the same Q-function as the optimum policy is said to have an optimal Q-function or

Q∗.

Q∗(s, a) = Es′ p(.|s,a))[r(s, a) + γmax
a′∈A

Q∗(s′, a′))]. (3.1)

3.2 Deep Deterministic Policy Gradients (DDPG)

Deep Deterministic Policy Gradients [8] (DDPG) has two neural networks: an Actor

and a Critic. The actor neural network is a target policy π : S −→ A and the critic

neural network is an action-value function approximator Q : S × A −→ R. The critic
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network Q(s, a|θQ) and actor network µ(s|θµ) are randomly initialized with weights

θQ and θµ.

The target network, which is normally built as a replicate of the critic network, is

also employed to update the critic network by providing a reliable target for the

training process. A behavioral policy, which is a noisy variant of the target policy

πb(s) = π(s) + N (0, 1), is used to create episodes. The training process for a critic

neural network is similar to that for a DQN, with the exception that the target yt is

calculated as yt = rt + γQ(st+1, π(st+1)), where γ is the discounting factor. The loss

La = −EaQ(s, π(s)) is used in the actor network’s training. For the DDPG approach

to maintain its training and enable deep neural networks, the experience replay, and

target network are both essential.

3.3 Hindsight Experience Replay (HER)

Through the imitation of human behavior, Hindsight Experience Reply (HER) [9]

tries to learn from failures. Even if the robot doesn’t succeed in achieving the desired

result, it learns from every experience. Whatever state the robot achieves is what

HER regards as the changed goal. In a standard experience replay, only the transition

(st||g, at, rt, st+1||g) with the original goal g is saved. HER also stores the transition

(st||g′, at, r′t, st+1||g′) from the original goal g to the updated goal g′. With really few
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incentives, HER functions wonderfully and is considered superior to shaped rewards

in this aspect.

3.4 Open Problem Discussion

DDPG+HER’s effectiveness is a problem. Existing DDPG+HER algorithms are lim-

ited in the number of hyperparameters that can be changed. The bulk of robotic

tasks can be performed more efficiently by using a better set of hyperparameters in

the algorithm. Performance can be evaluated based on how many epochs the learn-

ing agent needs to learn a given robotic task. A system’s hyperparameters can be

optimized using GAs based on how fit they are. GA strives to get the best level

of fitness. With the help of several mathematical techniques, an objective function

can be converted into a fitness function. The learning agent (robot) can absorb new

information more quickly when GA is applied to DDPG+HER because a better set

of hyperparameters is discovered. It seems that a strategy that could improve the

system’s efficiency is GA. The subsequent sections of this chapter show how altering

the settings of certain hyperparameters significantly affects the robot’s proficiency.

The solution to this issue is discussed further in this chapter, and the experimental

results that support them demonstrate that the suggested system performs better

than the current reinforcement learning method.
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3.5 DDPG+HER and GA

The genetic algorithm searches the space of hyperparameter values used in DDPG+HER

for values that maximize task performance while minimizing the number of training

epochs. This is the main contribution of this chapter. Open source code is available

at https://github.com/aralab-unr/ga-drl-aubo-ara-lab. We focus on the following

hyperparameters: Discounting factor γ, Polyak-averaging coefficient τ [100], learning

rates for critic and actor networks (αcritic, αactor), the percentage of times a random

action is taken ϵ, and the standard deviation of Gaussian noise added to not entirely

random actions as a percentage of the maximum absolute value of actions on differ-

ent coordinates η. The equations in this section can be used to explain why all of the

hyperparameters have a range of 0–1.

Our investigations showed that changing the settings of the hyperparameters neither

increased nor decreased the robot’s learning in a linear or immediately obvious fashion.

Therefore, it is doubtful that a simple hill climber will find the best hyperparameters.

Because GAs were developed for such poorly understood problems, we employed our

GA to maximize these hyperparameter values.

The Polyak-averaging coefficient, τ , is used to demonstrate the performance non-

linearity for various values of τ . Equation 3.2 illustrates how the algorithm uses

https://github.com/aralab-unr/ga-drl-aubo-ara-lab
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τ :

θQ
′ ←− τθQ + (1− τ)θQ

′
,

θµ
′ ←− τθµ + (1− τ)θµ

′
. (3.2)

Equation 3.4 describes the Q-Learning update, whereas Equation 3.3 illustrates how

γ is used in the DDPG+HER approach. The learning rate is shown by the variable

α. To train networks, use this update equation.

yi = ri + γQ′(si+1, µ
′(st+1|θµ

′
)|θQ′

), (3.3)

Q(st, at)←− Q(st, at) + α[rt+1 + γQ(st+1, at+1)

−Q(st, at)]. (3.4)

Since we have two different types of networks, we will require two learning rates: one

for the actor-network αactor and the other for the critic network αcritic. Equation 3.5

explains the use of the ϵ value, which represents the frequency with which a random

action occurs.



37

at =


a∗t with probability 1− ϵ,

random action with probability ϵ.

(3.5)

The significance of adopting a GA is highlighted by the fact that Figure 3.1 shows

that altering the value of τ results in a change in the robot’s learning. The first plot

displays a comparison of 11 τ values. Two more charts that compare three τ values

have been added for clarification. The initial (untuned) value of τ in DDPG was

0.95, and we are using four CPUs. To investigate how the success rate alters as the

hyperparameter values alter, all values are taken into consideration to two decimal

places. The plots demonstrate that there is much space for raising the original success

rate.

Algorithm 3 describes how to combine DDPG+HER and a GA, which employs a

population size of 30 across 30 generations. To calculate the population size and

the number of generations, a number of tests were run with varied variables. For a

large enough sample size of chromosomes, these quantities are adequate to calculate

the success rate. Ranking selection [18] was used to pick parents. Based on rank,

which is determined by relative fitness, the parents are determined probabilistically

(performance). Children are then produced using uniform crossover [19]. We also

make use of the 0.1 mutation frequency flip mutation [17]. In order to create a chro-

mosome for the GA, a binary chromosome is used to encode each hyperparameter.
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Figure 3.1: Success rate vs. epochs for various τ for FetchPick&Place-v1 task.

The six hyperparameters are, in order, Polyak-averaging coefficient, discounting fac-

tor, learning rate for critic network, learning rate for actor network, percent of times

a random action is taken, and standard deviation of Gaussian noise added to not
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Algorithm 3 Proposed GA+DDPG+HER Algorithm

1: Choose a population of n chromosomes
2: Set the values of hyperparameters into the chromosome
3: Run the DDPG + HER to get the number of epochs for which the algorithm first

reaches success rate ≥ 0.85
4: for all chromosome values do
5: Initialize DDPG
6: Initialize replay buffer R← ϕ
7: for episode=1, M do
8: Sample a goal g and initial state s0
9: for t=0, T-1 do
10: Sample an action at using DDPG behavioral policy
11: Execute the action at and observe a new state st+1

12: end for
13: for t=0, T-1 do
14: rt := r(st, at, g)
15: Store the transition (st||g, at, rt, st+1||g) in R
16: Sample a set of additional goals for replay G := S(current episode)
17: for g′ ∈ G do
18: r′ := r(st, at, g

′)
19: Store the transition (st||g′, at, r′, st+1||g′) in R
20: end for
21: end for
22: for t=1, N do
23: Sample a minibatch B from the replay buffer R
24: Perform one step of optimization using A and minibatch B
25: end for
26: end for
27: return 1/epochs
28: end for
29: Perform Uniform Crossover
30: Perform Flip Mutation at a rate of 0.1
31: Repeat for the required number of generations to find an optimal solution

completely random actions as a percentage of the maximum absolute value of actions

on various coordinates. Since each hyperparameter requires 11 bits to be represented

to three decimal places, we need 66 bits for the six hyperparameters. Then, using

these string chromosomes, domain independent crossover and mutation operators can
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produce new hyperparameter values. We looked at hyperparameter values up to three

decimal places because even little changes in values can have a big impact on success

rates. The best fit for our issue, for instance, is thought to be a step size of 0.001.

It could be significant to note that each chromosome was precisely inspected at one

time. We believe it is safe to assume that the fitness function has a low variation,

which keeps the calculation cost cheap, even though identical chromosomal runs may

have somewhat different results.

The fitness of each chromosome is determined by the inverse of the number of epochs

required for the learning agent to reach close to the maximal success rate ≥ 0.85 for

the first time (set of hyperparameter values). Our minimizing problem becomes a

maximizing problem since GA always maximizes the objective function and fitness

is inversely proportional to the number of epochs. Due to the time of each fitness

evaluation, it is not practical to conduct an exhaustive search of the 266-size search

region. Therefore, we use a GA search.

3.6 Experimental Results

3.6.1 Experimental setup

As was said earlier, a chromosome is binary encoded. The result of merging all of the

GA’s arguments is each chromosomal string. The sample chromosome in Figure 3.2

has four binary-encoded hyperparameters.
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Figure 3.2: Chromosome representation for the GA.

The environments used to test robot learning on five distinct simulation tasks are

FetchPick&Place-v1, FetchPush-v1, FetchReach-v1, FetchSlide-v1, and DoorOpening

(see Figures 3.3 and 3.4).

The AuboReach habitats shown in figures 3.5 and 3.6 are utilized in both simulated

and real research.

We test our algorithm using these six gym environments. [101] contains the fetch

environments FetchPick&Place, FetchPush, FetchReach, and FetchSlide. We devel-

oped two unique gym environments, DoorOpening and AuboReach. The six tasks are

described in full below:

• FetchPick&Place: The robot proceeds to the objective location, which might

be anywhere on the table or the space above it, after picking up the box from

the table.

• FetchPush: There is a box kept in front of the robot. It rolls or pushes the

box toward the desired spot on the table. It is forbidden for the robot to grab

hold of the box.

• FetchReach: The robot must move it to the desired position in the vicinity of

the end-effector.
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(a) FetchPick&Place environment

(b) FetchPush environment

(c) FetchReach environment

(d) FetchPick&Place plot

(e) FetchPush plot

(f) FetchReach plot

Figure 3.3: The matching DDPG+HER versus GA+DDPG+HER charts are
produced once GA has identified all six hyperparameters. All graphs are averaged

across ten runs. In this figure, DDPG+HER is referred to as DRL.
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(a) Door Opening environment

(b) FetchSlide environment

(c) DoorOpening plot

(d) FetchSlide plot

Figure 3.4: The corresponding DDPG+HER versus GA+DDPG+HER charts
are produced when all six hyperparameters have been discovered by GA. Each
graph is averaged across ten runs. In this picture, DRL stands for DDPG+HER.

• FetchSlide: The puck is put within the robot’s reach on a slick surface. It

must make contact with the puck hard enough for friction to cause it to stop

in front of the goal.

• DoorOpening: With the door handle pointed in the robot’s direction, a sim-

ulated Aubo i5 manipulator is placed close to a door. By exerting pressure

around the door handle, it is intended to force the door open.
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Figure 3.5: Using the most accurate policy learned via GA+DDPG+HER, the
AuboReach environment performs a task in a real experiment.

Figure 3.6: In a simulated experiment, the AuboReach environment performs a
task using the best policy learned via GA+DDPG+HER.

• AuboReach: Real or virtual Aubo i5 manipulators can learn to attain a par-

ticular joint configuration and use a gripper to pick up an object.
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(a) GA+DDPG+HER over ten runs, vs. Original

(b) GA+DDPG+HER averaged over ten runs, vs. Original

Figure 3.7: Success rate vs. epochs for FetchPush-v1 task when τ and γ are
found using the GA.

3.6.2 Running GA

To evaluate the efficacy of our approach, we independently ran the GA on each of these

scenarios and compared the outcomes to the original values of the hyperparameters.

When contrasting GA+DDPG+HER with DDPG+HER, PPO, A2C, and DDPG,

we would assume that the algorithm with the fewest episodes, running time, steps,
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and average epochs will perform the best. This would serve as a demonstration

of the need for optimizing hyperparameters rather than using the built-in default

hyperparameters of the algorithms. The results of our FetchPush-v1 experiment are

shown in Figure 3.7a. The GA was used to run the system and find the optimal

values for the hyperparameters τ and γ. Because the GA is probabilistic, the findings

demonstrate that optimized hyperparameters determined by the GA can improve

performance. We present the results from 10 GA runs. Faster learning and a better

success rate are both advantages of the learning agent.

Figure 3.7b shows the average learning for the ten GA iterations as well as one learning

run for the initial hyperparameter set. The outcomes shown in figure 3.7 show changes

when only two hyperparameters are modified as we assessed the genetic algorithm. We

can identify where performance could be enhanced. Our conclusions from optimizing

all five hyperparameters are listed below and support our optimism.

The comparison of one original experiment with two averaged runs for adjusting the

hyperparameters τ and γ is shown in Figure 3.8 (b). We only ran this procedure twice

because it can take several hours to complete in a single run and because it was a part

of one of our initial testing. The outcomes shown in Figures 3.7 and 3.8 show changes

when only two hyperparameters are changed as we assessed the genetic algorithm.

We can identify where performance could be enhanced. Our results from optimizing

each of the five hyperparameters provide evidence in support of our optimism.

Then, all hyperparameters were optimized using GA, with the outcomes for each task
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(a) GA+DDPG+HER over 2 runs, vs. Original

(b) GA+DDPG+HER averaged over 2 runs, vs. Original

Figure 3.8: Success rate vs. epochs for FetchSlide-v1 task when τ and γ are
found using the GA.

being shown in Figures 3.3 and 3.4. The GA-discovered hyperparameters are con-

trasted with the initial hyperparameters of the RL algorithm in Table 3.1. Except

for AuboReach, every simulation environment made use of the identical set of hy-

perparameters that GA+DDPG+HER found. Another set of hyperparameters was

produced for AuboReach, as can be seen in table 3.1. The learning rates, αactor, and
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αcritic remain unchanged from the beginning, but the values of the other four hyper-

parameters have changed. The hyperparameters that the GA identified outperformed

the initial hyperparameters, as shown in Figures 3.3 and 3.4 indicating that the learn-

ing agent was able to learn more quickly. Averaging across ten runs produced each

of the plots in the previous figure.

All envi-
ronments
except
Aubo-i5

Aubo-i5
- Fixed
Initial and
Target
state

Aubo-i5 -
Random
Initial and
Target
state

hyper-
parameters

DDPG+
HER

GA+
DDPG+
HER

GA+
DDPG+
HER

GA+
DDPG+
HER

γ 0.98 0.928 0.949 0.988
τ 0.95 0.484 0.924 0.924
αactor 0.001 0.001 0.001 0.001
αcritic 0.001 0.001 0.001 0.001
ϵ 0.3 0.1 0.584 0.912
η 0.2 0.597 0.232 0.748

Table 3.1: DDPG+HER vs. GA+DDPG+HER values of hyperparameters.

The Aubo-i5 robotic manipulator’s custom-built gym environment was subjected to

GA+DDPG+HER settings, which are listed in table 3.1 as shown in figures 3.5

and 3.6. The MOVEit package [102] controls the motors in this environment, but

the DDPG+HER acts as the movement’s brain. DDPG+HER decides the actions

(combinations of joint states) the robot should take. At first, the outcomes were

unexpected. It took several hours (> 10-15 hours) to finish each epoch. Since it might

take several weeks, we did not finish the entire program. The same is true for settings

for DDPG+HER. This is due to the Aubo i5 robotic manipulator’s movements being
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kept slow in both simulation and real-world investigations to prevent any unforeseen

sudden movements that can be harmful. The successful completion of each action in

the AuboReach environment also involves planning and execution procedures. Unlike

the other gym settings examined in this study, AuboReach could only be run on a

single CPU. This is because various settings were added to MuJoCo and were easily

able to utilize the entire pool of CPUs. Faster learning is made possible by MuJoCo’s

ability to spawn several instances for training. Like a genuine robot, AuboReach can

only carry out one action at a time. These qualities make training in this environment

time-consuming.

3.6.3 Modifications required for AuboReach

Then, only action values in the AuboReach environment were subjected to the GA+

DDPG+HER settings. This indicates that the robot did not run to perform the ac-

tivity in both simulated and real studies. This also implies that the robot is deemed

to have made whatever choice the DDPG+HER makes. This is further backed up

by the fact that MOVEit takes care of the trouble of sending move signals to various

joints. This is true since the robot is capable of carrying out every action suggested

by the DDPG+HER algorithm. This is because internal joint movement in the robot

requires planning and execution [103]. Additionally, by following these steps, the

chance of a collision is avoided, which might have happened otherwise. With a sig-

nificant decrease in training time that makes it possible to use this environment for
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training, each epoch now took less than a minute to complete.

Now that some of the environmental obstacles had been removed, the GA+DDPG+HER

settings (table 3.1) were re-applied. These hyperparameters did not perform any bet-

ter than the original hyperparameters. We think this is because this environment is

so much more complex and one-of-a-kind than others. To make sure that the envi-

ronment is trainable, we took into account even additional factors. Four joints are

used in this environment for training and testing (instead of six). The joints used

are shoulder, forearm, upper-arm, and wrist1. This was done to make sure that the

learning could be completed on time. The range of each joint is -1.7 to 1.7 radians.

The robot was in the upright position in both its initial and reset states, which are

[0, 0, 0, 0].

The GA+DDPG+HER method was improved for faster hyperparameter search and

better learning with minor environment modifications. The ten successful epochs were

included in the definition of success. Accordingly, the GA was deemed successful if

it experienced a success rate of 100% for ten consecutive epochs. Experiments show

that learning never converges when αactor and αcritic are both bigger than 0.001. Algo-

rithm’s αactor and αcritic were set to 0.001 as a consequence. When only action values

are used, multi-threading can happen, which means four CPUs could be used. Au-

boReach deems the DDPG+HER-determined joint states to be successful if the total

difference between the target and the achieved joint states is less than 0.1 radians. The

chosen objective joint states were [-0.503, 0.605, -1.676, 1.391]. These modifications



51

(a) Trained initial and target state

(b) Training is done with random initial and target joint states with 1 CPU

Figure 3.9: The success rate of the AuboReach task in comparison to epochs.
The average of ten runs is shown in this graph. In this figure, ”DRL” stands for

DDPG+HER.

to the algorithm allowed us to discover a new set of hyperparameters, as illustrated

in Table 3.1. The difference in training success rates between GA+DDPG+HER and

DDPG+HER is shown in Figure 3.9a. The GA+DDPG+HER performs significantly

better than the DDPG+HER.

The training was repeated using four CPUs to identify the optimum policy once the
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GA+DDPG+HER had found the best hyperparameters for the AuboReach environ-

ment. Then, in both simulated, and real testing, the robots were put under this

policy. The important thing to keep in mind is that the CPU utilization was set

to one for testing purposes. The robot was able to go from the starting joint space

of the training to the objective joint space in both studies. Because there was no

new unpredictable element during training, there was just one viable course for the

environment. There was no noticeable difference throughout testing because both

DDPG+HER and GA+DDPG+HER ultimately had a 100% success rate. The pri-

mary difference is how quickly the environment can learn given a particular set of

hyperparameters.

In a different experiment, AuboReach was modified to learn about random joint

states. The update allowed the robot to start and complete tasks in a variety of

joint states during testing. The GA was applied to this setting, and the hyperpa-

rameters it identified are displayed in table 3.1. According to Figure 3.9b, the plot

of GA+DDPG+HER is still superior to DDPG+HER. In the figures 3.5 and 3.6, the

robot can be seen picking up an object in both real-world and simulated tests.

The performance of the algorithm was enhanced by the automatic DDPG+HER

hyperparameter adjustment brought about by the usage of GA+DDPG+HER in the

AuboReach environment.
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3.6.4 Training evaluation

A GA’s operational state must be closely monitored to ensure that the system’s

performance is maximized. Certain chromosomes will perform better than others

due to the way GAs function. The performance graph is therefore unlikely to have a

smooth increase curve. When a fitness function test yields a zero, it indicates that the

chromosome is not suitable for use. Although the slope is not smooth, it is anticipated

that as GA develops, the system’s overall performance will get better.

To monitor GA’s development as we searched for the optimum hyperparameters, we

generated a ton of charts. The figures 3.10, 3.11, and 3.12 demonstrate how the sys-

tem’s performance increases as GA advances. When assessing training effectiveness,

hyperparameters, such as the median success rate across fitness function evaluations,

total reward across episodes, and epochs to achieve the target are all taken into consid-

eration. The system’s overall performance is improving, as can be seen. When fitness

function evaluations are used, the overall reward rises as the number of episodes and

epochs the robot needs to complete the task falls. This shows that the GA is mak-

ing progress in identifying the ideal hyperparameter values. Because each GA run

requires many hours to many days of run time, we only plotted data for one GA run

and limited the length of a GA run. We chose to end the GA once we began to notice

results.

We will use the GA’s identified hyperparameters to assess the system’s effectiveness

now that it has performed as expected.
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(a) FetchPick&Place - Median reward vs Times
GA fitness function evaluated

(b) FetchPick&Place - Epochs vs Times GA fit-
ness function evaluated

(c) FetchPick&Place - Median success rate vs
Times GA fitness function evaluated

(d) FetchPush - Median reward vs Times GA fit-
ness function evaluated

(e) FetchPush - Epochs vs Times GA fitness
function evaluated

(f) FetchPush - Median success rate vs Times
GA fitness function evaluated

Figure 3.10: The GA+DDPG+HER training evaluation charts are produced
after GA discovers all six hyperparameters. This was the result of just one GA

run.

3.6.5 Efficiency evaluation

To assess and compare the effectiveness of the GA+DDPG+HER algorithm for teach-

ing the robot to complete a task, we generated data for a variety of hyperparameters.

These hyperparameters serve as reliable gauges of algorithm performance. The overall
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(a) FetchSlide - Median reward vs Times GA fit-
ness function evaluated

(b) FetchSlide - Epochs vs Times GA fitness
function evaluated

(c) FetchSlide - Median success rate vs Times
GA fitness function evaluated

(d) DoorOpening - Median reward vs Times GA
fitness function evaluated

(e) DoorOpening - Epochs vs Times GA fitness
function evaluated

(f) DoorOpening - Median success rate vs Times
GA fitness function evaluated

Figure 3.11: The GA+DDPG+HER training evaluation plots when GA identi-
fied all six hyperparameters. This outcome came from a single GA run.

reward has greatly increased for the bulk of the training tasks, as illustrated in Figure

3.13. When rewards were increased, the DDPG+HER algorithm’s efficiency greatly

increased. The robot can learn a great deal faster since it is guided much more quickly

toward the intended job. We averaged these plots over ten runs to provide a fair as-

sessment. The FetchSlide environment performed poorly with GA+DDPG+HER.
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(a) AuboReach - Median reward vs Times GA
fitness function evaluated

(b) AuboReach - Epochs vs Times GA fitness
function evaluated

(c) AuboReach - Median success rate vs Times
GA fitness function evaluated

(d) FetchReach - Median reward vs Times GA
fitness function evaluated

(e) FetchReach - Epochs vs Times GA fitness
function evaluated

(f) FetchReach - Median success rate vs Times
GA fitness function evaluated

Figure 3.12: The GA+DDPG+HER training evaluation charts are produced
after GA learns all six hyperparameters. This was the result of just one GA run.

The difficulty of the undertaking, in our opinion, is to blame. Jobs that failed to

reach the target during training were represented in the tables by the hyperparame-

ter’s maximum value.

We also produced more data to assess how many episodes, running times (s), steps,
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(a) FetchPick&Place

(b) FetchPush

(c) FetchReach

(d) FetchSlide

(e) DoorOpening

(f) AuboReach

Figure 3.13: The DDPG+HER vs. GA+DDPG+HER efficiency evaluation
charts are produced when all six hyperparameters are determined using GA (To-
tal reward vs episodes). All graphs are averaged across ten runs. In this figure,

DDPG+HER is referred to as DRL.
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and epochs a robot would need to learn to accomplish the desired goal. This infor-

mation is presented in the tables 3.2-3.5. An average of 10 runs is used to generate

the data in the tables. Table 3.2 compares the number of episodes required for a

robot to accomplish a task. The performance of the bolded numbers suggests greater

performance, and most environments exceed the other algorithms. In the Fetch-

Push environment, learning the task takes 54.34% fewer episodes than it does in the

DDPG+HER environment.

Method Fetch
Pick &
Place

Fetch
Push

Fetch
Reach

Fetch
Slide

Door
Opening

Aubo
Reach

DDPG+
HER

6,000 2,760 100 4,380 960 320

GA+
DDPG+
HER

2,270 1,260 60 6,000 180 228

PPO 2,900 2,900 1,711 4,880 1,500 2,900
A2C 119,999 119,999 119,999 119,999 119,999 32,512.3
DDPG 10,000 2,000 423 10,000 706 1,000

Table 3.2: Efficiency evaluation: For all activities, compare average (over ten
runs) episodes to accomplish the target.

Running time is another aspect to take into account when assessing an algorithm’s

effectiveness. Time is measured in seconds. If learning the task takes less time, the

algorithm is superior. According to Table 3.3, the GA+DDPG+HER algorithm has

the shortest running time in the majority of the situations. For instance, FetchPush

using GA+DDPG+HER takes roughly 57.004% less time than the DDPG+HER

method.
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Method Fetch
Pick &
Place

Fetch
Push

Fetch
Reach

Fetch
Slide

Door
Opening

Aubo
Reach

DDPG+
HER

3,069.981 1,314.477 47.223 2,012.645 897.816 93.258

GA+
DDPG+
HER

1,224.697 565.178 28.028 3,063.599 167.883 66.818

PPO 1,964.411 2,154.052 776.512 2,379.393 997.779 710.576
A2C 2,025.344 2,082.807 2,061.807 2,268.114 2,718.769 214.075
DDPG 5,294.984 1,000.586 236.4 5,346.516 438.7 1,721.992

Table 3.3: Efficiency evaluation: For all activities, compare the average (over ten
runs) running time (s) to attain the target.

When examining and evaluating the performance of the GA+DDPG+HER algorithm,

another factor to take into account is the average number of steps required to reach the

goal. In Table 3.4, the typical number of steps taken by a robot in each environment

are displayed. The majority of environments outperform all other algorithms when

used with GA+DDPG+HER, except for the FetchSlide environment. FetchPush

with GA+DDPG+HER requires roughly 54.35% fewer steps than the DDPG+HER

method.

Method Fetch
Pick &
Place

Fetch
Push

Fetch
Reach

Fetch
Slide

Door
Opening

Aubo
Reach

DDPG+
HER

300,000 138,000 5,000 219,000 48,000 65,600

GA+
DDPG+
HER

113,000 63,000 3,000 300,000 9,000 46,000

PPO 595,968 595,968 324,961 1,000,000 301,056 595,968
A2C 600,000 600,000 600,000 600,000 600,000 162,566.5
DDPG 500,000 100,000 21,150 500,000 35,300 200,000

Table 3.4: Efficiency evaluation: For all activities, compare the average (over ten
runs) steps taken to attain the target.
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The last hyperparameter utilized to contrast the performance of GA+DDPG+HER

with four other algorithms is the number of epochs required for the robot to reach the

target. Table 3.5 displays the average epochs for each environment. In terms of effi-

cacy, almost all environments do better than GA+DDPG+HER. For instance, Fetch-

Push requires 54.35% fewer epochs with GA+DDPG+HER than with DDPG+HER.

Method Fetch
Pick &
Place

Fetch
Push

Fetch
Reach

Fetch
Slide

Door
Opening

Aubo
Reach

DDPG+
HER

60 27.6 5 43.8 47 16

GA+
DDPG+
HER

22.6 12.6 3 60 8 11.4

PPO 290 290 171.1 488 150 290
A2C 1,200 1,200 1,200 1,200 1,200 325.2
DDPG 1,000 100 42.3 1,000 70.6 100

Table 3.5: Efficiency evaluation: Average (over ten runs) epochs comparison to
reach the goal, for all the tasks.

The GA+DDPG+HER algorithm’s overall comparison to the other algorithms is then

presented.

3.6.6 Analysis

In the preceding subsections, we presented numerous findings and the methodol-

ogy for comparing the performance of the GA+DDPG+HER algorithm to that of

the DDPG+HER, PPO, A2C, and DDPG algorithms. Overall, GA+DDPG+HER

performs best, with the FetchSlide environment being the only exception. The av-

erage comparison tables show how each environment can assume a different value
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(a) FetchPick&Place

(b) FetchPush

(c) FetchReach

(d) FetchSlide

(e) DoorOpening

(f) AuboReach

Figure 3.14: GA+DDPG+HER comparison with PPO [6], A2C [7], DDPG+HER
(DDPG[8] + HER[9]) and DDPG [8]. All plots are averaged over ten runs. The

term ”DRL” in this figure refers to DDPG+HER.
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for the assessment hyperparameters. The kind of task the robot is attempting to

learn will determine this. The majority of the tasks outperformed DDPG+HER with

an improvement in the efficiency of more than 50%, although FetchSlide performed

worse than DDPG+HER. This performance is also attributable to the task’s objec-

tive. This operation is distinct since the end-effector does not physically move to

the location where the box should be placed. A mean of more than ten runs and a

range of hyperparameters were used to test GA+DDPG+HER. This alone demon-

strates that GA+DDPG+HER outperformed several other algorithms. Figures 3.3,

3.4 and 3.9b corroborate our claim by showing that the task can be learned sig-

nificantly more quickly in most situations when GA+DDPG+HER is used. Finally,

we compare the outcomes of five distinct methods (PPO, A2C, DDPG, DDPG+HER,

GA+DDPG+HER) in Figure 3.14. As can be seen, in every scenario, GA+DDPG+HER

outperforms all other algorithms; the only exception is FetchSlide, where DDPG+HER

surpasses GA+DDPG+HER. We believe the total success percentage on this task

(FetchSlide) is minimal, even for the winning DDPG+HER (the highest success rate

is probably around 0.6 or 60%). We believe that in terms of problem-solving time,

GA+DDPG+HER performs similarly to its counterpart DDPG+HER, but differs

when a problem may have fewer genetic solutions. DDPG+HER surpasses other al-

gorithms in every situation (such as PPO, DDPG, and A2C). This might be a result

of HER’s better performance after being added to DDPG. Additionally, DDPG+HER

performs better in situations with sparse rewards [104]. Except for the FetchReach
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and DoorOpening environments, where it has a zero success rate, DDPG alone (with-

out HER) cannot operate in any environment. We believe this is the case because, for

DDPG, dense rewards are frequently easier to learn from than sparse ones. FetchReach

environment is unquestionably quite straightforward, and all configurations may prop-

erly solve it. In a DoorOpening environment, DDPG can function, but not as well as

DDPG+HER, and GA+DDPG+HER. All environments for PPO have a zero success

rate, except for FetchReach. This might be the case since PPO performs better in

discrete environments than in continuous environments. This might also be the case

for A2C, which has a success rate of 0 in all environments except for FetchReach and

AuboReach. In conclusion, GA+DDPG+HER outperforms all of these methods. This

illustrates how hyperparameter adjustments with GA can enhance performance.

3.7 Summary

Early results from this study indicated how a genetic algorithm may improve the hy-

perparameters of a reinforcement learning system to improve performance, as shown

by quicker competence on six manipulation tasks. We reviewed earlier work on

reinforcement learning in robotics, presented the GA+DDPG+HER algorithm for

reducing the time to reach peak performance, and discussed why a GA would be

suitable for such optimization. This chapter discusses RL, DDPG, and HER. The

main contribution, as described in [47], [105], [106] and [107], is also presented in

this chapter. Experimental results were compared between GA+DDPG+HER [47]
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and existing scenarios. Our findings on the six manipulation tasks demonstrate that

the GA is capable of determining the hyperparameter values that result in quicker

learning and better (or equal) performance on the tasks we have selected, supporting

our hypothesis that GAs are an appropriate fit for such hyperparameter optimization.

We evaluated GA+DDPG+HER with alternative strategies and concluded that ours

was the most successful. In conclusion, the implementation validates the hypothesis

that when hyperparameters for DDPG+HER are found via GA+DDPG+HER, real

robots learn more fast. The actual robot environment, AuboReach, allowed for quick

changes between the initial and destination states. It is also possible to argue that

GA+DDPG+HER, has the same limitations when a problem may only have a small

number of genetic solutions, such as in the FetchSlide environment, but behaves sim-

ilarly to its equivalent of DDPG+HER in terms of problem-solving speed. It was

found that GA-found parameters outperformed all the methods.

We also demonstrated that heuristic search, as used by genetic and other evolutionary

computing techniques, is a feasible computational tool for enhancing the performance

of sensor odometry and reinforcement learning. During system execution, adaptive

genetic algorithms can be used to adapt to various sets of hyperparameters. This

might be a sign of online hyperparameter change, which can enhance the performance

of any system, irrespective of the testing environment or domain.
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Chapter 4

AACHER: Assorted Actor-Critic

Deep Reinforcement Learning with

Hindsight Experience Replay

4.1 Introduction

Deep Learning, a branch of machine learning, uses hierarchical structures to extract

high-level abstractions from data. It is a developing strategy that has been used in

a range of industries, including transfer learning [108], the medical industry [109],

the genetics industry [48], and many more [20, 110–116]. Robotics breakthroughs are

shown by Deep Reinforcement Learning (DRL) [117] methods. The enormous num-

ber of interaction samples that are frequently needed for training in both simulated
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and real environments is one of the restrictions [118]. Numerous studies have been

conducted in this area since many years ago, with some focused on continuous action

spaces and others on discrete action spaces [47]. Autonomous robots use Q-learning

techniques for a variety of tasks. [119] Several robotic tasks, including locomotion [59],

manipulation [120], [121], [57], and autonomous vehicle control [122] have been con-

trolled via reinforcement learning (RL) techniques [14]. Robotic hands that passively

adjust to environmental uncertainty are one of the most effective implementations of

reinforcement learning. Soft body robots can boost movement over soft materials by

performing simple tasks like grabbing, according to [123]. [105], [47], [106], [124] also

use robotic hand manipulators in similar ways.

Reinforcement learning uses three different types of algorithms: actor-only, critic-

only, and actor-critic technique [125]. Deep Deterministic Policy Gradient (DDPG)

[8], a new deep reinforcement learning method, has recently demonstrated strong per-

formance in a variety of simulated continuous control tasks. In actor-critic techniques,

the deep deterministic policy gradient (DDPG) algorithm is crucial. In DDPG, the

experience replay (ER) [126] approach is important. HER (Hindsight Experience

Replay) [9], which enables sample-efficient learning from sparse and binary incen-

tives and avoids the need for complicated reward engineering, is one of the common

experience replay techniques.

Utilizing Hindsight Experience Replay (HER), we are comparing our work against

that of DDPG as part of our research. The most current instance of DDPG+HER
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usage was found in [124].

Actor and critic learning make-up DDPG. Both actors and critics have a big impact

on how well the algorithm performs. One of the research [127] recommended using

double experience replay (DER), an extension of the experience replay mechanism,

to further enhance the stability and performance of DDPG. This resulted in a more

stable training process and preferred performance in practice. In contrast to other

studies, our approach employs [128] to develop a unique algorithm that can interact

with more actors and critics in addition to HER.We call this system Actor-Critic Deep

Reinforcement Learning with Hindsight Experience Replay or AACHER. The state-

of-the-art DDPG algorithm is used in AACHER together with several actor-critic

schemes, and its advances are evaluated in a variety of scenarios under diverse condi-

tions. The technique is used on five goal-based gym environments constructed using

specifically designed robotic manipulators: AuboReach, FetchReach-v1, FetchPush-v1,

FetchSlide-v1, and FetchPick&Place-v1. To establish whether the method is benefi-

cial in boosting the overall effectiveness of the learning process, the full algorithm is

also looked at. The final results support our claim and provide resounding evidence

that adding more actors and critiques improves the robot’s overall learning process.

Open source code is available at https://github.com/aralab-unr/multi-actor-critic-

ddpg-with-aubo.

The main contributions of this chapter are listed below:

• AACHER is a unique algorithm developed by combining advanced DDPG with

https://github.com/aralab-unr/multi-actor-critic-ddpg-with-aubo
https://github.com/aralab-unr/multi-actor-critic-ddpg-with-aubo
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HER (Actor-Critic Deep Reinforcement Learning with Hindsight Experience

Replay).

• AACHER creates independent instances for a large number of actors, critics,

or both, using various combinations of actors and critics.

• We used the average of the actor and critic networks to further calculate the

loss and actions. The term ”average” in this context refers to both the average

of the critic and actor networks. The calculated average for both actors and

critics is used by the target networks, which apply the updated parameters.

• To analyze the algorithm, we created Aubo-i5 custom environments (referred

to as AuboReach).

• AACHER is also used in four of OpenAI’s gym settings: FetchReach-v1, FetchPush-

v1, FetchSlide-v1, and FetchPick&Place-v1.

• The usefulness of AACHER was investigated using various combinations of

actors and critics in both simulated and real manipulation tasks.

• AACHER’s outcomes were contrasted with those of DDPG+HER.

• Our tests demonstrate how AACHER performs better than DDPG+HER, demon-

strating the value of using several actors and critics in DDPG.
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4.2 Reinforcement Learning

In a typical reinforcement learning (RL) scenario, a robot interacts discretely with

the environment to reap as many rewards as it can. How a robot interacts with the

environment in reinforcement learning is depicted in Figure 4.1. The problem may

be modeled using a Markov Decision Process (MDP) as a tuple of

〈
S,A, P,R, γ

〉
[98], [99]. S is the set of states, whereas A denotes the collection of actions. P :

S × A × S → [0, 1] is the transition probability function. R : S × A → r ∈ R

is the reward function, and γ is a scalar discount factor that is equivalent to the

idea in Bellman Equation [129]. The robot wants to maximize the expected value of

discounted total rewards: Rγ
t =

∑T
i=t γ

i−tr(si, ai) by learning a perfect policy, where

t is the time step that terminates at time T and r(st, at) denotes the reward taking

action at in state st.

AGENT

ENVIRONMENT

STATE REWARD ACTION

Figure 4.1: Interaction between a robot and its environment in reinforcement
learning (RL).
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More specifically, the long-term reward is represented by the state-action value func-

tion with policy:

Qπ(st, at) = E[Rγ
t |s = st, a = at]

= E

[
T∑
i=t

γi−tr(si, ai)

]
, (4.1)

where the expected reward for a state if a robot obeys a policy π is represented by

the state-value function:

V π(s) = E[Rγ
t |St = s; π]. (4.2)

In an actor-critic reinforcement learning [130], actor and critic are specified as state-

action value function Q(st, at, θ) and actor function µ(st, ω) with parameters θ and

ω, respectively. The actor adopts the guidelines after consulting the critic, who also

offers an estimation of the entire compensation. It is well known that the critic reduces

the squared TD error loss function [131] to grasp the state-action value function:

L(θ) = (r(st, at) + γQ′(st+1, at+1, θ)−Q(st, at, θ))
2
. (4.3)

However, the critic tends to diverge when deep neural networks are used to approx-

imate the state-action value function, leading to the invalidity of an actor as well.

In particular, recent successful RL research on experience replay and target networks

[132] helps resolve the issue. Since both of these are relevant to the DDPG strategy,
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in-depth explanations of each are given in the next section.

4.3 Deep Reinforcement Learning (DRL)

Since its introduction, extensive research has been conducted in this field [50], with

some work focused on continuous action spaces [51–54] and others on discrete action

spaces [55]. Q-learning approaches [50] is used by autonomous robots to carry out a

variety of tasks [56]. [14] The use of Reinforcement Learning (RL) has been beneficial

for both locomotion [59, 60] and manipulation [57, 58]. The comprehensive DRL

taxonomy is explained in Figure 4.2.

DEEP REINFORCEMENT 
LEARNING ALGORITHMS

Model-Free Model-Based

PILCOiLQRValue-BasedPolicy-Based

Trust Region 
Optimization

Distributional 
DQN

Deterministic PGActor-Critic Q-LearningSARSA

A3CA2C
Fitted Q-Learning

DQN
D4PGDDPG TD3 SAC TRPOPPO

Dueling 
DQN

Double 
DQN

Figure 4.2: Taxonomy of Deep Reinforcement Learning (DRL).
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It has been established that model-free deep reinforcement learning algorithms are

capable of learning a wide range of tasks, from mastering complex locomotion strate-

gies [133] to playing video games from images [134]. Model-based algorithms often

perform asymptotically worse than model-free learners due to model bias. We chose

DDPG for our experiments since it is a well-known model-free DRL algorithm that

is based on policies. Recent successful RL experiments, like Experience replay [126]

and Target networks [132], have significantly improved DDPG performance. When

adopting hindsight experience replay (HER), a technique for experience replay, the

robustness and sample efficacy of goal-achieving procedures are typically increased.

[9].

In this chapter, our testing will combine DDPG with Hindsight Experience Replay

(HER). A summary of recent findings on how experience ranking might accelerate the

learning rate of DDPG+HER can be found in [73]. A detailed explanation of DDPG

and HER is given in the following subsection.

4.4 Deep Deterministic Policy Gradients (DDPG)

The Deep Deterministic Policy Gradients (DDPG) method [8] integrates a variety

of approaches to deal with continuous control problems. The algorithm known as

Deterministic Policy Gradients (DDPG) is an extension of the DPG algorithm. The
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DDPG method, initially proposed in [135], consists of the actor-critic technique, ex-

perience replay, target network, and deterministic policy gradient theorem. The main

contribution is the demonstration of deterministic policy µω : S → A, which gener-

ates the precise action for the robot by providing the state instead of a probability

distribution across all the actions. According to the DDPG approach, the objective

is:

J(πω) =

∫
S

ρπ(s)

∫
A

πω(s, a)r(s, a)dads

= Es∼ρπ ,a∼πω [r(s, a)] , (4.4)

where ρπ(s) represents the state distribution. According to [98] and [130], the deter-

ministic policy’s objective is:

J(πω) =

∫
S

ρπ(s)r(s, µω(s))ds

= Es∼ρµ [r(s, µω(s))]. (4.5)

The state-action value (or critic) network Q(st, at, θ) and the actor network µ(st, ω)

are both designed to replicate the state-action value function and actor function,

respectively, in the DDPG approach. The neural networks’ parameters are θ and

ω. When the networks are updated, the experiences utilized for training are taken

from the experience replay. Typically, the 4-element tuple (st, at, rt, st+1) is kept in

a buffer that provides a batch of them for updating actor and critic networks. Since
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the current experience will replace the older one once the buffer is full, just a small

percentage of the most recent experiences are kept. By offering a consistent target

for the training procedure, the target network, which is normally constructed as a

replica of the main network, is also utilized to update the critic/actor network. The

target network, denoted as Qtar, is utilized in place of Q′(st+1, at) in 4.3:

Ltar(θ) =
(
r(st, at) + γQtar(st+1, at+1, θ

−)−Q(st, at, θ)
)2

, (4.6)

where θ− is the parameter from the previous iteration. The experience replay and tar-

get networks are equally important for enabling deep neural networks and sustaining

the DDPG method’s training.

4.5 Hindsight Experience Replay (HER)

Hindsight Experience Replay (HER) [9] is an efficient technique for Experience Replay

that can be combined with any off-policy RL algorithm. When there are numerous

goals, HER might be used. To train robots more quickly in expansive state and

action settings, HER uses a sophisticated technique. HER aims to learn from failures

by modeling human behavior. Robots always learn from experience, regardless of

whether they ultimately succeed in producing the desired outcome. HER considers

the robot’s fulfillment of any requirement to be the modified aim. Only the transition

(st||g, at, rt, st+1||g) with the initial objective g is captured in a typical experience
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HER Goal 
Sampler g’

Original Goal g

Batch of Episodes

Recalculate rewards with 
new goals

Replay Buffer

DDPG Training Policy

 H
E

R

Transition

Figure 4.3: DDPG+HER explanation

replay. A transition from the original goal g to the modified goal g′ is also stored

in HER as (st||g′, at, r′t, st+1||g′). HER operates admirably with very few incentives

and is preferred to tailored rewards in this respect. The operation of DDPG+HER is

shown in Figure 4.3. New goals g′ are chosen at random by the HER algorithm from

the batch of episodes [136]. These goals describe random states that a robot might

reach during the episode. To create new transitions connected to new goals, rewards

for these new additional goals will then be calculated and saved in the replay buffer

for policy training. A future mechanism is used by the HER to choose new goals,

and the additional goals selected are k random states from the same episode as the

transition being repeated.
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4.6 Open Problem Discussion

The effectiveness of DDPG+HER raises questions. If an actor or critic has a poor

performance, using a single actor or critic network is problematic. Utilizing several

actor/critic networks can help to prevent situations like this. When the average of

all actors and critics is used in place of utilizing a single actor and critic, this fits

well within the conventional DDPG technique. This can help a robot learn a task

considerably more quickly by producing a greater reward and Q-value. The next

sections will show how using more than one actor or actor has a significant impact on

the robot’s competence. In a later section of this chapter, the solution to this issue

is discussed, and the results of the experiments that go along with it demonstrate

that the proposed solution performs superior to the existing reinforcement learning

method.

4.7 AACHER

Although there are still areas for performance improvement and stability issues,

DDPG has shown good performance in several areas [137]. The effectiveness of the

actor/critic learning process is particularly important to the training of the DDPG

approach since the actor’s learning process heavily relies on the critic. It is possible to

get a significant improvement in stability and performance using the DDPG method
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and an average actor/critic. This section presents the details of the multi-actor/critic

DDPG+HER technique (AACHER).

Algorithm 4 AACHER

1: Create D Actor Neural networks
2: Create P Critic Neural networks
3: Initialize losses as an average of Actor and Critic neural networks
4: Initialize replay buffer R← ϕ
5: for episode=1, M do
6: Sample a goal g and initial state s0
7: for t=0, T-1 do
8: Sample an action at using behavioral policy generated by taking an average

of policy neural networks
9: Execute the action at and observe a new state st+1

10: end for
11: for t=0, T-1 do
12: rt := r(st, at, g)
13: Store the transition (st||g, at, rt, st+1||g) in R
14: Sample a set of additional goals for replay G := S(current episode)
15: for g′ ∈ G do
16: r′ := r(st, at, g

′)
17: Store the transition (st||g′, at, r′, st+1||g′) in R
18: end for
19: end for
20: for t=1,N do
21: Sample a minibatch B from the replay buffer R
22: Perform one step of optimization using A and minibatch B
23: end for
24: end for

The actor network is represented by the average ofD actor values, and the state-action

value function is approximated by the average of P critic values since AACHER uses

both D actors and P critics in its actor-critic architecture:
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µavg(s, ω) =
1

D

D∑
i=1

µi(s, ωi),

Qavg(s, a, θ) =
1

P

P∑
i=1

Qi(s, a, θi), (4.7)

where the i-th actor and critic parameters, respectively, are represented by ωi ∈ ω

and θi ∈ θ. The AACHER method creates D/P independent actor/critic networks

as opposed to the actions/Q-values that were previously learned. The average of all

actors/critics will therefore considerably reduce the adverse effects when one actor or

critic gives a bad performance. Additionally, a wide range of independent actors and

critics can learn more about the environment. The critic networks are updated by

TD errors, whereas the actor networks are composed of a parameterized collection of

policies that are typically updated by a policy gradient.

TD errors between the average critic and the target critic are used in critic training:

Lavg(θ) =
(
r(s, a) + γQtar

avg(s, a, θ
−)−Qavg(s, a, θ)

)2
. (4.8)

The AACHER approach is explicitly stated in Algorithm 4, and DDPG and HER’s

basic conception is unchanged. Additional goals that are sampled from g′ ∈ G are

stated in line 15 of the algorithm. The hyperparameter k regulates the ratio of the

total number of elements in g′ and G. Here, k random states from the same episode as
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the transition that was replayed will be used to select additional goals. The diagram

in Figure 4.4 provides a visual representation of AACHER. It exhibits average actors

and critics across both the main and the target networks.

Critic 1

Critic 2

Critic P

Actor 1 Actor DActor 2

Average of 
Critics

Policy 
Gradient

Average of 
Actors

Updated
Parameters

MAIN NETWORKS TARGET NETWORKS

Critics

Actors

Critic 1

Critic 2

Critic P

Target Critics

Average of 
Critics

Average of 
Actors

Actor 1 Actor 2 Actor D

Target Actors

Figure 4.4: Use of multiple actors and critics in AACHER

We created a naming convention so that we could easily distinguish between the

several tests we ran with AACHER. A diagrammatic representation of the naming

convention can be seen in Figure 4.5. The abbreviation ADCP is used to refer to the

experiments, where A stands for an actor, D for the total number of actors, C for

the critic, and P for the total number of critics. As an example, the notation A2C3

indicates the use of two actors and three critics in the main and target networks,

which are then averaged for training.
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ADCP
A - Actor Network

D - No. of Actor networks used 
C - Critic Network

P - No. of Critic networks used

Figure 4.5: Naming convention for AACHER-based experimentation.

4.8 Experimental Results

4.8.1 Simulated environments

We are utilizing four Open AI gym environments in this chapter: FetchReach-v1,

FetchPush-v1, FetchSlide-v1, and FetchPick&Place-v1 [101]. In addition to these four

environments, we are also using the AuboReach environment, a customized gym envi-

ronment we developed for this research. In AuboReach, the environment includes an

Aubo i5 manipulator that follows the operations to transition from the starting joint

state configuration to the destination joint state configuration (robot joint states).

The initial and objective states’ configurations are random. In this environment, four

joints are employed for training and testing (instead of six). The joints that are uti-

lized are the shoulder, forearm, upper arm, and wrist1. This was done to ensure that

the learning could be completed quickly. Each joint can move in a range of -1.7 to

1.7 radians. Real and simulated AuboReach settings are shown in 4.6 and 4.7.
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Figure 4.6: The AuboReach environment executes a task in a real experiment
using the most accurate policy learned using AACHER.

Figure 4.7: The AuboReach environment performs a task in a simulated experi-
ment using the best policy discovered via AACHER.
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4.8.2 Experimental setup

In this subsection, the precise conditions for each experiment are described. Each

experiment has a set of specified conditions. Learning rates for actors and critics are

fixed at 0.001. The discount factor is 0.98, and the update rates for target networks

are 0.01. During exploration, a zero-mean Gaussian noise with a variance of 0.2 is

added to the action. Each experiment’s training approach consists of 25 epochs, each

of which has 15 cycles. The robot performs 100 steps in each cycle, followed by 20

rounds of robot training. The batch size is set to 256 by default. The experience

replay buffer is built as a circular queue with a 106 length. During each trajectory

roll-out, all experience tuples (state, action, reward, and future state) are saved and

kept in a replay buffer of finite size. When updating the value and policy networks,

we take a random sample of the replay buffer’s experience. The replay buffer will

automatically keep 20% of the typical transitions with the original goal because there

are k=4 additional goals used in the replay. L2 regularization is applied to the loss

when the weights of the neural network become extremely large. Layer normalization

is used by actor networks and critic networks alike [138]. The observations made

by the robot are also normalized. A momentum-based technique called Adam [139]

is used to optimize the loss function during training. For our experiments, we are

utilizing a GeForce GTX 1080 Ti graphics card and Ubuntu 16.04.

The actor and the critic have three hidden layers, each with 256 units, in every
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experiment. AACHER experiments with various actor and critic network combina-

tions. Both the actor and critic networks have comparable shapes. DDPG+HER and

AACHER were tested independently 20 times each to confirm that the experiment’s

results were accurate.

The robot was trained in a simulated AuboReach environment to avoid colliding with

nearby objects and to make the training process simpler. Additionally, during simu-

lation training, the robot’s motors were turned off. In other words, it is anticipated

that the robot can effectively transition to any action (set of joint states) that is

chosen by any of the algorithms under test. The implementation of this environment

makes use of the MOVEit package [102], which handles the planning and execution

necessary for internal joint movement in the robot [103]. Furthermore, by taking

these measures, a collision that would have occurred is prevented. Therefore, it is

safe to presume that there won’t be any collisions between the robot’s joints.

If the overall deviation between the target and the obtained joint states is less than

0.1 radians, AuboReach rates the algorithm-determined joint states as successful.

The training’s target joint states were [-0.503, 0.605, -1.676, 1.391]. Using the policy

created by training in AuboReach, the random initial and target state configurations

were tested in real-world and computer-generated environments with motors turned

on. The user-selected initial and target state settings were successfully transitioned

between by the robot.
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4.8.3 Experimental results

This subsection presents all of the tests for the DDPG+HER and AACHER tech-

niques. They were all completed in the simulated environment that was previously

mentioned. Furthermore, these results were subjected to objective evaluations.

We carried out studies utilizing the methodology in the environments of AuboReach,

FetchReach-v1, FetchPush-v1, FetchSlide-v1, and FetchPick&Place-v1. To prevent

any unexpected manipulator movements, training was done specifically for AuboReach

in a virtual environment. Following the training, a real AuboReach manipulator

configuration was used to test the policy file. Despite the absence of measures for the

actual setup, it supports the effectiveness of the trained policy.

The AuboReach, FetchReach-v1, FetchPush-v1, FetchSlide-v1, and FetchPick&Place-

v1 environments are used to evaluate the performance of the DDPG+HER and

AACHER techniques. These three matrices: average Q values, success rate, and

reward are used for evaluation. Each plot is averaged over 20 runs and plotted

against epochs. The AuboReach environment served as the initial testing ground for

our algorithm. The plots in Figure 4.8 illustrate our findings in the AuboReach en-

vironment. For additional comparison, the two top-performing A10C10 and A20C20

were chosen and plotted against DDPG+HER in a separate Figure 4.9. The colored

shaded areas in the figures represent the ranges of maximum and minimum values for

each experiment’s results.
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Figure 4.8: Plots comparing several experiments run in the AuboReach environ-
ment while using AACHER and DDPG+HER. Each experiment in the AACHER is
marked following the naming convention. Comparisons have been made between
success rate, reward, and average Q value. These are all averaged over 20 runs and
plotted against epochs. Each plot is also shown in a zoomed-in view for clarifica-

tion.
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Figure 4.9: Plots versus DDPG+HER are shown for the two best-performing
experiments, A10C10 and A20C20, when they are applied to the AuboReach en-
vironment. Plots showing success rate, reward, and average Q values are shown
using epochs and an average of 20 runs. The range of values for each plot for 20
runs is shown in the shaded area. For clarity, each plot has a zoomed-in version.
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Finally, we tested our method using the following four simulated environments: FetchReach-

v1, FetchPush-v1, FetchSlide-v1, and FetchPick&Place-v1. In comparison to DDPG+HER,

we only used the top-performing A10C10 and A20C20 from the AuboReach environ-

ment for subsequent evaluations in these environments. The average Q values, success

rate, and reward plots for each of these environments are shown in Figure 4.10.

Additionally, Table 4.1 contains a summary of the experiment’s findings. The average

of each metric, such as the reward, success rate, and average Q values, is displayed.

Each value in the table represents the average of 20 runs over the 25th epoch. The

figures that are bolded represent a statistic’s best results in that environment.

Setting Aubo
Reach

Fetch
Reach-
v1

Fetch
Push-
v1

Fetch
Slide-
v1

Fetch
Pick
And
Place-
v1

Success
rate

DDPG+
HER

1 1 0.13 0.016 0.08

A10C10 1 1 0.652 0.023 0.309
A20C20 1 1 0.647 0.013 0.339

Rewar
-d

DDPG+
HER

-69.3 -2.5 -89.6 -90.81 -96.9

A10C10 -63.00 -2.5 -45.00 -90.70 -83.4
A20C20 -64.60 -2.5 -51.83 -90.8 -81.04

Avera
-ge Q
value

DDPG+
HER

-5.8 -0.04 -12.84 -14.16 -12.9

A10C10 -5.49 -0.02 -5.016 -12.74 -9.19
A20C20 -5.66 -0.01 -5.19 -13.06 -8.808

Table 4.1: The table displays the success rate, reward, and average Q value for
each of the five environments. For the 25th epoch, the average of all the values over

20 runs is used.
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The next section provides an overall analysis of the AACHER algorithm in comparison

to other algorithms.

4.8.4 Analysis

In the previous subsection, we presented several observations as well as a methodology

for comparing the effectiveness of the AACHER, and DDPG+HER algorithms. Based

on all tests, AACHER outperforms the traditional DDPG+HER. AACHER surpasses

other algorithms in terms of success rate, reward, and average Q values.

Each plot in figure 4.8 illustrates how well AACHER performs in the AuboReach

environment and shows that it outperforms DDPG+HER. Our algorithm makes use

of several actor/critic instances for enhanced analysis. All of the plots indicate that

the performance of the AACHER instances is superior to that of the conventional

DDPG+HER. This is confirmed by the findings that the AACHER algorithm had a

greater success rate than DDPG+HER. The scenario for the reward and average Q

values is similar. This supports the AACHER technique’s stability and effectiveness.

It is seen that A10C10 and A20C20 perform reasonably similar to one another in all

three matrices. Compared to DDPG+HER, our algorithm shows better performance.

This is evident in all of the plots in figure 4.9, which demonstrates how the top-

performing instances A10C10 and A20C20 outperform DDPG+HER.

Figure 4.10 depicts the overall performance of our proposed algorithm, AACHER,

which, when used in OpenAI’s gym environments, outperforms the traditional DDPG+
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HER. The performance of A20C20 is observed to be the best in all three metrics in

the context of the FetchPick&Place-v1 environment. While A10C10’s performance is

on par with that of A20C20, the DDPG+HER was unable to perform any better. In

all matrices in the FetchPush-v1 environment, A10C10 is observed to perform better

than others. A20C20 performs almost as well as A10C10; however, DDPG+HER

fell short. There is a noticeable change in the success rate of GA+DDPG+HER at

the 25th epoch when FetchPush-v1 is compared to figure 4.10 and figure 3.14. This

is because training in AACHER uses 15 cycles per epoch instead of 50 cycles per

epoch in GA+DDPG+HER. Additionally, AACHER employs 15 training batches

every cycle as opposed to GA+DDPG+HER, which uses 40 batches. The three ap-

proaches in FetchReach-v1 have comparable success rates and incentives, but A10C10

and A20C20 have significantly higher average Q values. While all of the approaches

perform pretty equally in the FetchSlide-v1 environment, which is considered a chal-

lenging task, A10C10 outperforms the others across all matrices.

According to table 4.1, robots in various environments have a success rate of 1.

The success rate is still much below the maximum success rate of 1 in FetchPush-

v1, FetchSlide-v1, and FetchPick&Place-v1. The robot appears to be still learn-

ing these tasks. In FetchPush-v1 and FetchSlide-v1 environments, A10C10 per-

forms best, whereas A20C20 performs best inFetchPick&Place-v1 environment. The

increase in the success rate of A10C10 at the 25th epoch is over 3.8 times more

than that of DDPG+HER inFetchPush-v1. A20C20’s success rate improvement
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in FetchPick&Place-v1 is roughly 3.3 times greater than DDPG+HER’s. The re-

wards for A10C10 are 50% more than those for DDPG+HER in the FetchPush-v1

environment. The average Q value for FetchReach-v1 for A20C20 is 76% higher

than DDPG+HER. This demonstrates that our algorithm, AACHER, outperforms

DDPG+HER in terms of efficiency.

4.9 Summary

We discussed RL, DDPG, HER, and AACHER in this chapter. This chapter also

includes the key contribution, which is discussed in [140]. We proposed the novel

algorithm AACHER (Actor-Critic Deep Reinforcement Learning with Hindsight Ex-

perience Replay). The development of actors and critics is crucial for DDPG’s perfor-

mance. For DDPG in our algorithm AACHER, we use numerous independent actors

and critics, which helps to minimize the impact of a single actor or critic perform-

ing poorly. Additionally, we combined HER with our proposed DDPG in AACHER.

The AACHER technique uses a more reliable actor-critic learning architecture, which

leads to a more stable training environment and higher performance in real-world sit-

uations.

We performed various experiments to evaluate our algorithm’s effectiveness. We

tested AACHER in five simulated environments: AuboReach, FetchReach-v1, FetchPush-

v1, FetchSlide-v1, and FetchPick&Place-v1. A10C10 and A20C20 performed the best
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out of all the instances created for DDPG. The overall findings demonstrated that

AACHER outperforms the conventional DDPG+HER in all of the above-mentioned

environments and performs well in all three performance evaluation matrices.
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Figure 4.10: The two top-performing trials, A10C10 and A20C20, when applied
to the various settings, are plotted against DDPG+HER for comparison. Under-
neath them are the plots for each environment. Using epochs and an average of
20 runs, plots for success rate, reward, and average Q values are displayed. The

shaded region displays the range of values for each plot during the 20 runs.



93

Chapter 5

Conclusion and Future Work

5.1 Conclusion

Three novel algorithms, GA-LIMO, GA+DDPG+HER, and AACHER, were pre-

sented in this dissertation to address problems in sensor odometry, reinforcement

learning, and robotic manipulation.

The preliminary findings of this dissertation describe why a GA might be appropriate

for optimization. It demonstrated how a genetic algorithm can optimize the parame-

ters of a reinforcement learning algorithm to provide better results. Additionally, the

dissertation’s final results emphasize DDPG and describe how using numerous actors

and critics can enhance DDPG’s performance.
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We introduced the GA-LIMO algorithm, which enhances the LIMO’s performance

using the Genetic Algorithm (GA). The GA-LIMO’s results demonstrated that the

GA-discovered parameters generate more precise sensor odometry. Furthermore, it

was shown how the evolutionary algorithm might be used to adjust sensor odometry

algorithm parameters for greater accuracy under various circumstances. It is shown by

the efficiency of GA in GA-LIMO, which exemplifies how GA and LIMO collaborate

to minimize translation errors across various datasets.

We also provided the GA+DDPG+HER algorithm. To reduce the number of epochs

necessary to attain maximum performance, this method combines DDPG+HER with

GA. Our findings on the six manipulation tasks demonstrate that the GA is capable

of identifying parameter values that result in a quicker learning curve and better (or

equal) performance on the tasks we have selected, supporting our hypothesis that

GAs are an appropriate fit for such parameter optimization.

In the final part of our dissertation, we proposed a novel algorithm called AACHER

that aims to enhance the DDPG algorithm. For DDPG, the algorithm employs

several actor/critic networks and then integrates them with HER. According to our

findings on the five manipulation tasks, AACHER performs significantly better than

conventional DDPG+HER. This supports our hypothesis that using several actors

and critics can help DDPG perform better.
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5.2 Future Work

We demonstrated that heuristic search, as carried out using genetic and other related

evolutionary computing techniques, is a workable computational approach for enhanc-

ing reinforcement learning and sensor odometry performance. Additionally, adaptive

genetic algorithms can be used to run a system with various parameter sets at various

times. This might be a sign of online parameter adjustment, which can enhance the

performance of any system regardless of the testing environment or domain.

Furthermore, several RL state-action value-related strategies are easy to incorporate

with the AACHER methodology as well. It is acknowledged that certain AACHER

hyperparameters could be problematic. Therefore, the emphasis can shift in the future

to making the loss function’s parameters trainable variables. In addition, HER can

be looked into to find a better experience replay system.
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